#include #include #include #include #include #include #include #include #include #include #include #define MAX_DATAGRAM_SIZE 1350 #define LOCAL_CONN_ID_LEN 16 // Simple structure to hold connection state typedef struct { int sock; struct sockaddr_storage peer_addr; socklen_t peer_addr_len; quiche_conn *conn; long long total_bytes; struct timespec start_time; int timer_started; } Client; int main(int argc, char *argv[]) { // 1. Configuration quiche_config *config = quiche_config_new(QUICHE_PROTOCOL_VERSION); if (config == NULL) return -1; quiche_config_load_cert_chain_from_pem_file(config, "cert.crt"); quiche_config_load_priv_key_from_pem_file(config, "cert.key"); quiche_config_set_application_protos(config, (uint8_t *) "\x0ahq-interop\x05hq-29\x05hq-28\x05hq-27\x08http/0.9", 38); quiche_config_set_max_idle_timeout(config, 10000); quiche_config_set_max_recv_udp_payload_size(config, MAX_DATAGRAM_SIZE); quiche_config_set_max_send_udp_payload_size(config, MAX_DATAGRAM_SIZE); // Increase limits for performance quiche_config_set_initial_max_data(config, 1024 * 1024 * 200); quiche_config_set_initial_max_stream_data_bidi_local(config, 1024 * 1024 * 200); quiche_config_set_initial_max_stream_data_bidi_remote(config, 1024 * 1024 * 200); quiche_config_set_initial_max_streams_bidi(config, 100); quiche_config_set_cc_algorithm(config, QUICHE_CC_RENO); struct sockaddr_in sa; memset(&sa, 0, sizeof(sa)); sa.sin_family = AF_INET; sa.sin_port = htons(8889); sa.sin_addr.s_addr = INADDR_ANY; int sock = socket(AF_INET, SOCK_DGRAM, 0); if (sock < 0) return -1; if (bind(sock, (struct sockaddr *)&sa, sizeof(sa)) < 0) return -1; int flags = fcntl(sock, F_GETFL, 0); fcntl(sock, F_SETFL, flags | O_NONBLOCK); printf("QUIC Performance Server listening on port 8889\n"); Client *client = NULL; uint8_t buf[65535]; uint8_t out[MAX_DATAGRAM_SIZE]; bool done_printing = false; while (1) { struct sockaddr_storage peer_addr; socklen_t peer_addr_len = sizeof(peer_addr); ssize_t read_len = recvfrom(sock, buf, sizeof(buf), 0, (struct sockaddr *)&peer_addr, &peer_addr_len); if (read_len > 0) { uint8_t type; uint32_t version; uint8_t scid[QUICHE_MAX_CONN_ID_LEN]; size_t scid_len = sizeof(scid); uint8_t dcid[QUICHE_MAX_CONN_ID_LEN]; size_t dcid_len = sizeof(dcid); uint8_t token[256]; size_t token_len = sizeof(token); int rc = quiche_header_info(buf, read_len, LOCAL_CONN_ID_LEN, &version, &type, scid, &scid_len, dcid, &dcid_len, token, &token_len); if (rc >= 0) { if (client == NULL) { if (!quiche_version_is_supported(version)) { ssize_t written = quiche_negotiate_version(scid, scid_len, dcid, dcid_len, out, sizeof(out)); if (written > 0) sendto(sock, out, written, 0, (struct sockaddr *)&peer_addr, peer_addr_len); } else if (token_len == 0) { uint8_t new_scid[QUICHE_MAX_CONN_ID_LEN]; int rng = open("/dev/urandom", O_RDONLY); if (rng >= 0) { read(rng, new_scid, sizeof(new_scid)); close(rng); } ssize_t written = quiche_retry(scid, scid_len, dcid, dcid_len, new_scid, sizeof(new_scid), token, token_len, version, out, sizeof(out)); if (written > 0) sendto(sock, out, written, 0, (struct sockaddr *)&peer_addr, peer_addr_len); } else { client = malloc(sizeof(Client)); client->sock = sock; client->peer_addr = peer_addr; client->peer_addr_len = peer_addr_len; uint8_t server_scid[QUICHE_MAX_CONN_ID_LEN]; int rng = open("/dev/urandom", O_RDONLY); if (rng >= 0) { read(rng, server_scid, sizeof(server_scid)); close(rng); } client->conn = quiche_accept(server_scid, sizeof(server_scid), dcid, dcid_len, (struct sockaddr *)&sa, sizeof(sa), (struct sockaddr *)&peer_addr, peer_addr_len, config); client->total_bytes = 0; client->timer_started = 0; printf("New performance connection accepted.\n"); } } if (client != NULL) { quiche_conn_recv(client->conn, buf, read_len, &(quiche_recv_info){ .to = (struct sockaddr *)&sa, .to_len = sizeof(sa), .from = (struct sockaddr *)&peer_addr, .from_len = peer_addr_len, }); } } } if (client != NULL) { quiche_conn *conn = client->conn; if (quiche_conn_is_closed(conn)) { printf("Connection closed.\n"); quiche_conn_free(conn); free(client); client = NULL; continue; } if (quiche_conn_is_established(conn)) { uint64_t s = 0; quiche_stream_iter *readable = quiche_conn_readable(conn); while (quiche_stream_iter_next(readable, &s)) { if (!client->timer_started) { clock_gettime(CLOCK_MONOTONIC, &client->start_time); client->timer_started = 1; } uint8_t recv_buf[65535]; bool fin = false; uint64_t err_code = 0; ssize_t recv_bytes = quiche_conn_stream_recv(conn, s, recv_buf, sizeof(recv_buf), &fin, &err_code); if (recv_bytes > 0) { client->total_bytes += recv_bytes; } if (fin) { struct timespec end; clock_gettime(CLOCK_MONOTONIC, &end); double time_taken = (end.tv_sec - client->start_time.tv_sec) + (end.tv_nsec - client->start_time.tv_nsec) / 1e9; double mb = client->total_bytes / (1024.0 * 1024.0); double throughput = mb / time_taken; if (!done_printing) { printf("Received %.2f MB in %.2f seconds.\n", mb, time_taken); printf("Throughput: %.2f MB/s\n", throughput); done_printing = true; } } } quiche_stream_iter_free(readable); } while (1) { quiche_send_info send_info; ssize_t written = quiche_conn_send(conn, out, sizeof(out), &send_info); if (written == QUICHE_ERR_DONE) break; if (written < 0) break; sendto(sock, out, written, 0, (struct sockaddr *)&send_info.to, send_info.to_len); } quiche_conn_on_timeout(conn); } usleep(100); } quiche_config_free(config); return 0; }