""" The MIT License (MIT) Copyright (c) 2020 Andrej Karpathy Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. Modified version of Andrej Karpathy's "mingpt" repo found here: https://github.com/karpathy/minGPT """ import torch from torch.utils.data import Dataset from torch.utils.data.dataloader import DataLoader from gpt_model import Character_GPT class CharDataset(Dataset): def __init__(self, data): #Configure block size self.block_size = 10 #Define possible characters, and create mapping from number to character chars = sorted(list(set(data))) self.index2char = { i:ch for i,ch in enumerate(chars) } self.char2index = { ch:i for i,ch in enumerate(chars) } vocab_size = len(chars) self.vocab_size = vocab_size self.data = data def __len__(self): return len(self.data) - self.block_size def __getitem__(self, idx): # grab a chunk of (block_size + 1) characters from the data chunk = self.data[idx:idx + self.block_size + 1] # encode every character to an integer dix = [self.char2index[s] for s in chunk] # return as tensors x = torch.tensor(dix[:-1], dtype=torch.long) y = torch.tensor(dix[1:],dtype=torch.long) return x, y def train_single_iteration(model, data_iter): try: batch = next(data_iter) except StopIteration: data_iter = iter(train_loader) batch = next(data_iter) batch = [t for t in batch] x, y = batch # forward the model loss = model.get_loss(x, y) # backprop and update the parameters model.zero_grad(set_to_none=True) loss.backward() optimizer.step() if __name__ == '__main__': #Variables to configure learning_rate = 0.0004 num_iterations = 10000 batch_size = 500 checkpoint = 100 #How often to print out results of the model during training context = "Pacman" #Generative prompt layer_size = 100 n_layer = 6 #How many transformer blocks to have # construct the training dataset text = open('input.txt', 'r').read() train_dataset = CharDataset(text) # setup the dataloader train_loader = DataLoader( train_dataset, sampler=torch.utils.data.RandomSampler(train_dataset, replacement=True, num_samples=int(1e10)), shuffle=False, pin_memory=True, batch_size=batch_size, num_workers=1, ) train_iterations = iter(train_loader) #set up model and optimizer model = Character_GPT(train_dataset.block_size, n_embd=layer_size, n_layer=n_layer, vocab_size=train_dataset.vocab_size) optimizer = torch.optim.Adam(model.parameters(), lr=0.00004) for i in range(num_iterations): train_single_iteration(model, train_iterations) if i % checkpoint == 0: with torch.no_grad(): print("Iteration: " + str(i) + "\n") # sample from the model... print("Prompt: " + context) print("Generated result: ") x = torch.tensor([train_dataset.char2index[s] for s in context])[None,...] y = model.generate(x, 500)[0] completion = ''.join([train_dataset.index2char[int(i)] for i in y]) print(completion + "\n")