perflab finished

This commit is contained in:
2025-04-17 23:02:23 +08:00
parent ba21f80f3b
commit cc99d9b5d9
39 changed files with 1477 additions and 2007 deletions

653
branchPrediction.c Executable file
View File

@ -0,0 +1,653 @@
#include "common.h"
// 饱和计数器加1
static inline UINT32 SatIncrement(UINT32 x, UINT32 max)
{
if (x<max) return x + 1;
return x;
}
// 饱和计数器减1
static inline UINT32 SatDecrement(UINT32 x)
{
if (x>0) return x - 1;
return x;
}
#define BITS_OF_PC 13 // 选择13位的PC作为索引
#define STATE_MAX 3
#define STATE_INIT 2
UINT32 *State; // 状态数组用于保存分支指令的状态机实际只使用最低2位
UINT64 StateArraySize;
void PREDICTOR_init(void)
{
StateArraySize = (1 << BITS_OF_PC); // 状态数组项数
State = (UINT32 *)malloc(StateArraySize * sizeof(UINT32));
// *********** 你需要在下面书写代码 ***********
// 将状态数组全部初始化为STATE_INIT
for(UINT32 i = 0; i < StateArraySize; i++)
{
State[i] = 2;
}
// *********** 你需要在上面书写代码 ***********
}
// 2位状态的分支预测器预测部分
char GetPrediction(UINT64 PC)
{
// *********** 你需要在下面书写代码 ***********
// 将PC的低13位去索引状态数组State得到对应的饱和状态
// 如果该状态的值超过一半,则预测跳转
// 如果该状态的值低于一半,则预测不跳转
UINT32 index = PC>>2 & 0x1fff;
if(State[index] == 0 || State[index] == 1) return NOT_TAKEN;
return TAKEN;
//return TAKEN;
//return NOT_TAKEN;
// *********** 你需要在上面书写代码 ***********
}
// 2位状态的分支预测器更新部分
void UpdatePredictor(UINT64 PC, OpType opType, char resolveDir, char predDir, UINT64 branchTarget)
{
// *********** 你需要在下面书写代码 ***********
// 根据分支指令实际执行结果,来更新对应的饱和计数器
// 如果结果为跳转,则对应的饱和计数器+1
// 如果结果为不跳转,则对应的饱和计数器-1
UINT32 index = PC>>2 & 0x1fff;
if(resolveDir == 'T')
{
State[index] = SatIncrement(State[index], 3);
}
else
{
State[index] = SatDecrement(State[index]);
}
// *********** 你需要在上面书写代码 ***********
}
void PREDICTOR_free(void)
{
free(State);
}
#include "common.h"
// 饱和计数器加1
static inline UINT32 SatIncrement(UINT32 x, UINT32 max)
{
if (x<max) return x + 1;
return x;
}
// 饱和计数器减1
static inline UINT32 SatDecrement(UINT32 x)
{
if (x>0) return x - 1;
return x;
}
#define BITS_OF_PC 13 // 选择13位的PC作为索引
#define STATE_MAX 7
#define STATE_INIT 3
UINT32 *State; // 状态数组用于保存分支指令的状态机实际只使用最低3位
UINT64 StateArraySize;
void PREDICTOR_init(void)
{
StateArraySize = (1 << BITS_OF_PC); // 状态数组项数
State = (UINT32 *)malloc(StateArraySize * sizeof(UINT32));
// *********** 你需要在下面书写代码 ***********
// 将状态数组全部初始化为STATE_INIT
for(UINT64 i = 0; i <= StateArraySize; i++)
{
State[i] = STATE_INIT;
}
// *********** 你需要在上面书写代码 ***********
}
// 2位状态的分支预测器预测部分
char GetPrediction(UINT64 PC)
{
// *********** 你需要在下面书写代码 ***********
// 将PC的低13位去索引状态数组State得到对应的饱和状态
// 如果该状态的值超过一半,则预测跳转
// 如果该状态的值低于一半,则预测不跳转
UINT64 index = (PC>>2) & 0x1fff;
if(State[index] == 0 || State[index] == 1 || State[index] == 2 || State[index] == 3) return NOT_TAKEN;
return TAKEN;
//return TAKEN;
//return NOT_TAKEN;
// *********** 你需要在上面书写代码 ***********
}
// 2位状态的分支预测器更新部分
void UpdatePredictor(UINT64 PC, OpType opType, char resolveDir, char predDir, UINT64 branchTarget)
{
// *********** 你需要在下面书写代码 ***********
// 根据分支指令实际执行结果,来更新对应的饱和计数器
// 如果结果为跳转,则对应的饱和计数器+1
// 如果结果为不跳转,则对应的饱和计数器-1
UINT64 index = (PC>>2) & 0x1fff;
if(resolveDir == 'T')
{
State[index] = SatIncrement(State[index], 7);
}
else
{
State[index] = SatDecrement(State[index]);
}
// *********** 你需要在上面书写代码 ***********
}
void PREDICTOR_free(void)
{
free(State);
}
#include "common.h"
// 饱和计数器加1
static inline UINT32 SatIncrement(UINT32 x, UINT32 max)
{
if (x < max) return x + 1;
return x;
}
// 饱和计数器减1
static inline UINT32 SatDecrement(UINT32 x)
{
if (x > 0) return x - 1;
return x;
}
#define BITS_OF_PC 10 // 选择10位的PC作为索引
#define LOCAL_HIST_LEN 3 // 局部历史长度3位
#define LOCAL_HIST_MASK ~(~0 << LOCAL_HIST_LEN)
#define STATE_MAX 3
#define STATE_INIT 2
UINT32* pht; // pattern history table 模式历史表
UINT32 phtArraySize; // pht数组项数
UINT32* State; // 状态数组用于保存分支指令的状态机实际只使用最低2位
UINT64 StateArraySize;
void PREDICTOR_init(void)
{
StateArraySize = (1 << (BITS_OF_PC + LOCAL_HIST_LEN)); // 状态数组项数
State = (UINT32*)malloc(StateArraySize * sizeof(UINT32));
phtArraySize = (1 << BITS_OF_PC); // pht数组项数
pht = (UINT32*)malloc(phtArraySize * sizeof(UINT32));
// *********** 你需要在下面书写代码 ***********
// 将状态数组全部初始化为STATE_INIT
// 将模式历史表pht全部初始化为0
for(UINT64 i = 0; i < StateArraySize; i++)
{
State[i] = STATE_INIT;
}
for(UINT32 i = 0; i < phtArraySize; i++)
{
pht[i] = 0;
}
// *********** 你需要在上面书写代码 ***********
}
// 2位状态的分支预测器预测部分
char GetPrediction(UINT64 PC)
{
// *********** 你需要在下面书写代码 ***********
// 将PC的低10位去索引模式历史表pht得到对应的3位历史信息
UINT32 index1 = (PC>>2) & 0x3ff;
// 将PC的低10位与3位历史信息进行拼接形成一个13位的状态数组索引拼接需要使用C语言的移位、与、或等运算
//UINT64 index2 = (index1<<3) | (pht[index1]);
//UINT64 index2 = (index1) | (pht[index1]<<10);
UINT64 index2 = (index1 & 0x3ff) | (pht[index1]<<10 & 0x1c00);
// 用13位去索引状态数组得到对应的饱和状态
if(State[index2] == 0 || State[index2] == 1) return NOT_TAKEN;
return TAKEN;
// 如果该状态的值超过一半,则预测跳转
// 如果该状态的值低于一半,则预测不跳转
//return TAKEN;
// return NOT_TAKEN;
// *********** 你需要在上面书写代码 ***********
}
// 2位状态的分支预测器更新部分
void UpdatePredictor(UINT64 PC, OpType opType, char resolveDir, char predDir, UINT64 branchTarget)
{
// *********** 你需要在下面书写代码 ***********
// 根据分支指令实际执行结果,来更新对应的饱和计数器
// 如果结果为跳转,则对应的饱和计数器+1
// 如果结果为不跳转,则对应的饱和计数器-1
// 更新pht中的最近3次分支历史信息使用移位寄存器来更新
// 将其更新到pht中
UINT32 index1 = (PC>>2) & 0x3ff;
//UINT64 index2 = (index1<<3) | (pht[index1]);
//UINT64 index2 = (index1) | (pht[index1]<<10);
UINT64 index2 = (index1 & 0x3ff) | (pht[index1]<<10 & 0x1c00);
if(resolveDir == 'T')
{
State[index2] = SatIncrement(State[index2], 3);
pht[index1] = (pht[index1]<<1) | 0x1;
}
else
{
State[index2] = SatDecrement(State[index2]);
pht[index1] = (pht[index1]<<1);
}
// *********** 你需要在上面书写代码 ***********
}
void PREDICTOR_free(void)
{
free(State);
free(pht);
}
#include "common.h"
// 饱和计数器加1
static inline UINT32 SatIncrement(UINT32 x, UINT32 max)
{
if (x < max) return x + 1;
return x;
}
// 饱和计数器减1
static inline UINT32 SatDecrement(UINT32 x)
{
if (x > 0) return x - 1;
return x;
}
#define BITS_OF_PC 9 // 选择9位的PC作为索引
#define LOCAL_HIST_LEN 4 // 局部历史长度4位
#define LOCAL_HIST_MASK ~(~0 << LOCAL_HIST_LEN)
#define STATE_MAX 3
#define STATE_INIT 2
UINT32* pht; // pattern history table 模式历史表
UINT32 phtArraySize; // pht数组项数
UINT32* State; // 状态数组用于保存分支指令的状态机实际只使用最低2位
UINT64 StateArraySize;
void PREDICTOR_init(void)
{
StateArraySize = (1 << (BITS_OF_PC + LOCAL_HIST_LEN)); // 状态数组项数
State = (UINT32*)malloc(StateArraySize * sizeof(UINT32));
phtArraySize = (1 << BITS_OF_PC); // pht数组项数
pht = (UINT32*)malloc(phtArraySize * sizeof(UINT32));
// *********** 你需要在下面书写代码 ***********
// 将状态数组全部初始化为STATE_INIT
// 将模式历史表pht全部初始化为0
for(UINT64 i = 0; i < StateArraySize; i++)
{
State[i] = STATE_INIT;
}
for(UINT32 i = 0; i < phtArraySize; i++)
{
pht[i] = 0;
}
// *********** 你需要在上面书写代码 ***********
}
// 2位状态的分支预测器预测部分
char GetPrediction(UINT64 PC)
{
// *********** 你需要在下面书写代码 ***********
// 将PC的低10位去索引模式历史表pht得到对应的3位历史信息
// 将PC的低10位与3位历史信息进行拼接形成一个13位的状态数组索引拼接需要使用C语言的移位、与、或等运算
// 用13位去索引状态数组得到对应的饱和状态
// 如果该状态的值超过一半,则预测跳转
// 如果该状态的值低于一半,则预测不跳转
UINT32 index1 = (PC>>2) & 0x1ff;
UINT64 index2 = (index1 & 0x1ff) | (pht[index1]<<9 & 0x1e00);
if(State[index2] == 0 || State[index2] == 1) return NOT_TAKEN;
return TAKEN;
//return TAKEN;
// return NOT_TAKEN;
// *********** 你需要在上面书写代码 ***********
}
// 2位状态的分支预测器更新部分
void UpdatePredictor(UINT64 PC, OpType opType, char resolveDir, char predDir, UINT64 branchTarget)
{
// *********** 你需要在下面书写代码 ***********
// 根据分支指令实际执行结果,来更新对应的饱和计数器
// 如果结果为跳转,则对应的饱和计数器+1
// 如果结果为不跳转,则对应的饱和计数器-1
// 更新pht中的最近3次分支历史信息使用移位寄存器来更新
// 将其更新到pht中
UINT32 index1 = (PC>>2) & 0x1ff;
UINT64 index2 = (index1 & 0x1ff) | (pht[index1]<<9 & 0x1e00);
if(resolveDir == 'T')
{
State[index2] = SatIncrement(State[index2], 3);
pht[index1] = (pht[index1]<<1) | 0x1;
}
else
{
State[index2] = SatDecrement(State[index2]);
pht[index1] = (pht[index1]<<1);
}
// *********** 你需要在上面书写代码 ***********
}
void PREDICTOR_free(void)
{
free(State);
free(pht);
}
#include "common.h"
// 饱和计数器加1
static inline UINT32 SatIncrement(UINT32 x, UINT32 max)
{
if (x < max) return x + 1;
return x;
}
// 饱和计数器减1
static inline UINT32 SatDecrement(UINT32 x)
{
if (x > 0) return x - 1;
return x;
}
#define GLOBAL_HIST_LEN 13 // 全局历史长度13位
#define GLOBAL_HIST_MASK ~(~0 << GLOBAL_HIST_LEN)
#define STATE_MAX 3
#define STATE_INIT 2
UINT32 GHR; // Global History Register全局历史寄存器
UINT32* State; // 状态数组用于保存分支指令的状态机实际只使用最低2位
UINT64 StateArraySize;
void PREDICTOR_init(void)
{
StateArraySize = (1 << GLOBAL_HIST_LEN); // 状态数组项数
State = (UINT32*)malloc(StateArraySize * sizeof(UINT32));
// *********** 你需要在下面书写代码 ***********
// 将状态数组全部初始化为STATE_INIT
// 将全局历史寄存器GHR初始化为0
for(UINT64 i = 0; i < StateArraySize; i++)
{
State[i] = STATE_INIT;
}
GHR = 0;
// *********** 你需要在上面书写代码 ***********
}
// Gshare分支预测器预测部分
char GetPrediction(UINT64 PC)
{
// *********** 你需要在下面书写代码 ***********
// 用13位的GHR去索引状态数组得到对应的饱和状态
// 如果该状态的值超过一半,则预测跳转
// 如果该状态的值低于一半,则预测不跳转
UINT64 index = GHR & 0x1fff;
if(State[index] == 0 || State[index] == 1) return NOT_TAKEN;
return TAKEN;
// return TAKEN;
// return NOT_TAKEN;
// *********** 你需要在上面书写代码 ***********
}
// Gshare分支预测器更新部分
void UpdatePredictor(UINT64 PC, OpType opType, char resolveDir, char predDir, UINT64 branchTarget)
{
// *********** 你需要在下面书写代码 ***********
// 根据分支指令实际执行结果,来更新对应的饱和计数器
// 如果结果为跳转,则对应的饱和计数器+1
// 如果结果为不跳转,则对应的饱和计数器-1
// 更新GHR中的最近1次分支历史信息使用移位寄存器来更新
UINT64 index = GHR & 0x1fff;
if(resolveDir == 'T')
{
State[index] = SatIncrement(State[index], 3);
GHR = GHR << 1 | 0x1;
}
else
{
State[index] = SatDecrement(State[index]);
GHR = GHR << 1;
}
// *********** 你需要在上面书写代码 ***********
}
void PREDICTOR_free(void)
{
free(State);
}
#include "common.h"
// 饱和计数器加1
static inline UINT32 SatIncrement(UINT32 x, UINT32 max)
{
if (x < max) return x + 1;
return x;
}
// 饱和计数器减1
static inline UINT32 SatDecrement(UINT32 x)
{
if (x > 0) return x - 1;
return x;
}
#define BITS_OF_PC 3 // 选择3位的PC作为索引
#define GLOBAL_HIST_LEN 10 // 全局历史长度10位
#define STATE_INDEX_MASK ~(~0 << (BITS_OF_PC + GLOBAL_HIST_LEN))
#define STATE_MAX 3
#define STATE_INIT 2
UINT32 GHR; // Global History Register全局历史寄存器
UINT32* State; // 状态数组用于保存分支指令的状态机实际只使用最低2位
UINT64 StateArraySize;
void PREDICTOR_init(void)
{
StateArraySize = (1 << (BITS_OF_PC +GLOBAL_HIST_LEN)); // 状态数组项数
State = (UINT32*)malloc(StateArraySize * sizeof(UINT32));
// *********** 你需要在下面书写代码 ***********
// 将状态数组全部初始化为STATE_INIT
// 将全局历史寄存器GHR初始化为0
for(UINT64 i = 0; i < StateArraySize; i++)
{
State[i] = STATE_INIT;
}
GHR = 0;
// *********** 你需要在上面书写代码 ***********
}
// Gshare分支预测器预测部分
char GetPrediction(UINT64 PC)
{
// *********** 你需要在下面书写代码 ***********
// 将PC的低3位与10位GHR进行拼接形成一个13位的状态数组索引
// 用13位去索引状态数组得到对应的饱和状态
// 如果该状态的值超过一半,则预测跳转
// 如果该状态的值低于一半,则预测不跳转
UINT64 index = (((PC>>2 & 0x7) << 10) & 0x1c00) | (GHR & 0x3ff);
if(State[index] == 0 || State[index] == 1) return NOT_TAKEN;
return TAKEN;
// return TAKEN;
// return NOT_TAKEN;
// *********** 你需要在上面书写代码 ***********
}
// Gshare分支预测器更新部分
void UpdatePredictor(UINT64 PC, OpType opType, char resolveDir, char predDir, UINT64 branchTarget)
{
// *********** 你需要在下面书写代码 ***********
// 根据分支指令实际执行结果,来更新对应的饱和计数器
// 如果结果为跳转,则对应的饱和计数器+1
// 如果结果为不跳转,则对应的饱和计数器-1
// 更新GHR中的最近1次分支历史信息使用移位寄存器来更新
UINT64 index = (((PC>>2 & 0x7) << 10) & 0x1c00) | (GHR & 0x3ff);
if(resolveDir == 'T')
{
State[index] = SatIncrement(State[index], 3);
GHR = GHR << 1 | 0x1;
}
else
{
State[index] = SatDecrement(State[index]);
GHR = GHR << 1;
}
// *********** 你需要在上面书写代码 ***********
}
void PREDICTOR_free(void)
{
free(State);
}
#include "common.h"
// 饱和计数器加1
static inline UINT32 SatIncrement(UINT32 x, UINT32 max)
{
if (x < max) return x + 1;
return x;
}
// 饱和计数器减1
static inline UINT32 SatDecrement(UINT32 x)
{
if (x > 0) return x - 1;
return x;
}
#define GLOBAL_HIST_LEN 13 // 全局历史长度13位
#define GLOBAL_HIST_MASK ~(~0 << GLOBAL_HIST_LEN)
#define STATE_MAX 3
#define STATE_INIT 2
UINT32 GHR; // Global History Register全局历史寄存器
UINT32* State; // 状态数组用于保存分支指令的状态机实际只使用最低2位
UINT64 StateArraySize;
void PREDICTOR_init(void)
{
StateArraySize = (1 << GLOBAL_HIST_LEN); // 状态数组项数
State = (UINT32*)malloc(StateArraySize * sizeof(UINT32));
// *********** 你需要在下面书写代码 ***********
// 将状态数组全部初始化为STATE_INIT
// 将全局历史寄存器GHR初始化为0
for(UINT64 i = 0; i < StateArraySize; i++)
{
State[i] = STATE_INIT;
}
GHR = 0;
// *********** 你需要在上面书写代码 ***********
}
// Gshare分支预测器预测部分
char GetPrediction(UINT64 PC)
{
// *********** 你需要在下面书写代码 ***********
// 将PC的低13位与13位GHR进行异或形成一个13位的状态数组索引
// 用13位去索引状态数组得到对应的饱和状态
// 如果该状态的值超过一半,则预测跳转
// 如果该状态的值低于一半则预测不跳转7]
UINT64 nPC = (PC) & 0x1fff;
UINT64 index = nPC ^ (GHR & 0x1fff);
if(State[index] == 0 || State[index] == 1) return NOT_TAKEN;
return TAKEN;
// return TAKEN;
// return NOT_TAKEN;
// *********** 你需要在上面书写代码 ***********
}
// Gshare分支预测器更新部分
void UpdatePredictor(UINT64 PC, OpType opType, char resolveDir, char predDir, UINT64 branchTarget)
{
// *********** 你需要在下面书写代码 ***********
// 根据分支指令实际执行结果,来更新对应的饱和计数器
// 如果结果为跳转,则对应的饱和计数器+1
// 如果结果为不跳转,则对应的饱和计数器-1
// 更新GHR中的最近1次分支历史信息使用移位寄存器来更新
UINT64 nPC = (PC) & 0x1fff;
UINT64 index = nPC ^ (GHR & 0x1fff);
if(resolveDir == 'T')
{
State[index] = SatIncrement(State[index], 3);
GHR = GHR << 1 | 0x1;
}
else
{
State[index] = SatDecrement(State[index]);
GHR = GHR << 1;
}
// *********** 你需要在上面书写代码 ***********
}
void PREDICTOR_free(void)
{
free(State);
}

View File

@ -1,34 +0,0 @@
CC = gcc
CFLAGS = -Wall -O1 -g
#LDFLAGS = -lm -lcudart -lcuda
# Source files
SRCS = rowcol_test.c clock.c cpe.c fcyc.c lsquare.c rowcol_202302723005.c
#CUDA_SRCS = rowcol.cu
OBJS = $(SRCS:.c=.o)
#rowcol.o
# Target executable
TARGET = matrix_test
# Default target
all: $(TARGET)
# Rule to build the executable
$(TARGET): $(OBJS)
$(CC) $(OBJS) -o $(TARGET) $(LDFLAGS)
# Rule to build object files
%.o: %.c
$(CC) $(CFLAGS) -c $< -o $@
# Rule to build CUDA object files
#rowcol.o: rowcol.cu
# $(NVCC) $(CUDA_FLAGS) -c $< -o $@
# Clean rule
clean:
rm -f $(OBJS) $(TARGET)
# Phony targets
.PHONY: all clean

BIN
perflab/matrix/a.exe Executable file

Binary file not shown.

View File

@ -2,73 +2,87 @@
* Retrofitted to use thread-specific timers
* and to get clock information from /proc/cpuinfo
* (C) R. E. Bryant, 2010
* Modified for cross-platform compatibility
*
*/
#define _GNU_SOURCE // For sched_setaffinity on Linux
#include <stdint.h>
/* When this constant is not defined, uses time stamp counter */
#define USE_POSIX 0
/* Choice to use cpu_gettime call or Intel time stamp counter directly */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef _WIN32
#include <intrin.h>
//#include <intrinsics.h>
#include <windows.h>
#else
#include <sched.h>
#include <time.h>
#include <unistd.h>
#include <x86intrin.h>
typedef struct {
uint64_t QuadPart;
} LARGE_INTEGER;
typedef void *HANDLE;
#define __int64 long long
#define Sleep(ms) usleep((ms) * 1000)
#endif
#include "clock.h"
/* Use x86 cycle counter */
/* Initialize the cycle counter */
static unsigned cyc_hi = 0;
static unsigned cyc_lo = 0;
void access_counter(unsigned *hi, unsigned *lo) {
uint64_t counter = __rdtsc();
*hi = (unsigned)(counter >> 32);
*lo = (unsigned)counter;
/* Set *hi and *lo to the high and low order bits of the cycle counter.
Implementation requires assembly code to use the rdtsc instruction. */
void access_counter(unsigned *hi, unsigned *lo)
{
long long counter;
counter = __rdtsc();
(*hi) = (unsigned int)(counter >> 32);
(*lo) = (unsigned int)counter;
/*
LARGE_INTEGER lPerformanceCount;
QueryPerformanceCounter(&lPerformanceCount);
(*hi) = (unsigned int)lPerformanceCount.HighPart;
(*lo) = (unsigned int)lPerformanceCount.LowPart;
// printf("%08X %08X\n",(*hi),(*lo));
*/
}
void start_counter() { access_counter(&cyc_hi, &cyc_lo); }
double get_counter() {
/* Record the current value of the cycle counter. */
void start_counter()
{
access_counter(&cyc_hi, &cyc_lo);
}
/* Return the number of cycles since the last call to start_counter. */
double get_counter()
{
unsigned ncyc_hi, ncyc_lo;
unsigned hi, lo, borrow;
double result;
/* Get cycle counter */
access_counter(&ncyc_hi, &ncyc_lo);
uint64_t start = ((uint64_t)cyc_hi << 32) | cyc_lo;
uint64_t end = ((uint64_t)ncyc_hi << 32) | ncyc_lo;
return (double)(end - start);
}
void make_CPU_busy(void) {
volatile double old_tick = get_counter();
volatile double new_tick;
while ((new_tick - old_tick) < 1000000000) {
/* Do double precision subtraction */
lo = ncyc_lo - cyc_lo;
borrow = cyc_lo > ncyc_lo;
hi = ncyc_hi - cyc_hi - borrow;
result = (double) hi * (1 << 30) * 4 + lo;
return result;
}
void make_CPU_busy(void)
{
volatile double old_tick,new_tick;
start_counter();
old_tick = get_counter();
new_tick = get_counter();
while (new_tick - old_tick < 1000000000)
new_tick = get_counter();
}
}
#ifdef _WIN32
#define GET_TIME(dest) QueryPerformanceCounter(dest)
#else
static inline void GET_TIME(LARGE_INTEGER *dest) {
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
dest->QuadPart = (uint64_t)ts.tv_sec * 1000000000 + ts.tv_nsec;
}
#define QueryPerformanceFrequency(freq) ((freq)->QuadPart = 1000000000)
#endif
double mhz(int verbose) {
//CPU<50><55>Ƶ<EFBFBD><C6B5>
double mhz(int verbose)
{
LARGE_INTEGER lFrequency;
LARGE_INTEGER lPerformanceCount_Start;
LARGE_INTEGER lPerformanceCount_End;
@ -76,121 +90,140 @@ double mhz(int verbose) {
double fTime;
__int64 _i64StartCpuCounter;
__int64 _i64EndCpuCounter;
//On a multiprocessor machine, it should not matter which processor is called.
//However, you can get different results on different processors due to bugs in
//the BIOS or the HAL. To specify processor affinity for a thread, use the SetThreadAffinityMask function.
HANDLE hThread=GetCurrentThread();
SetThreadAffinityMask(hThread,0x1);
#ifdef _WIN32
HANDLE hThread = GetCurrentThread();
SetThreadAffinityMask(hThread, 0x1);
#else
cpu_set_t cpuset;
CPU_ZERO(&cpuset);
CPU_SET(0, &cpuset);
sched_setaffinity(0, sizeof(cpuset), &cpuset);
#endif
//<2F><><EFBFBD><EFBFBD><EFBFBD>ϸ߾<CFB8><DFBE>ȶ<EFBFBD>ʱ<EFBFBD><CAB1><EFBFBD>ľ<EFBFBD><C4BE><EFBFBD>Ƶ<EFBFBD><C6B5>
//<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʱ<EFBFBD><CAB1>Ӧ<EFBFBD>þ<EFBFBD><C3BE><EFBFBD>һƬ8253<35><33><EFBFBD><EFBFBD>8254
//<2F><>intel ich7<68>м<EFBFBD><D0BC><EFBFBD><EFBFBD><EFBFBD>8254
QueryPerformanceFrequency(&lFrequency);
GET_TIME(&lPerformanceCount_Start);
_i64StartCpuCounter = __rdtsc();
// if (verbose>0)
// printf("<22>߾<EFBFBD><DFBE>ȶ<EFBFBD>ʱ<EFBFBD><CAB1><EFBFBD>ľ<EFBFBD><C4BE><EFBFBD>Ƶ<EFBFBD>ʣ<EFBFBD>%1.0fHz.\n",(double)lFrequency.QuadPart);
//<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʱ<EFBFBD><CAB1>ÿ<EFBFBD><C3BF><EFBFBD><EFBFBD>һ<EFBFBD><D2BB>ʱ<EFBFBD><CAB1><EFBFBD><EFBFBD><EFBFBD>ڣ<EFBFBD><DAA3><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>+1
QueryPerformanceCounter(&lPerformanceCount_Start);
//RDTSCָ<43><D6B8>:<3A><>ȡCPU<50><55><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʱ<EFBFBD><CAB1><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
_i64StartCpuCounter=__rdtsc();
//<2F><>ʱ<EFBFBD><CAB1>һ<EFBFBD><D2BB>,<2C><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Сһ<D0A1><D2BB>
//int nTemp=100000;
//while (--nTemp);
Sleep(200);
GET_TIME(&lPerformanceCount_End);
_i64EndCpuCounter = __rdtsc();
fTime = (lPerformanceCount_End.QuadPart - lPerformanceCount_Start.QuadPart) /
(double)lFrequency.QuadPart;
mhz = (_i64EndCpuCounter - _i64StartCpuCounter) / (fTime * 1000000.0);
QueryPerformanceCounter(&lPerformanceCount_End);
if (verbose > 0) {
printf("CPU频率为: %.6fMHz.\n", mhz);
}
_i64EndCpuCounter=__rdtsc();
//f=1/T => f=<3D><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>/(<28><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>*T)
//<2F><><EFBFBD><EFBFBD><EFBFBD>ġ<EFBFBD><C4A1><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>*T<><54><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʱ<EFBFBD><CAB1><EFBFBD><EFBFBD>
fTime=((double)lPerformanceCount_End.QuadPart-(double)lPerformanceCount_Start.QuadPart)
/(double)lFrequency.QuadPart;
mhz = (_i64EndCpuCounter-_i64StartCpuCounter)/(fTime*1000000.0);
if (verbose>0)
printf("CPUƵ<EFBFBD><EFBFBD>Ϊ:%1.6fMHz.\n",mhz);
return mhz;
}
double CPU_Factor1(void) {
double CPU_Factor1(void)
{
double result;
int i, j, k;
LARGE_INTEGER lStart, lEnd;
int i,j,k,ii,jj,kk;
LARGE_INTEGER lStart,lEnd;
LARGE_INTEGER lFrequency;
HANDLE hThread;
double fTime;
#ifdef _WIN32
HANDLE hThread = GetCurrentThread();
SetThreadAffinityMask(hThread, 0x1);
#else
cpu_set_t cpuset;
CPU_ZERO(&cpuset);
CPU_SET(0, &cpuset);
sched_setaffinity(0, sizeof(cpuset), &cpuset);
#endif
QueryPerformanceFrequency(&lFrequency);
GET_TIME(&lStart);
start_counter();
for (i = 0; i < 100; i++)
for (j = 0; j < 1000; j++)
for (k = 0; k < 1000; k++)
;
ii = 43273;
kk = 1238;
result = 1;
jj = 1244;
hThread=GetCurrentThread();
SetThreadAffinityMask(hThread,0x1);
QueryPerformanceCounter(&lStart);
//_asm("cpuid");
start_counter();
for (i=0;i<100;i++)
for (j=0;j<1000;j++)
for (k=0;k<1000;k++)
kk += kk*ii+jj;
result = get_counter();
GET_TIME(&lEnd);
fTime = (lEnd.QuadPart - lStart.QuadPart) / (double)lFrequency.QuadPart;
printf("CPU计算时长为: %f", result);
printf("\t %f\n", fTime);
QueryPerformanceCounter(&lEnd);
fTime=((double)lEnd.QuadPart-(double)lStart.QuadPart);
printf("CPU<EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʱ<EFBFBD><EFBFBD>Ϊ%f",result);
printf("\t %f\n",fTime);
return result;
}
double CPU_Factor(void) {
double CPU_Factor(void)
{
double frequency;
double multiplier = 1000 * 1000 * 1000; // nano
double multiplier = 1000 * 1000 * 1000;//nano
LARGE_INTEGER lFrequency;
LARGE_INTEGER start, stop;
LARGE_INTEGER start,stop;
HANDLE hThread;
int i;
const int gigahertz= 1000*1000*1000;
const int known_instructions_per_loop = 27317;
int iterations = 100000000;
int g = 0;
double normal_ticks_per_second;
double ticks;
double time;
double loops_per_sec;
double instructions_per_loop;
double ratio;
double actual_freq;
#ifdef _WIN32
HANDLE hThread = GetCurrentThread();
SetThreadAffinityMask(hThread, 0x1);
#else
cpu_set_t cpuset;
CPU_ZERO(&cpuset);
CPU_SET(0, &cpuset);
sched_setaffinity(0, sizeof(cpuset), &cpuset);
#endif
double ticks;
double time;
double loops_per_sec;
double instructions_per_loop;
double ratio;
double actual_freq;
QueryPerformanceFrequency(&lFrequency);
frequency = (double)lFrequency.QuadPart;
GET_TIME(&start);
for (i = 0; i < iterations; i++) {
hThread=GetCurrentThread();
SetThreadAffinityMask(hThread,0x1);
QueryPerformanceCounter(&start);
for( i = 0; i < iterations; i++)
{
g++;
g++;
g++;
g++;
}
QueryPerformanceCounter(&stop);
GET_TIME(&stop);
//normal ticks differs from the WMI data, i.e 3125, when WMI 3201, and CPUZ 3199
normal_ticks_per_second = frequency * 1000;
ticks = (double)(stop.QuadPart - start.QuadPart);
time = (ticks * multiplier) / frequency;
loops_per_sec = iterations / (time / multiplier);
ticks = (double)((double)stop.QuadPart - (double)start.QuadPart);
time = (ticks * multiplier) /frequency;
loops_per_sec = iterations / (time/multiplier);
instructions_per_loop = normal_ticks_per_second / loops_per_sec;
ratio = instructions_per_loop / known_instructions_per_loop;
actual_freq = normal_ticks_per_second / ratio;
ratio = (instructions_per_loop / known_instructions_per_loop);
actual_freq = normal_ticks_per_second / ratio;
/*
actual_freq = normal_ticks_per_second / ratio;
actual_freq = known_instructions_per_loop*iterations*multiplier/time;
2293 = x/time;
2292.599713*1191533038.809362=known_instructions_per_loop*100000000*1000
loops_per_sec = iterations*frequency / ticks
instructions_per_loop = / loops_per_sec;
*/
printf("Perf counter freq: %f\n", normal_ticks_per_second);
printf("Loops per sec: %f\n", loops_per_sec);
printf("Perf counter freq div loops per sec: %f\n", instructions_per_loop);
printf("Presumed freq: %f\n", actual_freq);
printf("ratio: %f\n", ratio);
printf("time=%f\n", time);
printf("time=%f\n",time);
return ratio;
}

View File

@ -1,229 +0,0 @@
/* clock.c
* Retrofitted to use thread-specific timers
* and to get clock information from /proc/cpuinfo
* (C) R. E. Bryant, 2010
*
*/
/* When this constant is not defined, uses time stamp counter */
#define USE_POSIX 0
/* Choice to use cpu_gettime call or Intel time stamp counter directly */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <x86intrin.h>
//#include <intrinsics.h>
//#include <windows.h>
#include <time.h>
#include "clock.h"
/* Use x86 cycle counter */
/* Initialize the cycle counter */
static unsigned cyc_hi = 0;
static unsigned cyc_lo = 0;
/* Set *hi and *lo to the high and low order bits of the cycle counter.
Implementation requires assembly code to use the rdtsc instruction. */
void access_counter(unsigned *hi, unsigned *lo)
{
long long counter;
counter = __rdtsc();
(*hi) = (unsigned int)(counter >> 32);
(*lo) = (unsigned int)counter;
/*
LARGE_INTEGER lPerformanceCount;
QueryPerformanceCounter(&lPerformanceCount);
(*hi) = (unsigned int)lPerformanceCount.HighPart;
(*lo) = (unsigned int)lPerformanceCount.LowPart;
// printf("%08X %08X\n",(*hi),(*lo));
*/
}
/* Record the current value of the cycle counter. */
void start_counter()
{
access_counter(&cyc_hi, &cyc_lo);
}
/* Return the number of cycles since the last call to start_counter. */
double get_counter()
{
unsigned ncyc_hi, ncyc_lo;
unsigned hi, lo, borrow;
double result;
/* Get cycle counter */
access_counter(&ncyc_hi, &ncyc_lo);
/* Do double precision subtraction */
lo = ncyc_lo - cyc_lo;
borrow = cyc_lo > ncyc_lo;
hi = ncyc_hi - cyc_hi - borrow;
result = (double) hi * (1 << 30) * 4 + lo;
return result;
}
void make_CPU_busy(void)
{
volatile double old_tick,new_tick;
start_counter();
old_tick = get_counter();
new_tick = get_counter();
while (new_tick - old_tick < 1000000000)
new_tick = get_counter();
}
//CPU<50><55>Ƶ<EFBFBD><C6B5>
double mhz(int verbose)
{
LARGE_INTEGER lFrequency;
LARGE_INTEGER lPerformanceCount_Start;
LARGE_INTEGER lPerformanceCount_End;
double mhz;
double fTime;
__int64 _i64StartCpuCounter;
__int64 _i64EndCpuCounter;
//On a multiprocessor machine, it should not matter which processor is called.
//However, you can get different results on different processors due to bugs in
//the BIOS or the HAL. To specify processor affinity for a thread, use the SetThreadAffinityMask function.
HANDLE hThread=GetCurrentThread();
SetThreadAffinityMask(hThread,0x1);
//<2F><><EFBFBD><EFBFBD><EFBFBD>ϸ߾<CFB8><DFBE>ȶ<EFBFBD>ʱ<EFBFBD><CAB1><EFBFBD>ľ<EFBFBD><C4BE><EFBFBD>Ƶ<EFBFBD><C6B5>
//<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʱ<EFBFBD><CAB1>Ӧ<EFBFBD>þ<EFBFBD><C3BE><EFBFBD>һƬ8253<35><33><EFBFBD><EFBFBD>8254
//<2F><>intel ich7<68>м<EFBFBD><D0BC><EFBFBD><EFBFBD><EFBFBD>8254
QueryPerformanceFrequency(&lFrequency);
// if (verbose>0)
// printf("<22>߾<EFBFBD><DFBE>ȶ<EFBFBD>ʱ<EFBFBD><CAB1><EFBFBD>ľ<EFBFBD><C4BE><EFBFBD>Ƶ<EFBFBD>ʣ<EFBFBD>%1.0fHz.\n",(double)lFrequency.QuadPart);
//<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʱ<EFBFBD><CAB1>ÿ<EFBFBD><C3BF><EFBFBD><EFBFBD>һ<EFBFBD><D2BB>ʱ<EFBFBD><CAB1><EFBFBD><EFBFBD><EFBFBD>ڣ<EFBFBD><DAA3><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>+1
QueryPerformanceCounter(&lPerformanceCount_Start);
//RDTSCָ<43><D6B8>:<3A><>ȡCPU<50><55><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʱ<EFBFBD><CAB1><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
_i64StartCpuCounter=__rdtsc();
//<2F><>ʱ<EFBFBD><CAB1>һ<EFBFBD><D2BB>,<2C><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Сһ<D0A1><D2BB>
//int nTemp=100000;
//while (--nTemp);
Sleep(200);
QueryPerformanceCounter(&lPerformanceCount_End);
_i64EndCpuCounter=__rdtsc();
//f=1/T => f=<3D><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>/(<28><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>*T)
//<2F><><EFBFBD><EFBFBD><EFBFBD>ġ<EFBFBD><C4A1><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>*T<><54><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʱ<EFBFBD><CAB1><EFBFBD><EFBFBD>
fTime=((double)lPerformanceCount_End.QuadPart-(double)lPerformanceCount_Start.QuadPart)
/(double)lFrequency.QuadPart;
mhz = (_i64EndCpuCounter-_i64StartCpuCounter)/(fTime*1000000.0);
if (verbose>0)
printf("CPUƵ<EFBFBD><EFBFBD>Ϊ:%1.6fMHz.\n",mhz);
return mhz;
}
double CPU_Factor1(void)
{
double result;
int i,j,k,ii,jj,kk;
LARGE_INTEGER lStart,lEnd;
LARGE_INTEGER lFrequency;
HANDLE hThread;
double fTime;
QueryPerformanceFrequency(&lFrequency);
ii = 43273;
kk = 1238;
result = 1;
jj = 1244;
hThread=GetCurrentThread();
SetThreadAffinityMask(hThread,0x1);
QueryPerformanceCounter(&lStart);
//_asm("cpuid");
start_counter();
for (i=0;i<100;i++)
for (j=0;j<1000;j++)
for (k=0;k<1000;k++)
kk += kk*ii+jj;
result = get_counter();
QueryPerformanceCounter(&lEnd);
fTime=((double)lEnd.QuadPart-(double)lStart.QuadPart);
printf("CPU<EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʱ<EFBFBD><EFBFBD>Ϊ%f",result);
printf("\t %f\n",fTime);
return result;
}
double CPU_Factor(void)
{
double frequency;
double multiplier = 1000 * 1000 * 1000;//nano
LARGE_INTEGER lFrequency;
LARGE_INTEGER start,stop;
HANDLE hThread;
int i;
const int gigahertz= 1000*1000*1000;
const int known_instructions_per_loop = 27317;
int iterations = 100000000;
int g = 0;
double normal_ticks_per_second;
double ticks;
double time;
double loops_per_sec;
double instructions_per_loop;
double ratio;
double actual_freq;
QueryPerformanceFrequency(&lFrequency);
frequency = (double)lFrequency.QuadPart;
hThread=GetCurrentThread();
SetThreadAffinityMask(hThread,0x1);
QueryPerformanceCounter(&start);
for( i = 0; i < iterations; i++)
{
g++;
g++;
g++;
g++;
}
QueryPerformanceCounter(&stop);
//normal ticks differs from the WMI data, i.e 3125, when WMI 3201, and CPUZ 3199
normal_ticks_per_second = frequency * 1000;
ticks = (double)((double)stop.QuadPart - (double)start.QuadPart);
time = (ticks * multiplier) /frequency;
loops_per_sec = iterations / (time/multiplier);
instructions_per_loop = normal_ticks_per_second / loops_per_sec;
ratio = (instructions_per_loop / known_instructions_per_loop);
actual_freq = normal_ticks_per_second / ratio;
/*
actual_freq = normal_ticks_per_second / ratio;
actual_freq = known_instructions_per_loop*iterations*multiplier/time;
2293 = x/time;
2292.599713*1191533038.809362=known_instructions_per_loop*100000000*1000
loops_per_sec = iterations*frequency / ticks
instructions_per_loop = / loops_per_sec;
*/
printf("Perf counter freq: %f\n", normal_ticks_per_second);
printf("Loops per sec: %f\n", loops_per_sec);
printf("Perf counter freq div loops per sec: %f\n", instructions_per_loop);
printf("Presumed freq: %f\n", actual_freq);
printf("ratio: %f\n", ratio);
printf("time=%f\n",time);
return ratio;
}

Binary file not shown.

Binary file not shown.

View File

@ -119,7 +119,7 @@ double fcyc(test_funct f, int *params)
if (clear_cache)
clear();
start_counter();
f((long*)params);
f((long int*)params);
cyc = get_counter();
if (cyc > 0.0)
add_sample(cyc);
@ -131,7 +131,7 @@ double fcyc(test_funct f, int *params)
clear();
start_counter();
for (i=0;i<MAX_ITER_TIMES;i++)
f((long*)params);
f((long int *)params);
cyc = get_counter()/MAX_ITER_TIMES;
if (cyc > 0.0)
add_sample(cyc);

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -1,69 +0,0 @@
/**************************************************************************
??/???????????????????????????????
1. ???????????????????????????????
2. ??????????????????????
3. ??rc_fun_rec rc_fun_tab??????????????????
???????????????????????????????????????????
***************************************************************************/
/*
????201209054233
??????????????
*/
#include "rowcol.h"
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
/* ????????????????? */
/* ???????????????????????????????????????????????
??????????2?????????????????
*/
void c_sum(matrix_t M, vector_t rowsum, vector_t colsum) {
int i, j;
for (j = 0; j < N; j++) {
colsum[j] = 0;
for (i = 0; i < N; i++)
colsum[j] += M[i][j];
}
}
/* ???????????????????? */
/* ??????????????????????? */
void rc_sum(matrix_t M, vector_t rowsum, vector_t colsum) {
int i, j;
for (i = 0; i < N; i++) {
rowsum[i] = colsum[i] = 0;
for (j = 0; j < N; j++) {
rowsum[i] += M[i][j];
colsum[i] += M[j][i];
}
}
}
/*
????????????????????????????????????????, COL/ROWCOL, "?????????"??
COL??????????????????????
ROWCOL???????????????????????
?????????????????????????????
????
{my_c_sum1, "?????????????????"},
{my_rc_sum2, "??????????????????"},
*/
rc_fun_rec rc_fun_tab[] = {
/* ???????????????????????????????? */
{c_sum, COL, "Best column sum"},
/* ?????????????????????????????????? */
{rc_sum, ROWCOL, "Best row and column sum"},
{c_sum, COL, "Column sum, reference implementation"},
{rc_sum, ROWCOL, "Row and column sum, reference implementation"},
/* ??????????????????????????????????????? */
{NULL, ROWCOL, NULL}};

View File

@ -1,162 +0,0 @@
/**************************************************************************
<09><>/<2F><><EFBFBD><EFBFBD><EFBFBD>ͺ<EFBFBD><CDBA><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ҫ<EFBFBD><D2AA><EFBFBD><EFBFBD><E0BCAD><EFBFBD>ļ<EFBFBD><C4BC><EFBFBD>
1. <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ѧ<EFBFBD>š<EFBFBD><C5A1><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ע<EFBFBD>͵ķ<CDB5>ʽд<CABD><D0B4><EFBFBD><EFBFBD><EFBFBD>
2. ʵ<>ֲ<EFBFBD>ͬ<EFBFBD><EFBFBD><E6B1BE><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ͺ<EFBFBD><CDBA><EFBFBD><EFBFBD><EFBFBD>
3. <20>༭rc_fun_rec rc_fun_tab<61><62><EFBFBD><EFBFBD><E9A3AC><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>õĴ<C3B5><C4B4><EFBFBD>
<09><><EFBFBD><EFBFBD><EFBFBD>õ<EFBFBD><C3B5>к<EFBFBD><D0BA><EFBFBD><EFBFBD><EFBFBD><EFBFBD>͡<EFBFBD><CDA1><EFBFBD><EFBFBD>õ<EFBFBD><C3B5><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ͣ<EFBFBD><CDA3><EFBFBD>Ϊ<EFBFBD><CEAA><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ǰ<EFBFBD><C7B0><EFBFBD><EFBFBD>
***************************************************************************/
/*
ѧ<>ţ<EFBFBD>202302723005
<09><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>̾<EFBFBD><CCBE><EFBFBD>
*/
#include <stdio.h>
#include <stdlib.h>
#include "rowcol.h"
#include <math.h>
#include <cuda_runtime.h>
/* <20>ο<EFBFBD><CEBF><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ͺ<EFBFBD><CDBA><EFBFBD>ʵ<EFBFBD><CAB5> */
/* <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>е<EFBFBD>ÿһ<C3BF>еĺ͡<C4BA><CDA1><EFBFBD>ע<EFBFBD><D7A2><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>к<EFBFBD><D0BA><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>˵<EFBFBD><CBB5><EFBFBD><EFBFBD><EFBFBD>ò<EFBFBD><C3B2><EFBFBD><EFBFBD><EFBFBD>
һ<><D2BB><EFBFBD>ģ<EFBFBD>ֻ<EFBFBD>ǵ<EFBFBD>2<EFBFBD><32><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>õ<EFBFBD><C3B5><EFBFBD><EFBFBD><EFBFBD>
*/
void c_sum(matrix_t M, vector_t rowsum, vector_t colsum)
{
int i,j;
for (j = 0; j < N; j++) {
colsum[j] = 0;
for (i = 0; i < N; i++)
colsum[j] += M[i][j];
}
}
/* <20>ο<EFBFBD><CEBF><EFBFBD><EFBFBD>к<EFBFBD><D0BA><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ͺ<EFBFBD><CDBA><EFBFBD>ʵ<EFBFBD><CAB5> */
/* <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>е<EFBFBD>ÿһ<C3BF>С<EFBFBD>ÿһ<C3BF>еĺ͡<C4BA> */
void rc_sum(matrix_t M, vector_t rowsum, vector_t colsum)
{
int i,j;
for (i = 0; i < N; i++) {
rowsum[i] = colsum[i] = 0;
for (j = 0; j < N; j++) {
rowsum[i] += M[i][j];
colsum[i] += M[j][i];
}
}
}
/* CUDA<44>Ż<EFBFBD><C5BB><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ͺ<EFBFBD><CDBA><EFBFBD> */
void cuda_c_sum(matrix_t M, vector_t rowsum, vector_t colsum)
{
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ڴ<EFBFBD>
int *d_M, *d_colsum;
cudaMalloc(&d_M, N * N * sizeof(int));
cudaMalloc(&d_colsum, N * sizeof(int));
// <20><><EFBFBD><EFBFBD><EFBFBD>ݴ<EFBFBD><DDB4><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ƶ<EFBFBD><C6B5>
cudaMemcpy(d_M, M, N * N * sizeof(int), cudaMemcpyHostToDevice);
// <20><><EFBFBD><EFBFBD>CUDA<44>˺<EFBFBD><CBBA><EFBFBD>
dim3 blockDim(256);
dim3 gridDim((N + blockDim.x - 1) / blockDim.x);
// <20><><EFBFBD><EFBFBD><EFBFBD>˺<EFBFBD><CBBA><EFBFBD>
cudaColumnSum<<<gridDim, blockDim>>>(d_M, d_colsum);
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><E8B1B8><EFBFBD>ƻ<EFBFBD><C6BB><EFBFBD><EFBFBD><EFBFBD>
cudaMemcpy(colsum, d_colsum, N * sizeof(int), cudaMemcpyDeviceToHost);
// <20>ͷ<EFBFBD><CDB7><EFBFBD>ڴ<EFBFBD>
cudaFree(d_M);
cudaFree(d_colsum);
}
/* CUDA<44>Ż<EFBFBD><C5BB><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ͺ<EFBFBD><CDBA><EFBFBD> */
void cuda_rc_sum(matrix_t M, vector_t rowsum, vector_t colsum)
{
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ڴ<EFBFBD>
int *d_M, *d_rowsum, *d_colsum;
cudaMalloc(&d_M, N * N * sizeof(int));
cudaMalloc(&d_rowsum, N * sizeof(int));
cudaMalloc(&d_colsum, N * sizeof(int));
// <20><><EFBFBD><EFBFBD><EFBFBD>ݴ<EFBFBD><DDB4><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ƶ<EFBFBD><C6B5>
cudaMemcpy(d_M, M, N * N * sizeof(int), cudaMemcpyHostToDevice);
// <20><><EFBFBD><EFBFBD>CUDA<44>˺<EFBFBD><CBBA><EFBFBD>
dim3 blockDim(256);
dim3 gridDim((N + blockDim.x - 1) / blockDim.x);
// <20><><EFBFBD><EFBFBD><EFBFBD>˺<EFBFBD><CBBA><EFBFBD>
cudaRowColSum<<<gridDim, blockDim>>>(d_M, d_rowsum, d_colsum);
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><E8B1B8><EFBFBD>ƻ<EFBFBD><C6BB><EFBFBD><EFBFBD><EFBFBD>
cudaMemcpy(rowsum, d_rowsum, N * sizeof(int), cudaMemcpyDeviceToHost);
cudaMemcpy(colsum, d_colsum, N * sizeof(int), cudaMemcpyDeviceToHost);
// <20>ͷ<EFBFBD><CDB7><EFBFBD>ڴ<EFBFBD>
cudaFree(d_M);
cudaFree(d_rowsum);
cudaFree(d_colsum);
}
/* CUDA<44>˺<EFBFBD><CBBA><EFBFBD> - <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> */
__global__ void cudaColumnSum(int *M, int *colsum)
{
int col = blockIdx.x * blockDim.x + threadIdx.x;
if (col < N) {
colsum[col] = 0;
for (int row = 0; row < N; row++) {
colsum[col] += M[row * N + col];
}
}
}
/* CUDA<44>˺<EFBFBD><CBBA><EFBFBD> - <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> */
__global__ void cudaRowColSum(int *M, int *rowsum, int *colsum)
{
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < N) {
// <20><><EFBFBD><EFBFBD><EFBFBD>к<EFBFBD>
rowsum[idx] = 0;
for (int j = 0; j < N; j++) {
rowsum[idx] += M[idx * N + j];
}
// <20><><EFBFBD><EFBFBD><EFBFBD>к<EFBFBD>
colsum[idx] = 0;
for (int i = 0; i < N; i++) {
colsum[idx] += M[i * N + idx];
}
}
}
/*
<09><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ԫ<EFBFBD>أ<EFBFBD>ÿһ<C3BF><D2BB>Ԫ<EFBFBD>أ<EFBFBD><D8A3><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>, COL/ROWCOL, "<22><><EFBFBD><EFBFBD><EFBFBD>ַ<EFBFBD><D6B7><EFBFBD>"<22><>
COL<4F><4C>ʾ<EFBFBD>ú<EFBFBD><C3BA><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ÿһ<C3BF>еĺ<D0B5>
ROWCOL<4F><4C>ʾ<EFBFBD>ú<EFBFBD><C3BA><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ÿһ<C3BF>С<EFBFBD>ÿһ<C3BF>еĺ<D0B5>
<09><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ϊ<EFBFBD><CEAA><EFBFBD>õ<EFBFBD><C3B5><EFBFBD><EFBFBD><EFBFBD>ʵ<EFBFBD>֣<EFBFBD><D6A3><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ǰ<EFBFBD>
<09><><EFBFBD>
{my_c_sum1, "<22><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʵ<EFBFBD><CAB5>"},
{my_rc_sum2, "<22><>һ<EFBFBD><D2BB><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʵ<EFBFBD><CAB5>"},
*/
rc_fun_rec rc_fun_tab[] =
{
/* <20><>һ<EFBFBD>Ӧ<EEA3AC><D3A6><EFBFBD><EFBFBD><EFBFBD><EFBFBD>д<EFBFBD><D0B4><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>͵ĺ<CDB5><C4BA><EFBFBD>ʵ<EFBFBD><CAB5> */
{cuda_c_sum, COL, "CUDA optimized column sum"},
/* <20>ڶ<EFBFBD><DAB6>Ӧ<EEA3AC><D3A6><EFBFBD><EFBFBD><EFBFBD><EFBFBD>д<EFBFBD><D0B4><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>͵ĺ<CDB5><C4BA><EFBFBD>ʵ<EFBFBD><CAB5> */
{cuda_rc_sum, ROWCOL, "CUDA optimized row and column sum"},
{c_sum, COL, "Column sum, reference implementation"},
{rc_sum, ROWCOL, "Row and column sum, reference implementation"},
/* <20><><EFBFBD><EFBFBD><EFBFBD>Ĵ<EFBFBD><C4B4><EFBFBD><EBB2BB><EFBFBD>޸Ļ<DEB8><C4BB><EFBFBD>ɾ<EFBFBD><C9BE><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>б<EFBFBD><D0B1><EFBFBD><EFBFBD><EFBFBD> */
{NULL,ROWCOL,NULL}
};

Binary file not shown.

View File

@ -1,240 +0,0 @@
/**************************************************************************
<20><>/<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
1. <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
2. <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
3. <20><>rc_fun_rec rc_fun_tab<61><62><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
<20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
***************************************************************************/
/*
<20><><EFBFBD><EFBFBD>201209054233
<20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
*/
#include <stdio.h>
#include <stdlib.h>
#include "rowcol.h"
#include <math.h>
/* <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> */
/* <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>򿿿<EFBFBD><F2BFBFBF>
<20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>2<EFBFBD><32><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
*/
void c_sum(matrix_t M, vector_t rowsum, vector_t colsum)
{
int i,j;
for (j = 0; j < N; j++) {
colsum[j] = 0;
for (i = 0; i < N; i++)
colsum[j] += M[i][j];
}
}
/* <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> */
/* <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> */
void rc_sum(matrix_t M, vector_t rowsum, vector_t colsum)
{
int i,j;
for (i = 0; i < N; i++) {
rowsum[i] = colsum[i] = 0;
for (j = 0; j < N; j++) {
rowsum[i] += M[i][j];
colsum[i] += M[j][i];
}
}
}
/*
<20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>, COL/ROWCOL, "<22><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>"<22><>
COL<4F><4C><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
ROWCOL<4F><4C><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
<20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
<20><><EFBFBD><EFBFBD>
{my_c_sum1, "<22><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>"},
{my_rc_sum2, "<22><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>"},
*/
rc_fun_rec rc_fun_tab[] =
{
/* <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> */
{c_sum, COL, "Best column sum"},
/* <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> */
{rc_sum, ROWCOL, "Best row and column sum"},
{c_sum, COL, "Column sum, reference implementation"},
{rc_sum, ROWCOL, "Row and column sum, reference implementation"},
/* <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> */
{NULL,ROWCOL,NULL}
};
// /**************************************************************************
// <09><>/<2F><><EFBFBD><EFBFBD><EFBFBD>ͺ<EFBFBD><CDBA><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ҫ<EFBFBD><D2AA><EFBFBD><EFBFBD><E0BCAD><EFBFBD>ļ<EFBFBD><C4BC><EFBFBD>
// 1. <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ѧ<EFBFBD>š<EFBFBD><C5A1><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ע<EFBFBD>͵ķ<CDB5>ʽд<CABD><D0B4><EFBFBD><EFBFBD><EFBFBD>
// 2. ʵ<>ֲ<EFBFBD>ͬ<EFBFBD><EFBFBD><E6B1BE><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ͺ<EFBFBD><CDBA><EFBFBD><EFBFBD><EFBFBD>
// 3. <20>༭rc_fun_rec rc_fun_tab<61><62><EFBFBD><EFBFBD><E9A3AC><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>õĴ<C3B5><C4B4><EFBFBD>
// <09><><EFBFBD><EFBFBD><EFBFBD>õ<EFBFBD><C3B5>к<EFBFBD><D0BA><EFBFBD><EFBFBD><EFBFBD><EFBFBD>͡<EFBFBD><CDA1><EFBFBD><EFBFBD>õ<EFBFBD><C3B5><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ͣ<EFBFBD><CDA3><EFBFBD>Ϊ<EFBFBD><CEAA><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ǰ<EFBFBD><C7B0><EFBFBD><EFBFBD>
// ***************************************************************************/
//
// /*
// ѧ<>ţ<EFBFBD>202302723005
// <09><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>̾<EFBFBD><CCBE><EFBFBD>
// */
//
//
// #include <stdio.h>
// #include <stdlib.h>
// #include "rowcol.h"
// #include <math.h>
// #include <cuda_runtime.h>
//
// /* <20>ο<EFBFBD><CEBF><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ͺ<EFBFBD><CDBA><EFBFBD>ʵ<EFBFBD><CAB5> */
// /* <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>е<EFBFBD>ÿһ<C3BF>еĺ͡<C4BA><CDA1><EFBFBD>ע<EFBFBD><D7A2><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>к<EFBFBD><D0BA><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>˵<EFBFBD><CBB5><EFBFBD><EFBFBD><EFBFBD>ò<EFBFBD><C3B2><EFBFBD><EFBFBD><EFBFBD>
// һ<><D2BB><EFBFBD>ģ<EFBFBD>ֻ<EFBFBD>ǵ<EFBFBD>2<EFBFBD><32><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>õ<EFBFBD><C3B5><EFBFBD><EFBFBD><EFBFBD>
// */
//
// void c_sum(matrix_t M, vector_t rowsum, vector_t colsum)
// {
// int i,j;
// for (j = 0; j < N; j++) {
// colsum[j] = 0;
// for (i = 0; i < N; i++)
// colsum[j] += M[i][j];
// }
// }
//
//
// /* <20>ο<EFBFBD><CEBF><EFBFBD><EFBFBD>к<EFBFBD><D0BA><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ͺ<EFBFBD><CDBA><EFBFBD>ʵ<EFBFBD><CAB5> */
// /* <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>е<EFBFBD>ÿһ<C3BF>С<EFBFBD>ÿһ<C3BF>еĺ͡<C4BA> */
//
// void rc_sum(matrix_t M, vector_t rowsum, vector_t colsum)
// {
// int i,j;
// for (i = 0; i < N; i++) {
// rowsum[i] = colsum[i] = 0;
// for (j = 0; j < N; j++) {
// rowsum[i] += M[i][j];
// colsum[i] += M[j][i];
// }
// }
// }
//
// /* CUDA<44>Ż<EFBFBD><C5BB><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ͺ<EFBFBD><CDBA><EFBFBD> */
// void cuda_c_sum(matrix_t M, vector_t rowsum, vector_t colsum)
// {
// // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ڴ<EFBFBD>
// int *d_M, *d_colsum;
// cudaMalloc(&d_M, N * N * sizeof(int));
// cudaMalloc(&d_colsum, N * sizeof(int));
//
// // <20><><EFBFBD><EFBFBD><EFBFBD>ݴ<EFBFBD><DDB4><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ƶ<EFBFBD><C6B5>
// cudaMemcpy(d_M, M, N * N * sizeof(int), cudaMemcpyHostToDevice);
//
// // <20><><EFBFBD><EFBFBD>CUDA<44>˺<EFBFBD><CBBA><EFBFBD>
// dim3 blockDim(256);
// dim3 gridDim((N + blockDim.x - 1) / blockDim.x);
//
// // <20><><EFBFBD><EFBFBD><EFBFBD>˺<EFBFBD><CBBA><EFBFBD>
// cudaColumnSum<<<gridDim, blockDim>>>(d_M, d_colsum);
//
// // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><E8B1B8><EFBFBD>ƻ<EFBFBD><C6BB><EFBFBD><EFBFBD><EFBFBD>
// cudaMemcpy(colsum, d_colsum, N * sizeof(int), cudaMemcpyDeviceToHost);
//
// // <20>ͷ<EFBFBD><CDB7><EFBFBD>ڴ<EFBFBD>
// cudaFree(d_M);
// cudaFree(d_colsum);
// }
//
// /* CUDA<44>Ż<EFBFBD><C5BB><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ͺ<EFBFBD><CDBA><EFBFBD> */
// void cuda_rc_sum(matrix_t M, vector_t rowsum, vector_t colsum)
// {
// // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ڴ<EFBFBD>
// int *d_M, *d_rowsum, *d_colsum;
// cudaMalloc(&d_M, N * N * sizeof(int));
// cudaMalloc(&d_rowsum, N * sizeof(int));
// cudaMalloc(&d_colsum, N * sizeof(int));
//
// // <20><><EFBFBD><EFBFBD><EFBFBD>ݴ<EFBFBD><DDB4><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ƶ<EFBFBD><C6B5>
// cudaMemcpy(d_M, M, N * N * sizeof(int), cudaMemcpyHostToDevice);
//
// // <20><><EFBFBD><EFBFBD>CUDA<44>˺<EFBFBD><CBBA><EFBFBD>
// dim3 blockDim(256);
// dim3 gridDim((N + blockDim.x - 1) / blockDim.x);
//
// // <20><><EFBFBD><EFBFBD><EFBFBD>˺<EFBFBD><CBBA><EFBFBD>
// cudaRowColSum<<<gridDim, blockDim>>>(d_M, d_rowsum, d_colsum);
//
// // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><E8B1B8><EFBFBD>ƻ<EFBFBD><C6BB><EFBFBD><EFBFBD><EFBFBD>
// cudaMemcpy(rowsum, d_rowsum, N * sizeof(int), cudaMemcpyDeviceToHost);
// cudaMemcpy(colsum, d_colsum, N * sizeof(int), cudaMemcpyDeviceToHost);
//
// // <20>ͷ<EFBFBD><CDB7><EFBFBD>ڴ<EFBFBD>
// cudaFree(d_M);
// cudaFree(d_rowsum);
// cudaFree(d_colsum);
// }
//
// /* CUDA<44>˺<EFBFBD><CBBA><EFBFBD> - <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> */
// __global__ void cudaColumnSum(int *M, int *colsum)
// {
// int col = blockIdx.x * blockDim.x + threadIdx.x;
// if (col < N) {
// colsum[col] = 0;
// for (int row = 0; row < N; row++) {
// colsum[col] += M[row * N + col];
// }
// }
// }
//
// /* CUDA<44>˺<EFBFBD><CBBA><EFBFBD> - <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> */
// __global__ void cudaRowColSum(int *M, int *rowsum, int *colsum)
// {
// int idx = blockIdx.x * blockDim.x + threadIdx.x;
// if (idx < N) {
// // <20><><EFBFBD><EFBFBD><EFBFBD>к<EFBFBD>
// rowsum[idx] = 0;
// for (int j = 0; j < N; j++) {
// rowsum[idx] += M[idx * N + j];
// }
//
// // <20><><EFBFBD><EFBFBD><EFBFBD>к<EFBFBD>
// colsum[idx] = 0;
// for (int i = 0; i < N; i++) {
// colsum[idx] += M[i * N + idx];
// }
// }
// }
//
// /*
// <09><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ԫ<EFBFBD>أ<EFBFBD>ÿһ<C3BF><D2BB>Ԫ<EFBFBD>أ<EFBFBD><D8A3><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>, COL/ROWCOL, "<22><><EFBFBD><EFBFBD><EFBFBD>ַ<EFBFBD><D6B7><EFBFBD>"<22><>
// COL<4F><4C>ʾ<EFBFBD>ú<EFBFBD><C3BA><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ÿһ<C3BF>еĺ<D0B5>
// ROWCOL<4F><4C>ʾ<EFBFBD>ú<EFBFBD><C3BA><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ÿһ<C3BF>С<EFBFBD>ÿһ<C3BF>еĺ<D0B5>
// <09><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ϊ<EFBFBD><CEAA><EFBFBD>õ<EFBFBD><C3B5><EFBFBD><EFBFBD><EFBFBD>ʵ<EFBFBD>֣<EFBFBD><D6A3><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ǰ<EFBFBD>
// <09><><EFBFBD>
// {my_c_sum1, "<22><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʵ<EFBFBD><CAB5>"},
// {my_rc_sum2, "<22><>һ<EFBFBD><D2BB><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʵ<EFBFBD><CAB5>"},
// */
//
// rc_fun_rec rc_fun_tab[] =
// {
//
// /* <20><>һ<EFBFBD>Ӧ<EEA3AC><D3A6><EFBFBD><EFBFBD><EFBFBD><EFBFBD>д<EFBFBD><D0B4><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>͵ĺ<CDB5><C4BA><EFBFBD>ʵ<EFBFBD><CAB5> */
// {cuda_c_sum, COL, "CUDA optimized column sum"},
// /* <20>ڶ<EFBFBD><DAB6>Ӧ<EEA3AC><D3A6><EFBFBD><EFBFBD><EFBFBD><EFBFBD>д<EFBFBD><D0B4><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>͵ĺ<CDB5><C4BA><EFBFBD>ʵ<EFBFBD><CAB5> */
// {cuda_rc_sum, ROWCOL, "CUDA optimized row and column sum"},
//
// {c_sum, COL, "Column sum, reference implementation"},
//
// {rc_sum, ROWCOL, "Row and column sum, reference implementation"},
//
// /* <20><><EFBFBD><EFBFBD><EFBFBD>Ĵ<EFBFBD><C4B4><EFBFBD><EBB2BB><EFBFBD>޸Ļ<DEB8><C4BB><EFBFBD>ɾ<EFBFBD><C9BE><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>б<EFBFBD><D0B1><EFBFBD><EFBFBD><EFBFBD> */
// {NULL,ROWCOL,NULL}
// };

View File

@ -1,240 +0,0 @@
/**************************************************************************
<20><>/<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
1. <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
2. <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
3. <20><>rc_fun_rec rc_fun_tab<61><62><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
<20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
***************************************************************************/
/*
<20><><EFBFBD><EFBFBD>201209054233
<20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
*/
#include <stdio.h>
#include <stdlib.h>
#include "rowcol.h"
#include <math.h>
/* <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> */
/* <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>򿿿<EFBFBD><F2BFBFBF>
<20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>2<EFBFBD><32><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
*/
void c_sum(matrix_t M, vector_t rowsum, vector_t colsum)
{
int i,j;
for (j = 0; j < N; j++) {
colsum[j] = 0;
for (i = 0; i < N; i++)
colsum[j] += M[i][j];
}
}
/* <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> */
/* <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> */
void rc_sum(matrix_t M, vector_t rowsum, vector_t colsum)
{
int i,j;
for (i = 0; i < N; i++) {
rowsum[i] = colsum[i] = 0;
for (j = 0; j < N; j++) {
rowsum[i] += M[i][j];
colsum[i] += M[j][i];
}
}
}
/*
<20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>, COL/ROWCOL, "<22><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>"<22><>
COL<4F><4C><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
ROWCOL<4F><4C><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
<20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
<20><><EFBFBD><EFBFBD>
{my_c_sum1, "<22><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>"},
{my_rc_sum2, "<22><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>"},
*/
rc_fun_rec rc_fun_tab[] =
{
/* <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> */
{c_sum, COL, "Best column sum"},
/* <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> */
{rc_sum, ROWCOL, "Best row and column sum"},
{c_sum, COL, "Column sum, reference implementation"},
{rc_sum, ROWCOL, "Row and column sum, reference implementation"},
/* <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> */
{NULL,ROWCOL,NULL}
};
// /**************************************************************************
// <09><>/<2F><><EFBFBD><EFBFBD><EFBFBD>ͺ<EFBFBD><CDBA><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ҫ<EFBFBD><D2AA><EFBFBD><EFBFBD><E0BCAD><EFBFBD>ļ<EFBFBD><C4BC><EFBFBD>
// 1. <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ѧ<EFBFBD>š<EFBFBD><C5A1><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ע<EFBFBD>͵ķ<CDB5>ʽд<CABD><D0B4><EFBFBD><EFBFBD><EFBFBD>
// 2. ʵ<>ֲ<EFBFBD>ͬ<EFBFBD><EFBFBD><E6B1BE><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ͺ<EFBFBD><CDBA><EFBFBD><EFBFBD><EFBFBD>
// 3. <20>༭rc_fun_rec rc_fun_tab<61><62><EFBFBD><EFBFBD><E9A3AC><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>õĴ<C3B5><C4B4><EFBFBD>
// <09><><EFBFBD><EFBFBD><EFBFBD>õ<EFBFBD><C3B5>к<EFBFBD><D0BA><EFBFBD><EFBFBD><EFBFBD><EFBFBD>͡<EFBFBD><CDA1><EFBFBD><EFBFBD>õ<EFBFBD><C3B5><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ͣ<EFBFBD><CDA3><EFBFBD>Ϊ<EFBFBD><CEAA><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ǰ<EFBFBD><C7B0><EFBFBD><EFBFBD>
// ***************************************************************************/
//
// /*
// ѧ<>ţ<EFBFBD>202302723005
// <09><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>̾<EFBFBD><CCBE><EFBFBD>
// */
//
//
// #include <stdio.h>
// #include <stdlib.h>
// #include "rowcol.h"
// #include <math.h>
// #include <cuda_runtime.h>
//
// /* <20>ο<EFBFBD><CEBF><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ͺ<EFBFBD><CDBA><EFBFBD>ʵ<EFBFBD><CAB5> */
// /* <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>е<EFBFBD>ÿһ<C3BF>еĺ͡<C4BA><CDA1><EFBFBD>ע<EFBFBD><D7A2><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>к<EFBFBD><D0BA><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>˵<EFBFBD><CBB5><EFBFBD><EFBFBD><EFBFBD>ò<EFBFBD><C3B2><EFBFBD><EFBFBD><EFBFBD>
// һ<><D2BB><EFBFBD>ģ<EFBFBD>ֻ<EFBFBD>ǵ<EFBFBD>2<EFBFBD><32><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>õ<EFBFBD><C3B5><EFBFBD><EFBFBD><EFBFBD>
// */
//
// void c_sum(matrix_t M, vector_t rowsum, vector_t colsum)
// {
// int i,j;
// for (j = 0; j < N; j++) {
// colsum[j] = 0;
// for (i = 0; i < N; i++)
// colsum[j] += M[i][j];
// }
// }
//
//
// /* <20>ο<EFBFBD><CEBF><EFBFBD><EFBFBD>к<EFBFBD><D0BA><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ͺ<EFBFBD><CDBA><EFBFBD>ʵ<EFBFBD><CAB5> */
// /* <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>е<EFBFBD>ÿһ<C3BF>С<EFBFBD>ÿһ<C3BF>еĺ͡<C4BA> */
//
// void rc_sum(matrix_t M, vector_t rowsum, vector_t colsum)
// {
// int i,j;
// for (i = 0; i < N; i++) {
// rowsum[i] = colsum[i] = 0;
// for (j = 0; j < N; j++) {
// rowsum[i] += M[i][j];
// colsum[i] += M[j][i];
// }
// }
// }
//
// /* CUDA<44>Ż<EFBFBD><C5BB><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ͺ<EFBFBD><CDBA><EFBFBD> */
// void cuda_c_sum(matrix_t M, vector_t rowsum, vector_t colsum)
// {
// // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ڴ<EFBFBD>
// int *d_M, *d_colsum;
// cudaMalloc(&d_M, N * N * sizeof(int));
// cudaMalloc(&d_colsum, N * sizeof(int));
//
// // <20><><EFBFBD><EFBFBD><EFBFBD>ݴ<EFBFBD><DDB4><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ƶ<EFBFBD><C6B5>
// cudaMemcpy(d_M, M, N * N * sizeof(int), cudaMemcpyHostToDevice);
//
// // <20><><EFBFBD><EFBFBD>CUDA<44>˺<EFBFBD><CBBA><EFBFBD>
// dim3 blockDim(256);
// dim3 gridDim((N + blockDim.x - 1) / blockDim.x);
//
// // <20><><EFBFBD><EFBFBD><EFBFBD>˺<EFBFBD><CBBA><EFBFBD>
// cudaColumnSum<<<gridDim, blockDim>>>(d_M, d_colsum);
//
// // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><E8B1B8><EFBFBD>ƻ<EFBFBD><C6BB><EFBFBD><EFBFBD><EFBFBD>
// cudaMemcpy(colsum, d_colsum, N * sizeof(int), cudaMemcpyDeviceToHost);
//
// // <20>ͷ<EFBFBD><CDB7><EFBFBD>ڴ<EFBFBD>
// cudaFree(d_M);
// cudaFree(d_colsum);
// }
//
// /* CUDA<44>Ż<EFBFBD><C5BB><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ͺ<EFBFBD><CDBA><EFBFBD> */
// void cuda_rc_sum(matrix_t M, vector_t rowsum, vector_t colsum)
// {
// // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ڴ<EFBFBD>
// int *d_M, *d_rowsum, *d_colsum;
// cudaMalloc(&d_M, N * N * sizeof(int));
// cudaMalloc(&d_rowsum, N * sizeof(int));
// cudaMalloc(&d_colsum, N * sizeof(int));
//
// // <20><><EFBFBD><EFBFBD><EFBFBD>ݴ<EFBFBD><DDB4><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ƶ<EFBFBD><C6B5>
// cudaMemcpy(d_M, M, N * N * sizeof(int), cudaMemcpyHostToDevice);
//
// // <20><><EFBFBD><EFBFBD>CUDA<44>˺<EFBFBD><CBBA><EFBFBD>
// dim3 blockDim(256);
// dim3 gridDim((N + blockDim.x - 1) / blockDim.x);
//
// // <20><><EFBFBD><EFBFBD><EFBFBD>˺<EFBFBD><CBBA><EFBFBD>
// cudaRowColSum<<<gridDim, blockDim>>>(d_M, d_rowsum, d_colsum);
//
// // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><E8B1B8><EFBFBD>ƻ<EFBFBD><C6BB><EFBFBD><EFBFBD><EFBFBD>
// cudaMemcpy(rowsum, d_rowsum, N * sizeof(int), cudaMemcpyDeviceToHost);
// cudaMemcpy(colsum, d_colsum, N * sizeof(int), cudaMemcpyDeviceToHost);
//
// // <20>ͷ<EFBFBD><CDB7><EFBFBD>ڴ<EFBFBD>
// cudaFree(d_M);
// cudaFree(d_rowsum);
// cudaFree(d_colsum);
// }
//
// /* CUDA<44>˺<EFBFBD><CBBA><EFBFBD> - <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> */
// __global__ void cudaColumnSum(int *M, int *colsum)
// {
// int col = blockIdx.x * blockDim.x + threadIdx.x;
// if (col < N) {
// colsum[col] = 0;
// for (int row = 0; row < N; row++) {
// colsum[col] += M[row * N + col];
// }
// }
// }
//
// /* CUDA<44>˺<EFBFBD><CBBA><EFBFBD> - <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> */
// __global__ void cudaRowColSum(int *M, int *rowsum, int *colsum)
// {
// int idx = blockIdx.x * blockDim.x + threadIdx.x;
// if (idx < N) {
// // <20><><EFBFBD><EFBFBD><EFBFBD>к<EFBFBD>
// rowsum[idx] = 0;
// for (int j = 0; j < N; j++) {
// rowsum[idx] += M[idx * N + j];
// }
//
// // <20><><EFBFBD><EFBFBD><EFBFBD>к<EFBFBD>
// colsum[idx] = 0;
// for (int i = 0; i < N; i++) {
// colsum[idx] += M[i * N + idx];
// }
// }
// }
//
// /*
// <09><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ԫ<EFBFBD>أ<EFBFBD>ÿһ<C3BF><D2BB>Ԫ<EFBFBD>أ<EFBFBD><D8A3><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>, COL/ROWCOL, "<22><><EFBFBD><EFBFBD><EFBFBD>ַ<EFBFBD><D6B7><EFBFBD>"<22><>
// COL<4F><4C>ʾ<EFBFBD>ú<EFBFBD><C3BA><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ÿһ<C3BF>еĺ<D0B5>
// ROWCOL<4F><4C>ʾ<EFBFBD>ú<EFBFBD><C3BA><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ÿһ<C3BF>С<EFBFBD>ÿһ<C3BF>еĺ<D0B5>
// <09><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ϊ<EFBFBD><CEAA><EFBFBD>õ<EFBFBD><C3B5><EFBFBD><EFBFBD><EFBFBD>ʵ<EFBFBD>֣<EFBFBD><D6A3><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ǰ<EFBFBD>
// <09><><EFBFBD>
// {my_c_sum1, "<22><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʵ<EFBFBD><CAB5>"},
// {my_rc_sum2, "<22><>һ<EFBFBD><D2BB><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʵ<EFBFBD><CAB5>"},
// */
//
// rc_fun_rec rc_fun_tab[] =
// {
//
// /* <20><>һ<EFBFBD>Ӧ<EEA3AC><D3A6><EFBFBD><EFBFBD><EFBFBD><EFBFBD>д<EFBFBD><D0B4><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>͵ĺ<CDB5><C4BA><EFBFBD>ʵ<EFBFBD><CAB5> */
// {cuda_c_sum, COL, "CUDA optimized column sum"},
// /* <20>ڶ<EFBFBD><DAB6>Ӧ<EEA3AC><D3A6><EFBFBD><EFBFBD><EFBFBD><EFBFBD>д<EFBFBD><D0B4><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>͵ĺ<CDB5><C4BA><EFBFBD>ʵ<EFBFBD><CAB5> */
// {cuda_rc_sum, ROWCOL, "CUDA optimized row and column sum"},
//
// {c_sum, COL, "Column sum, reference implementation"},
//
// {rc_sum, ROWCOL, "Row and column sum, reference implementation"},
//
// /* <20><><EFBFBD><EFBFBD><EFBFBD>Ĵ<EFBFBD><C4B4><EFBFBD><EBB2BB><EFBFBD>޸Ļ<DEB8><C4BB><EFBFBD>ɾ<EFBFBD><C9BE><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>б<EFBFBD><D0B1><EFBFBD><EFBFBD><EFBFBD> */
// {NULL,ROWCOL,NULL}
// };

View File

@ -1,69 +0,0 @@
/**************************************************************************
??/???????????????????????????????
1. ???????????????????????????????
2. ??????????????????????
3. ??rc_fun_rec rc_fun_tab??????????????????
???????????????????????????????????????????
***************************************************************************/
/*
????201209054233
??????????????
*/
#include "rowcol.h"
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
/* ????????????????? */
/* ???????????????????????????????????????????????
??????????2?????????????????
*/
void c_sum(matrix_t M, vector_t rowsum, vector_t colsum) {
int i, j;
for (j = 0; j < N; j++) {
colsum[j] = 0;
for (i = 0; i < N; i++)
colsum[j] += M[i][j];
}
}
/* ???????????????????? */
/* ??????????????????????? */
void rc_sum(matrix_t M, vector_t rowsum, vector_t colsum) {
int i, j;
for (i = 0; i < N; i++) {
rowsum[i] = colsum[i] = 0;
for (j = 0; j < N; j++) {
rowsum[i] += M[i][j];
colsum[i] += M[j][i];
}
}
}
/*
????????????????????????????????????????, COL/ROWCOL, "?????????"??
COL??????????????????????
ROWCOL???????????????????????
?????????????????????????????
????
{my_c_sum1, "?????????????????"},
{my_rc_sum2, "??????????????????"},
*/
rc_fun_rec rc_fun_tab[] = {
/* ???????????????????????????????? */
{c_sum, COL, "Best column sum"},
/* ?????????????????????????????????? */
{rc_sum, ROWCOL, "Best row and column sum"},
{c_sum, COL, "Column sum, reference implementation"},
{rc_sum, ROWCOL, "Row and column sum, reference implementation"},
/* ??????????????????????????????????????? */
{NULL, ROWCOL, NULL}};

Binary file not shown.

View File

@ -0,0 +1,121 @@
/**************************************************************************
<09><>/<2F><><EFBFBD><EFBFBD><EFBFBD>ͺ<EFBFBD><CDBA><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ҫ<EFBFBD><D2AA><EFBFBD><EFBFBD><E0BCAD><EFBFBD>ļ<EFBFBD><C4BC><EFBFBD>
1. <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ѧ<EFBFBD>š<EFBFBD><C5A1><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ע<EFBFBD>͵ķ<CDB5>ʽд<CABD><D0B4><EFBFBD><EFBFBD><EFBFBD>
2. ʵ<>ֲ<EFBFBD>ͬ<EFBFBD><EFBFBD><E6B1BE><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ͺ<EFBFBD><CDBA><EFBFBD><EFBFBD><EFBFBD>
3. <20>༭rc_fun_rec rc_fun_tab<61><62><EFBFBD><EFBFBD><E9A3AC><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>õĴ<C3B5><C4B4><EFBFBD>
<09><><EFBFBD><EFBFBD><EFBFBD>õ<EFBFBD><C3B5>к<EFBFBD><D0BA><EFBFBD><EFBFBD><EFBFBD><EFBFBD>͡<EFBFBD><CDA1><EFBFBD><EFBFBD>õ<EFBFBD><C3B5><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ͣ<EFBFBD><CDA3><EFBFBD>Ϊ<EFBFBD><CEAA><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ǰ<EFBFBD><C7B0><EFBFBD><EFBFBD>
***************************************************************************/
/*
ѧ<>ţ<EFBFBD>202302723005
<09><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>̾<EFBFBD><CCBE><EFBFBD>
*/
#include <stdio.h>
#include <stdlib.h>
#include "rowcol.h"
#include <math.h>
/* <20>ο<EFBFBD><CEBF><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ͺ<EFBFBD><CDBA><EFBFBD>ʵ<EFBFBD><CAB5> */
/* <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>е<EFBFBD>ÿһ<C3BF>еĺ͡<C4BA><CDA1><EFBFBD>ע<EFBFBD><D7A2><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>к<EFBFBD><D0BA><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>˵<EFBFBD><CBB5><EFBFBD><EFBFBD><EFBFBD>ò<EFBFBD><C3B2><EFBFBD><EFBFBD><EFBFBD>
һ<><D2BB><EFBFBD>ģ<EFBFBD>ֻ<EFBFBD>ǵ<EFBFBD>2<EFBFBD><32><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>õ<EFBFBD><C3B5><EFBFBD><EFBFBD><EFBFBD>
*/
/*
void c_sum(matrix_t M, vector_t rowsum, vector_t colsum)
{
int i,j;
for (j = 0; j < N; j++) {
colsum[j] = 0;
for (i = 0; i < N; i++)
colsum[j] += M[i][j];
}
}
*/
void c_sum(matrix_t M, vector_t rowsum, vector_t colsum) {
int i, j;
for (j = 0; j < N; j += 4) {
int sum0 = 0, sum1 = 0, sum2 = 0, sum3 = 0;
for (i = 0; i < N; i++) {
sum0 += M[i][j];
sum1 += M[i][j + 1];
sum2 += M[i][j + 2];
sum3 += M[i][j + 3];
}
colsum[j] = sum0;
colsum[j + 1] = sum1;
colsum[j + 2] = sum2;
colsum[j + 3] = sum3;
}
}
/* <20>ο<EFBFBD><CEBF><EFBFBD><EFBFBD>к<EFBFBD><D0BA><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ͺ<EFBFBD><CDBA><EFBFBD>ʵ<EFBFBD><CAB5> */
/* <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>е<EFBFBD>ÿһ<C3BF>С<EFBFBD>ÿһ<C3BF>еĺ͡<C4BA> */
/*
void rc_sum(matrix_t M, vector_t rowsum, vector_t colsum)
{
int i,j;
for (i = 0; i < N; i++) {
rowsum[i] = colsum[i] = 0;
for (j = 0; j < N; j++) {
rowsum[i] += M[i][j];
colsum[i] += M[j][i];
}
}
}
*/
void rc_sum(matrix_t M, vector_t rowsum, vector_t colsum) {
int i, j;
// <20><>ʼ<EFBFBD><CABC>colsum
for (i = 0; i < N; i++) {
colsum[i] = 0;
}
// <20>ֿ鴦<D6BF><E9B4A6><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>߻<EFBFBD><DFBB><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
for (i = 0; i < N; i += 4) {
int row_sum0 = 0, row_sum1 = 0, row_sum2 = 0, row_sum3 = 0;
for (j = 0; j < N; j++) {
// <20><><EFBFBD><EFBFBD><EFBFBD>к<EFBFBD>
row_sum0 += M[i][j];
row_sum1 += M[i + 1][j];
row_sum2 += M[i + 2][j];
row_sum3 += M[i + 3][j];
// ͬʱ<CDAC><CAB1><EFBFBD><EFBFBD><EFBFBD>к<EFBFBD>
colsum[j] += M[i][j] + M[i + 1][j] + M[i + 2][j] + M[i + 3][j];
}
rowsum[i] = row_sum0;
rowsum[i + 1] = row_sum1;
rowsum[i + 2] = row_sum2;
rowsum[i + 3] = row_sum3;
}
}
/*
<09><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ԫ<EFBFBD>أ<EFBFBD>ÿһ<C3BF><D2BB>Ԫ<EFBFBD>أ<EFBFBD><D8A3><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>, COL/ROWCOL, "<22><><EFBFBD><EFBFBD><EFBFBD>ַ<EFBFBD><D6B7><EFBFBD>"<22><>
COL<4F><4C>ʾ<EFBFBD>ú<EFBFBD><C3BA><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ÿһ<C3BF>еĺ<D0B5>
ROWCOL<4F><4C>ʾ<EFBFBD>ú<EFBFBD><C3BA><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ÿһ<C3BF>С<EFBFBD>ÿһ<C3BF>еĺ<D0B5>
<09><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ϊ<EFBFBD><CEAA><EFBFBD>õ<EFBFBD><C3B5><EFBFBD><EFBFBD><EFBFBD>ʵ<EFBFBD>֣<EFBFBD><D6A3><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ǰ<EFBFBD>
<09><><EFBFBD>
{my_c_sum1, "<22><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʵ<EFBFBD><CAB5>"},
{my_rc_sum2, "<22><>һ<EFBFBD><D2BB><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʵ<EFBFBD><CAB5>"},
*/
rc_fun_rec rc_fun_tab[] =
{
/* <20><>һ<EFBFBD>Ӧ<EEA3AC><D3A6><EFBFBD><EFBFBD><EFBFBD><EFBFBD>д<EFBFBD><D0B4><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>͵ĺ<CDB5><C4BA><EFBFBD>ʵ<EFBFBD><CAB5> */
{c_sum, COL, "Best column sum"},
/* <20>ڶ<EFBFBD><DAB6>Ӧ<EEA3AC><D3A6><EFBFBD><EFBFBD><EFBFBD><EFBFBD>д<EFBFBD><D0B4><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>͵ĺ<CDB5><C4BA><EFBFBD>ʵ<EFBFBD><CAB5> */
{rc_sum, ROWCOL, "Best row and column sum"},
{c_sum, COL, "Column sum, reference implementation"},
{rc_sum, ROWCOL, "Row and column sum, reference implementation"},
/* <20><><EFBFBD><EFBFBD><EFBFBD>Ĵ<EFBFBD><C4B4><EFBFBD><EBB2BB><EFBFBD>޸Ļ<DEB8><C4BB><EFBFBD>ɾ<EFBFBD><C9BE><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>б<EFBFBD><D0B1><EFBFBD><EFBFBD><EFBFBD> */
{NULL,ROWCOL,NULL}
};

View File

@ -1,9 +1,9 @@
#include <stdio.h>
#include <stdlib.h>
// #include <random.h>
#include "clock.h"
#include "fcyc.h"
//#include <random.h>
#include "rowcol.h"
#include "fcyc.h"
#include "clock.h"
#define MAX_ITER_COUNT 100
@ -11,8 +11,8 @@
static struct {
double cref; /* Cycles taken by reference solution */
double cbest; /* Cycles taken by our best implementation */
} cstandard[2] = {
{7.7, 6.40}, /* Column Sum */
} cstandard[2] =
{{7.7, 6.40}, /* Column Sum */
{9.75, 6.60} /* Row & Column Sum */
};
@ -26,7 +26,7 @@ static struct {
#define WPB 16
int verbose = 1;
int data[N * N + WPB];
int data[N*N+WPB];
int *mstart;
typedef vector_t *row_t;
@ -37,25 +37,27 @@ vector_t rsref, csref, rcomp, ccomp;
static void init_tests(void);
extern void make_CPU_busy(void);
static void init_tests(void) {
static void init_tests(void)
{
int i, j;
size_t bytes_per_block = sizeof(int) * WPB;
/* round mstart up to nearest block boundary */
mstart = (int *)(((size_t)data + bytes_per_block - 1) / bytes_per_block *
bytes_per_block);
mstart = (int *)
(((size_t) data + bytes_per_block-1) / bytes_per_block * bytes_per_block);
for (i = 0; i < N; i++) {
rsref[i] = csref[i] = 0;
}
for (i = 0; i < N; i++) {
for (j = 0; j < N; j++) {
int val = rand();
mstart[i * N + j] = val;
mstart[i*N+j] = val;
rsref[i] += val;
csref[j] += val;
}
}
}
/* Test function on all values */
int test_rc(rc_fun f, FILE *rpt, rc_comp_t rc_type) {
int i;
@ -66,66 +68,75 @@ int test_rc(rc_fun f, FILE *rpt, rc_comp_t rc_type) {
f((row_t)mstart, rcomp, ccomp);
for (i = 0; ok && i < N; i++) {
if (rc_type == ROWCOL && rsref[i] != rcomp[i]) {
if (rc_type == ROWCOL
&& rsref[i] != rcomp[i]) {
ok = 0;
if (rpt)
fprintf(rpt, "对第%d行的计算出错正确结果是%d但是计算得到%d\n", i,
rsref[i], rcomp[i]);
fprintf(rpt,
"<EFBFBD>Ե<EFBFBD>%d<>еļ<D0B5><C4BC><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ȷ<EFBFBD><C8B7><EFBFBD><EFBFBD><EFBFBD><EFBFBD>%d<><64><EFBFBD><EFBFBD><EFBFBD>Ǽ<EFBFBD><C7BC><EFBFBD><EFBFBD>õ<EFBFBD>%d\n",
i, rsref[i], rcomp[i]);
}
if ((rc_type == ROWCOL || rc_type == COL) && csref[i] != ccomp[i]) {
if ((rc_type == ROWCOL || rc_type == COL)
&& csref[i] != ccomp[i]) {
ok = 0;
if (rpt)
fprintf(rpt, "对第%d列的计算出错正确结果是%d但是计算得到%d\n", i,
csref[i], ccomp[i]);
fprintf(rpt,
"<EFBFBD>Ե<EFBFBD>%d<>еļ<D0B5><C4BC><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ȷ<EFBFBD><C8B7><EFBFBD><EFBFBD><EFBFBD><EFBFBD>%d<><64><EFBFBD><EFBFBD><EFBFBD>Ǽ<EFBFBD><C7BC><EFBFBD><EFBFBD>õ<EFBFBD>%d\n",
i, csref[i], ccomp[i]);
}
}
return ok;
}
/* Kludgy way to interface to cycle measuring code */
void do_test(int *intf) {
rc_fun f = (rc_fun)intf;
void do_test(int *intf)
{
rc_fun f = (rc_fun) intf;
f((row_t)mstart, rcomp, ccomp);
}
void time_rc(rc_fun f, rc_comp_t rc_type, char *descr, double *cycp) {
void time_rc(rc_fun f, rc_comp_t rc_type, char *descr, double *cycp)
{
int i;
int *intf = (int *)f;
int *intf = (int *) f;
double t, cme;
t = 0;
if (verbose)
printf("函数:%s\n", descr);
if (verbose) printf("<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>%s\n", descr);
if (test_rc(f, stdout, rc_type)) {
make_CPU_busy();
for (i = 0; i < MAX_ITER_COUNT; i++)
t += fcyc((void (*)(long *))do_test, intf);
t = t / MAX_ITER_COUNT;
cme = t / (N * N);
if (verbose)
printf(" 总周期数 = %.2f, 平均周期/元素 = %.2f\n", t, cme);
for (i=0;i<MAX_ITER_COUNT;i++)
t += fcyc((void(*)(long int*))do_test, intf);
t = t/MAX_ITER_COUNT;
cme = t/(N*N);
if (verbose) printf(" <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> = %.2f, ƽ<><C6BD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><><D4AA> = %.2f\n",
t, cme);
if (cycp)
*cycp = cme;
}
}
/* Compute the grade achieved by function */
static double compute_score(double cmeas, double cref, double cbest) {
double sbest = cref / cbest;
double smeas = cref / cmeas;
if (smeas < 0.1 * (sbest - 1) + 1)
static double compute_score(double cmeas, double cref, double cbest)
{
double sbest = cref/cbest;
double smeas = cref/cmeas;
if (smeas < 0.1*(sbest-1)+1)
return 0;
if (smeas > 1.1 * (sbest - 1) + 1)
if (smeas > 1.1*(sbest-1)+1)
return 120;
return 100 * ((smeas - 1.0) / (sbest - 1.0) + 0.1);
return 100*((smeas-1.0)/(sbest-1.0) + 0.1);
}
int main(int argc, char *argv[]) {
int main(int argc, char *argv[])
{
int i;
double cme;
double cme_c, cme_rc;
int EnableScore = 0;
double cme_c,cme_rc;
int EnableScore=0;
if (argc == 3) {
if (argc == 3)
{
EnableScore = 1;
verbose = 0;
}
@ -133,26 +144,30 @@ int main(int argc, char *argv[]) {
set_fcyc_clear_cache(1); /* Set so that clears cache between runs */
for (i = 0; rc_fun_tab[i].f != NULL; i++) {
cme = 100.0;
time_rc(rc_fun_tab[i].f, rc_fun_tab[i].rc_type, rc_fun_tab[i].descr, &cme);
if (i == 0) {
time_rc(rc_fun_tab[i].f,
rc_fun_tab[i].rc_type, rc_fun_tab[i].descr, &cme);
if (i == 0)
{
cme_c = cme;
if (EnableScore == 0) {
printf(" 最高\"列求和\"得分 ======================== %.0f\n",
if (EnableScore==0)
{
printf(" <20><><EFBFBD><EFBFBD>\"<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>\"<EFBFBD>÷<EFBFBD> ======================== %.0f\n",
compute_score(cme, cstandard[0].cref, cstandard[0].cbest));
}
}
if (i == 1) {
if (i == 1)
{
cme_rc = cme;
if (EnableScore == 0) {
printf(" 最高\"行和列求和\"得分 ====================== %.0f\n",
if (EnableScore==0)
{
printf(" <20><><EFBFBD><EFBFBD>\"<EFBFBD>к<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>\"<EFBFBD>÷<EFBFBD> ====================== %.0f\n",
compute_score(cme, cstandard[1].cref, cstandard[1].cbest));
}
}
}
if (EnableScore)
printf("%.2f\t %.0f\t %.2f\t %.0f\t 0\t 0\n", cme_c,
compute_score(cme_c, cstandard[0].cref, cstandard[0].cbest), cme_rc,
compute_score(cme_rc, cstandard[1].cref, cstandard[1].cbest));
printf("%.2f\t %.0f\t %.2f\t %.0f\t 0\t 0\n",cme_c,compute_score(cme_c, cstandard[0].cref, cstandard[0].cbest),
cme_rc,compute_score(cme_rc, cstandard[1].cref, cstandard[1].cbest));
return 0;
}

Binary file not shown.

View File

@ -1,35 +0,0 @@
CC = gcc
NVCC = nvcc
CFLAGS = -Wall -O2 -g
CUDA_FLAGS = -O2 -g
LDFLAGS = -lm -lcudart
# Source files
SRCS = poly_test.c clock.c cpe.c fcyc.c lsquare.c
CUDA_SRCS = poly.cu
OBJS = $(SRCS:.c=.o) poly.o
# Target executable
TARGET = poly_test
# Default target
all: $(TARGET)
# Rule to build the executable
$(TARGET): $(OBJS)
$(CC) $(OBJS) -o $(TARGET) $(LDFLAGS)
# Rule to build object files
%.o: %.c
$(CC) $(CFLAGS) -c $< -o $@
# Rule to build CUDA object files
poly.o: poly.cu
$(NVCC) $(CUDA_FLAGS) -c $< -o $@
# Clean rule
clean:
rm -f $(OBJS) $(TARGET)
# Phony targets
.PHONY: all clean

BIN
perflab/poly/a.exe Executable file

Binary file not shown.

View File

@ -13,11 +13,11 @@
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <x86intrin.h>
// #include <intrinsics.h>
#include "clock.h"
#include <time.h>
#include <intrin.h>
//#include <intrinsics.h>
#include <windows.h>
#include <time.h>
#include "clock.h"
/* Use x86 cycle counter */
@ -27,29 +27,35 @@ static unsigned cyc_lo = 0;
/* Set *hi and *lo to the high and low order bits of the cycle counter.
Implementation requires assembly code to use the rdtsc instruction. */
void access_counter(unsigned *hi, unsigned *lo) {
void access_counter(unsigned *hi, unsigned *lo)
{
long long counter;
counter = __rdtsc();
(*hi) = (unsigned int)(counter >> 32);
(*lo) = (unsigned int)counter;
/*
/*
LARGE_INTEGER lPerformanceCount;
QueryPerformanceCounter(&lPerformanceCount);
(*hi) = (unsigned int)lPerformanceCount.HighPart;
(*lo) = (unsigned int)lPerformanceCount.LowPart;
// printf("%08X %08X\n",(*hi),(*lo));
*/
// printf("%08X %08X\n",(*hi),(*lo));
*/
}
/* Record the current value of the cycle counter. */
void start_counter() { access_counter(&cyc_hi, &cyc_lo); }
void start_counter()
{
access_counter(&cyc_hi, &cyc_lo);
}
/* Return the number of cycles since the last call to start_counter. */
double get_counter() {
double get_counter()
{
unsigned ncyc_hi, ncyc_lo;
unsigned hi, lo, borrow;
double result;
@ -61,11 +67,12 @@ double get_counter() {
lo = ncyc_lo - cyc_lo;
borrow = cyc_lo > ncyc_lo;
hi = ncyc_hi - cyc_hi - borrow;
result = (double)hi * (1 << 30) * 4 + lo;
result = (double) hi * (1 << 30) * 4 + lo;
return result;
}
void make_CPU_busy(void) {
volatile double old_tick, new_tick;
void make_CPU_busy(void)
{
volatile double old_tick,new_tick;
start_counter();
old_tick = get_counter();
new_tick = get_counter();
@ -73,8 +80,9 @@ void make_CPU_busy(void) {
new_tick = get_counter();
}
// CPU<EFBFBD><EFBFBD>Ƶ<EFBFBD><EFBFBD>
double mhz(int verbose) {
//CPU<50><55>Ƶ<EFBFBD><C6B5>
double mhz(int verbose)
{
LARGE_INTEGER lFrequency;
LARGE_INTEGER lPerformanceCount_Start;
LARGE_INTEGER lPerformanceCount_End;
@ -82,51 +90,50 @@ double mhz(int verbose) {
double fTime;
__int64 _i64StartCpuCounter;
__int64 _i64EndCpuCounter;
// On a multiprocessor machine, it should not matter which processor is
// called. However, you can get different results on different processors due
// to bugs in the BIOS or the HAL. To specify processor affinity for a thread,
// use the SetThreadAffinityMask function.
HANDLE hThread = GetCurrentThread();
SetThreadAffinityMask(hThread, 0x1);
//On a multiprocessor machine, it should not matter which processor is called.
//However, you can get different results on different processors due to bugs in
//the BIOS or the HAL. To specify processor affinity for a thread, use the SetThreadAffinityMask function.
HANDLE hThread=GetCurrentThread();
SetThreadAffinityMask(hThread,0x1);
// <EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ϸ߾<EFBFBD><EFBFBD>ȶ<EFBFBD>ʱ<EFBFBD><EFBFBD><EFBFBD>ľ<EFBFBD><EFBFBD><EFBFBD>Ƶ<EFBFBD><EFBFBD>
// <EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʱ<EFBFBD><EFBFBD>Ӧ<EFBFBD>þ<EFBFBD><EFBFBD><EFBFBD>һƄ1<EFBFBD>78253<EFBFBD><EFBFBD><EFBFBD><EFBFBD>8254
// <EFBFBD><EFBFBD>intel ich7<68>м<EFBFBD><D0BC><EFBFBD><EFBFBD><EFBFBD>8254
//<2F><><EFBFBD><EFBFBD><EFBFBD>ϸ߾<CFB8><DFBE>ȶ<EFBFBD>ʱ<EFBFBD><CAB1><EFBFBD>ľ<EFBFBD><C4BE><EFBFBD>Ƶ<EFBFBD><C6B5>
//<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʱ<EFBFBD><EFBFBD>Ӧ<EFBFBD>þ<EFBFBD><EFBFBD><EFBFBD>һƬ8253<EFBFBD><EFBFBD><EFBFBD><EFBFBD>8254
//<2F><>intel ich7<68>м<EFBFBD><D0BC><EFBFBD><EFBFBD><EFBFBD>8254
QueryPerformanceFrequency(&lFrequency);
// if (verbose>0)
// printf("<22>߾<EFBFBD><DFBE>ȶ<EFBFBD>ʱ<EFBFBD><CAB1><EFBFBD>ľ<EFBFBD><C4BE><EFBFBD>Ƶ<EFBFBD>ʣ<EFBFBD>%1.0fHz.\n",(double)lFrequency.QuadPart);
// if (verbose>0)
// printf("<22>߾<EFBFBD><DFBE>ȶ<EFBFBD>ʱ<EFBFBD><CAB1><EFBFBD>ľ<EFBFBD><C4BE><EFBFBD>Ƶ<EFBFBD>ʣ<EFBFBD>%1.0fHz.\n",(double)lFrequency.QuadPart);
// <EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʱ<EFBFBD><EFBFBD>ÿ<EFBFBD><EFBFBD><EFBFBD><EFBFBD>һ<EFBFBD><EFBFBD>ʱ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ڣ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>+1
//<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʱ<EFBFBD><EFBFBD>ÿ<EFBFBD><EFBFBD><EFBFBD><EFBFBD>һ<EFBFBD><EFBFBD>ʱ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ڣ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>+1
QueryPerformanceCounter(&lPerformanceCount_Start);
// RDTSCָ<EFBFBD><EFBFBD>:<3A><>ȡCPU<50><55><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʱ<EFBFBD><CAB1><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
_i64StartCpuCounter = __rdtsc();
//RDTSCָ<43><D6B8>:<3A><>ȡCPU<50><55><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʱ<EFBFBD><CAB1><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
_i64StartCpuCounter=__rdtsc();
// <EFBFBD><EFBFBD>ʱ<EFBFBD><EFBFBD>һ<EFBFBD><EFBFBD>,<2C><><EFBFBD><EFBFBD>Сһ<D0A1><D2BB>
// int nTemp=100000;
// while (--nTemp);
//<2F><>ʱ<EFBFBD><CAB1>һ<EFBFBD><D2BB>,<2C><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Сһ<EFBFBD><EFBFBD>
//int nTemp=100000;
//while (--nTemp);
Sleep(200);
QueryPerformanceCounter(&lPerformanceCount_End);
_i64EndCpuCounter = __rdtsc();
_i64EndCpuCounter=__rdtsc();
// f=1/T => f=<3D><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>/(<28><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>*T)
// <EFBFBD><EFBFBD><EFBFBD><EFBFBD>ġ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ᅣ1<EFBFBD>7*T<><54><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʱ<EFBFBD><CAB1>ᅣ1<EFBFBD>7
fTime = ((double)lPerformanceCount_End.QuadPart -
(double)lPerformanceCount_Start.QuadPart) /
(double)lFrequency.QuadPart;
//f=1/T => f=<3D><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>/(<28><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>*T)
//<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ġ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>*T<><54><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʱ<EFBFBD><CAB1><EFBFBD><EFBFBD>
fTime=((double)lPerformanceCount_End.QuadPart-(double)lPerformanceCount_Start.QuadPart)
/(double)lFrequency.QuadPart;
mhz = (_i64EndCpuCounter - _i64StartCpuCounter) / (fTime * 1000000.0);
if (verbose > 0)
printf("CPUƵ<EFBFBD><EFBFBD>Ϊ:%1.6fMHz.\n", mhz);
mhz = (_i64EndCpuCounter-_i64StartCpuCounter)/(fTime*1000000.0);
if (verbose>0)
printf("CPUƵ<EFBFBD><EFBFBD>Ϊ:%1.6fMHz.\n",mhz);
return mhz;
}
double CPU_Factor1(void) {
double CPU_Factor1(void)
{
double result;
int i, j, k, ii, jj, kk;
LARGE_INTEGER lStart, lEnd;
int i,j,k,ii,jj,kk;
LARGE_INTEGER lStart,lEnd;
LARGE_INTEGER lFrequency;
HANDLE hThread;
double fTime;
@ -138,51 +145,53 @@ double CPU_Factor1(void) {
result = 1;
jj = 1244;
hThread = GetCurrentThread();
SetThreadAffinityMask(hThread, 0x1);
hThread=GetCurrentThread();
SetThreadAffinityMask(hThread,0x1);
QueryPerformanceCounter(&lStart);
//_asm("cpuid");
start_counter();
for (i = 0; i < 100; i++)
for (j = 0; j < 1000; j++)
for (k = 0; k < 1000; k++)
kk += kk * ii + jj;
for (i=0;i<100;i++)
for (j=0;j<1000;j++)
for (k=0;k<1000;k++)
kk += kk*ii+jj;
result = get_counter();
QueryPerformanceCounter(&lEnd);
fTime = ((double)lEnd.QuadPart - (double)lStart.QuadPart);
printf("CPU<EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʱ<EFBFBD><EFBFBD>Ϊ%f", result);
printf("\t %f\n", fTime);
fTime=((double)lEnd.QuadPart-(double)lStart.QuadPart);
printf("CPU<EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʱ<EFBFBD><EFBFBD>Ϊ%f",result);
printf("\t %f\n",fTime);
return result;
}
double CPU_Factor(void) {
double CPU_Factor(void)
{
double frequency;
double multiplier = 1000 * 1000 * 1000; // nano
double multiplier = 1000 * 1000 * 1000;//nano
LARGE_INTEGER lFrequency;
LARGE_INTEGER start, stop;
LARGE_INTEGER start,stop;
HANDLE hThread;
int i;
const int gigahertz = 1000 * 1000 * 1000;
const int gigahertz= 1000*1000*1000;
const int known_instructions_per_loop = 27317;
int iterations = 100000000;
int g = 0;
double normal_ticks_per_second;
double ticks;
double time;
double loops_per_sec;
double instructions_per_loop;
double ratio;
double actual_freq;
double ticks;
double time;
double loops_per_sec;
double instructions_per_loop;
double ratio;
double actual_freq;
QueryPerformanceFrequency(&lFrequency);
frequency = (double)lFrequency.QuadPart;
hThread = GetCurrentThread();
SetThreadAffinityMask(hThread, 0x1);
hThread=GetCurrentThread();
SetThreadAffinityMask(hThread,0x1);
QueryPerformanceCounter(&start);
for (i = 0; i < iterations; i++) {
for( i = 0; i < iterations; i++)
{
g++;
g++;
g++;
@ -190,17 +199,16 @@ double CPU_Factor(void) {
}
QueryPerformanceCounter(&stop);
// normal ticks differs from the WMI data, i.e 3125, when WMI 3201, and CPUZ
// 3199
//normal ticks differs from the WMI data, i.e 3125, when WMI 3201, and CPUZ 3199
normal_ticks_per_second = frequency * 1000;
ticks = (double)((double)stop.QuadPart - (double)start.QuadPart);
time = (ticks * multiplier) / frequency;
loops_per_sec = iterations / (time / multiplier);
time = (ticks * multiplier) /frequency;
loops_per_sec = iterations / (time/multiplier);
instructions_per_loop = normal_ticks_per_second / loops_per_sec;
ratio = (instructions_per_loop / known_instructions_per_loop);
actual_freq = normal_ticks_per_second / ratio;
/*
/*
actual_freq = normal_ticks_per_second / ratio;
actual_freq = known_instructions_per_loop*iterations*multiplier/time;
@ -210,12 +218,12 @@ double CPU_Factor(void) {
loops_per_sec = iterations*frequency / ticks
instructions_per_loop = / loops_per_sec;
*/
*/
printf("Perf counter freq: %f\n", normal_ticks_per_second);
printf("Loops per sec: %f\n", loops_per_sec);
printf("Perf counter freq div loops per sec: %f\n", instructions_per_loop);
printf("Presumed freq: %f\n", actual_freq);
printf("ratio: %f\n", ratio);
printf("time=%f\n", time);
printf("time=%f\n",time);
return ratio;
}

View File

@ -119,7 +119,7 @@ double fcyc(test_funct f, int *params)
if (clear_cache)
clear();
start_counter();
f(params);
f((long int*)params);
cyc = get_counter();
if (cyc > 0.0)
add_sample(cyc);
@ -131,7 +131,7 @@ double fcyc(test_funct f, int *params)
clear();
start_counter();
for (i=0;i<MAX_ITER_TIMES;i++)
f(params);
f((long int *)params);
cyc = get_counter()/MAX_ITER_TIMES;
if (cyc > 0.0)
add_sample(cyc);

View File

@ -1,325 +0,0 @@
/**************************************************************************
多项式计算函数。按下面的要求编辑此文件:
1. 将你的学号、姓名,以注释的方式写到下面;
2. 实现不同版本的多项式计算函数;
3. 编辑peval_fun_rec peval_fun_tab数组将你的最好的答案
最小CPE、最小C10作为数组的前两项
***************************************************************************/
/*
学号201209054233
姓名:夜半加班狂
*/
#include <stdio.h>
#include <stdlib.h>
#include <cuda_runtime.h>
typedef int (*peval_fun)(int*, int, int);
typedef struct {
peval_fun f;
char *descr;
} peval_fun_rec, *peval_fun_ptr;
/**************************************************************************
Edit this comment to indicate your name and Andrew ID
#ifdef ASSIGN
Submission by Harry Q. Bovik, bovik@andrew.cmu.edu
#else
Instructor's version.
Created by Randal E. Bryant, Randy.Bryant@cs.cmu.edu, 10/07/02
#endif
***************************************************************************/
/*
实现一个指定的常系数多项式计算
第一次,请直接运行程序,以便获知你需要实现的常系数是啥
*/
int const_poly_eval(int *not_use, int not_use2, int x)
{
int result = 0;
/* int i;
int xpwr = 1; // x的幂次
int a[4] = {21,90,42,88};
for (i = 0; i <= 3; i++) {
result += a[i]*xpwr;
xpwr *= x;
}
*/
// 90 = 64 + 32 - 4 - 2
// 42 = 32 + 8 + 2
// 88 = 64 + 16 + 8
int x64,x32,x16,x8,x4,x2;
x64 = x << 6;
x32 = x << 5;
x16 = x << 4;
x8 = x << 3;
x4 = x << 2;
x2 = x << 1;
result = 21 + x64+x32-x4-x2 + ((x32+x8+x2) + (x64+x16+x8)*x)*x;
return result;
}
/* 多项式计算函数。注意:这个只是一个参考实现,你需要实现自己的版本 */
/*
友情提示lcc支持ATT格式的嵌入式汇编例如
_asm("movl %eax,%ebx");
_asm("pushl %edx");
可以在lcc中project->configuration->Compiler->Code Generation->Generate .asm
将其选中后可以在lcc目录下面生成对应程序的汇编代码实现。通过查看汇编文件
你可以了解编译器是如何实现你的代码的。有些实现可能非常低效。
你可以在适当的地方加入嵌入式汇编,来大幅度提高计算性能。
*/
int poly_eval(int *a, int degree, int x)
{
int result = 0;
int i;
int xpwr = 1; /* x的幂次 */
// printf("阶=%d\n",degree);
for (i = 0; i <= degree; i++) {
result += a[i]*xpwr;
xpwr *= x;
}
return result;
}
/* CUDA优化的多项式计算函数 - 低CPE版本 */
int cuda_poly_eval_low_cpe(int *a, int degree, int x)
{
// 对于低CPE版本我们使用CUDA并行计算多项式的各个项
// 然后将结果传回主机进行求和
// 分配设备内存
int *d_a, *d_results;
cudaError_t err;
// 分配内存
err = cudaMalloc(&d_a, (degree + 1) * sizeof(int));
if (err != cudaSuccess) {
printf("CUDA Error: %s\n", cudaGetErrorString(err));
return 0;
}
err = cudaMalloc(&d_results, (degree + 1) * sizeof(int));
if (err != cudaSuccess) {
printf("CUDA Error: %s\n", cudaGetErrorString(err));
cudaFree(d_a);
return 0;
}
// 将系数从主机复制到设备
err = cudaMemcpy(d_a, a, (degree + 1) * sizeof(int), cudaMemcpyHostToDevice);
if (err != cudaSuccess) {
printf("CUDA Error: %s\n", cudaGetErrorString(err));
cudaFree(d_a);
cudaFree(d_results);
return 0;
}
// 定义CUDA核函数
dim3 blockDim(256);
dim3 gridDim((degree + 1 + blockDim.x - 1) / blockDim.x);
// 启动核函数
cudaPolyEvalLowCPE<<<gridDim, blockDim>>>(d_a, degree, x, d_results);
// 检查核函数执行错误
err = cudaGetLastError();
if (err != cudaSuccess) {
printf("CUDA Error: %s\n", cudaGetErrorString(err));
cudaFree(d_a);
cudaFree(d_results);
return 0;
}
// 分配主机内存用于结果
int *h_results = (int *)malloc((degree + 1) * sizeof(int));
if (h_results == NULL) {
printf("Memory allocation error\n");
cudaFree(d_a);
cudaFree(d_results);
return 0;
}
// 将结果从设备复制回主机
err = cudaMemcpy(h_results, d_results, (degree + 1) * sizeof(int), cudaMemcpyDeviceToHost);
if (err != cudaSuccess) {
printf("CUDA Error: %s\n", cudaGetErrorString(err));
free(h_results);
cudaFree(d_a);
cudaFree(d_results);
return 0;
}
// 在主机上求和
int result = 0;
for (int i = 0; i <= degree; i++) {
result += h_results[i];
}
// 释放内存
free(h_results);
cudaFree(d_a);
cudaFree(d_results);
return result;
}
/* CUDA优化的多项式计算函数 - 10阶优化版本 */
int cuda_poly_eval_degree10(int *a, int degree, int x)
{
// 对于10阶多项式我们可以使用更优化的方法
// 使用CUDA并行计算但针对10阶多项式进行特殊优化
// 分配设备内存
int *d_a, *d_result;
cudaError_t err;
// 分配内存
err = cudaMalloc(&d_a, (degree + 1) * sizeof(int));
if (err != cudaSuccess) {
printf("CUDA Error: %s\n", cudaGetErrorString(err));
return 0;
}
err = cudaMalloc(&d_result, sizeof(int));
if (err != cudaSuccess) {
printf("CUDA Error: %s\n", cudaGetErrorString(err));
cudaFree(d_a);
return 0;
}
// 将系数从主机复制到设备
err = cudaMemcpy(d_a, a, (degree + 1) * sizeof(int), cudaMemcpyHostToDevice);
if (err != cudaSuccess) {
printf("CUDA Error: %s\n", cudaGetErrorString(err));
cudaFree(d_a);
cudaFree(d_result);
return 0;
}
// 定义CUDA核函数
dim3 blockDim(256);
dim3 gridDim(1); // 只需要一个块,因为我们只需要一个结果
// 启动核函数
cudaPolyEvalDegree10<<<gridDim, blockDim>>>(d_a, degree, x, d_result);
// 检查核函数执行错误
err = cudaGetLastError();
if (err != cudaSuccess) {
printf("CUDA Error: %s\n", cudaGetErrorString(err));
cudaFree(d_a);
cudaFree(d_result);
return 0;
}
// 获取结果
int result;
err = cudaMemcpy(&result, d_result, sizeof(int), cudaMemcpyDeviceToHost);
if (err != cudaSuccess) {
printf("CUDA Error: %s\n", cudaGetErrorString(err));
cudaFree(d_a);
cudaFree(d_result);
return 0;
}
// 释放内存
cudaFree(d_a);
cudaFree(d_result);
return result;
}
/* CUDA核函数 - 低CPE版本 */
__global__ void cudaPolyEvalLowCPE(int *a, int degree, int x, int *results)
{
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx <= degree) {
// 计算x的幂
int xpwr = 1;
for (int i = 0; i < idx; i++) {
xpwr *= x;
}
// 计算这一项的结果
results[idx] = a[idx] * xpwr;
}
}
/* CUDA核函数 - 10阶优化版本 */
__global__ void cudaPolyEvalDegree10(int *a, int degree, int x, int *result)
{
// 使用共享内存来存储中间结果
__shared__ int shared_result;
// 只有第一个线程初始化共享结果
if (threadIdx.x == 0) {
shared_result = 0;
}
__syncthreads();
// 每个线程计算一部分项
int local_result = 0;
int xpwr = 1;
// 计算x的幂
for (int i = 0; i < threadIdx.x; i++) {
xpwr *= x;
}
// 计算这一项的结果
if (threadIdx.x <= degree) {
local_result = a[threadIdx.x] * xpwr;
}
// 使用原子操作累加结果
atomicAdd(&shared_result, local_result);
// 同步所有线程
__syncthreads();
// 只有第一个线程将结果写回全局内存
if (threadIdx.x == 0) {
*result = shared_result;
}
}
/*
这个表格包含多个数组元素,每一组元素(函数名字, "描述字符串"
将你认为最好的两个实现,放在最前面。
比如:
{my_poly_eval1, "超级垃圾实现"},
{my_poly_eval2, "好一点的实现"},
*/
peval_fun_rec peval_fun_tab[] =
{
/* 第一项应当是你写的最好CPE的函数实现 */
{cuda_poly_eval_low_cpe, "CUDA optimized low CPE implementation"},
/* 第二项应当是你写的在10阶时具有最好性能的实现 */
{cuda_poly_eval_degree10, "CUDA optimized degree 10 implementation"},
{poly_eval, "poly_eval: 参考实现"},
/* 下面的代码不能修改或者删除!!表明数组列表结束 */
{NULL, ""}
};

Binary file not shown.

View File

@ -1,3 +1,10 @@
/*
使
result = 37 + 72*x + 84*x^2 + 52*x^3
*/
/**************************************************************************
1.
@ -7,8 +14,8 @@
***************************************************************************/
/*
201209054233
202302723005
*/
@ -37,34 +44,19 @@ typedef struct {
便
*/
int const_poly_eval(int *not_use, int not_use2, int x)
int poly_eval(int *a, int degree, int x)
{
int result = 0;
/* int i;
int i;
int xpwr = 1; // x的幂次
int a[4] = {21,90,42,88};
for (i = 0; i <= 3; i++) {
for (i = 0; i <= degree; i++) {
result += a[i]*xpwr;
xpwr *= x;
}
*/
// 90 = 64 + 32 - 4 - 2
// 42 = 32 + 8 + 2
// 88 = 64 + 16 + 8
int x64,x32,x16,x8,x4,x2;
x64 = x << 6;
x32 = x << 5;
x16 = x << 4;
x8 = x << 3;
x4 = x << 2;
x2 = x << 1;
result = 21 + x64+x32-x4-x2 + ((x32+x8+x2) + (x64+x16+x8)*x)*x;
return result;
}
/* 多项式计算函数。注意:这个只是一个参考实现,你需要实现自己的版本 */
/*
@ -78,23 +70,56 @@ int const_poly_eval(int *not_use, int not_use2, int x)
*/
int poly_eval(int *a, int degree, int x)
int const_poly_eval(int *not_use, int not_use2, int x)
{
int result = 0;
int i;
int xpwr = 1; /* x的幂次 */
// printf("阶=%d\n",degree);
for (i = 0; i <= degree; i++) {
result += a[i]*xpwr;
xpwr *= x;
}
register int result = 0;
register int x1, x2, x3;
register int tmp = x; // tmp = x
register int tmp1 = tmp * tmp; // tmp1 = x^2
register int tmp2 = tmp1 * tmp;// tmp2 = x^3
// 计算72x: 64x + 8x = (x << 6) + (x << 3)
x1 = (tmp << 6) + (tmp << 3);
// 计算84x^2: 64x2 + 16x2 + 4x2 = (x2 << 6) + (x2 << 4) + (x2 << 2)
x2 = (tmp1 << 6) + (tmp1 << 4) + (tmp1 << 2);
// 计算52x^3: 32x3 + 16x3 + 4x3 = (x3 << 5) + (x3 << 4) + (x3 << 2)
x3 = (tmp2 << 5) + (tmp2 << 4) + (tmp2 << 2);
// 合并结果37 + 72x + 84x2 + 52x3
result = 37 + x1 + x2 + x3;
return result;
}
int poly_eval12(int* a, int degree, int x) {
if (degree == 10) {
// 针对10阶完全展开霍纳法则保持原逻辑不变
int result = a[10];
result = result * x + a[9];
result = result * x + a[8];
result = result * x + a[7];
result = result * x + a[6];
result = result * x + a[5];
result = result * x + a[4];
result = result * x + a[3];
result = result * x + a[2];
result = result * x + a[1];
return result * x + a[0];
} else {
// 通用版本处理其他阶数(保持原逻辑不变)
int result = 0;
int x2 = x * x;
int i = degree;
for (; i > 0; i -= 2) {
result = result * x2 + a[i] * x + a[i - 1];
}
if (i == 0) {
result = result * x + a[0];
}
return result;
}
}
/*
, "描述字符串"
@ -107,19 +132,12 @@ peval_fun_rec peval_fun_tab[] =
{
/* 第一项应当是你写的最好CPE的函数实现 */
{poly_eval, "夜半加班狂的CPE"},
{poly_eval12, "程景愉的CPE"},
/* 第二项应当是你写的在10阶时具有最好性能的实现 */
{poly_eval, "夜半加班狂的10阶实现"},
{poly_eval12, "程景愉的10阶实现"},
{poly_eval, "poly_eval: 参考实现"},
/* 下面的代码不能修改或者删除!!表明数组列表结束 */
{NULL, ""}
};

View File

@ -2,11 +2,11 @@
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
//#include <random.h>
#include "poly.h"
#include "cpe.h"
#include "clock.h"
#include <time.h>
double CPU_Mhz;
@ -18,7 +18,7 @@ static int coeff[MAXDEGREE+1];
#define MAX_ITER_COUNT 100
#define REF_CPU_MHZ 2292.6 // <20><><EFBFBD><EFBFBD><EFBFBD>ҵĴ<D2B5><C4B4><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ƶ
#define REF_CPU_MHZ 2292.6 // <20><><EFBFBD><EFBFBD><EFBFBD>ҵĴ<D2B5><C4B4><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ƶ
/* Define performance standards */
static struct {
@ -27,7 +27,7 @@ static struct {
} cstandard[3] =
{{4.00, 1.75}, /* CPE */
{50, 43}, /* C(10) */
{57,31} /* <20><>ϵ<EFBFBD><CFB5><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʽ<EFBFBD><CABD><EFBFBD><EFBFBD> */
{57,31} /* <20><>ϵ<EFBFBD><CFB5><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʽ<EFBFBD><CABD><EFBFBD><EFBFBD> */
};
int coeff_const[4];
@ -83,7 +83,7 @@ static void init_const_poly(void)
coeff_const[i] = rand_div+10;
}
printf("<EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ҫ<EFBFBD>޸<EFBFBD>poly.c<><63>const_poly_eval<61><6C><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʵ<EFBFBD><CAB5><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ij<EFBFBD><C4B3><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʽ<EFBFBD><CABD><EFBFBD>\n");
printf("<EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ҫ<EFBFBD>޸<EFBFBD>poly.c<><63>const_poly_eval<61><6C><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʵ<EFBFBD><CAB5><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ij<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʽ<EFBFBD><EFBFBD><EFBFBD>\n");
printf("\tresult=%d+%d*x+%d*x^2+%d*x^3\n",coeff_const[0],coeff_const[1],coeff_const[2],coeff_const[3]);
fixval_const = ref_poly_eval(coeff_const, 3, xval);
@ -98,15 +98,15 @@ void test_const_poly(void)
int my_cal = const_poly_eval(coeff_const, 3, xval);
if (fixval_const != my_cal)
{
printf("<EFBFBD><EFBFBD>ϵ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʽ<EFBFBD><EFBFBD><EFBFBD><EFBFBD>const_poly_evalʵ<EFBFBD>ִ<EFBFBD><EFBFBD><EFBFBD>x=%d<><64><EFBFBD><EFBFBD>Ԥ<EFBFBD>ڽ<EFBFBD><DABD><EFBFBD><EFBFBD>%d<><64><EFBFBD><EFBFBD><EFBFBD>Ǽ<EFBFBD><C7BC><EFBFBD>õ<EFBFBD><C3B5><EFBFBD><EFBFBD><EFBFBD>%d\n",xval,fixval_const,my_cal);
printf("<EFBFBD><EFBFBD>ϵ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʽ<EFBFBD><EFBFBD><EFBFBD><EFBFBD>const_poly_evalʵ<EFBFBD>ִ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>x=%d<><64><EFBFBD><EFBFBD>Ԥ<EFBFBD>ڽ<EFBFBD><DABD><EFBFBD><EFBFBD><EFBFBD>%d<><64><EFBFBD><EFBFBD><EFBFBD>Ǽ<EFBFBD><C7BC><EFBFBD><EFBFBD>õ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>%d\n",xval,fixval_const,my_cal);
exit(0);
}
fix_time = 0;
for (i=0;i<MAX_ITER_COUNT;i++)
fix_time += measure_function(run_fun_const, 3);
fix_time = fix_time / MAX_ITER_COUNT;
printf(" <20><>ϵ<EFBFBD><CFB5><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʽ<EFBFBD><CABD><EFBFBD><EFBFBD>ʱ<EFBFBD><CAB1> = %.1f\n", fix_time);
printf(" <20><>ߵij<DFB5>ϵ<EFBFBD><CFB5><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʽ<EFBFBD><CABD><EFBFBD><EFBFBD>÷<EFBFBD> ============== %.0f\n",
printf(" <20><>ϵ<EFBFBD><CFB5><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʽ<EFBFBD><CABD><EFBFBD><EFBFBD>ʱ<EFBFBD><CAB1> = %.1f\n", fix_time);
printf(" <20><><EFBFBD>ߵij<EFBFBD>ϵ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʽ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>÷<EFBFBD> ============== %.0f\n",
compute_score(fix_time, cstandard[2].cref, cstandard[2].cbest));
}
@ -133,7 +133,7 @@ int test_poly(peval_fun f, FILE *rpt) {
ok = 0;
if (rpt) {
fprintf(rpt,
"<EFBFBD><EFBFBD><EFBFBD>󣡶<EFBFBD><EFBFBD><EFBFBD>ʽ<EFBFBD><EFBFBD><EFBFBD><EFBFBD>ԣ<EFBFBD><EFBFBD><EFBFBD>=%dʱ<64><CAB1><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֵ<EFBFBD><D6B5>%d<><64><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ȷֵ<C8B7><D6B5>%d\n",
"<EFBFBD><EFBFBD><EFBFBD>󣡶<EFBFBD><EFBFBD><EFBFBD>ʽ<EFBFBD><EFBFBD><EFBFBD><EFBFBD>ԣ<EFBFBD><EFBFBD><EFBFBD>=%dʱ<64><CAB1><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֵ<EFBFBD><EFBFBD>%d<><64><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ȷֵ<C8B7><D6B5>%d\n",
MAXDEGREE-i, v, pval[i]);
}
}
@ -143,7 +143,7 @@ int test_poly(peval_fun f, FILE *rpt) {
ok = 0;
if (rpt) {
fprintf(rpt,
"<EFBFBD><EFBFBD><EFBFBD>󣡶<EFBFBD><EFBFBD><EFBFBD>ʽ<EFBFBD><EFBFBD><EFBFBD><EFBFBD>ԣ<EFBFBD><EFBFBD><EFBFBD>=%dʱ<64><CAB1><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֵ<EFBFBD><D6B5>%d<><64><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ȷֵ<C8B7><D6B5>%d\n",
"<EFBFBD><EFBFBD><EFBFBD>󣡶<EFBFBD><EFBFBD><EFBFBD>ʽ<EFBFBD><EFBFBD><EFBFBD><EFBFBD>ԣ<EFBFBD><EFBFBD><EFBFBD>=%dʱ<64><CAB1><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֵ<EFBFBD><EFBFBD>%d<><64><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ȷֵ<C8B7><D6B5>%d\n",
FIXDEGREE, v, fixval);
}
}
@ -176,7 +176,7 @@ void run_poly(peval_fun f, char *descr, double *cpep, double *cfixp)
double cpe=0;
double fix_time=0;
pfun = f;
printf("<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>%s\n", descr);
printf("<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>%s\n", descr);
if (test_poly(f, stdout)) {
cpe = 0;
for (i=0;i<MAX_ITER_COUNT;i++)
@ -207,7 +207,7 @@ static double compute_score(double cmeas, double cref, double cbest)
return 100*((smeas-1.0)/(sbest-1.0) + 0.1);
}
/* <20><><EFBFBD><EFBFBD>һ<EFBFBD><D2BB>0~divv-1֮<31><D6AE><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ͬʱ<CDAC><CAB1><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> */
/* <20><><EFBFBD><EFBFBD>һ<EFBFBD><D2BB>0~divv-1֮<31><D6AE><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ͬʱ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> */
void GenerateRandomNumber(unsigned long divv)
{
unsigned long long x = rand1_h;
@ -231,18 +231,18 @@ int main(int argc, char *argv[])
// CPU_Factor();
// GetCpuClock();
printf("\t2015<EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʽ<EFBFBD>Ż<EFBFBD>ʵ<EFBFBD><EFBFBD><EFBFBD>ӭ<EFBFBD>\n");
printf("\t2015<EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʽ<EFBFBD>Ż<EFBFBD>ʵ<EFBFBD><EFBFBD><EFBFBD>ӭ<EFBFBD>\n");
printf("============================\n");
if (argc == 1)
{
printf("ʹ<EFBFBD>÷<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>%s ѧ<>ź<EFBFBD>6λ [ѧ<>ź<EFBFBD>6λ] [ѧ<>ź<EFBFBD>6λ] ...\n",argv[0]);
printf("<EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ҫ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʾ<EFBFBD><EFBFBD>дpoly.c<><63><EFBFBD><EFBFBD>ʵ<EFBFBD><CAB5>һ<EFBFBD><D2BB><EFBFBD><EFBFBD>ϵ<EFBFBD><CFB5><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʽ<EFBFBD>ļ<EFBFBD><C4BC><EFBFBD><E3A3AC><EFBFBD><EFBFBD><EFBFBD>ܿ<EFBFBD>Ŷ....\n");
printf("<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ҫ<EFBFBD><EFBFBD>дpoly.c<><63><EFBFBD><EFBFBD>ʵ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>׵Ķ<EFBFBD><EFBFBD><EFBFBD>ʽ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>10<EFBFBD>׵Ķ<EFBFBD><EFBFBD><EFBFBD>ʽ<EFBFBD><EFBFBD><EFBFBD>㣬Ҫ<EFBFBD>\n");
printf("ʹ<EFBFBD>÷<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>%s ѧ<>ź<EFBFBD>6λ [ѧ<>ź<EFBFBD>6λ] [ѧ<>ź<EFBFBD>6λ] ...\n",argv[0]);
printf("<EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ҫ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʾ<EFBFBD><EFBFBD>дpoly.c<><63><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʵ<EFBFBD><EFBFBD>һ<EFBFBD><EFBFBD><EFBFBD><EFBFBD>ϵ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʽ<EFBFBD>ļ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ܿ<EFBFBD>Ŷ....\n");
printf("<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ҫ<EFBFBD><EFBFBD>дpoly.c<><63><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʵ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>׵Ķ<EFBFBD><EFBFBD><EFBFBD>ʽ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>10<EFBFBD>׵Ķ<EFBFBD><EFBFBD><EFBFBD>ʽ<EFBFBD><EFBFBD><EFBFBD>㣬Ҫ<EFBFBD>\n");
return 0;
}
/*<2A><><EFBFBD><EFBFBD>ѧ<EFBFBD>ţ<EFBFBD><C5A3><EFBFBD>ʼ<EFBFBD><CABC>һ<EFBFBD><D2BB><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>*/
/*<2A><><EFBFBD><EFBFBD>ѧ<EFBFBD>ţ<EFBFBD><C5A3><EFBFBD>ʼ<EFBFBD><CABC>һ<EFBFBD><D2BB><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>*/
rand1_h = (unsigned long)atoi(argv[1]);
rand1_l=0x29A;
GenerateRandomNumber(0);
@ -267,10 +267,10 @@ int main(int argc, char *argv[])
//make_CPU_busy();
run_poly(peval_fun_tab[i].f, peval_fun_tab[i].descr, &cpe, &cfix);
if (i == 0)
printf(" <20><>ߵ<EFBFBD>CPE<50>÷<EFBFBD> =========================== %.0f\n",
printf(" <20><><EFBFBD>ߵ<EFBFBD>CPE<EFBFBD>÷<EFBFBD> =========================== %.0f\n",
compute_score(cpe, cstandard[0].cref, cstandard[0].cbest));
if (i == 1)
printf(" <20><>ߵ<EFBFBD>C(10)<29>÷<EFBFBD> ========================= %.0f\n",
printf(" <20><><EFBFBD>ߵ<EFBFBD>C(10)<29>÷<EFBFBD> ========================= %.0f\n",
compute_score(cfix, cstandard[1].cref, cstandard[1].cbest));
}
return 0;

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 655 KiB

View File

@ -1,7 +1,8 @@
# Makefile for word frequency analysis program
CC = icx
CFLAGS = -Ofast -pg
#CFLAGS = -O2 -pg
CFLAGS = -Ofast -Wall
TARGET = prog
SOURCES = prog.c options.c

Binary file not shown.

Binary file not shown.

View File

@ -3,7 +3,6 @@
#include "options.h"
#include "string.h"
#include <omp.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
@ -26,13 +25,28 @@ typedef void (*lower_fun_t)(char *s);
/* Lower case conversion routines */
/* Convert string to lower case: slow */
void lower1(char *s) {
int i;
/* Convert string to lower case: optimized with lookup table */
static unsigned char lcase_table[256];
static int table_initialized = 0;
for (i = 0; i < Strlen(s); i++)
if (s[i] >= 'A' && s[i] <= 'Z')
s[i] -= ('A' - 'a');
void init_lcase_table() {
if (!table_initialized) {
int i;
for (i = 0; i < 256; i++)
lcase_table[i] = i;
for (i = 'A'; i <= 'Z'; i++)
lcase_table[i] = i - ('A' - 'a');
table_initialized = 1;
}
}
void lower1(char *s) {
init_lcase_table();
unsigned char *us = (unsigned char *)s;
while (*us) {
*us = lcase_table[*us];
us++;
}
}
/* Convert string to lower case: faster */
@ -137,9 +151,20 @@ unsigned h_xor(char *s) {
return val % tsize;
}
#define HCNT 3
hash_fun_t hash_fun_set[HCNT] = {h_mod, h_add, h_xor};
char *hash_fun_names[HCNT] = {"h_mod", "h_add", "h_xor"};
/* FNV-1a hash function */
unsigned h_fnv1a(char *s) {
unsigned hash = 2166136261u;
unsigned char *us = (unsigned char *)s;
while (*us) {
hash ^= *us++;
hash *= 16777619u;
}
return hash % tsize;
}
#define HCNT 4
hash_fun_t hash_fun_set[HCNT] = {h_mod, h_add, h_xor, h_fnv1a};
char *hash_fun_names[HCNT] = {"h_mod", "h_add", "h_xor", "h_fnv1a"};
char *save_string(char *s) {
char *result = (char *)malloc(Strlen(s) + 1);
@ -194,7 +219,6 @@ h_ptr find_ele_iter_f(h_ptr ls, char *s) {
h_ptr find_ele_iter_r(h_ptr ls, char *s) {
h_ptr ele = ls;
h_ptr last = NULL;
#pragma omp parallel shared(ls, s, last)
for (ele = ls; ele; ele = ele->next) {
char *word = ele->word;
if (strcmp(s, word) == 0) {
@ -220,10 +244,10 @@ h_ptr find_ele_iter_r(h_ptr ls, char *s) {
typedef h_ptr (*find_ele_fun_t)(h_ptr, char *);
#define FCNT 3
find_ele_fun_t find_ele_fun_set[FCNT] = {find_ele_iter_r, find_ele_iter_f,
find_ele_rec};
char *find_ele_fun_names[FCNT] = {"find_ele_iter_r", "find_ele_iter_f",
"find_ele_rec"};
find_ele_fun_t find_ele_fun_set[FCNT] = {find_ele_rec, find_ele_iter_f,
find_ele_iter_r};
char *find_ele_fun_names[FCNT] = {"find_ele_rec", "find_ele_iter_f",
"find_ele_iter_r"};
/* Comparision function for sorting */
int compare_ele(const void *vele1, const void *vele2) {
@ -386,8 +410,8 @@ void word_freq(FILE *src, int verbose, int ngram, int size, int quick,
int main(int argc, char *argv[]) {
int verbose = 1;
int size = 1024;
int hash_fun_index = 0;
int size = 32768; // 修改默认值为32768
int hash_fun_index = 3;
int lower_fun_index = 0;
int find_fun_index = 0;
int ngram = 1;