modify:User space memory access

perf_event_open,futex,process_vm_readv,process_vm_writev,move_pages
This commit is contained in:
Hitoshi Iizuka
2017-10-23 20:09:22 +09:00
parent 12840601e1
commit 08a625cc0d
5 changed files with 674 additions and 662 deletions

View File

@ -130,4 +130,12 @@ static inline int futex_atomic_op_inuser(int encoded_op, int __user *uaddr)
}
#endif /* !POSTK_DEBUG_ARCH_DEP_8 */
static inline int get_futex_value_locked(uint32_t *dest, uint32_t *from)
{
*dest = *(volatile uint32_t *)from;
return 0;
}
#endif

View File

@ -29,6 +29,7 @@
#include <prctl.h>
#include <ihk/ikc.h>
#include <page.h>
#include <limits.h>
void terminate(int, int);
extern long do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact);
@ -1909,4 +1910,634 @@ save_uctx(void *uctx, struct x86_user_context *regs)
ctx->fregsize = 0;
}
int do_process_vm_read_writev(int pid,
const struct iovec *local_iov,
unsigned long liovcnt,
const struct iovec *remote_iov,
unsigned long riovcnt,
unsigned long flags,
int op)
{
int ret = -EINVAL;
int li, ri;
int pli, pri;
off_t loff, roff;
size_t llen = 0, rlen = 0;
size_t copied = 0;
size_t to_copy;
struct thread *lthread = cpu_local_var(current);
struct process *rproc;
struct process *lproc = lthread->proc;
struct process_vm *rvm = NULL;
unsigned long rphys;
unsigned long rpage_left;
unsigned long psize;
void *rva;
struct vm_range *range;
struct mcs_rwlock_node_irqsave lock;
struct mcs_rwlock_node update_lock;
/* Sanity checks */
if (flags) {
return -EINVAL;
}
if (liovcnt > IOV_MAX || riovcnt > IOV_MAX) {
return -EINVAL;
}
/* Check if parameters are okay */
ihk_mc_spinlock_lock_noirq(&lthread->vm->memory_range_lock);
range = lookup_process_memory_range(lthread->vm,
(uintptr_t)local_iov,
(uintptr_t)(local_iov + liovcnt * sizeof(struct iovec)));
if (!range) {
ret = -EFAULT;
goto arg_out;
}
range = lookup_process_memory_range(lthread->vm,
(uintptr_t)remote_iov,
(uintptr_t)(remote_iov + riovcnt * sizeof(struct iovec)));
if (!range) {
ret = -EFAULT;
goto arg_out;
}
ret = 0;
arg_out:
ihk_mc_spinlock_unlock_noirq(&lthread->vm->memory_range_lock);
if (ret != 0) {
goto out;
}
for (li = 0; li < liovcnt; ++li) {
llen += local_iov[li].iov_len;
dkprintf("local_iov[%d].iov_base: 0x%lx, len: %lu\n",
li, local_iov[li].iov_base, local_iov[li].iov_len);
}
for (ri = 0; ri < riovcnt; ++ri) {
rlen += remote_iov[ri].iov_len;
dkprintf("remote_iov[%d].iov_base: 0x%lx, len: %lu\n",
ri, remote_iov[ri].iov_base, remote_iov[ri].iov_len);
}
if (llen != rlen) {
return -EINVAL;
}
/* Find remote process */
rproc = find_process(pid, &lock);
if (!rproc) {
ret = -ESRCH;
goto out;
}
mcs_rwlock_reader_lock_noirq(&rproc->update_lock, &update_lock);
if(rproc->status == PS_EXITED ||
rproc->status == PS_ZOMBIE){
mcs_rwlock_reader_unlock_noirq(&rproc->update_lock, &update_lock);
process_unlock(rproc, &lock);
ret = -ESRCH;
goto out;
}
rvm = rproc->vm;
hold_process_vm(rvm);
mcs_rwlock_reader_unlock_noirq(&rproc->update_lock, &update_lock);
process_unlock(rproc, &lock);
if (lproc->euid != 0 &&
(lproc->ruid != rproc->ruid ||
lproc->ruid != rproc->euid ||
lproc->ruid != rproc->suid ||
lproc->rgid != rproc->rgid ||
lproc->rgid != rproc->egid ||
lproc->rgid != rproc->sgid)) {
ret = -EPERM;
goto out;
}
dkprintf("pid %d found, doing %s: liovcnt: %d, riovcnt: %d \n", pid,
(op == PROCESS_VM_READ) ? "PROCESS_VM_READ" : "PROCESS_VM_WRITE",
liovcnt, riovcnt);
pli = pri = -1; /* Previous indeces in iovecs */
li = ri = 0; /* Current indeces in iovecs */
loff = roff = 0; /* Offsets in current iovec */
/* Now iterate and do the copy */
while (copied < llen) {
int faulted = 0;
/* New local vector? */
if (pli != li) {
struct vm_range *range;
ihk_mc_spinlock_lock_noirq(&lthread->vm->memory_range_lock);
/* Is base valid? */
range = lookup_process_memory_range(lthread->vm,
(uintptr_t)local_iov[li].iov_base,
(uintptr_t)(local_iov[li].iov_base + 1));
if (!range) {
ret = -EFAULT;
goto pli_out;
}
/* Is range valid? */
range = lookup_process_memory_range(lthread->vm,
(uintptr_t)local_iov[li].iov_base,
(uintptr_t)(local_iov[li].iov_base + local_iov[li].iov_len));
if (range == NULL) {
ret = -EINVAL;
goto pli_out;
}
if (!(range->flag & ((op == PROCESS_VM_READ) ?
VR_PROT_WRITE : VR_PROT_READ))) {
ret = -EFAULT;
goto pli_out;
}
ret = 0;
pli_out:
ihk_mc_spinlock_unlock_noirq(&lthread->vm->memory_range_lock);
if (ret != 0) {
goto out;
}
pli = li;
}
/* New remote vector? */
if (pri != ri) {
struct vm_range *range;
ihk_mc_spinlock_lock_noirq(&rvm->memory_range_lock);
/* Is base valid? */
range = lookup_process_memory_range(rvm,
(uintptr_t)remote_iov[li].iov_base,
(uintptr_t)(remote_iov[li].iov_base + 1));
if (range == NULL) {
ret = -EFAULT;
goto pri_out;
}
/* Is range valid? */
range = lookup_process_memory_range(rvm,
(uintptr_t)remote_iov[li].iov_base,
(uintptr_t)(remote_iov[li].iov_base + remote_iov[li].iov_len));
if (range == NULL) {
ret = -EINVAL;
goto pri_out;
}
if (!(range->flag & ((op == PROCESS_VM_READ) ?
VR_PROT_READ : VR_PROT_WRITE))) {
ret = -EFAULT;
goto pri_out;
}
ret = 0;
pri_out:
ihk_mc_spinlock_unlock_noirq(&rvm->memory_range_lock);
if (ret != 0) {
goto out;
}
pri = ri;
}
/* Figure out how much we can copy at most in this iteration */
to_copy = (local_iov[li].iov_len - loff);
if ((remote_iov[ri].iov_len - roff) < to_copy) {
to_copy = remote_iov[ri].iov_len - roff;
}
retry_lookup:
/* TODO: remember page and do this only if necessary */
ret = ihk_mc_pt_virt_to_phys_size(rvm->address_space->page_table,
remote_iov[ri].iov_base + roff, &rphys, &psize);
if (ret) {
uint64_t reason = PF_POPULATE | PF_WRITE | PF_USER;
void *addr;
if (faulted) {
ret = -EFAULT;
goto out;
}
/* Fault in pages */
for (addr = (void *)
(((unsigned long)remote_iov[ri].iov_base + roff)
& PAGE_MASK);
addr < (remote_iov[ri].iov_base + roff + to_copy);
addr += PAGE_SIZE) {
ret = page_fault_process_vm(rvm, addr, reason);
if (ret) {
ret = -EFAULT;
goto out;
}
}
faulted = 1;
goto retry_lookup;
}
rpage_left = ((((unsigned long)remote_iov[ri].iov_base + roff +
psize) & ~(psize - 1)) -
((unsigned long)remote_iov[ri].iov_base + roff));
if (rpage_left < to_copy) {
to_copy = rpage_left;
}
rva = phys_to_virt(rphys);
fast_memcpy(
(op == PROCESS_VM_READ) ? local_iov[li].iov_base + loff : rva,
(op == PROCESS_VM_READ) ? rva : local_iov[li].iov_base + loff,
to_copy);
copied += to_copy;
dkprintf("local_iov[%d]: 0x%lx %s remote_iov[%d]: 0x%lx, %lu copied, psize: %lu, rpage_left: %lu\n",
li, local_iov[li].iov_base + loff,
(op == PROCESS_VM_READ) ? "<-" : "->",
ri, remote_iov[ri].iov_base + roff, to_copy,
psize, rpage_left);
loff += to_copy;
roff += to_copy;
if (loff == local_iov[li].iov_len) {
li++;
loff = 0;
}
if (roff == remote_iov[ri].iov_len) {
ri++;
roff = 0;
}
}
release_process_vm(rvm);
return copied;
out:
if(rvm)
release_process_vm(rvm);
return ret;
}
int move_pages_smp_handler(int cpu_index, int nr_cpus, void *arg)
{
int i, i_s, i_e, phase = 1;
struct move_pages_smp_req *mpsr =
(struct move_pages_smp_req *)arg;
struct process_vm *vm = mpsr->proc->vm;
int count = mpsr->count;
struct page_table *save_pt;
extern struct page_table *get_init_page_table(void);
i_s = (count / nr_cpus) * cpu_index;
i_e = i_s + (count / nr_cpus);
if (cpu_index == (nr_cpus - 1)) {
i_e = count;
}
/* Load target process' PT so that we can access user-space */
save_pt = cpu_local_var(current) == &cpu_local_var(idle) ?
get_init_page_table() :
cpu_local_var(current)->vm->address_space->page_table;
if (save_pt != vm->address_space->page_table) {
ihk_mc_load_page_table(vm->address_space->page_table);
}
else {
save_pt = NULL;
}
if (nr_cpus == 1) {
switch (cpu_index) {
case 0:
memcpy(mpsr->virt_addr, mpsr->user_virt_addr,
sizeof(void *) * count);
memcpy(mpsr->status, mpsr->user_status,
sizeof(int) * count);
memcpy(mpsr->nodes, mpsr->user_nodes,
sizeof(int) * count);
memset(mpsr->ptep, 0, sizeof(pte_t) * count);
memset(mpsr->status, 0, sizeof(int) * count);
memset(mpsr->nr_pages, 0, sizeof(int) * count);
memset(mpsr->dst_phys, 0,
sizeof(unsigned long) * count);
mpsr->nodes_ready = 1;
break;
default:
break;
}
}
else if (nr_cpus > 1 && nr_cpus < 4) {
switch (cpu_index) {
case 0:
memcpy(mpsr->virt_addr, mpsr->user_virt_addr,
sizeof(void *) * count);
memcpy(mpsr->status, mpsr->user_status,
sizeof(int) * count);
case 1:
memcpy(mpsr->nodes, mpsr->user_nodes,
sizeof(int) * count);
memset(mpsr->ptep, 0, sizeof(pte_t) * count);
memset(mpsr->status, 0, sizeof(int) * count);
memset(mpsr->nr_pages, 0, sizeof(int) * count);
memset(mpsr->dst_phys, 0,
sizeof(unsigned long) * count);
mpsr->nodes_ready = 1;
break;
default:
break;
}
}
else if (nr_cpus >= 4 && nr_cpus < 8) {
switch (cpu_index) {
case 0:
memcpy(mpsr->virt_addr, mpsr->user_virt_addr,
sizeof(void *) * count);
break;
case 1:
memcpy(mpsr->status, mpsr->user_status,
sizeof(int) * count);
break;
case 2:
memcpy(mpsr->nodes, mpsr->user_nodes,
sizeof(int) * count);
mpsr->nodes_ready = 1;
break;
case 3:
memset(mpsr->ptep, 0, sizeof(pte_t) * count);
memset(mpsr->status, 0, sizeof(int) * count);
memset(mpsr->nr_pages, 0, sizeof(int) * count);
memset(mpsr->dst_phys, 0,
sizeof(unsigned long) * count);
break;
default:
break;
}
}
else if (nr_cpus >= 8) {
switch (cpu_index) {
case 0:
memcpy(mpsr->virt_addr, mpsr->user_virt_addr,
sizeof(void *) * (count / 2));
break;
case 1:
memcpy(mpsr->virt_addr + (count / 2),
mpsr->user_virt_addr + (count / 2),
sizeof(void *) * (count / 2));
break;
case 2:
memcpy(mpsr->status, mpsr->user_status,
sizeof(int) * count);
break;
case 3:
memcpy(mpsr->nodes, mpsr->user_nodes,
sizeof(int) * count);
mpsr->nodes_ready = 1;
break;
case 4:
memset(mpsr->ptep, 0, sizeof(pte_t) * count);
break;
case 5:
memset(mpsr->status, 0, sizeof(int) * count);
break;
case 6:
memset(mpsr->nr_pages, 0, sizeof(int) * count);
break;
case 7:
memset(mpsr->dst_phys, 0,
sizeof(unsigned long) * count);
break;
default:
break;
}
}
while (!(volatile int)mpsr->nodes_ready) {
cpu_pause();
}
/* NUMA verification in parallel */
for (i = i_s; i < i_e; i++) {
if (mpsr->nodes[i] < 0 ||
mpsr->nodes[i] >= ihk_mc_get_nr_numa_nodes() ||
!test_bit(mpsr->nodes[i],
mpsr->proc->vm->numa_mask)) {
mpsr->phase_ret = -EINVAL;
break;
}
}
/* Barrier */
ihk_atomic_inc(&mpsr->phase_done);
while (ihk_atomic_read(&mpsr->phase_done) <
(phase * nr_cpus)) {
cpu_pause();
}
if (mpsr->phase_ret != 0) {
goto out;
}
dkprintf("%s: phase %d done\n", __FUNCTION__, phase);
++phase;
/* PTE lookup in parallel */
for (i = i_s; i < i_e; i++) {
void *phys;
size_t pgsize;
int p2align;
/*
* XXX: No page structures for anonymous mappings.
* Look up physical addresses by scanning page tables.
*/
mpsr->ptep[i] = ihk_mc_pt_lookup_pte(vm->address_space->page_table,
(void *)mpsr->virt_addr[i], 0, &phys, &pgsize, &p2align);
/* PTE valid? */
if (!mpsr->ptep[i] || !pte_is_present(mpsr->ptep[i])) {
mpsr->status[i] = -ENOENT;
mpsr->ptep[i] = NULL;
continue;
}
/* PTE is file? */
if (pte_is_fileoff(mpsr->ptep[i], PAGE_SIZE)) {
mpsr->status[i] = -EINVAL;
mpsr->ptep[i] = NULL;
continue;
}
dkprintf("%s: virt 0x%lx:%lu requested to be moved to node %d\n",
__FUNCTION__, mpsr->virt_addr[i], pgsize, mpsr->nodes[i]);
/* Large page? */
if (pgsize > PAGE_SIZE) {
int nr_sub_pages = (pgsize / PAGE_SIZE);
int j;
if (i + nr_sub_pages > count) {
kprintf("%s: ERROR: page at index %d exceeds the region\n",
__FUNCTION__, i);
mpsr->status[i] = -EINVAL;
break;
}
/* Is it contiguous across nr_sub_pages and all
* requested to be moved to the same target node? */
for (j = 0; j < nr_sub_pages; ++j) {
if (mpsr->virt_addr[i + j] !=
(mpsr->virt_addr[i] + (j * PAGE_SIZE)) ||
mpsr->nodes[i] != mpsr->nodes[i + j]) {
kprintf("%s: ERROR: virt address or node at index %d"
" is inconsistent\n",
__FUNCTION__, i + j);
mpsr->phase_ret = -EINVAL;
goto pte_out;
}
}
mpsr->nr_pages[i] = nr_sub_pages;
i += (nr_sub_pages - 1);
}
else {
mpsr->nr_pages[i] = 1;
}
}
pte_out:
/* Barrier */
ihk_atomic_inc(&mpsr->phase_done);
while (ihk_atomic_read(&mpsr->phase_done) <
(phase * nr_cpus)) {
cpu_pause();
}
if (mpsr->phase_ret != 0) {
goto out;
}
dkprintf("%s: phase %d done\n", __FUNCTION__, phase);
++phase;
if (cpu_index == 0) {
/* Allocate new pages on target NUMA nodes */
for (i = 0; i < count; i++) {
int pgalign = 0;
int j;
void *dst;
if (!mpsr->ptep[i] || mpsr->status[i] < 0 || !mpsr->nr_pages[i])
continue;
/* TODO: store pgalign info in an array as well? */
if (mpsr->nr_pages[i] > 1) {
if (mpsr->nr_pages[i] * PAGE_SIZE == PTL2_SIZE)
pgalign = PTL2_SHIFT - PTL1_SHIFT;
}
dst = ihk_mc_alloc_aligned_pages_node(mpsr->nr_pages[i],
pgalign, IHK_MC_AP_USER, mpsr->nodes[i]);
if (!dst) {
mpsr->status[i] = -ENOMEM;
continue;
}
for (j = i; j < (i + mpsr->nr_pages[i]); ++j) {
mpsr->status[j] = mpsr->nodes[i];
}
mpsr->dst_phys[i] = virt_to_phys(dst);
dkprintf("%s: virt 0x%lx:%lu to node %d, pgalign: %d,"
" allocated phys: 0x%lx\n",
__FUNCTION__, mpsr->virt_addr[i],
mpsr->nr_pages[i] * PAGE_SIZE,
mpsr->nodes[i], pgalign, mpsr->dst_phys[i]);
}
}
/* Barrier */
ihk_atomic_inc(&mpsr->phase_done);
while (ihk_atomic_read(&mpsr->phase_done) <
(phase * nr_cpus)) {
cpu_pause();
}
if (mpsr->phase_ret != 0) {
goto out;
}
dkprintf("%s: phase %d done\n", __FUNCTION__, phase);
++phase;
/* Copy, PTE update, memfree in parallel */
for (i = i_s; i < i_e; ++i) {
if (!mpsr->dst_phys[i])
continue;
fast_memcpy(phys_to_virt(mpsr->dst_phys[i]),
phys_to_virt(pte_get_phys(mpsr->ptep[i])),
mpsr->nr_pages[i] * PAGE_SIZE);
ihk_mc_free_pages(
phys_to_virt(pte_get_phys(mpsr->ptep[i])),
mpsr->nr_pages[i]);
pte_update_phys(mpsr->ptep[i], mpsr->dst_phys[i]);
dkprintf("%s: virt 0x%lx:%lu copied and remapped to phys: 0x%lu\n",
__FUNCTION__, mpsr->virt_addr[i],
mpsr->nr_pages[i] * PAGE_SIZE,
mpsr->dst_phys[i]);
}
/* XXX: do a separate SMP call with only CPUs running threads
* of this process? */
if (cpu_local_var(current)->proc == mpsr->proc) {
/* Invalidate all TLBs */
for (i = 0; i < mpsr->count; i++) {
if (!mpsr->dst_phys[i])
continue;
flush_tlb_single((unsigned long)mpsr->virt_addr[i]);
}
}
out:
if (save_pt) {
ihk_mc_load_page_table(save_pt);
}
return mpsr->phase_ret;
}
/*** End of File ***/