/** * \file process.c * License details are found in the file LICENSE. * \brief * process, thread, and, virtual memory management * \author Taku Shimosawa \par * Copyright (C) 2011 - 2012 Taku Shimosawa * \author Balazs Gerofi \par * Copyright (C) 2012 RIKEN AICS * \author Masamichi Takagi \par * Copyright (C) 2012 - 2013 NEC Corporation * \author Balazs Gerofi \par * Copyright (C) 2013 The University of Tokyo * \author Gou Nakamura \par * Copyright (C) 2013 Hitachi, Ltd. * \author Tomoki Shirasawa \par * Copyright (C) 2013 Hitachi, Ltd. */ /* * HISTORY: */ #include #include #include #include #include #include #include #include #include #include #include #include //#define DEBUG_PRINT_PROCESS #ifdef DEBUG_PRINT_PROCESS #define dkprintf(...) kprintf(__VA_ARGS__) #define ekprintf(...) kprintf(__VA_ARGS__) #else #define dkprintf(...) do { if (0) kprintf(__VA_ARGS__); } while (0) #define ekprintf(...) kprintf(__VA_ARGS__) #endif extern long alloc_debugreg(struct thread *proc); extern void save_debugreg(unsigned long *debugreg); extern void restore_debugreg(unsigned long *debugreg); extern void clear_debugreg(void); extern void clear_single_step(struct thread *proc); static void insert_vm_range_list(struct process_vm *vm, struct vm_range *newrange); static int copy_user_ranges(struct process_vm *vm, struct process_vm *orgvm); extern void release_fp_regs(struct thread *proc); extern void save_fp_regs(struct thread *proc); extern void restore_fp_regs(struct thread *proc); extern void __runq_add_proc(struct thread *proc, int cpu_id); extern void terminate_host(int pid); extern void lapic_timer_enable(unsigned int clocks); extern void lapic_timer_disable(); extern int num_processors; extern ihk_spinlock_t cpuid_head_lock; int ptrace_detach(int pid, int data); extern unsigned long do_kill(struct thread *, int pid, int tid, int sig, struct siginfo *info, int ptracecont); extern void procfs_create_thread(struct thread *); extern void procfs_delete_thread(struct thread *); extern void perf_start(struct mc_perf_event *event); extern void perf_reset(struct mc_perf_event *event); extern void event_signal(); struct list_head resource_set_list; mcs_rwlock_lock_t resource_set_lock; void init_process(struct process *proc, struct process *parent) { /* These will be filled out when changing status */ proc->pid = -1; proc->status = PS_RUNNING; if(parent){ proc->parent = parent; proc->ppid_parent = parent; proc->pgid = parent->pgid; proc->ruid = parent->ruid; proc->euid = parent->euid; proc->suid = parent->suid; proc->fsuid = parent->fsuid; proc->rgid = parent->rgid; proc->egid = parent->egid; proc->sgid = parent->sgid; proc->fsgid = parent->fsgid; memcpy(proc->rlimit, parent->rlimit, sizeof(struct rlimit) * MCK_RLIM_MAX); } INIT_LIST_HEAD(&proc->threads_list); INIT_LIST_HEAD(&proc->children_list); INIT_LIST_HEAD(&proc->ptraced_children_list); mcs_rwlock_init(&proc->threads_lock); mcs_rwlock_init(&proc->children_lock); ihk_mc_spinlock_init(&proc->mckfd_lock); waitq_init(&proc->waitpid_q); ihk_atomic_set(&proc->refcount, 2); proc->monitoring_event = NULL; #ifdef TRACK_SYSCALLS mcs_lock_init(&proc->st_lock); proc->syscall_times = NULL; proc->syscall_cnts = NULL; proc->offload_times = NULL; proc->offload_cnts = NULL; #endif } void chain_process(struct process *proc) { struct mcs_rwlock_node_irqsave lock; struct process *parent = proc->parent; int hash; struct process_hash *phash; mcs_rwlock_writer_lock(&parent->children_lock, &lock); list_add_tail(&proc->siblings_list, &parent->children_list); mcs_rwlock_writer_unlock(&parent->children_lock, &lock); hash = process_hash(proc->pid); phash = cpu_local_var(resource_set)->process_hash; mcs_rwlock_writer_lock(&phash->lock[hash], &lock); list_add_tail(&proc->hash_list, &phash->list[hash]); mcs_rwlock_writer_unlock(&phash->lock[hash], &lock); } void chain_thread(struct thread *thread) { struct mcs_rwlock_node_irqsave lock; struct process *proc = thread->proc; struct process_vm *vm = thread->vm; int hash; struct thread_hash *thash; mcs_rwlock_writer_lock(&proc->threads_lock, &lock); list_add_tail(&thread->siblings_list, &proc->threads_list); mcs_rwlock_writer_unlock(&proc->threads_lock, &lock); hash = thread_hash(thread->tid); thash = cpu_local_var(resource_set)->thread_hash; mcs_rwlock_writer_lock(&thash->lock[hash], &lock); list_add_tail(&thread->hash_list, &thash->list[hash]); mcs_rwlock_writer_unlock(&thash->lock[hash], &lock); ihk_atomic_inc(&vm->refcount); } struct address_space * create_address_space(struct resource_set *res, int n) { struct address_space *asp; void *pt; asp = kmalloc(sizeof(struct address_space) + sizeof(int) * n, IHK_MC_AP_NOWAIT); if(!asp) return NULL; pt = ihk_mc_pt_create(IHK_MC_AP_NOWAIT); if(!pt){ kfree(asp); return NULL; } memset(asp, '\0', sizeof(struct address_space) + sizeof(int) * n); asp->nslots = n; asp->page_table = pt; ihk_atomic_set(&asp->refcount, 1); memset(&asp->cpu_set, 0, sizeof(cpu_set_t)); ihk_mc_spinlock_init(&asp->cpu_set_lock); return asp; } void hold_address_space(struct address_space *asp) { ihk_atomic_inc(&asp->refcount); } void release_address_space(struct address_space *asp) { if (!ihk_atomic_dec_and_test(&asp->refcount)) { return; } if(asp->free_cb) asp->free_cb(asp, asp->opt); ihk_mc_pt_destroy(asp->page_table); kfree(asp); } void detach_address_space(struct address_space *asp, int pid) { int i; for(i = 0; i < asp->nslots; i++){ if(asp->pids[i] == pid){ asp->pids[i] = 0; break; } } release_address_space(asp); } static int init_process_vm(struct process *owner, struct address_space *asp, struct process_vm *vm) { int i; ihk_mc_spinlock_init(&vm->memory_range_lock); ihk_mc_spinlock_init(&vm->page_table_lock); ihk_atomic_set(&vm->refcount, 1); INIT_LIST_HEAD(&vm->vm_range_list); INIT_LIST_HEAD(&vm->vm_range_numa_policy_list); vm->address_space = asp; vm->proc = owner; vm->exiting = 0; memset(&vm->numa_mask, 0, sizeof(vm->numa_mask)); for (i = 0; i < ihk_mc_get_nr_numa_nodes(); ++i) { if (i >= PROCESS_NUMA_MASK_BITS) { kprintf("%s: error: NUMA id is larger than mask size!\n", __FUNCTION__); break; } set_bit(i, &vm->numa_mask[0]); } vm->numa_mem_policy = MPOL_DEFAULT; for (i = 0; i < VM_RANGE_CACHE_SIZE; ++i) { vm->range_cache[i] = NULL; } vm->range_cache_ind = 0; return 0; } struct thread *create_thread(unsigned long user_pc, unsigned long *__cpu_set, size_t cpu_set_size) { struct thread *thread; struct process *proc; struct process_vm *vm = NULL; struct address_space *asp = NULL; int cpu; int cpu_set_empty = 1; thread = ihk_mc_alloc_pages(KERNEL_STACK_NR_PAGES, IHK_MC_AP_NOWAIT); if (!thread) return NULL; memset(thread, 0, sizeof(struct thread)); ihk_atomic_set(&thread->refcount, 2); proc = kmalloc(sizeof(struct process), IHK_MC_AP_NOWAIT); vm = kmalloc(sizeof(struct process_vm), IHK_MC_AP_NOWAIT); asp = create_address_space(cpu_local_var(resource_set), 1); if (!proc || !vm || !asp) goto err; memset(proc, 0, sizeof(struct process)); memset(vm, 0, sizeof(struct process_vm)); init_process(proc, cpu_local_var(resource_set)->pid1); /* Use requested CPU cores */ for_each_set_bit(cpu, __cpu_set, cpu_set_size * BITS_PER_BYTE) { if (cpu >= num_processors) { kprintf("%s: invalid CPU requested in initial cpu_set\n", __FUNCTION__); goto err; } dkprintf("%s: pid: %d, CPU: %d\n", __FUNCTION__, proc->pid, cpu); CPU_SET(cpu, &thread->cpu_set); cpu_set_empty = 0; } /* Default allows all cores */ if (cpu_set_empty) { struct ihk_mc_cpu_info *infop; int i; infop = ihk_mc_get_cpu_info(); for (i = 0; i < infop->ncpus; ++i) { CPU_SET(i, &thread->cpu_set); } } thread->sched_policy = SCHED_NORMAL; thread->sigcommon = kmalloc(sizeof(struct sig_common), IHK_MC_AP_NOWAIT); if (!thread->sigcommon) { goto err; } memset(thread->sigcommon, '\0', sizeof(struct sig_common)); dkprintf("fork(): sigshared\n"); ihk_atomic_set(&thread->sigcommon->use, 1); mcs_rwlock_init(&thread->sigcommon->lock); INIT_LIST_HEAD(&thread->sigcommon->sigpending); mcs_rwlock_init(&thread->sigpendinglock); INIT_LIST_HEAD(&thread->sigpending); thread->sigstack.ss_sp = NULL; thread->sigstack.ss_flags = SS_DISABLE; thread->sigstack.ss_size = 0; ihk_mc_init_user_process(&thread->ctx, &thread->uctx, ((char *)thread) + KERNEL_STACK_NR_PAGES * PAGE_SIZE, user_pc, 0); thread->vm = vm; thread->proc = proc; proc->vm = vm; if(init_process_vm(proc, asp, vm) != 0){ goto err; } thread->exit_status = -1; cpu_set(ihk_mc_get_processor_id(), &thread->vm->address_space->cpu_set, &thread->vm->address_space->cpu_set_lock); ihk_mc_spinlock_init(&thread->spin_sleep_lock); thread->spin_sleep = 0; #ifdef ENABLE_RUSAGE { int processor_id; unsigned long curr; processor_id = ihk_mc_get_processor_id(); rusage_rss[processor_id] += KERNEL_STACK_NR_PAGES * PAGE_SIZE; curr = ihk_atomic_add_long_return ( KERNEL_STACK_NR_PAGES * PAGE_SIZE, &rusage_rss_current); if (rusage_rss_max < curr) { atomic_cmpxchg8(&rusage_rss_max, rusage_rss_max, curr); } if (rusage_max_memory - curr < RUSAGE_MEM_LIMIT) { event_signal(); } ihk_atomic_add_ulong ( 1, &rusage_num_threads); if (rusage_max_num_threads < rusage_num_threads) { atomic_cmpxchg8(&rusage_max_num_threads, rusage_max_num_threads, rusage_num_threads); } } #endif return thread; err: if(proc) kfree(proc); if(vm) kfree(vm); if(asp) release_address_space(asp); if(thread->sigcommon) kfree(thread->sigcommon); ihk_mc_free_pages(thread, KERNEL_STACK_NR_PAGES); return NULL; } struct thread * clone_thread(struct thread *org, unsigned long pc, unsigned long sp, int clone_flags) { struct thread *thread; int termsig = clone_flags & 0xff; struct process *proc = NULL; struct address_space *asp = NULL; if ((thread = ihk_mc_alloc_pages(KERNEL_STACK_NR_PAGES, IHK_MC_AP_NOWAIT)) == NULL) { return NULL; } memset(thread, 0, sizeof(struct thread)); ihk_atomic_set(&thread->refcount, 2); memcpy(&thread->cpu_set, &org->cpu_set, sizeof(thread->cpu_set)); /* NOTE: sp is the user mode stack! */ ihk_mc_init_user_process(&thread->ctx, &thread->uctx, ((char *)thread) + KERNEL_STACK_NR_PAGES * PAGE_SIZE, pc, sp); memcpy(thread->uctx, org->uctx, sizeof(*org->uctx)); ihk_mc_modify_user_context(thread->uctx, IHK_UCR_STACK_POINTER, sp); ihk_mc_modify_user_context(thread->uctx, IHK_UCR_PROGRAM_COUNTER, pc); thread->sched_policy = org->sched_policy; thread->sched_param.sched_priority = org->sched_param.sched_priority; /* clone VM */ if (clone_flags & CLONE_VM) { proc = org->proc; thread->vm = org->vm; thread->proc = proc; thread->sigstack.ss_sp = NULL; thread->sigstack.ss_flags = SS_DISABLE; thread->sigstack.ss_size = 0; } /* fork() */ else { proc = kmalloc(sizeof(struct process), IHK_MC_AP_NOWAIT); if(!proc) goto err_free_proc; memset(proc, '\0', sizeof(struct process)); init_process(proc, org->proc); proc->termsig = termsig; asp = create_address_space(cpu_local_var(resource_set), 1); if(!asp){ kfree(proc); goto err_free_proc; } proc->vm = kmalloc(sizeof(struct process_vm), IHK_MC_AP_NOWAIT); if(!proc->vm){ release_address_space(asp); kfree(proc); goto err_free_proc; } memset(proc->vm, '\0', sizeof(struct process_vm)); dkprintf("fork(): init_process_vm()\n"); if (init_process_vm(proc, asp, proc->vm) != 0) { release_address_space(asp); kfree(proc->vm); kfree(proc); goto err_free_proc; } memcpy(&proc->vm->numa_mask, &org->vm->numa_mask, sizeof(proc->vm->numa_mask)); proc->vm->numa_mem_policy = org->vm->numa_mem_policy; thread->proc = proc; thread->vm = proc->vm; memcpy(&proc->vm->region, &org->vm->region, sizeof(struct vm_regions)); dkprintf("fork(): copy_user_ranges()\n"); /* Copy user-space mappings. * TODO: do this with COW later? */ if (copy_user_ranges(proc->vm, org->vm) != 0) { release_address_space(asp); kfree(proc->vm); kfree(proc); goto err_free_proc; } thread->vm->vdso_addr = org->vm->vdso_addr; thread->vm->vvar_addr = org->vm->vvar_addr; thread->proc->maxrss = org->proc->maxrss; thread->vm->currss = org->vm->currss; thread->sigstack.ss_sp = org->sigstack.ss_sp; thread->sigstack.ss_flags = org->sigstack.ss_flags; thread->sigstack.ss_size = org->sigstack.ss_size; dkprintf("fork(): copy_user_ranges() OK\n"); } /* clone signal handlers */ if (clone_flags & CLONE_SIGHAND) { thread->sigcommon = org->sigcommon; ihk_atomic_inc(&org->sigcommon->use); } /* copy signal handlers (i.e., fork()) */ else { dkprintf("fork(): sigcommon\n"); thread->sigcommon = kmalloc(sizeof(struct sig_common), IHK_MC_AP_NOWAIT); if (!thread->sigcommon) { goto err_free_proc; } memset(thread->sigcommon, '\0', sizeof(struct sig_common)); dkprintf("fork(): sigshared\n"); memcpy(thread->sigcommon->action, org->sigcommon->action, sizeof(struct k_sigaction) * _NSIG); ihk_atomic_set(&thread->sigcommon->use, 1); mcs_rwlock_init(&thread->sigcommon->lock); INIT_LIST_HEAD(&thread->sigcommon->sigpending); // TODO: copy signalfd } mcs_rwlock_init(&thread->sigpendinglock); INIT_LIST_HEAD(&thread->sigpending); thread->sigmask = org->sigmask; ihk_mc_spinlock_init(&thread->spin_sleep_lock); thread->spin_sleep = 0; #ifdef ENABLE_RUSAGE { int processor_id; long curr; processor_id = ihk_mc_get_processor_id(); rusage_rss[processor_id] += KERNEL_STACK_NR_PAGES * PAGE_SIZE; curr = ihk_atomic_add_long_return (KERNEL_STACK_NR_PAGES * PAGE_SIZE, &rusage_rss_current); if (rusage_rss_max < curr) { atomic_cmpxchg8(&rusage_rss_max, rusage_rss_max, curr); } if (rusage_max_memory - curr < RUSAGE_MEM_LIMIT) { event_signal(); } ihk_atomic_add_ulong ( 1, &rusage_num_threads); if (rusage_max_num_threads < rusage_num_threads) { atomic_cmpxchg8(&rusage_max_num_threads, rusage_max_num_threads, rusage_num_threads); } } #endif #ifdef TRACK_SYSCALLS thread->track_syscalls = org->track_syscalls; #endif return thread; err_free_proc: ihk_mc_free_pages(thread, KERNEL_STACK_NR_PAGES); return NULL; } int ptrace_traceme(void) { int error = 0; struct thread *thread = cpu_local_var(current); struct process *proc = thread->proc; struct process *parent = proc->parent; struct mcs_rwlock_node_irqsave lock; struct mcs_rwlock_node child_lock; dkprintf("ptrace_traceme,pid=%d,proc->parent=%p\n", proc->pid, proc->parent); if (proc->ptrace & PT_TRACED) { return -EPERM; } dkprintf("ptrace_traceme,parent->pid=%d\n", proc->parent->pid); mcs_rwlock_writer_lock(&proc->update_lock, &lock); mcs_rwlock_writer_lock_noirq(&parent->children_lock, &child_lock); list_add_tail(&proc->ptraced_siblings_list, &parent->ptraced_children_list); mcs_rwlock_writer_unlock_noirq(&parent->children_lock, &child_lock); proc->ptrace = PT_TRACED | PT_TRACE_EXEC; mcs_rwlock_writer_unlock(&proc->update_lock, &lock); if (thread->ptrace_debugreg == NULL) { error = alloc_debugreg(thread); } clear_single_step(thread); dkprintf("ptrace_traceme,returning,error=%d\n", error); return error; } struct copy_args { struct process_vm *new_vm; unsigned long new_vrflag; /* out */ intptr_t fault_addr; }; static int copy_user_pte(void *arg0, page_table_t src_pt, pte_t *src_ptep, void *pgaddr, int pgshift) { struct copy_args * const args = arg0; int error; intptr_t src_phys; struct page *src_page; void *src_kvirt; const size_t pgsize = (size_t)1 << pgshift; int npages; void *virt = NULL; intptr_t phys; const int pgalign = pgshift - PAGE_SHIFT; enum ihk_mc_pt_attribute attr; if (!pte_is_present(src_ptep)) { error = 0; goto out; } src_phys = pte_get_phys(src_ptep); src_page = phys_to_page(src_phys); src_kvirt = phys_to_virt(src_phys); if (src_page && page_is_in_memobj(src_page)) { error = 0; goto out; } if (args->new_vrflag & VR_REMOTE) { phys = src_phys; attr = pte_get_attr(src_ptep, pgsize); } else { dkprintf("copy_user_pte(): 0x%lx PTE found\n", pgaddr); dkprintf("copy_user_pte(): page size: %d\n", pgsize); npages = pgsize / PAGE_SIZE; virt = ihk_mc_alloc_aligned_pages(npages, pgalign, IHK_MC_AP_NOWAIT); if (!virt) { kprintf("ERROR: copy_user_pte() allocating new page\n"); error = -ENOMEM; goto out; } phys = virt_to_phys(virt); dkprintf("copy_user_pte(): phys page allocated\n"); memcpy(virt, src_kvirt, pgsize); dkprintf("copy_user_pte(): memcpy OK\n"); attr = arch_vrflag_to_ptattr(args->new_vrflag, PF_POPULATE, NULL); } error = ihk_mc_pt_set_range(args->new_vm->address_space->page_table, args->new_vm, pgaddr, pgaddr+pgsize, phys, attr, pgshift); if (error) { args->fault_addr = (intptr_t)pgaddr; goto out; } dkprintf("copy_user_pte(): new PTE set\n"); error = 0; virt = NULL; out: if (virt) { ihk_mc_free_pages(virt, npages); } return error; } static int copy_user_ranges(struct process_vm *vm, struct process_vm *orgvm) { int error; struct vm_range *src_range; struct vm_range *range; struct copy_args args; ihk_mc_spinlock_lock_noirq(&orgvm->memory_range_lock); /* Iterate original process' vm_range list and take a copy one-by-one */ src_range = NULL; for (;;) { if (!src_range) { src_range = lookup_process_memory_range(orgvm, 0, -1); } else { src_range = next_process_memory_range(orgvm, src_range); } if (!src_range) { break; } if(src_range->flag & VR_DONTFORK) continue; range = kmalloc(sizeof(struct vm_range), IHK_MC_AP_NOWAIT); if (!range) { goto err_rollback; } INIT_LIST_HEAD(&range->list); range->start = src_range->start; range->end = src_range->end; range->flag = src_range->flag; range->memobj = src_range->memobj; range->objoff = src_range->objoff; range->pgshift = src_range->pgshift; if (range->memobj) { memobj_ref(range->memobj); } /* Copy actual mappings */ args.new_vrflag = range->flag; args.new_vm = vm; args.fault_addr = -1; error = visit_pte_range(orgvm->address_space->page_table, (void *)range->start, (void *)range->end, range->pgshift, VPTEF_SKIP_NULL, ©_user_pte, &args); if (error) { if (args.fault_addr != -1) { kprintf("ERROR: copy_user_ranges() " "(%p,%lx-%lx %lx,%lx):" "get pgsize failed\n", orgvm, range->start, range->end, range->flag, args.fault_addr); } goto err_free_range_rollback; } insert_vm_range_list(vm, range); } ihk_mc_spinlock_unlock_noirq(&orgvm->memory_range_lock); return 0; err_free_range_rollback: kfree(range); err_rollback: /* TODO: implement rollback */ ihk_mc_spinlock_unlock_noirq(&orgvm->memory_range_lock); return -1; } int update_process_page_table(struct process_vm *vm, struct vm_range *range, uint64_t phys, enum ihk_mc_pt_attribute flag) { int error; unsigned long flags; enum ihk_mc_pt_attribute attr; attr = arch_vrflag_to_ptattr(range->flag, PF_POPULATE, NULL); flags = ihk_mc_spinlock_lock(&vm->page_table_lock); error = ihk_mc_pt_set_range(vm->address_space->page_table, vm, (void *)range->start, (void *)range->end, phys, attr, range->pgshift); if (error) { kprintf("update_process_page_table:ihk_mc_pt_set_range failed. %d\n", error); goto out; } error = 0; out: ihk_mc_spinlock_unlock(&vm->page_table_lock, flags); return error; } int split_process_memory_range(struct process_vm *vm, struct vm_range *range, uintptr_t addr, struct vm_range **splitp) { int error; struct vm_range *newrange = NULL; dkprintf("split_process_memory_range(%p,%lx-%lx,%lx,%p)\n", vm, range->start, range->end, addr, splitp); error = ihk_mc_pt_split(vm->address_space->page_table, vm, (void *)addr); if (error) { ekprintf("split_process_memory_range:" "ihk_mc_pt_split failed. %d\n", error); goto out; } newrange = kmalloc(sizeof(struct vm_range), IHK_MC_AP_NOWAIT); if (!newrange) { ekprintf("split_process_memory_range(%p,%lx-%lx,%lx,%p):" "kmalloc failed\n", vm, range->start, range->end, addr, splitp); error = -ENOMEM; goto out; } newrange->start = addr; newrange->end = range->end; newrange->flag = range->flag; newrange->pgshift = range->pgshift; if (range->memobj) { memobj_ref(range->memobj); newrange->memobj = range->memobj; newrange->objoff = range->objoff + (addr - range->start); } else { newrange->memobj = NULL; newrange->objoff = 0; } range->end = addr; list_add(&newrange->list, &range->list); error = 0; if (splitp != NULL) { *splitp = newrange; } out: dkprintf("split_process_memory_range(%p,%lx-%lx,%lx,%p): %d %p %lx-%lx\n", vm, range->start, range->end, addr, splitp, error, newrange, newrange? newrange->start: 0, newrange? newrange->end: 0); return error; } int join_process_memory_range(struct process_vm *vm, struct vm_range *surviving, struct vm_range *merging) { int error; int i; dkprintf("join_process_memory_range(%p,%lx-%lx,%lx-%lx)\n", vm, surviving->start, surviving->end, merging->start, merging->end); if ((surviving->end != merging->start) || (surviving->flag != merging->flag) || (surviving->memobj != merging->memobj)) { error = -EINVAL; goto out; } if (surviving->memobj != NULL) { size_t len; off_t endoff; len = surviving->end - surviving->start; endoff = surviving->objoff + len; if (endoff != merging->objoff) { return -EINVAL; } } surviving->end = merging->end; if (merging->memobj) { memobj_release(merging->memobj); } list_del(&merging->list); for (i = 0; i < VM_RANGE_CACHE_SIZE; ++i) { if (vm->range_cache[i] == merging) vm->range_cache[i] = surviving; } kfree(merging); error = 0; out: dkprintf("join_process_memory_range(%p,%lx-%lx,%p): %d\n", vm, surviving->start, surviving->end, merging, error); return error; } int free_process_memory_range(struct process_vm *vm, struct vm_range *range) { const intptr_t start0 = range->start; const intptr_t end0 = range->end; int error, i; intptr_t start; intptr_t end; struct vm_range *neighbor; intptr_t lpstart; intptr_t lpend; size_t pgsize; dkprintf("free_process_memory_range(%p, 0x%lx - 0x%lx)\n", vm, range->start, range->end); start = range->start; end = range->end; if (!(range->flag & (VR_REMOTE | VR_IO_NOCACHE | VR_RESERVED))) { neighbor = previous_process_memory_range(vm, range); pgsize = -1; for (;;) { error = arch_get_smaller_page_size( NULL, pgsize, &pgsize, NULL); if (error) { kprintf("free_process_memory_range:" "arch_get_smaller_page_size failed." " %d\n", error); break; } lpstart = start & ~(pgsize - 1); if (!neighbor || (neighbor->end <= lpstart)) { start = lpstart; break; } } neighbor = next_process_memory_range(vm, range); pgsize = -1; for (;;) { error = arch_get_smaller_page_size( NULL, pgsize, &pgsize, NULL); if (error) { kprintf("free_process_memory_range:" "arch_get_smaller_page_size failed." " %d\n", error); break; } lpend = (end + pgsize - 1) & ~(pgsize - 1); if (!neighbor || (lpend <= neighbor->start)) { end = lpend; break; } } ihk_mc_spinlock_lock_noirq(&vm->page_table_lock); if (range->memobj) { memobj_lock(range->memobj); } error = ihk_mc_pt_free_range(vm->address_space->page_table, vm, (void *)start, (void *)end, (range->flag & VR_PRIVATE)? NULL: range->memobj); if (range->memobj) { memobj_unlock(range->memobj); } ihk_mc_spinlock_unlock_noirq(&vm->page_table_lock); if (error && (error != -ENOENT)) { ekprintf("free_process_memory_range(%p,%lx-%lx):" "ihk_mc_pt_free_range(%lx-%lx,%p) failed. %d\n", vm, start0, end0, start, end, range->memobj, error); /* through */ } } else { ihk_mc_spinlock_lock_noirq(&vm->page_table_lock); error = ihk_mc_pt_clear_range(vm->address_space->page_table, vm, (void *)start, (void *)end); ihk_mc_spinlock_unlock_noirq(&vm->page_table_lock); if (error && (error != -ENOENT)) { ekprintf("free_process_memory_range(%p,%lx-%lx):" "ihk_mc_pt_clear_range(%lx-%lx) failed. %d\n", vm, start0, end0, start, end, error); /* through */ } } if (range->memobj) { memobj_release(range->memobj); } list_del(&range->list); for (i = 0; i < VM_RANGE_CACHE_SIZE; ++i) { if (vm->range_cache[i] == range) vm->range_cache[i] = NULL; } kfree(range); dkprintf("free_process_memory_range(%p,%lx-%lx): 0\n", vm, start0, end0); return 0; } int remove_process_memory_range(struct process_vm *vm, unsigned long start, unsigned long end, int *ro_freedp) { struct vm_range *range; struct vm_range *next; int error; struct vm_range *freerange; int ro_freed = 0; dkprintf("remove_process_memory_range(%p,%lx,%lx)\n", vm, start, end); list_for_each_entry_safe(range, next, &vm->vm_range_list, list) { if ((range->end <= start) || (end <= range->start)) { /* no overlap */ continue; } freerange = range; if (freerange->start < start) { error = split_process_memory_range(vm, freerange, start, &freerange); if (error) { ekprintf("remove_process_memory_range(%p,%lx,%lx):" "split failed %d\n", vm, start, end, error); return error; } } if (end < freerange->end) { error = split_process_memory_range(vm, freerange, end, NULL); if (error) { ekprintf("remove_process_memory_range(%p,%lx,%lx):" "split failed %d\n", vm, start, end, error); return error; } } if (!(freerange->flag & VR_PROT_WRITE)) { ro_freed = 1; } error = free_process_memory_range(vm, freerange); if (error) { ekprintf("remove_process_memory_range(%p,%lx,%lx):" "free failed %d\n", vm, start, end, error); return error; } } if (ro_freedp) { *ro_freedp = ro_freed; } dkprintf("remove_process_memory_range(%p,%lx,%lx): 0 %d\n", vm, start, end, ro_freed); return 0; } static void insert_vm_range_list(struct process_vm *vm, struct vm_range *newrange) { struct list_head *next; struct vm_range *range; next = &vm->vm_range_list; list_for_each_entry(range, &vm->vm_range_list, list) { if ((newrange->start < range->end) && (range->start < newrange->end)) { ekprintf("insert_vm_range_list(%p,%lx-%lx %lx):overlap %lx-%lx %lx\n", vm, newrange->start, newrange->end, newrange->flag, range->start, range->end, range->flag); panic("insert_vm_range_list\n"); } if (newrange->end <= range->start) { next = &range->list; break; } } list_add_tail(&newrange->list, next); return; } enum ihk_mc_pt_attribute common_vrflag_to_ptattr(unsigned long flag, uint64_t fault, pte_t *ptep) { enum ihk_mc_pt_attribute attr; attr = PTATTR_USER | PTATTR_FOR_USER; if (flag & VR_REMOTE) { attr |= IHK_PTA_REMOTE; } else if (flag & VR_IO_NOCACHE) { attr |= PTATTR_UNCACHABLE; } if ((flag & VR_PROT_MASK) != VR_PROT_NONE) { attr |= PTATTR_ACTIVE; } if (flag & VR_PROT_WRITE) { attr |= PTATTR_WRITABLE; } if (!(flag & VR_PROT_EXEC)) { attr |= PTATTR_NO_EXECUTE; } if (flag & VR_WRITE_COMBINED) { attr |= PTATTR_WRITE_COMBINED; } return attr; } int add_process_memory_range(struct process_vm *vm, unsigned long start, unsigned long end, unsigned long phys, unsigned long flag, struct memobj *memobj, off_t offset, int pgshift, struct vm_range **rp) { struct vm_range *range; int rc; if ((start < vm->region.user_start) || (vm->region.user_end < end)) { kprintf("%s: error: range %lx - %lx is not in user available area\n", __FUNCTION__, start, end, vm->region.user_start, vm->region.user_end); return -EINVAL; } range = kmalloc(sizeof(struct vm_range), IHK_MC_AP_NOWAIT); if (!range) { kprintf("%s: ERROR: allocating pages for range\n", __FUNCTION__); return -ENOMEM; } INIT_LIST_HEAD(&range->list); range->start = start; range->end = end; range->flag = flag; range->memobj = memobj; range->objoff = offset; range->pgshift = pgshift; rc = 0; if (phys == NOPHYS) { /* Nothing to map */ } else if (flag & VR_REMOTE) { rc = update_process_page_table(vm, range, phys, IHK_PTA_REMOTE); } else if (flag & VR_IO_NOCACHE) { rc = update_process_page_table(vm, range, phys, PTATTR_UNCACHABLE); } else if (flag & VR_DEMAND_PAGING) { dkprintf("%s: range: 0x%lx - 0x%lx is demand paging\n", __FUNCTION__, range->start, range->end); rc = 0; } else if ((range->flag & VR_PROT_MASK) == VR_PROT_NONE) { rc = 0; } else { rc = update_process_page_table(vm, range, phys, 0); } if (rc != 0) { kprintf("%s: ERROR: preparing page tables\n", __FUNCTION__); kfree(range); return rc; } insert_vm_range_list(vm, range); /* Clear content! */ if (!(flag & (VR_REMOTE | VR_DEMAND_PAGING)) && ((flag & VR_PROT_MASK) != VR_PROT_NONE)) { memset((void*)phys_to_virt(phys), 0, end - start); } /* Return range object if requested */ if (rp) { *rp = range; } return 0; } struct vm_range *lookup_process_memory_range( struct process_vm *vm, uintptr_t start, uintptr_t end) { int i; struct vm_range *range = NULL; dkprintf("lookup_process_memory_range(%p,%lx,%lx)\n", vm, start, end); if (end <= start) { goto out; } for (i = 0; i < VM_RANGE_CACHE_SIZE; ++i) { int c_i = (i + vm->range_cache_ind) % VM_RANGE_CACHE_SIZE; if (!vm->range_cache[c_i]) continue; if (vm->range_cache[c_i]->start <= start && vm->range_cache[c_i]->end >= end) return vm->range_cache[c_i]; } list_for_each_entry(range, &vm->vm_range_list, list) { if (end <= range->start) { break; } if ((start < range->end) && (range->start < end)) { goto out; } } range = NULL; out: if (range) { vm->range_cache_ind = (vm->range_cache_ind - 1 + VM_RANGE_CACHE_SIZE) % VM_RANGE_CACHE_SIZE; vm->range_cache[vm->range_cache_ind] = range; } dkprintf("lookup_process_memory_range(%p,%lx,%lx): %p %lx-%lx\n", vm, start, end, range, range? range->start: 0, range? range->end: 0); return range; } struct vm_range *next_process_memory_range( struct process_vm *vm, struct vm_range *range) { struct vm_range *next; dkprintf("next_process_memory_range(%p,%lx-%lx)\n", vm, range->start, range->end); if (list_is_last(&range->list, &vm->vm_range_list)) { next = NULL; } else { next = list_entry(range->list.next, struct vm_range, list); } dkprintf("next_process_memory_range(%p,%lx-%lx): %p %lx-%lx\n", vm, range->start, range->end, next, next? next->start: 0, next? next->end: 0); return next; } struct vm_range *previous_process_memory_range( struct process_vm *vm, struct vm_range *range) { struct vm_range *prev; dkprintf("previous_process_memory_range(%p,%lx-%lx)\n", vm, range->start, range->end); if (list_first_entry(&vm->vm_range_list, struct vm_range, list) == range) { prev = NULL; } else { prev = list_entry(range->list.prev, struct vm_range, list); } dkprintf("previous_process_memory_range(%p,%lx-%lx): %p %lx-%lx\n", vm, range->start, range->end, prev, prev? prev->start: 0, prev? prev->end: 0); return prev; } int extend_up_process_memory_range(struct process_vm *vm, struct vm_range *range, uintptr_t newend) { int error; struct vm_range *next; dkprintf("exntend_up_process_memory_range(%p,%p %#lx-%#lx,%#lx)\n", vm, range, range->start, range->end, newend); if (newend <= range->end) { error = -EINVAL; goto out; } if (vm->region.user_end < newend) { error = -EPERM; goto out; } next = next_process_memory_range(vm ,range); if (next && (next->start < newend)) { error = -ENOMEM; goto out; } error = 0; range->end = newend; out: dkprintf("exntend_up_process_memory_range(%p,%p %#lx-%#lx,%#lx):%d\n", vm, range, range->start, range->end, newend, error); return error; } int change_prot_process_memory_range(struct process_vm *vm, struct vm_range *range, unsigned long protflag) { unsigned long newflag; int error; enum ihk_mc_pt_attribute oldattr; enum ihk_mc_pt_attribute newattr; enum ihk_mc_pt_attribute clrattr; enum ihk_mc_pt_attribute setattr; dkprintf("change_prot_process_memory_range(%p,%lx-%lx,%lx)\n", vm, range->start, range->end, protflag); newflag = (range->flag & ~VR_PROT_MASK) | (protflag & VR_PROT_MASK); if (range->flag == newflag) { /* nothing to do */ error = 0; goto out; } oldattr = arch_vrflag_to_ptattr(range->flag, PF_POPULATE, NULL); newattr = arch_vrflag_to_ptattr(newflag, PF_POPULATE, NULL); clrattr = oldattr & ~newattr; setattr = newattr & ~oldattr; ihk_mc_spinlock_lock_noirq(&vm->page_table_lock); error = ihk_mc_pt_change_attr_range(vm->address_space->page_table, (void *)range->start, (void *)range->end, clrattr, setattr); ihk_mc_spinlock_unlock_noirq(&vm->page_table_lock); if (error && (error != -ENOENT)) { ekprintf("change_prot_process_memory_range(%p,%lx-%lx,%lx):" "ihk_mc_pt_change_attr_range failed: %d\n", vm, range->start, range->end, protflag, error); goto out; } range->flag = newflag; error = 0; out: dkprintf("change_prot_process_memory_range(%p,%lx-%lx,%lx): %d\n", vm, range->start, range->end, protflag, error); return error; } struct rfp_args { off_t off; uintptr_t start; struct memobj *memobj; }; static int remap_one_page(void *arg0, page_table_t pt, pte_t *ptep, void *pgaddr, int pgshift) { struct rfp_args * const args = arg0; const size_t pgsize = (size_t)1 << pgshift; int error; off_t off; pte_t apte; uintptr_t phys; struct page *page; dkprintf("remap_one_page(%p,%p,%p %#lx,%p,%d)\n", arg0, pt, ptep, *ptep, pgaddr, pgshift); /* XXX: NYI: large pages */ if (pgsize != PAGE_SIZE) { error = -E2BIG; ekprintf("remap_one_page(%p,%p,%p %#lx,%p,%d):%d\n", arg0, pt, ptep, *ptep, pgaddr, pgshift, error); goto out; } off = args->off + ((uintptr_t)pgaddr - args->start); pte_make_fileoff(off, 0, pgsize, &apte); pte_xchg(ptep, &apte); flush_tlb_single((uintptr_t)pgaddr); /* XXX: TLB flush */ if (pte_is_null(&apte) || pte_is_fileoff(&apte, pgsize)) { error = 0; goto out; } phys = pte_get_phys(&apte); if (pte_is_dirty(&apte, pgsize)) { memobj_flush_page(args->memobj, phys, pgsize); /* XXX: in lock period */ } page = phys_to_page(phys); if (page && page_unmap(page)) { ihk_mc_free_pages(phys_to_virt(phys), pgsize/PAGE_SIZE); } error = 0; out: dkprintf("remap_one_page(%p,%p,%p %#lx,%p,%d): %d\n", arg0, pt, ptep, *ptep, pgaddr, pgshift, error); return error; } int remap_process_memory_range(struct process_vm *vm, struct vm_range *range, uintptr_t start, uintptr_t end, off_t off) { struct rfp_args args; int error; dkprintf("remap_process_memory_range(%p,%p,%#lx,%#lx,%#lx)\n", vm, range, start, end, off); ihk_mc_spinlock_lock_noirq(&vm->page_table_lock); memobj_lock(range->memobj); args.start = start; args.off = off; args.memobj = range->memobj; error = visit_pte_range(vm->address_space->page_table, (void *)start, (void *)end, range->pgshift, VPTEF_DEFAULT, &remap_one_page, &args); if (error) { ekprintf("remap_process_memory_range(%p,%p,%#lx,%#lx,%#lx):" "visit pte failed %d\n", vm, range, start, end, off, error); goto out; } error = 0; out: memobj_unlock(range->memobj); ihk_mc_spinlock_unlock_noirq(&vm->page_table_lock); dkprintf("remap_process_memory_range(%p,%p,%#lx,%#lx,%#lx):%d\n", vm, range, start, end, off, error); return error; } struct sync_args { struct memobj *memobj; }; static int sync_one_page(void *arg0, page_table_t pt, pte_t *ptep, void *pgaddr, int pgshift) { struct sync_args *args = arg0; const size_t pgsize = (size_t)1 << pgshift; int error; uintptr_t phys; dkprintf("sync_one_page(%p,%p,%p %#lx,%p,%d)\n", arg0, pt, ptep, *ptep, pgaddr, pgshift); if (pte_is_null(ptep) || pte_is_fileoff(ptep, pgsize) || !pte_is_dirty(ptep, pgsize)) { error = 0; goto out; } pte_clear_dirty(ptep, pgsize); flush_tlb_single((uintptr_t)pgaddr); /* XXX: TLB flush */ phys = pte_get_phys(ptep); if (args->memobj->flags & MF_ZEROFILL) { error = 0; goto out; } error = memobj_flush_page(args->memobj, phys, pgsize); if (error) { ekprintf("sync_one_page(%p,%p,%p %#lx,%p,%d):" "flush failed. %d\n", arg0, pt, ptep, *ptep, pgaddr, pgshift, error); pte_set_dirty(ptep, pgsize); goto out; } error = 0; out: dkprintf("sync_one_page(%p,%p,%p %#lx,%p,%d):%d\n", arg0, pt, ptep, *ptep, pgaddr, pgshift, error); return error; } int sync_process_memory_range(struct process_vm *vm, struct vm_range *range, uintptr_t start, uintptr_t end) { int error; struct sync_args args; dkprintf("sync_process_memory_range(%p,%p,%#lx,%#lx)\n", vm, range, start, end); args.memobj = range->memobj; ihk_mc_spinlock_lock_noirq(&vm->page_table_lock); if (!(range->memobj->flags & MF_ZEROFILL)) { memobj_lock(range->memobj); } error = visit_pte_range(vm->address_space->page_table, (void *)start, (void *)end, range->pgshift, VPTEF_SKIP_NULL, &sync_one_page, &args); if (!(range->memobj->flags & MF_ZEROFILL)) { memobj_unlock(range->memobj); } ihk_mc_spinlock_unlock_noirq(&vm->page_table_lock); if (error) { ekprintf("sync_process_memory_range(%p,%p,%#lx,%#lx):" "visit failed%d\n", vm, range, start, end, error); goto out; } out: dkprintf("sync_process_memory_range(%p,%p,%#lx,%#lx):%d\n", vm, range, start, end, error); return error; } struct invalidate_args { struct vm_range *range; }; static int invalidate_one_page(void *arg0, page_table_t pt, pte_t *ptep, void *pgaddr, int pgshift) { struct invalidate_args *args = arg0; struct vm_range *range = args->range; const size_t pgsize = (size_t)1 << pgshift; int error; uintptr_t phys; struct page *page; off_t linear_off; pte_t apte; dkprintf("invalidate_one_page(%p,%p,%p %#lx,%p,%d)\n", arg0, pt, ptep, *ptep, pgaddr, pgshift); if (pte_is_null(ptep) || pte_is_fileoff(ptep, pgsize)) { error = 0; goto out; } phys = pte_get_phys(ptep); page = phys_to_page(phys); linear_off = range->objoff + ((uintptr_t)pgaddr - range->start); if (page && (page->offset == linear_off)) { pte_make_null(&apte, pgsize); } else { pte_make_fileoff(page->offset, 0, pgsize, &apte); } pte_xchg(ptep, &apte); flush_tlb_single((uintptr_t)pgaddr); /* XXX: TLB flush */ if (page && page_unmap(page)) { panic("invalidate_one_page"); } error = memobj_invalidate_page(range->memobj, phys, pgsize); if (error) { ekprintf("invalidate_one_page(%p,%p,%p %#lx,%p,%d):" "invalidate failed. %d\n", arg0, pt, ptep, *ptep, pgaddr, pgshift, error); goto out; } error = 0; out: dkprintf("invalidate_one_page(%p,%p,%p %#lx,%p,%d):%d\n", arg0, pt, ptep, *ptep, pgaddr, pgshift, error); return error; } int invalidate_process_memory_range(struct process_vm *vm, struct vm_range *range, uintptr_t start, uintptr_t end) { int error; struct invalidate_args args; dkprintf("invalidate_process_memory_range(%p,%p,%#lx,%#lx)\n", vm, range, start, end); args.range = range; ihk_mc_spinlock_lock_noirq(&vm->page_table_lock); memobj_lock(range->memobj); error = visit_pte_range(vm->address_space->page_table, (void *)start, (void *)end, range->pgshift, VPTEF_SKIP_NULL, &invalidate_one_page, &args); memobj_unlock(range->memobj); ihk_mc_spinlock_unlock_noirq(&vm->page_table_lock); if (error) { ekprintf("invalidate_process_memory_range(%p,%p,%#lx,%#lx):" "visit failed%d\n", vm, range, start, end, error); goto out; } out: dkprintf("invalidate_process_memory_range(%p,%p,%#lx,%#lx):%d\n", vm, range, start, end, error); return error; } static int page_fault_process_memory_range(struct process_vm *vm, struct vm_range *range, uintptr_t fault_addr, uint64_t reason) { int error; pte_t *ptep; void *pgaddr; size_t pgsize; int p2align; enum ihk_mc_pt_attribute attr; uintptr_t phys; struct page *page = NULL; unsigned long memobj_flag = 0; dkprintf("page_fault_process_memory_range(%p,%lx-%lx %lx,%lx,%lx)\n", vm, range->start, range->end, range->flag, fault_addr, reason); ihk_mc_spinlock_lock_noirq(&vm->page_table_lock); /*****/ ptep = ihk_mc_pt_lookup_pte(vm->address_space->page_table, (void *)fault_addr, range->pgshift, &pgaddr, &pgsize, &p2align); if (!(reason & (PF_PROT | PF_PATCH)) && ptep && !pte_is_null(ptep) && !pte_is_fileoff(ptep, pgsize)) { if (!pte_is_present(ptep)) { error = -EFAULT; kprintf("page_fault_process_memory_range(%p,%lx-%lx %lx,%lx,%lx):PROT_NONE. %d\n", vm, range->start, range->end, range->flag, fault_addr, reason, error); goto out; } error = 0; goto out; } if ((reason & PF_PROT) && (!ptep || !pte_is_present(ptep))) { flush_tlb_single(fault_addr); error = 0; goto out; } /*****/ while (((uintptr_t)pgaddr < range->start) || (range->end < ((uintptr_t)pgaddr + pgsize))) { ptep = NULL; error = arch_get_smaller_page_size(NULL, pgsize, &pgsize, &p2align); if (error) { kprintf("page_fault_process_memory_range(%p,%lx-%lx %lx,%lx,%lx):arch_get_smaller_page_size(pte) failed. %d\n", vm, range->start, range->end, range->flag, fault_addr, reason, error); goto out; } pgaddr = (void *)(fault_addr & ~(pgsize - 1)); } /*****/ if (!ptep || pte_is_null(ptep) || pte_is_fileoff(ptep, pgsize)) { phys = NOPHYS; if (range->memobj) { off_t off; if (!ptep || !pte_is_fileoff(ptep, pgsize)) { off = range->objoff + ((uintptr_t)pgaddr - range->start); } else { off = pte_get_off(ptep, pgsize); } error = memobj_get_page(range->memobj, off, p2align, &phys, &memobj_flag); if (error) { struct memobj *obj; if (zeroobj_create(&obj)) { panic("PFPMR: zeroobj_crate"); } if (range->memobj != obj) { goto out; } } } if (phys == NOPHYS) { void *virt = NULL; size_t npages; retry: npages = pgsize / PAGE_SIZE; virt = ihk_mc_alloc_aligned_pages(npages, p2align, IHK_MC_AP_NOWAIT); if (!virt && !range->pgshift && (pgsize != PAGE_SIZE)) { error = arch_get_smaller_page_size(NULL, pgsize, &pgsize, &p2align); if (error) { kprintf("page_fault_process_memory_range(%p,%lx-%lx %lx,%lx,%lx):arch_get_smaller_page_size(anon) failed. %d\n", vm, range->start, range->end, range->flag, fault_addr, reason, error); goto out; } ptep = NULL; pgaddr = (void *)(fault_addr & ~(pgsize - 1)); goto retry; } if (!virt) { error = -ENOMEM; kprintf("page_fault_process_memory_range(%p,%lx-%lx %lx,%lx,%lx):cannot allocate new page. %d\n", vm, range->start, range->end, range->flag, fault_addr, reason, error); goto out; } dkprintf("%s: clearing 0x%lx:%lu\n", __FUNCTION__, pgaddr, pgsize); memset(virt, 0, pgsize); phys = virt_to_phys(virt); if (phys_to_page(phys)) { page_map(phys_to_page(phys)); } } } else { phys = pte_get_phys(ptep); } page = phys_to_page(phys); attr = arch_vrflag_to_ptattr(range->flag | memobj_flag, reason, ptep); /*****/ if (((range->flag & VR_PRIVATE) || ((reason & PF_PATCH) && !(range->flag & VR_PROT_WRITE))) && ((!page && phys == NOPHYS) || (page && (page_is_in_memobj(page) || page_is_multi_mapped(page))))) { if (!(attr & PTATTR_DIRTY)) { attr &= ~PTATTR_WRITABLE; } else { void *virt; size_t npages; npages = pgsize / PAGE_SIZE; virt = ihk_mc_alloc_aligned_pages(npages, p2align, IHK_MC_AP_NOWAIT); if (!virt) { error = -ENOMEM; kprintf("page_fault_process_memory_range(%p,%lx-%lx %lx,%lx,%lx):cannot allocate copy page. %d\n", vm, range->start, range->end, range->flag, fault_addr, reason, error); goto out; } dkprintf("%s: copying 0x%lx:%lu\n", __FUNCTION__, pgaddr, pgsize); memcpy(virt, phys_to_virt(phys), pgsize); phys = virt_to_phys(virt); if (page) { page_unmap(page); } page = phys_to_page(phys); } } /*****/ if (ptep) { error = ihk_mc_pt_set_pte(vm->address_space->page_table, ptep, pgsize, phys, attr); if (error) { kprintf("page_fault_process_memory_range(%p,%lx-%lx %lx,%lx,%lx):set_pte failed. %d\n", vm, range->start, range->end, range->flag, fault_addr, reason, error); goto out; } } else { error = ihk_mc_pt_set_range(vm->address_space->page_table, vm, pgaddr, pgaddr + pgsize, phys, attr, range->pgshift); if (error) { kprintf("page_fault_process_memory_range(%p,%lx-%lx %lx,%lx,%lx):set_range failed. %d\n", vm, range->start, range->end, range->flag, fault_addr, reason, error); goto out; } } flush_tlb_single(fault_addr); vm->currss += pgsize; if(vm->currss > vm->proc->maxrss) vm->proc->maxrss = vm->currss; error = 0; page = NULL; out: ihk_mc_spinlock_unlock_noirq(&vm->page_table_lock); if (page) { page_unmap(page); } dkprintf("page_fault_process_memory_range(%p,%lx-%lx %lx,%lx,%lx): %d\n", vm, range->start, range->end, range->flag, fault_addr, reason, error); return error; } static int do_page_fault_process_vm(struct process_vm *vm, void *fault_addr0, uint64_t reason) { int error; const uintptr_t fault_addr = (uintptr_t)fault_addr0; struct vm_range *range; dkprintf("[%d]do_page_fault_process_vm(%p,%lx,%lx)\n", ihk_mc_get_processor_id(), vm, fault_addr0, reason); ihk_mc_spinlock_lock_noirq(&vm->memory_range_lock); if (vm->exiting) { error = -ECANCELED; goto out; } range = lookup_process_memory_range(vm, fault_addr, fault_addr+1); if (range == NULL) { error = -EFAULT; dkprintf("do_page_fault_process_vm(): vm: %p, addr: %p, reason: %lx):" "out of range: %d\n", vm, fault_addr0, reason, error); goto out; } if (((range->flag & VR_PROT_MASK) == VR_PROT_NONE) || (((reason & PF_WRITE) && !(reason & PF_PATCH)) && !(range->flag & VR_PROT_WRITE)) || ((reason & PF_INSTR) && !(range->flag & VR_PROT_EXEC))) { error = -EFAULT; dkprintf("[%d]do_page_fault_process_vm(%p,%lx,%lx):" "access denied. %d\n", ihk_mc_get_processor_id(), vm, fault_addr0, reason, error); kprintf("%s: reason: %s%s%s%s%s%s%s\n", __FUNCTION__, (reason & PF_PROT) ? "PF_PROT " : "", (reason & PF_WRITE) ? "PF_WRITE " : "", (reason & PF_USER) ? "PF_USER " : "", (reason & PF_RSVD) ? "PF_RSVD " : "", (reason & PF_INSTR) ? "PF_INSTR " : "", (reason & PF_PATCH) ? "PF_PATCH " : "", (reason & PF_POPULATE) ? "PF_POPULATE " : ""); kprintf("%s: range->flag & (%s%s%s)\n", __FUNCTION__, (range->flag & VR_PROT_READ) ? "VR_PROT_READ " : "", (range->flag & VR_PROT_WRITE) ? "VR_PROT_WRITE " : "", (range->flag & VR_PROT_EXEC) ? "VR_PROT_EXEC " : ""); if (((range->flag & VR_PROT_MASK) == VR_PROT_NONE)) kprintf("if (((range->flag & VR_PROT_MASK) == VR_PROT_NONE))\n"); if (((reason & PF_WRITE) && !(reason & PF_PATCH))) kprintf("if (((reason & PF_WRITE) && !(reason & PF_PATCH)))\n"); if (!(range->flag & VR_PROT_WRITE)) { kprintf("if (!(range->flag & VR_PROT_WRITE))\n"); //kprintf("setting VR_PROT_WRITE\n"); //range->flag |= VR_PROT_WRITE; //goto cont; } if ((reason & PF_INSTR) && !(range->flag & VR_PROT_EXEC)) { kprintf("if ((reason & PF_INSTR) && !(range->flag & VR_PROT_EXEC))\n"); //kprintf("setting VR_PROT_EXEC\n"); //range->flag |= VR_PROT_EXEC; //goto cont; } goto out; } /* * XXX: quick fix * Corrupt data was read by the following sequence. * 1) a process did mmap(MAP_PRIVATE|MAP_ANONYMOUS) * 2) the process fetched the contents of a page of (1)'s mapping. * 3) the process wrote the contents of the page of (1)'s mapping. * 4) the process changed the contents of the page of (1)'s mapping. * 5) the process read something in the page of (1)'s mapping. * * In the case of the above sequence, * copy-on-write pages was mapped at (2). And their physical pages * were informed to mcctrl/mcexec at (3). However, page remapping * at (4) was not informed to mcctrl/mcexec, and the data read at (5) * was transferred to old pages which had been mapped at (2). */ if ((range->flag & VR_PRIVATE) && range->memobj) { struct memobj *obj; if (zeroobj_create(&obj)) { panic("DPFP: zeroobj_crate"); } if (range->memobj == obj) { reason |= PF_POPULATE; } } error = page_fault_process_memory_range(vm, range, fault_addr, reason); if (error == -ERESTART) { goto out; } if (error) { dkprintf("[%d]do_page_fault_process_vm(%p,%lx,%lx):" "fault range failed. %d\n", ihk_mc_get_processor_id(), vm, fault_addr0, reason, error); goto out; } error = 0; out: ihk_mc_spinlock_unlock_noirq(&vm->memory_range_lock); dkprintf("[%d]do_page_fault_process_vm(%p,%lx,%lx): %d\n", ihk_mc_get_processor_id(), vm, fault_addr0, reason, error); return error; } int page_fault_process_vm(struct process_vm *fault_vm, void *fault_addr, uint64_t reason) { int error; struct thread *thread = cpu_local_var(current); for (;;) { error = do_page_fault_process_vm(fault_vm, fault_addr, reason); if (error != -ERESTART) { break; } if (thread->pgio_fp) { (*thread->pgio_fp)(thread->pgio_arg); thread->pgio_fp = NULL; } } return error; } int init_process_stack(struct thread *thread, struct program_load_desc *pn, int argc, char **argv, int envc, char **env) { int s_ind = 0; int arg_ind; unsigned long size; unsigned long end; unsigned long start; int rc; unsigned long vrflag; char *stack; int error; unsigned long *p; unsigned long minsz; unsigned long at_rand; struct process *proc = thread->proc; unsigned long __flag; /* create stack range */ end = STACK_TOP(&thread->vm->region); minsz = PAGE_SIZE; size = proc->rlimit[MCK_RLIMIT_STACK].rlim_cur & PAGE_MASK; if (size > (USER_END / 2)) { size = USER_END / 2; } else if (size < minsz) { size = minsz; } start = end - size; vrflag = VR_STACK | VR_DEMAND_PAGING; vrflag |= PROT_TO_VR_FLAG(pn->stack_prot); vrflag |= VR_MAXPROT_READ | VR_MAXPROT_WRITE | VR_MAXPROT_EXEC; #define NOPHYS ((uintptr_t)-1) if ((rc = add_process_memory_range(thread->vm, start, end, NOPHYS, vrflag, NULL, 0, PAGE_SHIFT, NULL)) != 0) { return rc; } __flag = (size >= 16777216) ? IHK_MC_AP_USER : 0; /* map physical pages for initial stack frame */ stack = ihk_mc_alloc_pages(minsz >> PAGE_SHIFT, IHK_MC_AP_NOWAIT | __flag); if (!stack) { return -ENOMEM; } memset(stack, 0, minsz); error = ihk_mc_pt_set_range(thread->vm->address_space->page_table, thread->vm, (void *)(end-minsz), (void *)end, virt_to_phys(stack), arch_vrflag_to_ptattr(vrflag, PF_POPULATE, NULL), 0); if (error) { kprintf("init_process_stack:" "set range %lx-%lx %lx failed. %d\n", (end-minsz), end, stack, error); ihk_mc_free_pages(stack, minsz >> PAGE_SHIFT); return error; } /* set up initial stack frame */ p = (unsigned long *)(stack + minsz); s_ind = -1; /* "random" 16 bytes on the very top */ p[s_ind--] = 0x010101011; p[s_ind--] = 0x010101011; at_rand = end + sizeof(unsigned long) * s_ind; /* auxiliary vector */ /* If you add/delete entires, please increase/decrease AUXV_LEN in include/process.h. */ p[s_ind--] = 0; /* AT_NULL */ p[s_ind--] = 0; p[s_ind--] = pn->at_entry; /* AT_ENTRY */ p[s_ind--] = AT_ENTRY; p[s_ind--] = pn->at_phnum; /* AT_PHNUM */ p[s_ind--] = AT_PHNUM; p[s_ind--] = pn->at_phent; /* AT_PHENT */ p[s_ind--] = AT_PHENT; p[s_ind--] = pn->at_phdr; /* AT_PHDR */ p[s_ind--] = AT_PHDR; p[s_ind--] = 4096; /* AT_PAGESZ */ p[s_ind--] = AT_PAGESZ; p[s_ind--] = pn->at_clktck; /* AT_CLKTCK */ p[s_ind--] = AT_CLKTCK; p[s_ind--] = at_rand; /* AT_RANDOM */ p[s_ind--] = AT_RANDOM; #ifndef AT_SYSINFO_EHDR #define AT_SYSINFO_EHDR AT_IGNORE #endif p[s_ind--] = (long)(thread->vm->vdso_addr); p[s_ind--] = (thread->vm->vdso_addr)? AT_SYSINFO_EHDR: AT_IGNORE; /* Save auxiliary vector for later use. */ memcpy(proc->saved_auxv, &p[s_ind + 1], sizeof(proc->saved_auxv)); p[s_ind--] = 0; /* envp terminating NULL */ /* envp */ for (arg_ind = envc - 1; arg_ind > -1; --arg_ind) { p[s_ind--] = (unsigned long)env[arg_ind]; } p[s_ind--] = 0; /* argv terminating NULL */ /* argv */ for (arg_ind = argc - 1; arg_ind > -1; --arg_ind) { p[s_ind--] = (unsigned long)argv[arg_ind]; } /* argc */ p[s_ind] = argc; ihk_mc_modify_user_context(thread->uctx, IHK_UCR_STACK_POINTER, end + sizeof(unsigned long) * s_ind); thread->vm->region.stack_end = end; thread->vm->region.stack_start = start; #ifdef ENABLE_RUSAGE { int processor_id; long curr; processor_id = ihk_mc_get_processor_id(); rusage_rss[processor_id] += (minsz >> PAGE_SHIFT) * PAGE_SIZE; curr = ihk_atomic_add_long_return ((minsz >> PAGE_SHIFT) * PAGE_SIZE, &rusage_rss_current); if (rusage_rss_max < curr) { atomic_cmpxchg8(&rusage_rss_max, rusage_rss_max, curr); } if (rusage_max_memory - curr < RUSAGE_MEM_LIMIT) { event_signal(); } } #endif return 0; } unsigned long extend_process_region(struct process_vm *vm, unsigned long start, unsigned long end, unsigned long address, unsigned long flag) { unsigned long aligned_end, aligned_new_end; void *p; int rc; if (!address || address < start || address >= USER_END) { return end; } aligned_end = ((end + PAGE_SIZE - 1) & PAGE_MASK); if (aligned_end >= address) { return address; } aligned_new_end = (address + PAGE_SIZE - 1) & PAGE_MASK; #ifdef USE_LARGE_PAGES if (aligned_new_end - aligned_end >= LARGE_PAGE_SIZE) { if(flag & VR_DEMAND_PAGING){panic("demand paging for large page is not available!");} unsigned long p_aligned; unsigned long old_aligned_end = aligned_end; if ((aligned_end & (LARGE_PAGE_SIZE - 1)) != 0) { aligned_end = (aligned_end + (LARGE_PAGE_SIZE - 1)) & LARGE_PAGE_MASK; /* Fill in the gap between old_aligned_end and aligned_end * with regular pages */ if((p = ihk_mc_alloc_pages((aligned_end - old_aligned_end) >> PAGE_SHIFT, IHK_MC_AP_NOWAIT)) == NULL){ return end; } if((rc = add_process_memory_range(vm, old_aligned_end, aligned_end, virt_to_phys(p), flag, LARGE_PAGE_SHIFT, NULL)) != 0){ ihk_mc_free_pages(p, (aligned_end - old_aligned_end) >> PAGE_SHIFT); return end; } dkprintf("filled in gap for LARGE_PAGE_SIZE aligned start: 0x%lX -> 0x%lX\n", old_aligned_end, aligned_end); } /* Add large region for the actual mapping */ aligned_new_end = (aligned_new_end + (aligned_end - old_aligned_end) + (LARGE_PAGE_SIZE - 1)) & LARGE_PAGE_MASK; address = aligned_new_end; if((p = ihk_mc_alloc_pages((aligned_new_end - aligned_end + LARGE_PAGE_SIZE) >> PAGE_SHIFT, IHK_MC_AP_NOWAIT)) == NULL){ return end; } p_aligned = ((unsigned long)p + (LARGE_PAGE_SIZE - 1)) & LARGE_PAGE_MASK; if (p_aligned > (unsigned long)p) { ihk_mc_free_pages(p, (p_aligned - (unsigned long)p) >> PAGE_SHIFT); } ihk_mc_free_pages( (void *)(p_aligned + aligned_new_end - aligned_end), (LARGE_PAGE_SIZE - (p_aligned - (unsigned long)p)) >> PAGE_SHIFT); if((rc = add_process_memory_range(vm, aligned_end, aligned_new_end, virt_to_phys((void *)p_aligned), flag, LARGE_PAGE_SHIFT, NULL)) != 0){ ihk_mc_free_pages(p, (aligned_new_end - aligned_end + LARGE_PAGE_SIZE) >> PAGE_SHIFT); return end; } dkprintf("largePTE area: 0x%lX - 0x%lX (s: %lu) -> 0x%lX - \n", aligned_end, aligned_new_end, (aligned_new_end - aligned_end), virt_to_phys((void *)p_aligned)); return address; } #endif if(flag & VR_DEMAND_PAGING){ // demand paging no need to allocate page now kprintf("demand page do not allocate page\n"); p=0; }else{ p = ihk_mc_alloc_pages((aligned_new_end - aligned_end) >> PAGE_SHIFT, IHK_MC_AP_NOWAIT | IHK_MC_AP_USER); if (!p) { return end; } } if ((rc = add_process_memory_range(vm, aligned_end, aligned_new_end, (p == 0 ? 0 : virt_to_phys(p)), flag, NULL, 0, PAGE_SHIFT, NULL)) != 0) { ihk_mc_free_pages(p, (aligned_new_end - aligned_end) >> PAGE_SHIFT); return end; } #ifdef ENABLE_RUSAGE { int processor_id; long curr; processor_id = ihk_mc_get_processor_id(); rusage_rss[processor_id] += ((aligned_new_end - aligned_end) >> PAGE_SHIFT) * PAGE_SIZE; curr = ihk_atomic_add_long_return (((aligned_new_end - aligned_end) >> PAGE_SHIFT) * PAGE_SIZE, &rusage_rss_current); if (rusage_rss_max < curr) { atomic_cmpxchg8(&rusage_rss_max, rusage_rss_max, curr); } if (rusage_max_memory - curr < RUSAGE_MEM_LIMIT) { event_signal(); } } #endif return address; } // Original version retained because dcfa (src/mccmd/client/ibmic/main.c) calls this int remove_process_region(struct process_vm *vm, unsigned long start, unsigned long end) { if ((start & (PAGE_SIZE - 1)) || (end & (PAGE_SIZE - 1))) { return -EINVAL; } ihk_mc_spinlock_lock_noirq(&vm->page_table_lock); /* We defer freeing to the time of exit */ // XXX: check error ihk_mc_pt_clear_range(vm->address_space->page_table, vm, (void *)start, (void *)end); ihk_mc_spinlock_unlock_noirq(&vm->page_table_lock); return 0; } void flush_process_memory(struct process_vm *vm) { struct vm_range *range; struct vm_range *next; int error; dkprintf("flush_process_memory(%p)\n", vm); ihk_mc_spinlock_lock_noirq(&vm->memory_range_lock); /* Let concurrent page faults know the VM will be gone */ vm->exiting = 1; list_for_each_entry_safe(range, next, &vm->vm_range_list, list) { if (range->memobj) { // XXX: temporary of temporary error = free_process_memory_range(vm, range); if (error) { ekprintf("flush_process_memory(%p):" "free range failed. %lx-%lx %d\n", vm, range->start, range->end, error); /* through */ } } } ihk_mc_spinlock_unlock_noirq(&vm->memory_range_lock); dkprintf("flush_process_memory(%p):\n", vm); return; } void free_process_memory_ranges(struct process_vm *vm) { int error; struct vm_range *range, *next; if (vm == NULL) { return; } ihk_mc_spinlock_lock_noirq(&vm->memory_range_lock); list_for_each_entry_safe(range, next, &vm->vm_range_list, list) { error = free_process_memory_range(vm, range); if (error) { ekprintf("free_process_memory(%p):" "free range failed. %lx-%lx %d\n", vm, range->start, range->end, error); /* through */ } } ihk_mc_spinlock_unlock_noirq(&vm->memory_range_lock); } void hold_process(struct process *proc) { ihk_atomic_inc(&proc->refcount); } void release_process(struct process *proc) { struct process *parent; struct mcs_rwlock_node_irqsave lock; struct process_hash *phash; struct resource_set *rset; int hash; if (!ihk_atomic_dec_and_test(&proc->refcount)) { return; } rset = cpu_local_var(resource_set); phash = rset->process_hash; hash = process_hash(proc->pid); mcs_rwlock_writer_lock(&phash->lock[hash], &lock); list_del(&proc->hash_list); mcs_rwlock_writer_unlock(&phash->lock[hash], &lock); parent = proc->parent; mcs_rwlock_writer_lock(&parent->children_lock, &lock); list_del(&proc->siblings_list); mcs_rwlock_writer_unlock(&parent->children_lock, &lock); if(proc->ptrace & PT_TRACED){ parent = proc->ppid_parent; mcs_rwlock_writer_lock(&parent->children_lock, &lock); list_del(&proc->ptraced_siblings_list); mcs_rwlock_writer_unlock(&parent->children_lock, &lock); } if (proc->tids) kfree(proc->tids); #ifdef TRACK_SYSCALLS track_syscalls_print_proc_stats(proc); track_syscalls_dealloc_proc_counters(proc); #endif // TRACK_SYSCALLS kfree(proc); } void hold_process_vm(struct process_vm *vm) { ihk_atomic_inc(&vm->refcount); } void free_all_process_memory_range(struct process_vm *vm) { struct vm_range *range, *next; int error; ihk_mc_spinlock_lock_noirq(&vm->memory_range_lock); list_for_each_entry_safe(range, next, &vm->vm_range_list, list) { if (range->memobj) { range->memobj->flags |= MF_HOST_RELEASED; } error = free_process_memory_range(vm, range); if (error) { ekprintf("free_process_memory(%p):" "free range failed. %lx-%lx %d\n", vm, range->start, range->end, error); /* through */ } } ihk_mc_spinlock_unlock_noirq(&vm->memory_range_lock); } void release_process_vm(struct process_vm *vm) { struct process *proc = vm->proc; if (!ihk_atomic_dec_and_test(&vm->refcount)) { return; } if(vm->free_cb) vm->free_cb(vm, vm->opt); flush_nfo_tlb_mm(vm); free_all_process_memory_range(vm); detach_address_space(vm->address_space, vm->proc->pid); proc->vm = NULL; release_process(proc); kfree(vm); } int populate_process_memory(struct process_vm *vm, void *start, size_t len) { int error; const int reason = PF_USER | PF_POPULATE; uintptr_t end; uintptr_t addr; end = (uintptr_t)start + len; for (addr = (uintptr_t)start; addr < end; addr += PAGE_SIZE) { error = page_fault_process_vm(vm, (void *)addr, reason); if (error) { ekprintf("%s: WARNING: page_fault_process_vm(): vm: %p, " "addr: %lx, reason: %lx, off: %lu, len: %lu returns %d\n", __FUNCTION__, vm, addr, reason, ((void *)addr - start), len, error); goto out; } } error = 0; out: return error; } void hold_thread(struct thread *thread) { if (thread->status == PS_EXITED) { panic("hold_thread: already exited process"); } ihk_atomic_inc(&thread->refcount); return; } void hold_sigcommon(struct sig_common *sigcommon) { ihk_atomic_inc(&sigcommon->use); } void release_sigcommon(struct sig_common *sigcommon) { struct sig_pending *pending; struct sig_pending *next; if (!ihk_atomic_dec_and_test(&sigcommon->use)) { return; } list_for_each_entry_safe(pending, next, &sigcommon->sigpending, list){ list_del(&pending->list); kfree(pending); } kfree(sigcommon); } /* * Release the TID from the process' TID set corresponding to this thread. * NOTE: threads_lock must be held. */ void __release_tid(struct process *proc, struct thread *thread) { int i; for (i = 0; i < proc->nr_tids; ++i) { if (proc->tids[i].thread != thread) continue; proc->tids[i].thread = NULL; dkprintf("%s: tid %d has been released by %p\n", __FUNCTION__, thread->tid, thread); break; } } void destroy_thread(struct thread *thread) { struct sig_pending *pending; struct sig_pending *signext; struct mcs_rwlock_node_irqsave lock; struct process *proc = thread->proc; struct resource_set *resource_set = cpu_local_var(resource_set); int hash; hash = thread_hash(thread->tid); mcs_rwlock_writer_lock(&resource_set->thread_hash->lock[hash], &lock); list_del(&thread->hash_list); mcs_rwlock_writer_unlock(&resource_set->thread_hash->lock[hash], &lock); mcs_rwlock_writer_lock(&proc->threads_lock, &lock); list_del(&thread->siblings_list); __release_tid(proc, thread); mcs_rwlock_writer_unlock(&proc->threads_lock, &lock); cpu_clear(thread->cpu_id, &thread->vm->address_space->cpu_set, &thread->vm->address_space->cpu_set_lock); list_for_each_entry_safe(pending, signext, &thread->sigpending, list){ list_del(&pending->list); kfree(pending); } if (thread->ptrace_debugreg) { kfree(thread->ptrace_debugreg); } if (thread->ptrace_recvsig) { kfree(thread->ptrace_recvsig); } if (thread->ptrace_sendsig) { kfree(thread->ptrace_sendsig); } if (thread->fp_regs) { release_fp_regs(thread); } release_sigcommon(thread->sigcommon); #ifdef ENABLE_RUSAGE { int processor_id; processor_id = ihk_mc_get_processor_id(); rusage_rss[processor_id] -= KERNEL_STACK_NR_PAGES * PAGE_SIZE; ihk_atomic_add_long_return(KERNEL_STACK_NR_PAGES * PAGE_SIZE * (-1) , &rusage_rss_current); ihk_atomic_add_ulong ( -1, &rusage_num_threads); } #endif ihk_mc_free_pages(thread, KERNEL_STACK_NR_PAGES); } void release_thread(struct thread *thread) { struct process_vm *vm; struct mcs_rwlock_node lock; struct timespec ats; if (!ihk_atomic_dec_and_test(&thread->refcount)) { return; } mcs_rwlock_writer_lock_noirq(&thread->proc->update_lock, &lock); tsc_to_ts(thread->system_tsc, &ats); ts_add(&thread->proc->stime, &ats); tsc_to_ts(thread->user_tsc, &ats); ts_add(&thread->proc->utime, &ats); mcs_rwlock_writer_unlock_noirq(&thread->proc->update_lock, &lock); vm = thread->vm; #ifdef TRACK_SYSCALLS track_syscalls_accumulate_counters(thread, thread->proc); //track_syscalls_print_thread_stats(thread); track_syscalls_dealloc_thread_counters(thread); #endif // TRACK_SYSCALLS procfs_delete_thread(thread); destroy_thread(thread); release_process_vm(vm); } void cpu_set(int cpu, cpu_set_t *cpu_set, ihk_spinlock_t *lock) { unsigned long flags; flags = ihk_mc_spinlock_lock(lock); CPU_SET(cpu, cpu_set); ihk_mc_spinlock_unlock(lock, flags); } void cpu_clear(int cpu, cpu_set_t *cpu_set, ihk_spinlock_t *lock) { unsigned long flags; flags = ihk_mc_spinlock_lock(lock); CPU_CLR(cpu, cpu_set); ihk_mc_spinlock_unlock(lock, flags); } void cpu_clear_and_set(int c_cpu, int s_cpu, cpu_set_t *cpu_set, ihk_spinlock_t *lock) { unsigned long flags; flags = ihk_mc_spinlock_lock(lock); CPU_CLR(c_cpu, cpu_set); CPU_SET(s_cpu, cpu_set); ihk_mc_spinlock_unlock(lock, flags); } static void do_migrate(void); static void idle(void) { struct cpu_local_var *v = get_this_cpu_local_var(); struct ihk_os_monitor *monitor = v->monitor; /* Release runq_lock before starting the idle loop. * See comments at release_runq_lock(). */ ihk_mc_spinlock_unlock(&(cpu_local_var(runq_lock)), cpu_local_var(runq_irqstate)); if(v->status == CPU_STATUS_RUNNING) v->status = CPU_STATUS_IDLE; cpu_enable_interrupt(); while (1) { cpu_local_var(current)->status = PS_STOPPED; schedule(); cpu_local_var(current)->status = PS_RUNNING; cpu_disable_interrupt(); /* See if we need to migrate a process somewhere */ if (v->flags & CPU_FLAG_NEED_MIGRATE) { do_migrate(); v->flags &= ~CPU_FLAG_NEED_MIGRATE; } /* * XXX: KLUDGE: It is desirable to be resolved in schedule(). * * There is a problem which causes wait4(2) hang when * wait4(2) called by a process races with its child process * termination. This is a quick fix for this problem. * * The problem occurrd in the following sequence. * 1) The parent process called schedule() from sys_wait4() to * wait for an event generated by the child process. * 2) schedule() resumed the idle process because there was no * runnable process in run queue. * 3) At the moment, the child process began to end. It set * the parent process runnable, and sent an interrupt to * the parent process's cpu. But this interrupt had no * effect because the parent process's cpu had not halted. * 4) The idle process was resumed, and halted for waiting for * the interrupt that had already been handled. */ if (v->status == CPU_STATUS_IDLE || v->status == CPU_STATUS_RESERVED) { long s; struct thread *t; s = ihk_mc_spinlock_lock(&v->runq_lock); list_for_each_entry(t, &v->runq, sched_list) { if (t->status == PS_RUNNING) { v->status = CPU_STATUS_RUNNING; break; } } ihk_mc_spinlock_unlock(&v->runq_lock, s); } if (v->status == CPU_STATUS_IDLE || v->status == CPU_STATUS_RESERVED) { /* No work to do? Consolidate the kmalloc free list */ kmalloc_consolidate_free_list(); monitor->status = IHK_OS_MONITOR_IDLE; cpu_local_var(current)->status = PS_INTERRUPTIBLE; cpu_safe_halt(); monitor->status = IHK_OS_MONITOR_KERNEL; monitor->counter++; cpu_local_var(current)->status = PS_RUNNING; } else { cpu_enable_interrupt(); } } } struct resource_set * new_resource_set() { struct resource_set *res; struct process_hash *phash; struct thread_hash *thash; struct process *pid1; int i; int hash; res = kmalloc(sizeof(struct resource_set), IHK_MC_AP_NOWAIT); phash = kmalloc(sizeof(struct process_hash), IHK_MC_AP_NOWAIT); thash = kmalloc(sizeof(struct thread_hash), IHK_MC_AP_NOWAIT); pid1 = kmalloc(sizeof(struct process), IHK_MC_AP_NOWAIT); if(!res || !phash || !thash || !pid1){ if(res) kfree(res); if(phash) kfree(phash); if(thash) kfree(thash); if(pid1) kfree(pid1); return NULL; } memset(res, '\0', sizeof(struct resource_set)); memset(phash, '\0', sizeof(struct process_hash)); memset(thash, '\0', sizeof(struct thread_hash)); memset(pid1, '\0', sizeof(struct process)); INIT_LIST_HEAD(&res->phys_mem_list); mcs_rwlock_init(&res->phys_mem_lock); mcs_rwlock_init(&res->cpu_set_lock); for(i = 0; i < HASH_SIZE; i++){ INIT_LIST_HEAD(&phash->list[i]); mcs_rwlock_init(&phash->lock[i]); } res->process_hash = phash; for(i = 0; i < HASH_SIZE; i++){ INIT_LIST_HEAD(&thash->list[i]); mcs_rwlock_init(&thash->lock[i]); } res->thread_hash = thash; init_process(pid1, pid1); pid1->pid = 1; hash = process_hash(1); list_add_tail(&pid1->hash_list, &phash->list[hash]); res->pid1 = pid1; return res; } void proc_init() { struct resource_set *res = new_resource_set(); int i; if(!res){ panic("no mem for resource_set"); } INIT_LIST_HEAD(&resource_set_list); mcs_rwlock_init(&resource_set_lock); for(i = 0; i < num_processors; i++){ CPU_SET(i, &res->cpu_set); } // TODO: setup for phys mem res->path = kmalloc(2, IHK_MC_AP_NOWAIT); if(!res->path){ panic("no mem for resource_set"); } res->path[0] = '/'; res->path[0] = '\0'; list_add_tail(&res->list, &resource_set_list); } void sched_init(void) { struct thread *idle_thread = &cpu_local_var(idle); struct resource_set *res; res = list_first_entry(&resource_set_list, struct resource_set, list); cpu_local_var(resource_set) = res; memset(idle_thread, 0, sizeof(struct thread)); memset(&cpu_local_var(idle_vm), 0, sizeof(struct process_vm)); memset(&cpu_local_var(idle_proc), 0, sizeof(struct process)); idle_thread->vm = &cpu_local_var(idle_vm); idle_thread->vm->address_space = &cpu_local_var(idle_asp); idle_thread->proc = &cpu_local_var(idle_proc); init_process(idle_thread->proc, NULL); cpu_local_var(idle_proc).nohost = 1; idle_thread->proc->vm = &cpu_local_var(idle_vm); list_add_tail(&idle_thread->siblings_list, &idle_thread->proc->children_list); ihk_mc_init_context(&idle_thread->ctx, NULL, idle); ihk_mc_spinlock_init(&idle_thread->vm->memory_range_lock); INIT_LIST_HEAD(&idle_thread->vm->vm_range_list); INIT_LIST_HEAD(&idle_thread->vm->vm_range_numa_policy_list); idle_thread->proc->pid = 0; idle_thread->tid = ihk_mc_get_processor_id(); INIT_LIST_HEAD(&cpu_local_var(runq)); cpu_local_var(runq_len) = 0; ihk_mc_spinlock_init(&cpu_local_var(runq_lock)); INIT_LIST_HEAD(&cpu_local_var(migq)); ihk_mc_spinlock_init(&cpu_local_var(migq_lock)); #ifdef TIMER_CPU_ID if (ihk_mc_get_processor_id() == TIMER_CPU_ID) { init_timers(); wake_timers_loop(); } #endif } static void double_rq_lock(struct cpu_local_var *v1, struct cpu_local_var *v2, unsigned long *irqstate) { if (v1 < v2) { *irqstate = ihk_mc_spinlock_lock(&v1->runq_lock); ihk_mc_spinlock_lock_noirq(&v2->runq_lock); } else { *irqstate = ihk_mc_spinlock_lock(&v2->runq_lock); ihk_mc_spinlock_lock_noirq(&v1->runq_lock); } } static void double_rq_unlock(struct cpu_local_var *v1, struct cpu_local_var *v2, unsigned long irqstate) { ihk_mc_spinlock_unlock_noirq(&v1->runq_lock); ihk_mc_spinlock_unlock(&v2->runq_lock, irqstate); } struct migrate_request { struct list_head list; struct thread *thread; struct waitq wq; }; static void do_migrate(void) { int cur_cpu_id = ihk_mc_get_processor_id(); struct cpu_local_var *cur_v = get_cpu_local_var(cur_cpu_id); struct migrate_request *req, *tmp; unsigned long irqstate = 0; irqstate = ihk_mc_spinlock_lock(&cur_v->migq_lock); list_for_each_entry_safe(req, tmp, &cur_v->migq, list) { int cpu_id; int old_cpu_id; struct cpu_local_var *v; /* 0. check if migration is necessary */ list_del(&req->list); if (req->thread->cpu_id != cur_cpu_id) /* already not here */ goto ack; if (CPU_ISSET(cur_cpu_id, &req->thread->cpu_set)) /* good affinity */ goto ack; /* 1. select CPU */ for (cpu_id = 0; cpu_id < CPU_SETSIZE; cpu_id++) if (CPU_ISSET(cpu_id, &req->thread->cpu_set)) break; if (CPU_SETSIZE == cpu_id) /* empty affinity (bug?) */ goto ack; /* 2. migrate thread */ v = get_cpu_local_var(cpu_id); double_rq_lock(cur_v, v, &irqstate); list_del(&req->thread->sched_list); cur_v->runq_len -= 1; old_cpu_id = req->thread->cpu_id; req->thread->cpu_id = cpu_id; list_add_tail(&req->thread->sched_list, &v->runq); v->runq_len += 1; /* update cpu_set of the VM for remote TLB invalidation */ cpu_clear_and_set(old_cpu_id, cpu_id, &req->thread->vm->address_space->cpu_set, &req->thread->vm->address_space->cpu_set_lock); dkprintf("%s: migrated TID %d from CPU %d to CPU %d\n", __FUNCTION__, req->thread->tid, old_cpu_id, cpu_id); v->flags |= CPU_FLAG_NEED_RESCHED; waitq_wakeup(&req->wq); double_rq_unlock(cur_v, v, irqstate); continue; ack: waitq_wakeup(&req->wq); } ihk_mc_spinlock_unlock(&cur_v->migq_lock, irqstate); } void set_timer() { struct cpu_local_var *v = get_this_cpu_local_var(); /* Toggle timesharing if CPU core is oversubscribed */ if (v->runq_len > 1 || v->current->itimer_enabled) { if (!cpu_local_var(timer_enabled)) { lapic_timer_enable(10000000); cpu_local_var(timer_enabled) = 1; } } else { if (cpu_local_var(timer_enabled)) { lapic_timer_disable(); cpu_local_var(timer_enabled) = 0; } } } /* * NOTE: it is assumed that a wait-queue (or futex queue) is * set before calling this function. * NOTE: one must set thread->spin_sleep to 1 before evaluating * the wait condition to avoid lost wake-ups. */ void spin_sleep_or_schedule(void) { struct thread *thread = cpu_local_var(current); struct cpu_local_var *v; int do_schedule = 0; int woken = 0; long irqstate; /* Try to spin sleep */ irqstate = ihk_mc_spinlock_lock(&thread->spin_sleep_lock); if (thread->spin_sleep == 0) { dkprintf("%s: caught a lost wake-up!\n", __FUNCTION__); } ihk_mc_spinlock_unlock(&thread->spin_sleep_lock, irqstate); for (;;) { /* Check if we need to reschedule */ irqstate = ihk_mc_spinlock_lock(&(get_this_cpu_local_var()->runq_lock)); v = get_this_cpu_local_var(); if (v->flags & CPU_FLAG_NEED_RESCHED || v->runq_len > 1) { do_schedule = 1; } ihk_mc_spinlock_unlock(&v->runq_lock, irqstate); /* Check if we were woken up */ irqstate = ihk_mc_spinlock_lock(&thread->spin_sleep_lock); if (thread->spin_sleep == 0) { woken = 1; } /* Indicate that we are not spinning any more */ if (do_schedule) { thread->spin_sleep = 0; } ihk_mc_spinlock_unlock(&thread->spin_sleep_lock, irqstate); if (woken) { return; } if (do_schedule) { break; } cpu_pause(); } schedule(); } void schedule(void) { struct cpu_local_var *v; struct thread *next, *prev, *thread, *tmp = NULL; int switch_ctx = 0; struct thread *last; if (cpu_local_var(no_preempt)) { kprintf("%s: WARNING can't schedule() while no preemption, cnt: %d\n", __FUNCTION__, cpu_local_var(no_preempt)); return; } redo: cpu_local_var(runq_irqstate) = ihk_mc_spinlock_lock(&(get_this_cpu_local_var()->runq_lock)); v = get_this_cpu_local_var(); next = NULL; prev = v->current; v->flags &= ~CPU_FLAG_NEED_RESCHED; /* All runnable processes are on the runqueue */ if (prev && prev != &cpu_local_var(idle)) { list_del(&prev->sched_list); --v->runq_len; /* Round-robin if not exited yet */ if (prev->status != PS_EXITED) { list_add_tail(&prev->sched_list, &(v->runq)); ++v->runq_len; } } if (v->flags & CPU_FLAG_NEED_MIGRATE) { next = &cpu_local_var(idle); } else { /* Pick a new running process or one that has a pending signal */ list_for_each_entry_safe(thread, tmp, &(v->runq), sched_list) { if (thread->status == PS_RUNNING || (thread->status == PS_INTERRUPTIBLE && hassigpending(thread))) { next = thread; break; } } /* No process? Run idle.. */ if (!next) { next = &cpu_local_var(idle); v->status = v->runq_len? CPU_STATUS_RESERVED: CPU_STATUS_IDLE; } } if (prev != next) { switch_ctx = 1; v->current = next; reset_cputime(); } set_timer(); if (switch_ctx) { dkprintf("schedule: %d => %d \n", prev ? prev->tid : 0, next ? next->tid : 0); if (prev && prev->ptrace_debugreg) { save_debugreg(prev->ptrace_debugreg); if (next->ptrace_debugreg == NULL) { clear_debugreg(); } } if (next->ptrace_debugreg) { restore_debugreg(next->ptrace_debugreg); } /* Take care of floating point registers except for idle process */ if (prev && prev != &cpu_local_var(idle)) { save_fp_regs(prev); } if (next != &cpu_local_var(idle)) { restore_fp_regs(next); } if (prev && prev->vm->address_space->page_table != next->vm->address_space->page_table) ihk_mc_load_page_table(next->vm->address_space->page_table); dkprintf("[%d] schedule: tlsblock_base: 0x%lX\n", ihk_mc_get_processor_id(), next->tlsblock_base); /* Set up new TLS.. */ ihk_mc_init_user_tlsbase(next->uctx, next->tlsblock_base); /* Performance monitoring inherit */ if(next->proc->monitoring_event) { if(next->proc->perf_status == PP_RESET) perf_reset(next->proc->monitoring_event); if(next->proc->perf_status != PP_COUNT) { perf_reset(next->proc->monitoring_event); perf_start(next->proc->monitoring_event); } } if (prev) { last = ihk_mc_switch_context(&prev->ctx, &next->ctx, prev); } else { last = ihk_mc_switch_context(NULL, &next->ctx, prev); } /* * We must hold the lock throughout the context switch, otherwise * an IRQ could deschedule this process between page table loading and * context switching and leave the execution in an inconsistent state. * Since we may be migrated to another core meanwhile, we refer * directly to cpu_local_var. */ ihk_mc_spinlock_unlock(&(cpu_local_var(runq_lock)), cpu_local_var(runq_irqstate)); if ((last != NULL) && (last->status == PS_EXITED)) { release_thread(last); } /* Have we migrated to another core meanwhile? */ if (v != get_this_cpu_local_var()) { goto redo; } } else { ihk_mc_spinlock_unlock(&(cpu_local_var(runq_lock)), cpu_local_var(runq_irqstate)); } } void release_cpuid(int cpuid) { if (!get_cpu_local_var(cpuid)->runq_len) get_cpu_local_var(cpuid)->status = CPU_STATUS_IDLE; } void check_need_resched(void) { unsigned long irqstate; struct cpu_local_var *v = get_this_cpu_local_var(); irqstate = ihk_mc_spinlock_lock(&v->runq_lock); if (v->flags & CPU_FLAG_NEED_RESCHED) { if (v->in_interrupt && (v->flags & CPU_FLAG_NEED_MIGRATE)) { kprintf("no migration in IRQ context\n"); ihk_mc_spinlock_unlock(&v->runq_lock, irqstate); return; } ihk_mc_spinlock_unlock(&v->runq_lock, irqstate); schedule(); } else { ihk_mc_spinlock_unlock(&v->runq_lock, irqstate); } } int __sched_wakeup_thread(struct thread *thread, int valid_states, int runq_locked) { int status; unsigned long irqstate; struct cpu_local_var *v = get_cpu_local_var(thread->cpu_id); struct process *proc = thread->proc; struct mcs_rwlock_node updatelock; dkprintf("%s: proc->pid=%d, valid_states=%08x, " "proc->status=%08x, proc->cpu_id=%d,my cpu_id=%d\n", __FUNCTION__, proc->pid, valid_states, thread->status, thread->cpu_id, ihk_mc_get_processor_id()); irqstate = ihk_mc_spinlock_lock(&(thread->spin_sleep_lock)); if (thread->spin_sleep == 1) { dkprintf("%s: spin wakeup: cpu_id: %d\n", __FUNCTION__, thread->cpu_id); status = 0; } thread->spin_sleep = 0; ihk_mc_spinlock_unlock(&(thread->spin_sleep_lock), irqstate); if (!runq_locked) { irqstate = ihk_mc_spinlock_lock(&(v->runq_lock)); } if (thread->status & valid_states) { mcs_rwlock_writer_lock_noirq(&proc->update_lock, &updatelock); if (proc->status != PS_EXITED) proc->status = PS_RUNNING; mcs_rwlock_writer_unlock_noirq(&proc->update_lock, &updatelock); xchg4((int *)(&thread->status), PS_RUNNING); status = 0; } else { status = -EINVAL; } if (!runq_locked) { ihk_mc_spinlock_unlock(&(v->runq_lock), irqstate); } if (!status && (thread->cpu_id != ihk_mc_get_processor_id())) { dkprintf("%s: issuing IPI, thread->cpu_id=%d\n", __FUNCTION__, thread->cpu_id); ihk_mc_interrupt_cpu( get_x86_cpu_local_variable(thread->cpu_id)->apic_id, 0xd1); } return status; } int sched_wakeup_thread_locked(struct thread *thread, int valid_states) { return __sched_wakeup_thread(thread, valid_states, 1); } int sched_wakeup_thread(struct thread *thread, int valid_states) { return __sched_wakeup_thread(thread, valid_states, 0); } /* * 1. Add current process to waitq * 2. Queue migration request into the target CPU's queue * 3. Kick migration on the CPU * 4. Wait for completion of the migration * * struct migrate_request { * list //migq, * wq, * proc * } * * [expected processing of the target CPU] * 1. Interrupted by IPI * 2. call schedule() via check_resched() * 3. Do migration * 4. Wake up this thread */ void sched_request_migrate(int cpu_id, struct thread *thread) { struct cpu_local_var *v = get_cpu_local_var(cpu_id); struct migrate_request req = { .thread = thread }; unsigned long irqstate; DECLARE_WAITQ_ENTRY_LOCKED(entry, cpu_local_var(current)); waitq_init(&req.wq); waitq_prepare_to_wait(&req.wq, &entry, PS_UNINTERRUPTIBLE); irqstate = ihk_mc_spinlock_lock(&v->migq_lock); list_add_tail(&req.list, &v->migq); ihk_mc_spinlock_unlock(&v->migq_lock, irqstate); irqstate = ihk_mc_spinlock_lock(&v->runq_lock); v->flags |= CPU_FLAG_NEED_RESCHED | CPU_FLAG_NEED_MIGRATE; v->status = CPU_STATUS_RUNNING; ihk_mc_spinlock_unlock(&v->runq_lock, irqstate); if (cpu_id != ihk_mc_get_processor_id()) ihk_mc_interrupt_cpu(/* Kick scheduler */ get_x86_cpu_local_variable(cpu_id)->apic_id, 0xd1); dkprintf("%s: tid: %d -> cpu: %d\n", __FUNCTION__, thread->tid, cpu_id); schedule(); waitq_finish_wait(&req.wq, &entry); } /* Runq lock must be held here */ void __runq_add_thread(struct thread *thread, int cpu_id) { struct cpu_local_var *v = get_cpu_local_var(cpu_id); list_add_tail(&thread->sched_list, &v->runq); ++v->runq_len; v->flags |= CPU_FLAG_NEED_RESCHED; thread->cpu_id = cpu_id; //thread->proc->status = PS_RUNNING; /* not set here */ get_cpu_local_var(cpu_id)->status = CPU_STATUS_RUNNING; dkprintf("runq_add_proc(): tid %d added to CPU[%d]'s runq\n", thread->tid, cpu_id); } void runq_add_thread(struct thread *thread, int cpu_id) { struct cpu_local_var *v = get_cpu_local_var(cpu_id); unsigned long irqstate; irqstate = ihk_mc_spinlock_lock(&(v->runq_lock)); __runq_add_thread(thread, cpu_id); ihk_mc_spinlock_unlock(&(v->runq_lock), irqstate); procfs_create_thread(thread); /* Kick scheduler */ if (cpu_id != ihk_mc_get_processor_id()) ihk_mc_interrupt_cpu( get_x86_cpu_local_variable(cpu_id)->apic_id, 0xd1); } /* NOTE: shouldn't remove a running process! */ void runq_del_thread(struct thread *thread, int cpu_id) { struct cpu_local_var *v = get_cpu_local_var(cpu_id); unsigned long irqstate; irqstate = ihk_mc_spinlock_lock(&(v->runq_lock)); list_del(&thread->sched_list); --v->runq_len; if (!v->runq_len) get_cpu_local_var(cpu_id)->status = CPU_STATUS_IDLE; ihk_mc_spinlock_unlock(&(v->runq_lock), irqstate); } struct thread * find_thread(int pid, int tid, struct mcs_rwlock_node_irqsave *lock) { struct thread *thread; struct thread_hash *thash = cpu_local_var(resource_set)->thread_hash; int hash = thread_hash(tid); if(tid <= 0) return NULL; mcs_rwlock_reader_lock(&thash->lock[hash], lock); retry: list_for_each_entry(thread, &thash->list[hash], hash_list){ if(thread->tid == tid){ if(pid <= 0) return thread; if(thread->proc->pid == pid) return thread; } } /* If no thread with pid == tid was found, then we may be looking for a * specific thread (not the main thread of the process), try to find it * based on tid only */ if (pid > 0 && pid == tid) { pid = 0; goto retry; } mcs_rwlock_reader_unlock(&thash->lock[hash], lock); return NULL; } void thread_unlock(struct thread *thread, struct mcs_rwlock_node_irqsave *lock) { struct thread_hash *thash = cpu_local_var(resource_set)->thread_hash; int hash; if(!thread) return; hash = thread_hash(thread->tid); mcs_rwlock_reader_unlock(&thash->lock[hash], lock); } struct process * find_process(int pid, struct mcs_rwlock_node_irqsave *lock) { struct process *proc; struct process_hash *phash = cpu_local_var(resource_set)->process_hash; int hash = process_hash(pid); if(pid <= 0) return NULL; mcs_rwlock_reader_lock(&phash->lock[hash], lock); list_for_each_entry(proc, &phash->list[hash], hash_list){ if(proc->pid == pid){ return proc; } } mcs_rwlock_reader_unlock(&phash->lock[hash], lock); return NULL; } void process_unlock(struct process *proc, struct mcs_rwlock_node_irqsave *lock) { struct process_hash *phash = cpu_local_var(resource_set)->process_hash; int hash; if(!proc) return; hash = process_hash(proc->pid); mcs_rwlock_reader_unlock(&phash->lock[hash], lock); } void debug_log(unsigned long arg) { struct process *p; struct thread *t; int i; struct mcs_rwlock_node_irqsave lock; struct resource_set *rset = cpu_local_var(resource_set); struct process_hash *phash = rset->process_hash; struct thread_hash *thash = rset->thread_hash; switch(arg){ case 1: for(i = 0; i < HASH_SIZE; i++){ __mcs_rwlock_reader_lock(&phash->lock[i], &lock); list_for_each_entry(p, &phash->list[i], hash_list){ kprintf("pid=%d ppid=%d status=%d\n", p->pid, p->ppid_parent->pid, p->status); } __mcs_rwlock_reader_unlock(&phash->lock[i], &lock); } break; case 2: for(i = 0; i < HASH_SIZE; i++){ __mcs_rwlock_reader_lock(&thash->lock[i], &lock); list_for_each_entry(t, &thash->list[i], hash_list){ kprintf("cpu=%d pid=%d tid=%d status=%d offload=%d\n", t->cpu_id, t->proc->pid, t->tid, t->status, t->in_syscall_offload); } __mcs_rwlock_reader_unlock(&thash->lock[i], &lock); } break; case 3: for(i = 0; i < HASH_SIZE; i++){ if(phash->lock[i].node) kprintf("phash[i] is locked\n"); list_for_each_entry(p, &phash->list[i], hash_list){ kprintf("pid=%d ppid=%d status=%d\n", p->pid, p->ppid_parent->pid, p->status); } } break; case 4: for(i = 0; i < HASH_SIZE; i++){ if(thash->lock[i].node) kprintf("thash[i] is locked\n"); list_for_each_entry(t, &thash->list[i], hash_list){ kprintf("cpu=%d pid=%d tid=%d status=%d\n", t->cpu_id, t->proc->pid, t->tid, t->status); } } break; } }