Background and Motivation ========================= With the growing complexity of high-end supercomputers, the current system software stack faces significant challenges as we move forward to exascale and beyond. The necessity to deal with extreme degree of parallelism, heterogeneous architectures, multiple levels of memory hierarchy, power constraints, etc., advocates operating systems that can rapidly adapt to new hardware requirements, and that can support novel programming paradigms and runtime systems. On the other hand, a new class of more dynamic and complex applications are also on the horizon, with an increasing demand for application constructs such as in-situ analysis, workflows, elaborate monitoring and performance tools. This complexity relies not only on the rich features of POSIX, but also on the Linux APIs (such as the */proc*, */sys* filesystems, etc.) in particular. Two Traditional HPC OS Approaches --------------------------------- Traditionally, light-weight operating systems specialized for HPC followed two approaches to tackle scalable execution of large-scale applications. In the full weight kernel (FWK) approach, a full Linux environment is taken as the basis, and features that inhibit attaining HPC scalability are removed, i.e., making it light-weight. The pure light-weight kernel (LWK) approach, on the other hand, starts from scratch and effort is undertaken to add sufficient functionality so that it provides a familiar API, typically something close to that of a general purpose OS, while at the same time it retains the desired scalability and reliability attributes. Neither of these approaches yields a fully Linux compatible environment. The Multi-kernel Approach ------------------------- A hybrid approach recognized recently by the system software community is to run Linux simultaneously with a lightweight kernel on compute nodes and multiple research projects are now pursuing this direction. The basic idea is that simulations run on an HPC tailored lightweight kernel, ensuring the necessary isolation for noiseless execution of parallel applications, but Linux is leveraged so that the full POSIX API is supported. Additionally, the small code base of the LWK can also facilitate rapid prototyping for new, exotic hardware features. Nevertheless, the questions of how to share node resources between the two types of kernels, where do device drivers execute, how exactly do the two kernels interact with each other and to what extent are they integrated, remain subjects of ongoing debate.