Files
mckernel/kernel/futex.c
Masamichi Takagi bb4317beaf uti: futex: Propagate -ERESTARTSYS returned by wait_event_interruptible()
Change-Id: Id36c4df0e0a8e1f64b12c635c0502f63552ba50b
2018-09-04 19:52:11 +09:00

992 lines
28 KiB
C

/**
* \file futex.c
* Licence details are found in the file LICENSE.
*
* \brief
* Futex adaptation to McKernel
*
* \author Balazs Gerofi <bgerofi@riken.jp> \par
* Copyright (C) 2012 RIKEN AICS
*
*
* HISTORY:
*
*/
/*
* Fast Userspace Mutexes (which I call "Futexes!").
* (C) Rusty Russell, IBM 2002
*
* Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
* (C) Copyright 2003 Red Hat Inc, All Rights Reserved
*
* Removed page pinning, fix privately mapped COW pages and other cleanups
* (C) Copyright 2003, 2004 Jamie Lokier
*
* Robust futex support started by Ingo Molnar
* (C) Copyright 2006 Red Hat Inc, All Rights Reserved
* Thanks to Thomas Gleixner for suggestions, analysis and fixes.
*
* PI-futex support started by Ingo Molnar and Thomas Gleixner
* Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
* Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
*
* PRIVATE futexes by Eric Dumazet
* Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
*
* Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
* Copyright (C) IBM Corporation, 2009
* Thanks to Thomas Gleixner for conceptual design and careful reviews.
*
* Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
* enough at me, Linus for the original (flawed) idea, Matthew
* Kirkwood for proof-of-concept implementation.
*
* "The futexes are also cursed."
* "But they come in a choice of three flavours!"
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <process.h>
#include <futex.h>
#include <jhash.h>
#include <ihk/lock.h>
#include <ihk/atomic.h>
#include <list.h>
#include <plist.h>
#include <cls.h>
#include <kmsg.h>
#include <timer.h>
#include <debug.h>
#include <syscall.h>
//#define DEBUG_PRINT_FUTEX
#ifdef DEBUG_PRINT_FUTEX
#undef DDEBUG_DEFAULT
#define DDEBUG_DEFAULT DDEBUG_PRINT
#define uti_dkprintf(...) do { ((clv_override && linux_printk) ? (*linux_printk) : kprintf)(__VA_ARGS__); } while (0)
#else
#define uti_dkprintf(...) do { } while (0)
#endif
#define uti_kprintf(...) do { ((clv_override && linux_printk) ? (*linux_printk) : kprintf)(__VA_ARGS__); } while (0)
unsigned long ihk_mc_get_ns_per_tsc(void);
int futex_cmpxchg_enabled;
/**
* struct futex_q - The hashed futex queue entry, one per waiting task
* @task: the task waiting on the futex
* @lock_ptr: the hash bucket lock
* @key: the key the futex is hashed on
* @requeue_pi_key: the requeue_pi target futex key
* @bitset: bitset for the optional bitmasked wakeup
*
* We use this hashed waitqueue, instead of a normal wait_queue_t, so
* we can wake only the relevant ones (hashed queues may be shared).
*
* A futex_q has a woken state, just like tasks have TASK_RUNNING.
* It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
* The order of wakup is always to make the first condition true, then
* the second.
*
* PI futexes are typically woken before they are removed from the hash list via
* the rt_mutex code. See unqueue_me_pi().
*/
struct futex_q {
struct plist_node list;
struct thread *task;
ihk_spinlock_t *lock_ptr;
union futex_key key;
union futex_key *requeue_pi_key;
uint32_t bitset;
/* Used to wake-up a thread running on a Linux CPU */
void *uti_futex_resp;
};
/*
* Hash buckets are shared by all the futex_keys that hash to the same
* location. Each key may have multiple futex_q structures, one for each task
* waiting on a futex.
*/
struct futex_hash_bucket {
ihk_spinlock_t lock;
struct plist_head chain;
};
static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
/*
* We hash on the keys returned from get_futex_key (see below).
*/
static struct futex_hash_bucket *hash_futex(union futex_key *key)
{
uint32_t hash = jhash2((uint32_t*)&key->both.word,
(sizeof(key->both.word)+sizeof(key->both.ptr))/4,
key->both.offset);
return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
}
/*
* Return 1 if two futex_keys are equal, 0 otherwise.
*/
static inline int match_futex(union futex_key *key1, union futex_key *key2)
{
return (key1 && key2
&& key1->both.word == key2->both.word
&& key1->both.ptr == key2->both.ptr
&& key1->both.offset == key2->both.offset);
}
/*
* Take a reference to the resource addressed by a key.
* Can be called while holding spinlocks.
*
*/
static void get_futex_key_refs(union futex_key *key)
{
/* RIKEN: no swapping in McKernel */
return;
}
/*
* Drop a reference to the resource addressed by a key.
* The hash bucket spinlock must not be held.
*/
static void drop_futex_key_refs(union futex_key *key)
{
/* RIKEN: no swapping in McKernel */
return;
}
/**
* get_futex_key() - Get parameters which are the keys for a futex
* @uaddr: virtual address of the futex
* @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
* @key: address where result is stored.
*
* Returns a negative error code or 0
* The key words are stored in *key on success.
*
* For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
* offset_within_page). For private mappings, it's (uaddr, current->mm).
* We can usually work out the index without swapping in the page.
*
* lock_page() might sleep, the caller should not hold a spinlock.
*/
static int
get_futex_key(uint32_t *uaddr, int fshared, union futex_key *key, struct cpu_local_var *clv_override)
{
unsigned long address = (unsigned long)uaddr;
unsigned long phys;
struct thread *thread = cpu_local_var_with_override(current, clv_override);
struct process_vm *mm = thread->vm;
/*
* The futex address must be "naturally" aligned.
*/
key->both.offset = address % PAGE_SIZE;
if (((address % sizeof(uint32_t)) != 0))
return -EINVAL;
address -= key->both.offset;
/*
* PROCESS_PRIVATE futexes are fast.
* As the mm cannot disappear under us and the 'key' only needs
* virtual address, we dont even have to find the underlying vma.
* Note : We do have to check 'uaddr' is a valid user address,
* but access_ok() should be faster than find_vma()
*/
if (!fshared) {
key->private.mm = mm;
key->private.address = address;
get_futex_key_refs(key);
return 0;
}
key->both.offset |= FUT_OFF_MMSHARED;
retry_v2p:
/* Just use physical address of page, McKernel does not do swapping */
if (ihk_mc_pt_virt_to_phys(mm->address_space->page_table,
(void *)uaddr, &phys)) {
/* Check if we can fault in page */
if (page_fault_process_vm(mm, uaddr, PF_POPULATE | PF_WRITE | PF_USER)) {
kprintf("error: get_futex_key() virt to phys translation failed\n");
return -EFAULT;
}
goto retry_v2p;
}
key->shared.phys = (void *)phys;
key->shared.pgoff = 0;
return 0;
}
static inline
void put_futex_key(int fshared, union futex_key *key)
{
drop_futex_key_refs(key);
}
static int cmpxchg_futex_value_locked(uint32_t __user *uaddr, uint32_t uval, uint32_t newval)
{
int curval;
/* RIKEN: futexes are on not swappable memory */
curval = futex_atomic_cmpxchg_inatomic((int*)uaddr, (int)uval, (int)newval);
return curval;
}
/*
* The hash bucket lock must be held when this is called.
* Afterwards, the futex_q must not be accessed.
*/
static void wake_futex(struct futex_q *q, struct cpu_local_var *clv_override)
{
struct thread *p = q->task;
/*
* We set q->lock_ptr = NULL _before_ we wake up the task. If
* a non futex wake up happens on another CPU then the task
* might exit and p would dereference a non existing task
* struct. Prevent this by holding a reference on p across the
* wake up.
*/
plist_del(&q->list, &q->list.plist);
/*
* The waiting task can free the futex_q as soon as
* q->lock_ptr = NULL is written, without taking any locks. A
* memory barrier is required here to prevent the following
* store to lock_ptr from getting ahead of the plist_del.
*/
barrier();
q->lock_ptr = NULL;
if (q->uti_futex_resp) {
int rc;
uti_dkprintf("wake_futex(): waking up migrated-to-Linux thread (tid %d),uti_futex_resp=%p\n", p->tid, q->uti_futex_resp);
/* TODO: Add the case when a Linux thread waking up another Linux thread */
if (clv_override) {
uti_dkprintf("%s: ERROR: A Linux thread is waking up migrated-to-Linux thread\n", __FUNCTION__);
}
if (p->spin_sleep == 0) {
uti_dkprintf("%s: INFO: woken up by someone else\n", __FUNCTION__);
}
struct ikc_scd_packet pckt;
struct ihk_ikc_channel_desc *resp_channel = cpu_local_var_with_override(ikc2linux, clv_override);
pckt.msg = SCD_MSG_FUTEX_WAKE;
pckt.futex.resp = q->uti_futex_resp;
pckt.futex.spin_sleep = &p->spin_sleep;
rc = ihk_ikc_send(resp_channel, &pckt, 0);
if (rc) {
uti_dkprintf("%s: ERROR: ihk_ikc_send returned %d, resp_channel=%p\n", __FUNCTION__, rc, resp_channel);
}
} else {
uti_dkprintf("wake_futex(): waking up McKernel thread (tid %d)\n", p->tid);
sched_wakeup_thread(p, PS_NORMAL);
}
}
/*
* Express the locking dependencies for lockdep:
*/
static inline void
double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
if (hb1 <= hb2) {
ihk_mc_spinlock_lock_noirq(&hb1->lock);
if (hb1 < hb2)
ihk_mc_spinlock_lock_noirq(&hb2->lock);
} else { /* hb1 > hb2 */
ihk_mc_spinlock_lock_noirq(&hb2->lock);
ihk_mc_spinlock_lock_noirq(&hb1->lock);
}
}
static inline void
double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
ihk_mc_spinlock_unlock_noirq(&hb1->lock);
if (hb1 != hb2)
ihk_mc_spinlock_unlock_noirq(&hb2->lock);
}
/*
* Wake up waiters matching bitset queued on this futex (uaddr).
*/
static int futex_wake(uint32_t *uaddr, int fshared, int nr_wake, uint32_t bitset, struct cpu_local_var *clv_override)
{
struct futex_hash_bucket *hb;
struct futex_q *this, *next;
struct plist_head *head;
union futex_key key = FUTEX_KEY_INIT;
int ret;
if (!bitset)
return -EINVAL;
ret = get_futex_key(uaddr, fshared, &key, clv_override);
if ((ret != 0))
goto out;
hb = hash_futex(&key);
ihk_mc_spinlock_lock_noirq(&hb->lock);
head = &hb->chain;
plist_for_each_entry_safe(this, next, head, list) {
if (match_futex (&this->key, &key)) {
/* RIKEN: no pi state... */
/* Check if one of the bits is set in both bitsets */
if (!(this->bitset & bitset))
continue;
wake_futex(this, clv_override);
if (++ret >= nr_wake)
break;
}
}
ihk_mc_spinlock_unlock_noirq(&hb->lock);
put_futex_key(fshared, &key);
out:
return ret;
}
/*
* Wake up all waiters hashed on the physical page that is mapped
* to this virtual address:
*/
static int
futex_wake_op(uint32_t *uaddr1, int fshared, uint32_t *uaddr2,
int nr_wake, int nr_wake2, int op,
struct cpu_local_var *clv_override)
{
union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
struct futex_hash_bucket *hb1, *hb2;
struct plist_head *head;
struct futex_q *this, *next;
int ret, op_ret;
retry:
ret = get_futex_key(uaddr1, fshared, &key1, clv_override);
if ((ret != 0))
goto out;
ret = get_futex_key(uaddr2, fshared, &key2, clv_override);
if ((ret != 0))
goto out_put_key1;
hb1 = hash_futex(&key1);
hb2 = hash_futex(&key2);
retry_private:
double_lock_hb(hb1, hb2);
op_ret = futex_atomic_op_inuser(op, (int*)uaddr2);
if ((op_ret < 0)) {
double_unlock_hb(hb1, hb2);
if ((op_ret != -EFAULT)) {
ret = op_ret;
goto out_put_keys;
}
/* RIKEN: set ret to 0 as if fault_in_user_writeable() returned it */
ret = 0;
if (!fshared)
goto retry_private;
put_futex_key(fshared, &key2);
put_futex_key(fshared, &key1);
goto retry;
}
head = &hb1->chain;
plist_for_each_entry_safe(this, next, head, list) {
if (match_futex (&this->key, &key1)) {
wake_futex(this, clv_override);
if (++ret >= nr_wake)
break;
}
}
if (op_ret > 0) {
head = &hb2->chain;
op_ret = 0;
plist_for_each_entry_safe(this, next, head, list) {
if (match_futex (&this->key, &key2)) {
wake_futex(this, clv_override);
if (++op_ret >= nr_wake2)
break;
}
}
ret += op_ret;
}
double_unlock_hb(hb1, hb2);
out_put_keys:
put_futex_key(fshared, &key2);
out_put_key1:
put_futex_key(fshared, &key1);
out:
return ret;
}
/**
* requeue_futex() - Requeue a futex_q from one hb to another
* @q: the futex_q to requeue
* @hb1: the source hash_bucket
* @hb2: the target hash_bucket
* @key2: the new key for the requeued futex_q
*/
static inline
void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
struct futex_hash_bucket *hb2, union futex_key *key2)
{
/*
* If key1 and key2 hash to the same bucket, no need to
* requeue.
*/
if ((&hb1->chain != &hb2->chain)) {
plist_del(&q->list, &hb1->chain);
plist_add(&q->list, &hb2->chain);
q->lock_ptr = &hb2->lock;
#ifdef CONFIG_DEBUG_PI_LIST
q->list.plist.spinlock = &hb2->lock;
#endif
}
get_futex_key_refs(key2);
q->key = *key2;
}
/**
* futex_requeue() - Requeue waiters from uaddr1 to uaddr2
* uaddr1: source futex user address
* uaddr2: target futex user address
* nr_wake: number of waiters to wake (must be 1 for requeue_pi)
* nr_requeue: number of waiters to requeue (0-INT_MAX)
* requeue_pi: if we are attempting to requeue from a non-pi futex to a
* pi futex (pi to pi requeue is not supported)
*
* Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
* uaddr2 atomically on behalf of the top waiter.
*
* Returns:
* >=0 - on success, the number of tasks requeued or woken
* <0 - on error
*/
static int futex_requeue(uint32_t *uaddr1, int fshared, uint32_t *uaddr2,
int nr_wake, int nr_requeue, uint32_t *cmpval,
int requeue_pi, struct cpu_local_var *clv_override)
{
union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
int drop_count = 0, task_count = 0, ret;
struct futex_hash_bucket *hb1, *hb2;
struct plist_head *head1;
struct futex_q *this, *next;
ret = get_futex_key(uaddr1, fshared, &key1, clv_override);
if ((ret != 0))
goto out;
ret = get_futex_key(uaddr2, fshared, &key2, clv_override);
if ((ret != 0))
goto out_put_key1;
hb1 = hash_futex(&key1);
hb2 = hash_futex(&key2);
double_lock_hb(hb1, hb2);
if ((cmpval != NULL)) {
uint32_t curval;
ret = get_futex_value_locked(&curval, uaddr1);
if (curval != *cmpval) {
ret = -EAGAIN;
goto out_unlock;
}
}
head1 = &hb1->chain;
plist_for_each_entry_safe(this, next, head1, list) {
if (task_count - nr_wake >= nr_requeue)
break;
if (!match_futex(&this->key, &key1))
continue;
/*
* Wake nr_wake waiters. For requeue_pi, if we acquired the
* lock, we already woke the top_waiter. If not, it will be
* woken by futex_unlock_pi().
*/
/* RIKEN: no requeue_pi at this moment */
if (++task_count <= nr_wake) {
wake_futex(this, clv_override);
continue;
}
requeue_futex(this, hb1, hb2, &key2);
drop_count++;
}
out_unlock:
double_unlock_hb(hb1, hb2);
/*
* drop_futex_key_refs() must be called outside the spinlocks. During
* the requeue we moved futex_q's from the hash bucket at key1 to the
* one at key2 and updated their key pointer. We no longer need to
* hold the references to key1.
*/
while (--drop_count >= 0)
drop_futex_key_refs(&key1);
put_futex_key(fshared, &key2);
out_put_key1:
put_futex_key(fshared, &key1);
out:
return ret ? ret : task_count;
}
/* The key must be already stored in q->key. */
static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
{
struct futex_hash_bucket *hb;
get_futex_key_refs(&q->key);
hb = hash_futex(&q->key);
q->lock_ptr = &hb->lock;
ihk_mc_spinlock_lock_noirq(&hb->lock);
return hb;
}
static inline void
queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
{
ihk_mc_spinlock_unlock_noirq(&hb->lock);
drop_futex_key_refs(&q->key);
}
/**
* queue_me() - Enqueue the futex_q on the futex_hash_bucket
* @q: The futex_q to enqueue
* @hb: The destination hash bucket
*
* The hb->lock must be held by the caller, and is released here. A call to
* queue_me() is typically paired with exactly one call to unqueue_me(). The
* exceptions involve the PI related operations, which may use unqueue_me_pi()
* or nothing if the unqueue is done as part of the wake process and the unqueue
* state is implicit in the state of woken task (see futex_wait_requeue_pi() for
* an example).
*/
static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb, struct cpu_local_var *clv_override)
{
int prio;
/*
* The priority used to register this element is
* - either the real thread-priority for the real-time threads
* (i.e. threads with a priority lower than MAX_RT_PRIO)
* - or MAX_RT_PRIO for non-RT threads.
* Thus, all RT-threads are woken first in priority order, and
* the others are woken last, in FIFO order.
*
* RIKEN: no priorities at the moment, everyone is 10.
*/
prio = 10;
plist_node_init(&q->list, prio);
#ifdef CONFIG_DEBUG_PI_LIST
q->list.plist.spinlock = &hb->lock;
#endif
plist_add(&q->list, &hb->chain);
q->task = cpu_local_var_with_override(current, clv_override);
ihk_mc_spinlock_unlock_noirq(&hb->lock);
}
/**
* unqueue_me() - Remove the futex_q from its futex_hash_bucket
* @q: The futex_q to unqueue
*
* The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
* be paired with exactly one earlier call to queue_me().
*
* Returns:
* 1 - if the futex_q was still queued (and we removed unqueued it)
* 0 - if the futex_q was already removed by the waking thread
*/
static int unqueue_me(struct futex_q *q)
{
ihk_spinlock_t *lock_ptr;
int ret = 0;
/* In the common case we don't take the spinlock, which is nice. */
retry:
lock_ptr = q->lock_ptr;
barrier();
if (lock_ptr != NULL) {
ihk_mc_spinlock_lock_noirq(lock_ptr);
/*
* q->lock_ptr can change between reading it and
* spin_lock(), causing us to take the wrong lock. This
* corrects the race condition.
*
* Reasoning goes like this: if we have the wrong lock,
* q->lock_ptr must have changed (maybe several times)
* between reading it and the spin_lock(). It can
* change again after the spin_lock() but only if it was
* already changed before the spin_lock(). It cannot,
* however, change back to the original value. Therefore
* we can detect whether we acquired the correct lock.
*/
if (lock_ptr != q->lock_ptr) {
ihk_mc_spinlock_unlock_noirq(lock_ptr);
goto retry;
}
plist_del(&q->list, &q->list.plist);
ihk_mc_spinlock_unlock_noirq(lock_ptr);
ret = 1;
}
drop_futex_key_refs(&q->key);
return ret;
}
/**
* futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
* @hb: the futex hash bucket, must be locked by the caller
* @q: the futex_q to queue up on
* @timeout: the prepared hrtimer_sleeper, or null for no timeout
*/
/* RIKEN: this function has been rewritten so that it returns the remaining
* time in case we are waken.
*/
static int64_t futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
uint64_t timeout, struct cpu_local_var *clv_override)
{
int64_t time_remain = 0;
unsigned long irqstate;
struct thread *thread = cpu_local_var_with_override(current, clv_override);
/*
* The task state is guaranteed to be set before another task can
* wake it.
* queue_me() calls spin_unlock() upon completion, serializing
* access to the hash list and forcing a memory barrier.
*/
xchg4(&(thread->status), PS_INTERRUPTIBLE);
/* Indicate spin sleep. Note that schedule_timeout() with
* idle_halt should use spin sleep because sleep with timeout
* is not implemented.
*/
if (!idle_halt || timeout) {
irqstate = ihk_mc_spinlock_lock(&thread->spin_sleep_lock);
thread->spin_sleep = 1;
ihk_mc_spinlock_unlock(&thread->spin_sleep_lock, irqstate);
}
queue_me(q, hb, clv_override);
if (!plist_node_empty(&q->list)) {
if (clv_override) {
uti_dkprintf("%s: tid: %d is trying to sleep\n", __FUNCTION__, thread->tid);
/* Note that the unit of timeout is nsec */
time_remain = (*linux_wait_event)(q->uti_futex_resp, timeout);
/* Note that time_remain == 0 indicates contidion evaluated to false after the timeout elapsed */
if (time_remain < 0) {
if (time_remain == -ERESTARTSYS) { /* Interrupted by signal */
uti_dkprintf("%s: DEBUG: wait_event returned -ERESTARTSYS\n", __FUNCTION__);
} else {
uti_kprintf("%s: ERROR: wait_event returned %d\n", __FUNCTION__, time_remain);
}
}
uti_dkprintf("%s: tid: %d woken up\n", __FUNCTION__, thread->tid);
} else {
if (timeout) {
dkprintf("futex_wait_queue_me(): tid: %d schedule_timeout()\n", thread->tid);
time_remain = schedule_timeout(timeout);
}
else {
dkprintf("futex_wait_queue_me(): tid: %d schedule()\n", thread->tid);
spin_sleep_or_schedule();
time_remain = 0;
}
dkprintf("futex_wait_queue_me(): tid: %d woken up\n", thread->tid);
}
}
/* This does not need to be serialized */
thread->status = PS_RUNNING;
thread->spin_sleep = 0;
return time_remain;
}
/**
* futex_wait_setup() - Prepare to wait on a futex
* @uaddr: the futex userspace address
* @val: the expected value
* @fshared: whether the futex is shared (1) or not (0)
* @q: the associated futex_q
* @hb: storage for hash_bucket pointer to be returned to caller
*
* Setup the futex_q and locate the hash_bucket. Get the futex value and
* compare it with the expected value. Handle atomic faults internally.
* Return with the hb lock held and a q.key reference on success, and unlocked
* with no q.key reference on failure.
*
* Returns:
* 0 - uaddr contains val and hb has been locked
* <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
*/
static int futex_wait_setup(uint32_t __user *uaddr, uint32_t val, int fshared,
struct futex_q *q, struct futex_hash_bucket **hb,
struct cpu_local_var *clv_override)
{
uint32_t uval;
int ret;
/*
* Access the page AFTER the hash-bucket is locked.
* Order is important:
*
* Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
* Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
*
* The basic logical guarantee of a futex is that it blocks ONLY
* if cond(var) is known to be true at the time of blocking, for
* any cond. If we queued after testing *uaddr, that would open
* a race condition where we could block indefinitely with
* cond(var) false, which would violate the guarantee.
*
* A consequence is that futex_wait() can return zero and absorb
* a wakeup when *uaddr != val on entry to the syscall. This is
* rare, but normal.
*/
q->key = FUTEX_KEY_INIT;
ret = get_futex_key(uaddr, fshared, &q->key, clv_override);
if (ret != 0)
return ret;
*hb = queue_lock(q);
ret = get_futex_value_locked(&uval, uaddr);
if (ret) {
queue_unlock(q, *hb);
put_futex_key(fshared, &q->key);
return ret;
}
if (uval != val) {
queue_unlock(q, *hb);
ret = -EWOULDBLOCK;
}
if (ret)
put_futex_key(fshared, &q->key);
return ret;
}
static int futex_wait(uint32_t __user *uaddr, int fshared,
uint32_t val, uint64_t timeout, uint32_t bitset, int clockrt,
struct cpu_local_var *clv_override)
{
struct futex_hash_bucket *hb;
struct futex_q q;
int64_t time_remain;
int ret;
if (!bitset)
return -EINVAL;
#ifdef PROFILE_ENABLE
if (cpu_local_var_with_override(current, clv_override)->profile &&
cpu_local_var_with_override(current, clv_override)->profile_start_ts) {
cpu_local_var_with_override(current, clv_override)->profile_elapsed_ts +=
(rdtsc() - cpu_local_var_with_override(current, clv_override)->profile_start_ts);
cpu_local_var_with_override(current, clv_override)->profile_start_ts = 0;
}
#endif
q.bitset = bitset;
q.requeue_pi_key = NULL;
q.uti_futex_resp = cpu_local_var_with_override(uti_futex_resp, clv_override);
retry:
/* Prepare to wait on uaddr. */
ret = futex_wait_setup(uaddr, val, fshared, &q, &hb, clv_override);
if (ret) {
uti_dkprintf("%s: tid=%d futex_wait_setup returns zero, no need to sleep\n", __FUNCTION__, cpu_local_var_with_override(current, clv_override)->tid);
goto out;
}
/* queue_me and wait for wakeup, timeout, or a signal. */
time_remain = futex_wait_queue_me(hb, &q, timeout, clv_override);
/* If we were woken (and unqueued), we succeeded, whatever. */
ret = 0;
if (!unqueue_me(&q)) {
uti_dkprintf("%s: tid=%d unqueued\n", __FUNCTION__, cpu_local_var_with_override(current, clv_override)->tid);
goto out_put_key;
}
ret = -ETIMEDOUT;
/* RIKEN: timer expired case (indicated by !time_remain) */
if (timeout && !time_remain) {
uti_dkprintf("%s: tid=%d timer expired\n", __FUNCTION__, cpu_local_var_with_override(current, clv_override)->tid);
goto out_put_key;
}
/* RIKEN: futex_wait_queue_me() returns -ERESTARTSYS when waiting on Linux CPU and woken up by signal */
if (hassigpending(cpu_local_var_with_override(current, clv_override)) || time_remain == -ERESTARTSYS) {
ret = -EINTR;
uti_dkprintf("%s: tid=%d woken up by signal\n", __FUNCTION__, cpu_local_var_with_override(current, clv_override)->tid);
goto out_put_key;
}
/* RIKEN: no signals */
put_futex_key(fshared, &q.key);
goto retry;
out_put_key:
put_futex_key(fshared, &q.key);
out:
#ifdef PROFILE_ENABLE
if (cpu_local_var_with_override(current, clv_override)->profile) {
cpu_local_var_with_override(current, clv_override)->profile_start_ts = rdtsc();
}
#endif
return ret;
}
int futex(uint32_t *uaddr, int op, uint32_t val, uint64_t timeout,
uint32_t *uaddr2, uint32_t val2, uint32_t val3, int fshared,
struct cpu_local_var *clv_override)
{
int clockrt, ret = -ENOSYS;
int cmd = op & FUTEX_CMD_MASK;
uti_dkprintf("%s: uaddr=%p, op=%x, val=%x, timeout=%ld, uaddr2=%p, val2=%x, val3=%x, fshared=%d, clv=%p\n", __FUNCTION__, uaddr, op, val, timeout, uaddr2, val2, val3, fshared, clv_override);
clockrt = op & FUTEX_CLOCK_REALTIME;
if (clockrt && cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
return -ENOSYS;
switch (cmd) {
case FUTEX_WAIT:
val3 = FUTEX_BITSET_MATCH_ANY;
case FUTEX_WAIT_BITSET:
ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt, clv_override);
break;
case FUTEX_WAKE:
val3 = FUTEX_BITSET_MATCH_ANY;
case FUTEX_WAKE_BITSET:
ret = futex_wake(uaddr, fshared, val, val3, clv_override);
break;
case FUTEX_REQUEUE:
ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL, 0, clv_override);
break;
case FUTEX_CMP_REQUEUE:
ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3, 0, clv_override);
break;
case FUTEX_WAKE_OP:
ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3, clv_override);
break;
/* RIKEN: these calls are not supported for now.
case FUTEX_LOCK_PI:
if (futex_cmpxchg_enabled)
ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
break;
case FUTEX_UNLOCK_PI:
if (futex_cmpxchg_enabled)
ret = futex_unlock_pi(uaddr, fshared);
break;
case FUTEX_TRYLOCK_PI:
if (futex_cmpxchg_enabled)
ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
break;
case FUTEX_WAIT_REQUEUE_PI:
val3 = FUTEX_BITSET_MATCH_ANY;
ret = futex_wait_requeue_pi(uaddr, fshared, val, timeout, val3,
clockrt, uaddr2);
break;
case FUTEX_CMP_REQUEUE_PI:
ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
1);
break;
*/
default:
kprintf("futex() invalid cmd: %d \n", cmd);
ret = -ENOSYS;
}
return ret;
}
#ifndef ARRAY_SIZE
#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
#endif
int futex_init(void)
{
int curval;
int i;
/*
* This will fail and we want it. Some arch implementations do
* runtime detection of the futex_atomic_cmpxchg_inatomic()
* functionality. We want to know that before we call in any
* of the complex code paths. Also we want to prevent
* registration of robust lists in that case. NULL is
* guaranteed to fault and we get -EFAULT on functional
* implementation, the non functional ones will return
* -ENOSYS.
*/
curval = cmpxchg_futex_value_locked(NULL, 0, 0);
if (curval == -EFAULT) {
dkprintf("futex_cmpxchg_enabled = 1 ??\n");
futex_cmpxchg_enabled = 1;
}
for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
ihk_mc_spinlock_init(&futex_queues[i].lock);
}
return 0;
}