Files
mckernel/executer/user/mcexec.c
2015-05-19 06:27:59 +09:00

2069 lines
46 KiB
C

/**
* \file executer/user/mcexec.c
* License details are found in the file LICENSE.
* \brief
* ....
* \author Taku Shimosawa <shimosawa@is.s.u-tokyo.ac.jp> \par
* Copyright (C) 2011 - 2012 Taku Shimosawa
* \author Balazs Gerofi <bgerofi@riken.jp> \par
* Copyright (C) 2012 RIKEN AICS
* \author Gou Nakamura <go.nakamura.yw@hitachi-solutions.com> \par
* Copyright (C) 2012 - 2013 Hitachi, Ltd.
* \author Tomoki Shirasawa <tomoki.shirasawa.kk@hitachi-solutions.com> \par
* Copyright (C) 2012 - 2013 Hitachi, Ltd.
* \author Balazs Gerofi <bgerofi@is.s.u-tokyo.ac.jp> \par
* Copyright (C) 2013 The University of Tokyo
*/
/*
* HISTORY:
* 2013/11/07 hamada added <sys/resource.h> which is required by getrlimit(2)
* 2013/10/21 nakamura exclude interpreter's segment from data region
* 2013/10/11 nakamura mcexec: add a upper limit of the stack size
* 2013/10/11 nakamura mcexec: add a path prefix for interpreter search
* 2013/10/11 nakamura mcexec: add a interpreter invocation
* 2013/10/08 nakamura add a AT_ENTRY entry to the auxiliary vector
* 2013/09/02 shirasawa add terminate thread
* 2013/08/19 shirasawa mcexec forward signal to MIC process
* 2013/08/07 nakamura add page fault forwarding
* 2013/07/26 shirasawa mcexec print signum or exit status
* 2013/07/17 nakamura create more mcexec thread so that all cpu to be serviced
* 2013/04/17 nakamura add generic system call forwarding
*/
#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <elf.h>
#include <errno.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <ctype.h>
#include <sys/mman.h>
#include <asm/unistd.h>
#include <sched.h>
#include <termios.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/resource.h>
#include <sys/utsname.h>
#include <sys/fsuid.h>
#include <time.h>
#include <sys/time.h>
#include <signal.h>
#include <sys/wait.h>
#include <dirent.h>
#include <sys/syscall.h>
#include <pthread.h>
#include <semaphore.h>
#include <signal.h>
#include <sys/signalfd.h>
#include "../include/uprotocol.h"
//#define DEBUG
#ifndef DEBUG
#define __dprint(msg, ...)
#define __dprintf(arg, ...)
#define __eprint(msg, ...)
#define __eprintf(format, ...)
#else
#define __dprint(msg, ...) {printf("%s: " msg, __FUNCTION__);fflush(stdout);}
#define __dprintf(format, ...) {printf("%s: " format, __FUNCTION__, \
__VA_ARGS__);fflush(stdout);}
#define __eprint(msg, ...) {fprintf(stderr, "%s: " msg, __FUNCTION__);fflush(stderr);}
#define __eprintf(format, ...) {fprintf(stderr, "%s: " format, __FUNCTION__, \
__VA_ARGS__);fflush(stderr);}
#endif
#ifdef USE_SYSCALL_MOD_CALL
extern int mc_cmd_server_init();
extern void mc_cmd_server_exit();
extern void mc_cmd_handle(int fd, int cpu, unsigned long args[6]);
#ifdef CMD_DCFA
extern void ibmic_cmd_server_exit();
extern int ibmic_cmd_server_init();
#endif
#ifdef CMD_DCFAMPI
extern void dcfampi_cmd_server_exit();
extern int dcfampi_cmd_server_init();
#endif
int __glob_argc = -1;
char **__glob_argv = 0;
#endif
typedef unsigned char cc_t;
typedef unsigned int speed_t;
typedef unsigned int tcflag_t;
struct sigfd {
struct sigfd *next;
int sigpipe[2];
};
struct sigfd *sigfdtop;
#ifdef NCCS
#undef NCCS
#endif
#define NCCS 19
struct kernel_termios {
tcflag_t c_iflag; /* input mode flags */
tcflag_t c_oflag; /* output mode flags */
tcflag_t c_cflag; /* control mode flags */
tcflag_t c_lflag; /* local mode flags */
cc_t c_line; /* line discipline */
cc_t c_cc[NCCS]; /* control characters */
};
int main_loop(int fd, int cpu, pthread_mutex_t *lock);
static int mcosid;
static int fd;
static char *exec_path = NULL;
static char *altroot;
static const char rlimit_stack_envname[] = "MCKERNEL_RLIMIT_STACK";
static int ischild;
struct fork_sync {
pid_t pid;
int status;
sem_t sem;
};
struct fork_sync_container {
struct fork_sync_container *next;
struct fork_sync *fs;
};
struct fork_sync_container *fork_sync_top;
pthread_mutex_t fork_sync_mutex = PTHREAD_MUTEX_INITIALIZER;
pid_t gettid(void)
{
return syscall(SYS_gettid);
}
struct program_load_desc *load_elf(FILE *fp, char **interp_pathp)
{
Elf64_Ehdr hdr;
Elf64_Phdr phdr;
int i, j, nhdrs = 0;
struct program_load_desc *desc;
unsigned long load_addr = 0;
int load_addr_set = 0;
static char interp_path[PATH_MAX];
ssize_t ss;
uid_t ruid;
uid_t euid;
uid_t suid;
gid_t rgid;
gid_t egid;
gid_t sgid;
*interp_pathp = NULL;
if (fread(&hdr, sizeof(hdr), 1, fp) < 1) {
__eprint("Cannot read Ehdr.\n");
return NULL;
}
if (memcmp(hdr.e_ident, ELFMAG, SELFMAG)) {
__eprint("ELFMAG mismatched.\n");
return NULL;
}
fseek(fp, hdr.e_phoff, SEEK_SET);
for (i = 0; i < hdr.e_phnum; i++) {
if (fread(&phdr, sizeof(phdr), 1, fp) < 1) {
__eprintf("Loading phdr failed (%d)\n", i);
return NULL;
}
if (phdr.p_type == PT_LOAD) {
nhdrs++;
}
}
desc = malloc(sizeof(struct program_load_desc)
+ sizeof(struct program_image_section) * nhdrs);
fseek(fp, hdr.e_phoff, SEEK_SET);
j = 0;
desc->num_sections = nhdrs;
desc->stack_prot = PROT_READ | PROT_WRITE | PROT_EXEC; /* default */
for (i = 0; i < hdr.e_phnum; i++) {
if (fread(&phdr, sizeof(phdr), 1, fp) < 1) {
__eprintf("Loading phdr failed (%d)\n", i);
return NULL;
}
if (phdr.p_type == PT_INTERP) {
if (phdr.p_filesz > sizeof(interp_path)) {
__eprint("too large PT_INTERP segment\n");
return NULL;
}
ss = pread(fileno(fp), interp_path, phdr.p_filesz,
phdr.p_offset);
if (ss <= 0) {
__eprint("cannot read PT_INTERP segment\n");
return NULL;
}
interp_path[ss] = '\0';
*interp_pathp = interp_path;
}
if (phdr.p_type == PT_LOAD) {
desc->sections[j].vaddr = phdr.p_vaddr;
desc->sections[j].filesz = phdr.p_filesz;
desc->sections[j].offset = phdr.p_offset;
desc->sections[j].len = phdr.p_memsz;
desc->sections[j].interp = 0;
desc->sections[j].fp = fp;
desc->sections[j].prot = PROT_NONE;
desc->sections[j].prot |= (phdr.p_flags & PF_R)? PROT_READ: 0;
desc->sections[j].prot |= (phdr.p_flags & PF_W)? PROT_WRITE: 0;
desc->sections[j].prot |= (phdr.p_flags & PF_X)? PROT_EXEC: 0;
__dprintf("%d: (%s) %lx, %lx, %lx, %lx, %x\n",
j, (phdr.p_type == PT_LOAD ? "PT_LOAD" : "PT_TLS"),
desc->sections[j].vaddr,
desc->sections[j].filesz,
desc->sections[j].offset,
desc->sections[j].len,
desc->sections[j].prot);
j++;
if (!load_addr_set) {
load_addr_set = 1;
load_addr = phdr.p_vaddr - phdr.p_offset;
}
}
if (phdr.p_type == PT_GNU_STACK) {
desc->stack_prot = PROT_NONE;
desc->stack_prot |= (phdr.p_flags & PF_R)? PROT_READ: 0;
desc->stack_prot |= (phdr.p_flags & PF_W)? PROT_WRITE: 0;
desc->stack_prot |= (phdr.p_flags & PF_X)? PROT_EXEC: 0;
}
}
desc->pid = getpid();
desc->pgid = getpgid(0);
getresuid(&ruid, &euid, &suid);
getresgid(&rgid, &egid, &sgid);
desc->ruid = ruid;
desc->euid = euid;
desc->suid = suid;
// desc->fsuid = setfsuid(-1);
desc->rgid = rgid;
desc->egid = egid;
desc->sgid = sgid;
// desc->fsgid = setfsgid(-1);
desc->entry = hdr.e_entry;
desc->at_phdr = load_addr + hdr.e_phoff;
desc->at_phent = sizeof(phdr);
desc->at_phnum = hdr.e_phnum;
desc->at_entry = hdr.e_entry;
desc->at_clktck = sysconf(_SC_CLK_TCK);
return desc;
}
char *search_file(char *orgpath, int mode)
{
int error;
static char modpath[PATH_MAX];
int n;
error = access(orgpath, mode);
if (!error) {
return orgpath;
}
n = snprintf(modpath, sizeof(modpath), "%s/%s", altroot, orgpath);
if (n >= sizeof(modpath)) {
__eprintf("modified path too long: %s/%s\n", altroot, orgpath);
return NULL;
}
error = access(modpath, mode);
if (!error) {
return modpath;
}
return NULL;
}
struct program_load_desc *load_interp(struct program_load_desc *desc0, FILE *fp)
{
Elf64_Ehdr hdr;
Elf64_Phdr phdr;
int i, j, nhdrs = 0;
struct program_load_desc *desc = desc0;
size_t newsize;
unsigned long align;
if (fread(&hdr, sizeof(hdr), 1, fp) < 1) {
__eprint("Cannot read Ehdr.\n");
return NULL;
}
if (memcmp(hdr.e_ident, ELFMAG, SELFMAG)) {
__eprint("ELFMAG mismatched.\n");
return NULL;
}
fseek(fp, hdr.e_phoff, SEEK_SET);
for (i = 0; i < hdr.e_phnum; i++) {
if (fread(&phdr, sizeof(phdr), 1, fp) < 1) {
__eprintf("Loading phdr failed (%d)\n", i);
return NULL;
}
if (phdr.p_type == PT_LOAD) {
nhdrs++;
}
}
nhdrs += desc->num_sections;
newsize = sizeof(struct program_load_desc)
+ (nhdrs * sizeof(struct program_image_section));
desc = realloc(desc, newsize);
if (!desc) {
__eprintf("realloc(%#lx) failed\n", (long)newsize);
return NULL;
}
fseek(fp, hdr.e_phoff, SEEK_SET);
align = 1;
j = desc->num_sections;
for (i = 0; i < hdr.e_phnum; i++) {
if (fread(&phdr, sizeof(phdr), 1, fp) < 1) {
__eprintf("Loading phdr failed (%d)\n", i);
return NULL;
}
if (phdr.p_type == PT_INTERP) {
__eprint("PT_INTERP on interp\n");
return NULL;
}
if (phdr.p_type == PT_LOAD) {
desc->sections[j].vaddr = phdr.p_vaddr;
desc->sections[j].filesz = phdr.p_filesz;
desc->sections[j].offset = phdr.p_offset;
desc->sections[j].len = phdr.p_memsz;
desc->sections[j].interp = 1;
desc->sections[j].fp = fp;
desc->sections[j].prot = PROT_NONE;
desc->sections[j].prot |= (phdr.p_flags & PF_R)? PROT_READ: 0;
desc->sections[j].prot |= (phdr.p_flags & PF_W)? PROT_WRITE: 0;
desc->sections[j].prot |= (phdr.p_flags & PF_X)? PROT_EXEC: 0;
if (phdr.p_align > align) {
align = phdr.p_align;
}
__dprintf("%d: (%s) %lx, %lx, %lx, %lx, %x\n",
j, (phdr.p_type == PT_LOAD ? "PT_LOAD" : "PT_TLS"),
desc->sections[j].vaddr,
desc->sections[j].filesz,
desc->sections[j].offset,
desc->sections[j].len,
desc->sections[j].prot);
j++;
}
}
desc->num_sections = j;
desc->entry = hdr.e_entry;
desc->interp_align = align;
return desc;
}
unsigned char *dma_buf;
int lookup_exec_path(char *filename, char *path, int max_len)
{
int found;
int error;
struct stat sb;
char *link_path = NULL;
retry:
found = 0;
/* Is file not absolute path? */
if (strncmp(filename, "/", 1)) {
/* Is filename a single component without path? */
while (strncmp(filename, ".", 1) && !strchr(filename, '/')) {
char *token, *string, *tofree;
char *PATH = getenv("COKERNEL_PATH");
if (!PATH) {
PATH = getenv("PATH");
}
if (strlen(filename) >= 255) {
return ENAMETOOLONG;
}
/* See first whether file is available in current working dir */
error = access(filename, X_OK);
if (error == 0) {
__dprintf("lookup_exec_path(): found %s in cwd\n", filename);
error = snprintf(path, max_len, "%s", filename);
if (error < 0 || error >= max_len) {
fprintf(stderr, "lookup_exec_path(): array too small?\n");
return ENOMEM;
}
found = 1;
break;
}
__dprintf("PATH: %s\n", PATH);
/* strsep() modifies string! */
tofree = string = strdup(PATH);
if (string == NULL) {
printf("lookup_exec_path(): copying PATH, not enough memory?\n");
return ENOMEM;
}
while ((token = strsep(&string, ":")) != NULL) {
error = snprintf(path, max_len,
"%s/%s", token, filename);
if (error < 0 || error >= max_len) {
fprintf(stderr, "lookup_exec_path(): array too small?\n");
continue;
}
error = access(path, X_OK);
if (error == 0) {
found = 1;
break;
}
}
free(tofree);
break;
}
/* Not in path, file to be open from the working directory */
if (!found) {
error = snprintf(path, max_len, "%s", filename);
if (error < 0 || error >= max_len) {
fprintf(stderr, "lookup_exec_path(): array too small?\n");
return ENOMEM;
}
found = 1;
}
}
/* Absolute path */
else if (!strncmp(filename, "/", 1)) {
char *root = getenv("COKERNEL_EXEC_ROOT");
if (root) {
error = snprintf(path, max_len, "%s/%s", root, filename);
}
else {
error = snprintf(path, max_len, "%s", filename);
}
if (error < 0 || error >= max_len) {
fprintf(stderr, "lookup_exec_path(): array too small?\n");
return ENOMEM;
}
found = 1;
}
if (link_path) {
free(link_path);
link_path = NULL;
}
/* Check whether the resolved path is a symlink */
if (lstat(path, &sb) == -1) {
fprintf(stderr, "lookup_exec_path(): error stat\n");
return errno;
}
if ((sb.st_mode & S_IFMT) == S_IFLNK) {
char *link_path = malloc(max_len);
if (!link_path) {
fprintf(stderr, "lookup_exec_path(): error allocating\n");
return ENOMEM;
}
error = readlink(path, link_path, max_len);
if (error == -1 || error == max_len) {
fprintf(stderr, "lookup_exec_path(): error readlink\n");
return EINVAL;
}
__dprintf("lookup_exec_path(): %s is link -> %s\n", path, link_path);
filename = link_path;
goto retry;
}
if (!found) {
fprintf(stderr,
"lookup_exec_path(): error finding file %s\n", filename);
return ENOENT;
}
__dprintf("lookup_exec_path(): %s\n", path);
return 0;
}
int load_elf_desc(char *filename, struct program_load_desc **desc_p,
char **shell_p)
{
FILE *fp;
FILE *interp = NULL;
char *interp_path;
char *shell = NULL;
size_t shell_len = 0;
struct program_load_desc *desc;
int ret = 0;
struct stat sb;
char header[1024];
if ((ret = access(filename, X_OK)) != 0) {
fprintf(stderr, "Error: %s is not an executable?, errno: %d\n",
filename, errno);
return errno;
}
if ((ret = stat(filename, &sb)) == -1) {
fprintf(stderr, "Error: failed to stat %s\n", filename);
return errno;
}
if (sb.st_size == 0) {
fprintf(stderr, "Error: file %s is zero length\n", filename);
return ENOEXEC;
}
fp = fopen(filename, "rb");
if (!fp) {
fprintf(stderr, "Error: Failed to open %s\n", filename);
return errno;
}
if (fread(&header, 1, 2, fp) != 2) {
fprintf(stderr, "Error: Failed to read header from %s\n", filename);
return errno;
}
if (!strncmp(header, "#!", 2)) {
if (getline(&shell, &shell_len, fp) == -1) {
fprintf(stderr, "Error: reading shell path %s\n", filename);
}
fclose(fp);
/* Delete new line character */
shell[strlen(shell) - 1] = 0;
*shell_p = shell;
return 0;
}
rewind(fp);
if ((ret = ioctl(fd, MCEXEC_UP_OPEN_EXEC, filename)) != 0) {
fprintf(stderr, "Error: open_exec() fails for %s: %d (fd: %d)\n",
filename, ret, fd);
return ret;
}
/* Drop old name if exists */
if (exec_path) {
free(exec_path);
exec_path = NULL;
}
if (!strncmp("/", filename, 1)) {
exec_path = strdup(filename);
if (!exec_path) {
fprintf(stderr, "WARNING: strdup(filename) failed\n");
return ENOMEM;
}
}
else {
char *cwd = getcwd(NULL, 0);
if (!cwd) {
fprintf(stderr, "Error: getting current working dir pathname\n");
return ENOMEM;
}
exec_path = malloc(strlen(cwd) + strlen(filename) + 2);
if (!exec_path) {
fprintf(stderr, "Error: allocating exec_path\n");
return ENOMEM;
}
sprintf(exec_path, "%s/%s", cwd, filename);
free(cwd);
}
desc = load_elf(fp, &interp_path);
if (!desc) {
fclose(fp);
fprintf(stderr, "Error: Failed to parse ELF!\n");
return 1;
}
if (interp_path) {
char *path;
path = search_file(interp_path, X_OK);
if (!path) {
fprintf(stderr, "Error: interp not found: %s\n", interp_path);
return 1;
}
interp = fopen(path, "rb");
if (!interp) {
fprintf(stderr, "Error: Failed to open %s\n", path);
return 1;
}
desc = load_interp(desc, interp);
if (!desc) {
fprintf(stderr, "Error: Failed to parse interp!\n");
return 1;
}
}
__dprintf("# of sections: %d\n", desc->num_sections);
*desc_p = desc;
return 0;
}
#define PAGE_SIZE 4096
#define PAGE_MASK ~((unsigned long)PAGE_SIZE - 1)
void transfer_image(int fd, struct program_load_desc *desc)
{
struct remote_transfer pt;
unsigned long s, e, flen, rpa;
int i, l, lr;
FILE *fp;
for (i = 0; i < desc->num_sections; i++) {
fp = desc->sections[i].fp;
s = (desc->sections[i].vaddr) & PAGE_MASK;
e = (desc->sections[i].vaddr + desc->sections[i].len
+ PAGE_SIZE - 1) & PAGE_MASK;
rpa = desc->sections[i].remote_pa;
fseek(fp, desc->sections[i].offset, SEEK_SET);
flen = desc->sections[i].filesz;
__dprintf("seeked to %lx | size %ld\n",
desc->sections[i].offset, flen);
while (s < e) {
pt.rphys = rpa;
pt.userp = dma_buf;
pt.size = PAGE_SIZE;
pt.direction = MCEXEC_UP_TRANSFER_TO_REMOTE;
lr = 0;
memset(dma_buf, 0, PAGE_SIZE);
if (s < desc->sections[i].vaddr) {
l = desc->sections[i].vaddr
& (PAGE_SIZE - 1);
lr = PAGE_SIZE - l;
if (lr > flen) {
lr = flen;
}
fread(dma_buf + l, 1, lr, fp);
flen -= lr;
}
else if (flen > 0) {
if (flen > PAGE_SIZE) {
lr = PAGE_SIZE;
} else {
lr = flen;
}
fread(dma_buf, 1, lr, fp);
flen -= lr;
}
s += PAGE_SIZE;
rpa += PAGE_SIZE;
/* No more left to upload.. */
if (lr == 0 && flen == 0) break;
if (ioctl(fd, MCEXEC_UP_TRANSFER,
(unsigned long)&pt)) {
perror("dma");
break;
}
}
}
}
void print_desc(struct program_load_desc *desc)
{
int i;
__dprintf("Desc (%p)\n", desc);
__dprintf("Status = %d, CPU = %d, pid = %d, entry = %lx, rp = %lx\n",
desc->status, desc->cpu, desc->pid, desc->entry,
desc->rprocess);
for (i = 0; i < desc->num_sections; i++) {
__dprintf("vaddr: %lx, mem_len: %lx, remote_pa: %lx, files: %lx\n",
desc->sections[i].vaddr, desc->sections[i].len,
desc->sections[i].remote_pa, desc->sections[i].filesz);
}
}
#define PIN_SHIFT 12
#define PIN_SIZE (1 << PIN_SHIFT)
#define PIN_MASK ~(unsigned long)(PIN_SIZE - 1)
#if 0
unsigned long dma_buf_pa;
#endif
void print_flat(char *flat)
{
char **string;
__dprintf("counter: %d\n", *((int *)flat));
string = (char **)(flat + sizeof(int));
while (*string) {
__dprintf("%s\n", (flat + (unsigned long)(*string)));
++string;
}
}
/*
* Flatten out a (char **) string array into the following format:
* [nr_strings][char *offset of string_0]...[char *offset of string_n-1][NULL][string0]...[stringn_1]
* if nr_strings == -1, we assume the last item is NULL
*
* NOTE: copy this string somewhere, add the address of the string to each offset
* and we get back a valid argv or envp array.
*
* returns the total length of the flat string and updates flat to
* point to the beginning.
*/
int flatten_strings(int nr_strings, char *first, char **strings, char **flat)
{
int full_len, string_i;
unsigned long flat_offset;
char *_flat;
/* How many strings do we have? */
if (nr_strings == -1) {
for (nr_strings = 0; strings[nr_strings]; ++nr_strings);
}
/* Count full length */
full_len = sizeof(int) + sizeof(char *); // Counter and terminating NULL
if (first) {
full_len += sizeof(char *) + strlen(first) + 1;
}
for (string_i = 0; string_i < nr_strings; ++string_i) {
// Pointer + actual value
full_len += sizeof(char *) + strlen(strings[string_i]) + 1;
}
_flat = (char *)malloc(full_len);
if (!_flat) {
return 0;
}
memset(_flat, 0, full_len);
/* Number of strings */
*((int*)_flat) = nr_strings + (first ? 1 : 0);
// Actual offset
flat_offset = sizeof(int) + sizeof(char *) * (nr_strings + 1 +
(first ? 1 : 0));
if (first) {
*((char **)(_flat + sizeof(int))) = (void *)flat_offset;
memcpy(_flat + flat_offset, first, strlen(first) + 1);
flat_offset += strlen(first) + 1;
}
for (string_i = 0; string_i < nr_strings; ++string_i) {
/* Fabricate the string */
*((char **)(_flat + sizeof(int) + (string_i + (first ? 1 : 0))
* sizeof(char *))) = (void *)flat_offset;
memcpy(_flat + flat_offset, strings[string_i], strlen(strings[string_i]) + 1);
flat_offset += strlen(strings[string_i]) + 1;
}
*flat = _flat;
return full_len;
}
//#define NUM_HANDLER_THREADS 248
struct thread_data_s {
pthread_t thread_id;
int fd;
int cpu;
int ret;
pid_t tid;
int terminate;
int remote_tid;
pthread_mutex_t *lock;
pthread_barrier_t *init_ready;
} *thread_data;
int ncpu;
pid_t master_tid;
pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_barrier_t init_ready;
static void *main_loop_thread_func(void *arg)
{
struct thread_data_s *td = (struct thread_data_s *)arg;
td->tid = gettid();
td->remote_tid = (int)td->tid;
pthread_barrier_wait(&init_ready);
td->ret = main_loop(td->fd, td->cpu, td->lock);
return NULL;
}
#define LOCALSIG SIGURG
void
sendsig(int sig, siginfo_t *siginfo, void *context)
{
pid_t pid = getpid();
pid_t tid = gettid();
int remote_tid;
int i;
int cpu;
struct signal_desc sigdesc;
if(siginfo->si_pid == pid &&
siginfo->si_signo == LOCALSIG)
return;
if(siginfo->si_signo == SIGCHLD)
return;
for(i = 0; i < ncpu; i++){
if(siginfo->si_pid == pid &&
thread_data[i].tid == tid){
if(thread_data[i].terminate)
return;
break;
}
if(siginfo->si_pid != pid &&
thread_data[i].remote_tid == tid){
if(thread_data[i].terminate)
return;
break;
}
}
if(i != ncpu){
remote_tid = thread_data[i].remote_tid;
cpu = thread_data[i].cpu;
}
else{
cpu = 0;
remote_tid = -1;
}
sigdesc.cpu = cpu;
sigdesc.pid = (int)pid;
sigdesc.tid = remote_tid;
sigdesc.sig = sig;
memcpy(&sigdesc.info, siginfo, 128);
if (ioctl(fd, MCEXEC_UP_SEND_SIGNAL, &sigdesc) != 0) {
perror("send_signal");
close(fd);
exit(1);
}
}
long
act_signalfd4(struct syscall_wait_desc *w)
{
struct sigfd *sfd;
struct sigfd *sb;
int mode = w->sr.args[0];
int flags;
int tmp;
int rc = 0;
struct signalfd_siginfo *info;
switch(mode){
case 0: /* new signalfd */
sfd = malloc(sizeof(struct sigfd));
tmp = w->sr.args[1];
flags = 0;
if(tmp & SFD_NONBLOCK)
flags |= O_NONBLOCK;
if(tmp & SFD_CLOEXEC)
flags |= O_CLOEXEC;
pipe2(sfd->sigpipe, flags);
sfd->next = sigfdtop;
sigfdtop = sfd;
rc = sfd->sigpipe[0];
break;
case 1: /* close signalfd */
tmp = w->sr.args[1];
for(sfd = sigfdtop, sb = NULL; sfd; sb = sfd, sfd = sfd->next)
if(sfd->sigpipe[0] == tmp)
break;
if(!sfd)
rc = -EBADF;
else{
if(sb)
sb->next = sfd->next;
else
sigfdtop = sfd->next;
close(sfd->sigpipe[0]);
close(sfd->sigpipe[1]);
free(sfd);
}
break;
case 2: /* push signal */
tmp = w->sr.args[1];
for(sfd = sigfdtop; sfd; sfd = sfd->next)
if(sfd->sigpipe[0] == tmp)
break;
if(!sfd)
rc = -EBADF;
else{
info = (struct signalfd_siginfo *)w->sr.args[2];
write(sfd->sigpipe[1], info, sizeof(struct signalfd_siginfo));
}
break;
}
return rc;
}
void
act_sigaction(struct syscall_wait_desc *w)
{
struct sigaction act;
int sig;
sig = w->sr.args[0];
if (sig == SIGCHLD || sig == LOCALSIG)
return;
memset(&act, '\0', sizeof act);
if (w->sr.args[1] == (unsigned long)SIG_IGN)
act.sa_handler = SIG_IGN;
else{
act.sa_sigaction = sendsig;
act.sa_flags = SA_SIGINFO;
}
sigaction(sig, &act, NULL);
}
void
act_sigprocmask(struct syscall_wait_desc *w)
{
sigset_t set;
sigemptyset(&set);
memcpy(&set, &w->sr.args[0], sizeof(unsigned long));
sigdelset(&set, LOCALSIG);
sigprocmask(SIG_SETMASK, &set, NULL);
}
static int reduce_stack(struct rlimit *orig_rlim, char *argv[])
{
int n;
char newval[40];
int error;
struct rlimit new_rlim;
/* save original value to environment variable */
n = snprintf(newval, sizeof(newval), "%#lx,%#lx",
(unsigned long)orig_rlim->rlim_cur,
(unsigned long)orig_rlim->rlim_max);
if (n >= sizeof(newval)) {
__eprintf("snprintf(%s):buffer overflow\n",
rlimit_stack_envname);
return 1;
}
#define DO_NOT_OVERWRITE 0
error = setenv(rlimit_stack_envname, newval, DO_NOT_OVERWRITE);
if (error) {
__eprintf("failed to setenv(%s)\n", rlimit_stack_envname);
return 1;
}
/* exec() myself with small stack */
#define MCEXEC_STACK_SIZE (10 * 1024 * 1024) /* 10 MiB */
new_rlim.rlim_cur = MCEXEC_STACK_SIZE;
new_rlim.rlim_max = orig_rlim->rlim_max;
error = setrlimit(RLIMIT_STACK, &new_rlim);
if (error) {
__eprint("failed to setrlimit(RLIMIT_STACK)\n");
return 1;
}
execv("/proc/self/exe", argv);
__eprint("failed to execv(myself)\n");
return 1;
}
void print_usage(char **argv)
{
fprintf(stderr, "Usage: %s [-c target_core] [<mcos-id>] (program) [args...]\n", argv[0]);
}
void init_sigaction(void)
{
int i;
master_tid = gettid();
for (i = 1; i <= 64; i++) {
if (i != SIGKILL && i != SIGSTOP && i != SIGCHLD) {
struct sigaction act;
sigaction(i, NULL, &act);
act.sa_sigaction = sendsig;
act.sa_flags &= ~(SA_RESTART);
act.sa_flags |= SA_SIGINFO;
sigaction(i, &act, NULL);
}
}
}
void init_worker_threads(int fd)
{
int i;
pthread_mutex_init(&lock, NULL);
pthread_barrier_init(&init_ready, NULL, ncpu + 2);
for (i = 0; i <= ncpu; ++i) {
int ret;
thread_data[i].fd = fd;
thread_data[i].cpu = i;
thread_data[i].lock = &lock;
thread_data[i].init_ready = &init_ready;
thread_data[i].terminate = 0;
ret = pthread_create(&thread_data[i].thread_id, NULL,
&main_loop_thread_func, &thread_data[i]);
if (ret < 0) {
printf("ERROR: creating syscall threads\n");
exit(1);
}
}
pthread_barrier_wait(&init_ready);
}
#define MCK_RLIMIT_AS 0
#define MCK_RLIMIT_CORE 1
#define MCK_RLIMIT_CPU 2
#define MCK_RLIMIT_DATA 3
#define MCK_RLIMIT_FSIZE 4
#define MCK_RLIMIT_LOCKS 5
#define MCK_RLIMIT_MEMLOCK 6
#define MCK_RLIMIT_MSGQUEUE 7
#define MCK_RLIMIT_NICE 8
#define MCK_RLIMIT_NOFILE 9
#define MCK_RLIMIT_NPROC 10
#define MCK_RLIMIT_RSS 11
#define MCK_RLIMIT_RTPRIO 12
#define MCK_RLIMIT_RTTIME 13
#define MCK_RLIMIT_SIGPENDING 14
#define MCK_RLIMIT_STACK 15
static int rlimits[] = {
#ifdef RLIMIT_AS
RLIMIT_AS, MCK_RLIMIT_AS,
#endif
#ifdef RLIMIT_CORE
RLIMIT_CORE, MCK_RLIMIT_CORE,
#endif
#ifdef RLIMIT_CPU
RLIMIT_CPU, MCK_RLIMIT_CPU,
#endif
#ifdef RLIMIT_DATA
RLIMIT_DATA, MCK_RLIMIT_DATA,
#endif
#ifdef RLIMIT_FSIZE
RLIMIT_FSIZE, MCK_RLIMIT_FSIZE,
#endif
#ifdef RLIMIT_LOCKS
RLIMIT_LOCKS, MCK_RLIMIT_LOCKS,
#endif
#ifdef RLIMIT_MEMLOCK
RLIMIT_MEMLOCK, MCK_RLIMIT_MEMLOCK,
#endif
#ifdef RLIMIT_MSGQUEUE
RLIMIT_MSGQUEUE,MCK_RLIMIT_MSGQUEUE,
#endif
#ifdef RLIMIT_NICE
RLIMIT_NICE, MCK_RLIMIT_NICE,
#endif
#ifdef RLIMIT_NOFILE
RLIMIT_NOFILE, MCK_RLIMIT_NOFILE,
#endif
#ifdef RLIMIT_NPROC
RLIMIT_NPROC, MCK_RLIMIT_NPROC,
#endif
#ifdef RLIMIT_RSS
RLIMIT_RSS, MCK_RLIMIT_RSS,
#endif
#ifdef RLIMIT_RTPRIO
RLIMIT_RTPRIO, MCK_RLIMIT_RTPRIO,
#endif
#ifdef RLIMIT_RTTIME
RLIMIT_RTTIME, MCK_RLIMIT_RTTIME,
#endif
#ifdef RLIMIT_SIGPENDING
RLIMIT_SIGPENDING,MCK_RLIMIT_SIGPENDING,
#endif
#ifdef RLIMIT_STACK
RLIMIT_STACK, MCK_RLIMIT_STACK,
#endif
};
char dev[64];
int main(int argc, char **argv)
{
// int fd;
#if 0
int fdm;
long r;
#endif
struct program_load_desc *desc;
int envs_len;
char *envs;
char *args;
char *p;
int i;
int error;
struct rlimit rlim_stack;
unsigned long lcur;
unsigned long lmax;
int target_core = 0;
int opt;
char path[1024];
char *shell = NULL;
char shell_path[1024];
#ifdef USE_SYSCALL_MOD_CALL
__glob_argc = argc;
__glob_argv = argv;
#endif
altroot = getenv("MCEXEC_ALT_ROOT");
if (!altroot) {
altroot = "/usr/linux-k1om-4.7/linux-k1om";
}
/* Collect environment variables */
envs_len = flatten_strings(-1, NULL, environ, &envs);
envs = envs;
error = getrlimit(RLIMIT_STACK, &rlim_stack);
if (error) {
fprintf(stderr, "Error: Failed to get stack limit.\n");
return 1;
}
#define MCEXEC_MAX_STACK_SIZE (1024 * 1024 * 1024) /* 1 GiB */
if (rlim_stack.rlim_cur > MCEXEC_MAX_STACK_SIZE) {
/* need to call reduce_stack() before modifying the argv[] */
(void)reduce_stack(&rlim_stack, argv); /* no return, unless failure */
fprintf(stderr, "Error: Failed to reduce stack.\n");
return 1;
}
/* Parse options ("+" denotes stop at the first non-option) */
while ((opt = getopt(argc, argv, "+c:")) != -1) {
switch (opt) {
case 'c':
target_core = atoi(optarg);
break;
default: /* '?' */
print_usage(argv);
exit(EXIT_FAILURE);
}
}
if (optind >= argc) {
print_usage(argv);
exit(EXIT_FAILURE);
}
/* Determine OS device */
if (isdigit(*argv[optind])) {
mcosid = atoi(argv[optind]);
++optind;
}
sprintf(dev, "/dev/mcos%d", mcosid);
/* No more arguments? */
if (optind >= argc) {
print_usage(argv);
exit(EXIT_FAILURE);
}
__dprintf("target_core: %d, device: %s, command: ", target_core, dev);
for (i = optind; i < argc; ++i) {
__dprintf("%s ", argv[i]);
}
__dprintf("%s", "\n");
/* Open OS chardev for ioctl() */
fd = open(dev, O_RDWR);
if (fd < 0) {
fprintf(stderr, "Error: Failed to open %s.\n", dev);
return 1;
}
if (lookup_exec_path(argv[optind], path, sizeof(path)) != 0) {
fprintf(stderr, "error: finding file: %s\n", argv[optind]);
return 1;
}
if (load_elf_desc(path, &desc, &shell) != 0) {
fprintf(stderr, "error: loading file: %s\n", argv[optind]);
return 1;
}
/* Check whether shell script */
if (shell) {
if (lookup_exec_path(shell, shell_path, sizeof(shell_path)) != 0) {
fprintf(stderr, "error: finding file: %s\n", shell);
return 1;
}
if (load_elf_desc(shell_path, &desc, &shell) != 0) {
fprintf(stderr, "error: loading file: %s\n", shell);
return 1;
}
}
if (shell) {
argv[optind] = path;
}
for(i = 0; i < sizeof(rlimits) / sizeof(int); i += 2)
getrlimit(rlimits[i], &desc->rlimit[rlimits[i + 1]]);
desc->envs_len = envs_len;
desc->envs = envs;
//print_flat(envs);
desc->args_len = flatten_strings(-1, shell, argv + optind, &args);
desc->args = args;
//print_flat(args);
desc->cpu = target_core;
p = getenv(rlimit_stack_envname);
if (p) {
errno = 0;
lcur = strtoul(p, &p, 0);
if (errno || (*p != ',')) {
fprintf(stderr, "Error: Failed to parse %s\n",
rlimit_stack_envname);
return 1;
}
errno = 0;
lmax = strtoul(p+1, &p, 0);
if (errno || (*p != '\0')) {
fprintf(stderr, "Error: Failed to parse %s\n",
rlimit_stack_envname);
return 1;
}
if (lmax > rlim_stack.rlim_max) {
lmax = rlim_stack.rlim_max;
}
if (lcur > lmax) {
lcur = lmax;
}
rlim_stack.rlim_cur = lcur;
rlim_stack.rlim_max = lmax;
}
desc->rlimit[MCK_RLIMIT_STACK].rlim_cur = rlim_stack.rlim_cur;
desc->rlimit[MCK_RLIMIT_STACK].rlim_max = rlim_stack.rlim_max;
ncpu = ioctl(fd, MCEXEC_UP_GET_CPU, 0);
if(ncpu == -1){
fprintf(stderr, "No CPU found.\n");
return 1;
}
thread_data = (struct thread_data_s *)malloc(sizeof(struct thread_data_s) * (ncpu + 1));
memset(thread_data, '\0', sizeof(struct thread_data_s) * (ncpu + 1));
#if 0
fdm = open("/dev/fmem", O_RDWR);
if (fdm < 0) {
fprintf(stderr, "Error: Failed to open /dev/fmem.\n");
return 1;
}
if ((r = ioctl(fd, MCEXEC_UP_PREPARE_DMA,
(unsigned long)&dma_buf_pa)) < 0) {
perror("prepare_dma");
close(fd);
return 1;
}
dma_buf = mmap(NULL, PIN_SIZE, PROT_READ | PROT_WRITE,
MAP_SHARED, fdm, dma_buf_pa);
__dprintf("DMA Buffer: %lx, %p\n", dma_buf_pa, dma_buf);
#endif
dma_buf = mmap(0, PIN_SIZE, PROT_READ | PROT_WRITE,
(MAP_ANONYMOUS | MAP_PRIVATE), -1, 0);
if (dma_buf == (void *)-1) {
__dprint("error: allocating DMA area\n");
exit(1);
}
/* PIN buffer */
if (mlock(dma_buf, (size_t)PIN_SIZE)) {
__dprint("ERROR: locking dma_buf\n");
exit(1);
}
if (ioctl(fd, MCEXEC_UP_PREPARE_IMAGE, (unsigned long)desc) != 0) {
perror("prepare");
close(fd);
return 1;
}
print_desc(desc);
transfer_image(fd, desc);
fflush(stdout);
fflush(stderr);
#ifdef USE_SYSCALL_MOD_CALL
/**
* TODO: need mutex for static structures
*/
if(mc_cmd_server_init()){
fprintf(stderr, "Error: cmd server init failed\n");
return 1;
}
#ifdef CMD_DCFA
if(ibmic_cmd_server_init()){
fprintf(stderr, "Error: Failed to initialize ibmic_cmd_server.\n");
return -1;
}
#endif
#ifdef CMD_DCFAMPI
if(dcfampi_cmd_server_init()){
fprintf(stderr, "Error: Failed to initialize dcfampi_cmd_server.\n");
return -1;
}
#endif
__dprint("mccmd server initialized\n");
#endif
init_sigaction();
init_worker_threads(fd);
if (ioctl(fd, MCEXEC_UP_START_IMAGE, (unsigned long)desc) != 0) {
perror("exec");
close(fd);
return 1;
}
for (i = 0; i <= ncpu; ++i) {
pthread_join(thread_data[i].thread_id, NULL);
}
return 0;
}
void do_syscall_return(int fd, int cpu,
long ret, int n, unsigned long src, unsigned long dest,
unsigned long sz)
{
struct syscall_ret_desc desc;
desc.cpu = cpu;
desc.ret = ret;
desc.src = src;
desc.dest = dest;
desc.size = sz;
if (ioctl(fd, MCEXEC_UP_RET_SYSCALL, (unsigned long)&desc) != 0) {
perror("ret");
}
}
void do_syscall_load(int fd, int cpu, unsigned long dest, unsigned long src,
unsigned long sz)
{
struct syscall_load_desc desc;
desc.cpu = cpu;
desc.src = src;
desc.dest = dest;
desc.size = sz;
if (ioctl(fd, MCEXEC_UP_LOAD_SYSCALL, (unsigned long)&desc) != 0){
perror("load");
}
}
static long
do_generic_syscall(
struct syscall_wait_desc *w)
{
long ret;
__dprintf("do_generic_syscall(%ld)\n", w->sr.number);
errno = 0;
ret = syscall(w->sr.number, w->sr.args[0], w->sr.args[1], w->sr.args[2],
w->sr.args[3], w->sr.args[4], w->sr.args[5]);
if (errno != 0) {
ret = -errno;
}
__dprintf("do_generic_syscall(%ld):%ld (%#lx)\n", w->sr.number, ret, ret);
return ret;
}
static void
kill_thread(unsigned long cpu)
{
if(cpu >= 0 && cpu < ncpu){
pthread_kill(thread_data[cpu].thread_id, LOCALSIG);
}
else{
int i;
for (i = 0; i < ncpu; ++i) {
pthread_kill(thread_data[i].thread_id, LOCALSIG);
}
}
}
static long do_strncpy_from_user(int fd, void *dest, void *src, unsigned long n)
{
struct strncpy_from_user_desc desc;
int ret;
desc.dest = dest;
desc.src = src;
desc.n = n;
ret = ioctl(fd, MCEXEC_UP_STRNCPY_FROM_USER, (unsigned long)&desc);
if (ret) {
ret = -errno;
perror("strncpy_from_user:ioctl");
return ret;
}
return desc.result;
}
#define SET_ERR(ret) if (ret == -1) ret = -errno
int close_cloexec_fds(int mcos_fd)
{
int fd;
int max_fd = sysconf(_SC_OPEN_MAX);
for (fd = 0; fd < max_fd; ++fd) {
int flags;
if (fd == mcos_fd)
continue;
flags = fcntl(fd, F_GETFD, 0);
if (flags & FD_CLOEXEC) {
close(fd);
}
}
/*
* NOTE: a much more elegant solution would be to iterate fds in proc,
* but opendir() seems to change some state in glibc which makes some
* of the execve() LTP tests fail.
* TODO: investigate this later.
*
DIR *d;
struct dirent *de;
struct dirent __de;
if ((d = opendir("/proc/self/fd")) == NULL) {
fprintf(stderr, "error: opening /proc/self/fd \n");
return -1;
}
while (!readdir_r(d, &__de, &de) && de != NULL) {
long l;
char *e = NULL;
int flags;
if (de->d_name[0] == '.')
continue;
errno = 0;
l = strtol(de->d_name, &e, 10);
if (errno != 0 || !e || *e) {
closedir(d);
return -1;
}
fd = (int)l;
if ((long)fd != l) {
closedir(d);
return -1;
}
if (fd == dirfd(d))
continue;
if (fd == mcos_fd)
continue;
fprintf(stderr, "checking: %d\n", fd);
flags = fcntl(fd, F_GETFD, 0);
if (flags & FD_CLOEXEC) {
fprintf(stderr, "closing: %d\n", fd);
close(fd);
}
}
closedir(d);
*/
return 0;
}
char *
chgpath(char *in, char *buf)
{
char *fn = in;
struct stat sb;
if (!strncmp(fn, "/proc/self/", 11)){
sprintf(buf, "/proc/mcos%d/%d/%s", mcosid, getpid(), fn + 11);
fn = buf;
}
else if(!strncmp(fn, "/proc/", 6)){
sprintf(buf, "/proc/mcos%d/%s", mcosid, fn + 6);
fn = buf;
}
else if(!strcmp(fn, "/sys/devices/system/cpu/online")){
fn = "/admin/fs/attached/files/sys/devices/system/cpu/online";
}
else
return in;
if(stat(fn, &sb) == -1)
return in;
return fn;
}
int main_loop(int fd, int cpu, pthread_mutex_t *lock)
{
struct syscall_wait_desc w;
long ret;
char *fn;
int sig;
int term;
struct timeval tv;
char pathbuf[PATH_MAX];
char tmpbuf[PATH_MAX];
w.cpu = cpu;
w.pid = getpid();
while (((ret = ioctl(fd, MCEXEC_UP_WAIT_SYSCALL, (unsigned long)&w)) == 0) || (ret == -1 && errno == EINTR)) {
if (ret) {
continue;
}
/* Don't print when got a msg to stdout */
if (!(w.sr.number == __NR_write && w.sr.args[0] == 1))
__dprintf("[%d] got syscall: %ld\n", cpu, w.sr.number);
//pthread_mutex_lock(lock);
switch (w.sr.number) {
case __NR_open:
ret = do_strncpy_from_user(fd, pathbuf, (void *)w.sr.args[0], PATH_MAX);
if (ret >= PATH_MAX) {
ret = -ENAMETOOLONG;
}
if (ret < 0) {
do_syscall_return(fd, cpu, ret, 0, 0, 0, 0);
break;
}
__dprintf("open: %s\n", pathbuf);
fn = chgpath(pathbuf, tmpbuf);
ret = open(fn, w.sr.args[1], w.sr.args[2]);
SET_ERR(ret);
do_syscall_return(fd, cpu, ret, 0, 0, 0, 0);
break;
case __NR_futex:
ret = gettimeofday(&tv, NULL);
SET_ERR(ret);
__dprintf("gettimeofday=%016ld,%09ld\n",
tv.tv_sec,
tv.tv_usec);
do_syscall_return(fd, cpu, ret, 1, (unsigned long)&tv,
w.sr.args[0], sizeof(struct timeval));
break;
case __NR_kill: // interrupt syscall
kill_thread(w.sr.args[1]);
do_syscall_return(fd, cpu, 0, 0, 0, 0, 0);
break;
case __NR_exit:
case __NR_exit_group:
sig = 0;
term = 0;
/* Drop executable file */
if ((ret = ioctl(fd, MCEXEC_UP_CLOSE_EXEC)) != 0) {
fprintf(stderr, "WARNING: close_exec() couldn't find exec file?\n");
}
do_syscall_return(fd, cpu, 0, 0, 0, 0, 0);
__dprintf("__NR_exit/__NR_exit_group: %ld (cpu_id: %d)\n",
w.sr.args[0], cpu);
if(w.sr.number == __NR_exit_group){
sig = w.sr.args[0] & 0x7f;
term = (w.sr.args[0] & 0xff00) >> 8;
if(isatty(2)){
if(sig){
if(!ischild)
fprintf(stderr, "Terminate by signal %d\n", sig);
}
else if(term)
__dprintf("Exit status: %d\n", term);
}
}
#ifdef USE_SYSCALL_MOD_CALL
#ifdef CMD_DCFA
ibmic_cmd_server_exit();
#endif
#ifdef CMD_DCFAMPI
dcfampi_cmd_server_exit();
#endif
mc_cmd_server_exit();
__dprint("mccmd server exited\n");
#endif
if(sig){
signal(sig, SIG_DFL);
kill(getpid(), sig);
pause();
}
exit(term);
//pthread_mutex_unlock(lock);
return w.sr.args[0];
case __NR_mmap:
case __NR_mprotect:
/* reserved for internal use */
do_syscall_return(fd, cpu, -ENOSYS, 0, 0, 0, 0);
break;
case __NR_munmap:
ret = madvise((void *)w.sr.args[0], w.sr.args[1], MADV_DONTNEED);
SET_ERR(ret);
do_syscall_return(fd, cpu, ret, 0, 0, 0, 0);
break;
#ifdef USE_SYSCALL_MOD_CALL
case 303:{
__dprintf("mcexec.c,mod_cal,mod=%ld,cmd=%ld\n", w.sr.args[0], w.sr.args[1]);
mc_cmd_handle(fd, cpu, w.sr.args);
break;
}
#endif
case __NR_gettid:{
int mode = w.sr.args[0];
int remote_pid = w.sr.args[1];
int newcpuid = w.sr.args[2];
int oldcpuid = w.sr.args[3];
int wtid = thread_data[newcpuid].remote_tid;
if(mode == 0){
thread_data[ncpu].remote_tid = wtid;
thread_data[newcpuid].remote_tid = remote_pid;
}
else if(mode == 2){
thread_data[newcpuid].remote_tid = thread_data[oldcpuid].remote_tid;
thread_data[oldcpuid].remote_tid = wtid;
}
do_syscall_return(fd, cpu, thread_data[newcpuid].remote_tid, 0, 0, 0, 0);
break;
}
case __NR_fork: {
struct fork_sync *fs;
struct fork_sync_container *fsc;
struct fork_sync_container *fp;
struct fork_sync_container *fb;
int rc = -1;
pid_t pid;
fsc = malloc(sizeof(struct fork_sync_container));
memset(fsc, '\0', sizeof(struct fork_sync_container));
pthread_mutex_lock(&fork_sync_mutex);
fsc->next = fork_sync_top;
fork_sync_top = fsc;
pthread_mutex_unlock(&fork_sync_mutex);
fsc->fs = fs = mmap(NULL, sizeof(struct fork_sync),
PROT_READ | PROT_WRITE,
MAP_SHARED | MAP_ANONYMOUS, -1, 0);
if(fs == (void *)-1){
goto fork_err;
}
memset(fs, '\0', sizeof(struct fork_sync));
sem_init(&fs->sem, 1, 0);
pid = fork();
switch (pid) {
/* Error */
case -1:
fprintf(stderr, "fork(): error forking child process\n");
rc = -errno;
break;
/* Child process */
case 0: {
int i;
int ret = 1;
struct newprocess_desc npdesc;
ischild = 1;
/* Reopen device fd */
close(fd);
fd = open(dev, O_RDWR);
if (fd < 0) {
fs->status = -errno;
fprintf(stderr, "ERROR: opening %s\n", dev);
goto fork_child_sync_pipe;
}
/* Reinit signals and syscall threads */
init_sigaction();
init_worker_threads(fd);
__dprintf("pid(%d): signals and syscall threads OK\n",
getpid());
/* Hold executable also in the child process */
if ((ret = ioctl(fd, MCEXEC_UP_OPEN_EXEC, exec_path))
!= 0) {
fprintf(stderr, "Error: open_exec() fails for %s: %d (fd: %d)\n",
exec_path, ret, fd);
fs->status = -errno;
goto fork_child_sync_pipe;
}
fork_child_sync_pipe:
sem_post(&fs->sem);
if (fs->status)
exit(1);
for (fp = fork_sync_top; fp;) {
fb = fp->next;
if (fp->fs)
munmap(fp->fs, sizeof(struct fork_sync));
free(fp);
fp = fb;
}
fork_sync_top = NULL;
pthread_mutex_init(&fork_sync_mutex, NULL);
npdesc.pid = getpid();
ioctl(fd, MCEXEC_UP_NEW_PROCESS, &npdesc);
/* TODO: does the forked thread run in a pthread context? */
for (i = 0; i <= ncpu; ++i) {
pthread_join(thread_data[i].thread_id, NULL);
}
return ret;
}
/* Parent */
default:
fs->pid = pid;
while ((rc = sem_trywait(&fs->sem)) == -1 && (errno == EAGAIN || errno == EINTR)) {
int st;
int wrc;
wrc = waitpid(pid, &st, WNOHANG);
if(wrc == pid) {
fs->status = -ENOMEM;
break;
}
sched_yield();
}
if (fs->status != 0) {
fprintf(stderr, "fork(): error with child process after fork\n");
rc = fs->status;
break;
}
rc = pid;
break;
}
sem_destroy(&fs->sem);
munmap(fs, sizeof(struct fork_sync));
fork_err:
pthread_mutex_lock(&fork_sync_mutex);
for(fp = fork_sync_top, fb = NULL; fp; fb = fp, fp = fp->next)
if(fp == fsc)
break;
if(fp){
if(fb)
fb->next = fsc->next;
else
fork_sync_top = fsc->next;
}
pthread_mutex_unlock(&fork_sync_mutex);
do_syscall_return(fd, cpu, rc, 0, 0, 0, 0);
break;
}
case __NR_wait4: {
int ret;
pid_t pid = w.sr.args[0];
int options = w.sr.args[2];
siginfo_t info;
int opt;
opt = WEXITED | (options & WNOWAIT);
memset(&info, '\0', sizeof info);
while((ret = waitid(P_PID, pid, &info, opt)) == -1 &&
errno == EINTR);
if(ret == 0){
ret = info.si_pid;
}
if(ret != pid) {
fprintf(stderr, "ERROR: waiting for %lu\n", w.sr.args[0]);
}
do_syscall_return(fd, cpu, ret, 0, 0, 0, 0);
break;
}
case __NR_execve: {
/* Execve phase */
switch (w.sr.args[0]) {
struct program_load_desc *desc;
struct remote_transfer trans;
char path[1024];
char *filename;
int ret;
char *shell = NULL;
char shell_path[1024];
/* Load descriptor phase */
case 1:
filename = (char *)w.sr.args[1];
if ((ret = lookup_exec_path(filename, path, sizeof(path)))
!= 0) {
goto return_execve1;
}
if ((ret = load_elf_desc(path, &desc, &shell)) != 0) {
fprintf(stderr,
"execve(): error loading ELF for file %s\n", path);
goto return_execve1;
}
/* Check whether shell script */
if (shell) {
if ((ret = lookup_exec_path(shell, shell_path,
sizeof(shell_path))) != 0) {
fprintf(stderr, "execve(): error: finding file: %s\n", shell);
goto return_execve1;
}
if ((ret = load_elf_desc(shell_path, &desc, &shell))
!= 0) {
fprintf(stderr, "execve(): error: loading file: %s\n", shell);
goto return_execve1;
}
if (strlen(shell_path) >= SHELL_PATH_MAX_LEN) {
fprintf(stderr, "execve(): error: shell path too long: %s\n", shell_path);
ret = ENAMETOOLONG;
goto return_execve1;
}
/* Let the LWK know the shell interpreter */
strcpy(desc->shell_path, shell_path);
}
__dprintf("execve(): load_elf_desc() for %s OK, num sections: %d\n",
path, desc->num_sections);
/* Copy descriptor to co-kernel side */
trans.userp = (void*)desc;
trans.rphys = w.sr.args[2];
trans.size = sizeof(struct program_load_desc) +
sizeof(struct program_image_section) *
desc->num_sections;
trans.direction = MCEXEC_UP_TRANSFER_TO_REMOTE;
if (ioctl(fd, MCEXEC_UP_TRANSFER, &trans) != 0) {
fprintf(stderr,
"execve(): error transfering ELF for file %s\n",
(char *)w.sr.args[1]);
goto return_execve1;
}
__dprintf("execve(): load_elf_desc() for %s OK\n",
path);
/* We can't be sure next phase will succeed */
/* TODO: what shall we do with fp in desc?? */
free(desc);
ret = 0;
return_execve1:
do_syscall_return(fd, cpu, ret, 0, 0, 0, 0);
break;
/* Copy program image phase */
case 2:
ret = -1;
/* Alloc descriptor */
desc = malloc(w.sr.args[2]);
if (!desc) {
fprintf(stderr, "execve(): error allocating desc\n");
goto return_execve2;
}
/* Copy descriptor from co-kernel side */
trans.userp = (void*)desc;
trans.rphys = w.sr.args[1];
trans.size = w.sr.args[2];
trans.direction = MCEXEC_UP_TRANSFER_FROM_REMOTE;
if (ioctl(fd, MCEXEC_UP_TRANSFER, &trans) != 0) {
fprintf(stderr,
"execve(): error obtaining ELF descriptor\n");
ret = EINVAL;
goto return_execve2;
}
__dprintf("%s", "execve(): transfer ELF desc OK\n");
transfer_image(fd, desc);
__dprintf("%s", "execve(): image transferred\n");
if (close_cloexec_fds(fd) < 0) {
ret = EINVAL;
goto return_execve2;
}
ret = 0;
return_execve2:
do_syscall_return(fd, cpu, ret, 0, 0, 0, 0);
break;
default:
fprintf(stderr, "execve(): ERROR: invalid execve phase\n");
break;
}
break;
}
case __NR_signalfd4:
ret = act_signalfd4(&w);
do_syscall_return(fd, cpu, ret, 0, 0, 0, 0);
break;
case __NR_rt_sigaction:
act_sigaction(&w);
do_syscall_return(fd, cpu, 0, 0, 0, 0, 0);
break;
case __NR_rt_sigprocmask:
act_sigprocmask(&w);
do_syscall_return(fd, cpu, 0, 0, 0, 0, 0);
break;
case __NR_close:
if(w.sr.args[0] == fd)
ret = -EBADF;
else
ret = do_generic_syscall(&w);
do_syscall_return(fd, cpu, ret, 0, 0, 0, 0);
break;
default:
ret = do_generic_syscall(&w);
do_syscall_return(fd, cpu, ret, 0, 0, 0, 0);
break;
}
//pthread_mutex_unlock(lock);
}
__dprint("timed out.\n");
return 1;
}