Files
mckernel/kernel/syscall.c
Tomoki Shirasawa 3fe7e39607 some variables definition are gathered to fork_tree_node from process.
- remove both-defined: pid, pgid, status
- move to fork_tree_node: tid
- make dummy fork_tree_node for idle_process.
2014-10-29 16:54:09 +09:00

3454 lines
87 KiB
C

/**
* \file syscall.c
* License details are found in the file LICENSE.
* \brief
* system call handlers
* \author Taku Shimosawa <shimosawa@is.s.u-tokyo.ac.jp> \par
* Copyright (C) 2011 - 2012 Taku Shimosawa
* \author Balazs Gerofi <bgerofi@riken.jp> \par
* Copyright (C) 2012 RIKEN AICS
* \author Masamichi Takagi <m-takagi@ab.jp.nec.com> \par
* Copyright (C) 2012 - 2013 NEC Corporation
* \author Min Si <msi@is.s.u-tokyo.ac.jp> \par
* Copyright (C) 2012 Min Si
* \author Balazs Gerofi <bgerofi@is.s.u-tokyo.ac.jp> \par
* Copyright (C) 2013 The University of Tokyo
* \author Gou Nakamura <go.nakamura.yw@hitachi-solutions.com> \par
* Copyright (C) 2013 Hitachi, Ltd.
* \author Tomoki Shirasawa <tomoki.shirasawa.kk@hitachi-solutions.com> \par
* Copyright (C) 2013 Hitachi, Ltd.
*/
/*
* HISTORY:
*/
#include <types.h>
#include <kmsg.h>
#include <ihk/cpu.h>
#include <cpulocal.h>
#include <ihk/mm.h>
#include <ihk/debug.h>
#include <ihk/ikc.h>
#include <errno.h>
#include <cls.h>
#include <syscall.h>
#include <page.h>
#include <amemcpy.h>
#include <uio.h>
#include <ihk/lock.h>
#include <ctype.h>
#include <waitq.h>
#include <rlimit.h>
#include <affinity.h>
#include <time.h>
#include <ihk/perfctr.h>
#include <mman.h>
#include <kmalloc.h>
#include <memobj.h>
#include <shm.h>
/* Headers taken from kitten LWK */
#include <lwk/stddef.h>
#include <futex.h>
#define SYSCALL_BY_IKC
//#define DEBUG_PRINT_SC
#ifdef DEBUG_PRINT_SC
#define dkprintf(...) kprintf(__VA_ARGS__)
#define ekprintf(...) kprintf(__VA_ARGS__)
#else
#define dkprintf(...)
#define ekprintf(...) kprintf(__VA_ARGS__)
#endif
//static ihk_atomic_t pid_cnt = IHK_ATOMIC_INIT(1024);
/* generate system call handler's prototypes */
#define SYSCALL_HANDLED(number,name) extern long sys_##name(int n, ihk_mc_user_context_t *ctx);
#define SYSCALL_DELEGATED(number,name)
#include <syscall_list.h>
#undef SYSCALL_HANDLED
#undef SYSCALL_DELEGATED
/* generate syscall_table[] */
static long (*syscall_table[])(int, ihk_mc_user_context_t *) = {
#define SYSCALL_HANDLED(number,name) [number] = &sys_##name,
#define SYSCALL_DELEGATED(number,name)
#include <syscall_list.h>
#undef SYSCALL_HANDLED
#undef SYSCALL_DELEGATED
};
/* generate syscall_name[] */
#define MCKERNEL_UNUSED __attribute__ ((unused))
static char *syscall_name[] MCKERNEL_UNUSED = {
#define DECLARATOR(number,name) [number] = #name,
#define SYSCALL_HANDLED(number,name) DECLARATOR(number,sys_##name)
#define SYSCALL_DELEGATED(number,name) DECLARATOR(number,sys_##name)
#include <syscall_list.h>
#undef DECLARATOR
#undef SYSCALL_HANDLED
#undef SYSCALL_DELEGATED
};
void check_signal(unsigned long rc, void *regs);
void do_signal(long rc, void *regs, struct process *proc, struct sig_pending *pending);
extern unsigned long do_kill(int pid, int tid, int sig, struct siginfo *info);
int copy_from_user(struct process *, void *, const void *, size_t);
int copy_to_user(struct process *, void *, const void *, size_t);
void do_setpgid(int, int);
int prepare_process_ranges_args_envs(struct process *proc,
struct program_load_desc *pn,
struct program_load_desc *p,
enum ihk_mc_pt_attribute attr,
char *args, int args_len,
char *envs, int envs_len);
#ifdef DCFA_KMOD
static void do_mod_exit(int status);
#endif
static void send_syscall(struct syscall_request *req, int cpu, int pid)
{
struct ikc_scd_packet packet;
struct syscall_response *res;
struct syscall_params *scp;
struct ihk_ikc_channel_desc *syscall_channel;
int ret;
if(req->number == __NR_exit_group ||
req->number == __NR_gettid ||
req->number == __NR_kill){ // interrupt syscall
extern int num_processors;
scp = &get_cpu_local_var(0)->scp2;
syscall_channel = get_cpu_local_var(0)->syscall_channel2;
/* XXX: is this really going to work if multiple processes
* exit/receive signals at the same time?? */
cpu = num_processors;
if(req->number == __NR_kill)
pid = req->args[0];
if(req->number == __NR_gettid)
pid = req->args[1];
}
else{
scp = &get_cpu_local_var(cpu)->scp;
syscall_channel = get_cpu_local_var(cpu)->syscall_channel;
}
res = scp->response_va;
res->status = 0;
req->valid = 0;
#ifdef USE_DMA
memcpy_async(scp->request_pa,
virt_to_phys(req), sizeof(*req), 0, &fin);
memcpy_async_wait(&scp->post_fin);
scp->post_va->v[0] = scp->post_idx;
memcpy_async_wait(&fin);
#else
memcpy(scp->request_va, req, sizeof(*req));
#endif
barrier();
scp->request_va->valid = 1;
*(unsigned int *)scp->doorbell_va = cpu + 1;
#ifdef SYSCALL_BY_IKC
packet.msg = SCD_MSG_SYSCALL_ONESIDE;
packet.ref = cpu;
packet.pid = pid ? pid : cpu_local_var(current)->ftn->pid;
packet.arg = scp->request_rpa;
dkprintf("send syscall, nr: %d, pid: %d\n", req->number, packet.pid);
ret = ihk_ikc_send(syscall_channel, &packet, 0);
if (ret < 0) {
kprintf("ERROR: sending IKC msg, ret: %d\n", ret);
}
#endif
}
ihk_spinlock_t syscall_lock;
long do_syscall(struct syscall_request *req, ihk_mc_user_context_t *ctx,
int cpu, int pid)
{
struct syscall_response *res;
struct syscall_request req2 IHK_DMA_ALIGN;
struct syscall_params *scp;
int error;
long rc;
int islock = 0;
unsigned long irqstate;
dkprintf("SC(%d)[%3d] sending syscall\n",
ihk_mc_get_processor_id(),
req->number);
if(req->number == __NR_exit_group ||
req->number == __NR_gettid ||
req->number == __NR_kill){ // interrupt syscall
scp = &get_cpu_local_var(0)->scp2;
islock = 1;
irqstate = ihk_mc_spinlock_lock(&syscall_lock);
}
else{
scp = &get_cpu_local_var(cpu)->scp;
}
res = scp->response_va;
send_syscall(req, cpu, pid);
dkprintf("SC(%d)[%3d] waiting for host.. \n",
ihk_mc_get_processor_id(),
req->number);
#define STATUS_IN_PROGRESS 0
#define STATUS_COMPLETED 1
#define STATUS_PAGE_FAULT 3
while (res->status != STATUS_COMPLETED) {
while (res->status == STATUS_IN_PROGRESS) {
cpu_pause();
}
if (res->status == STATUS_PAGE_FAULT) {
dkprintf("STATUS_PAGE_FAULT in syscall, pid: %d\n",
cpu_local_var(current)->ftn->pid);
error = page_fault_process(get_cpu_local_var(cpu)->current,
(void *)res->fault_address,
res->fault_reason|PF_POPULATE);
/* send result */
req2.number = __NR_mmap;
#define PAGER_RESUME_PAGE_FAULT 0x0101
req2.args[0] = PAGER_RESUME_PAGE_FAULT;
req2.args[1] = error;
send_syscall(&req2, cpu, pid);
}
}
dkprintf("SC(%d)[%3d] got host reply: %d \n",
ihk_mc_get_processor_id(),
req->number, res->ret);
rc = res->ret;
if(islock){
ihk_mc_spinlock_unlock(&syscall_lock, irqstate);
}
return rc;
}
long syscall_generic_forwarding(int n, ihk_mc_user_context_t *ctx)
{
SYSCALL_HEADER;
dkprintf("syscall_generic_forwarding(%d)\n", n);
SYSCALL_ARGS_6(D,D,D,D,D,D);
SYSCALL_FOOTER;
}
#if 0
void sigchld_parent(struct process *parent, int status)
{
struct process *proc = cpu_local_var(current);
int irqstate;
struct sig_pending *pending;
struct list_head *head;
__sigset_t mask;
mask = __sigmask(SIGCHLD);
head = &parent->sigpending;
irqstate = ihk_mc_spinlock_lock(&parent->sigpendinglock);
list_for_each_entry(pending, head, list) {
if (pending->sigmask.__val[0] == mask)
break;
}
if (&pending->list == head) {
pending = kmalloc(sizeof(struct sig_pending), IHK_MC_AP_NOWAIT);
if (!pending) {
/* TODO: what to do here?? */
panic("ERROR: not enough memory for signaling parent process!");
}
pending->sigmask.__val[0] = mask;
pending->info.si_signo = SIGCHLD;
pending->info._sifields._sigchld.si_pid = proc->pid;
pending->info._sifields._sigchld.si_status = status;
list_add_tail(&pending->list, head);
proc->sigevent = 1;
}
/* TODO: There was a SIGCHLD pending */
else {
}
ihk_mc_spinlock_unlock(&parent->sigpendinglock, irqstate);
}
#endif
static int wait_zombie(struct process *proc, struct fork_tree_node *child, int *status, ihk_mc_user_context_t *ctx) {
int ret;
struct syscall_request request IHK_DMA_ALIGN;
dkprintf("wait_zombie,found PS_ZOMBIE process: %d\n", child->pid);
if (status) {
*status = child->exit_status;
}
/* Ask host to clean up exited child */
request.number = __NR_wait4;
request.args[0] = child->pid;
request.args[1] = 0;
ret = do_syscall(&request, ctx, ihk_mc_get_processor_id(), 0);
if (ret != child->pid)
kprintf("WARNING: host waitpid failed?\n");
dkprintf("wait_zombie,child->pid=%d,status=%08x\n",
child->pid, status ? *status : -1);
return ret;
}
static int wait_stopped(struct process *proc, struct fork_tree_node *child, int *status, int options)
{
dkprintf("wait_stopped,proc->pid=%d,child->pid=%d,options=%08x\n",
proc->ftn->pid, child->pid, options);
int ret;
/* Copy exit_status created in do_signal */
int *exit_status = child->status == PS_STOPPED ?
&child->group_exit_status :
&child->exit_status;
/* Skip this process because exit_status has been reaped. */
if (!*exit_status) {
ret = 0;
goto out;
}
/* TODO: define 0x7f in kernel/include/process.h */
if (status) {
*status = (*exit_status << 8) | 0x7f;
}
/* Reap exit_status. signal_flags is reaped on receiving signal
in do_kill(). */
if(!(options & WNOWAIT)) {
*exit_status = 0;
}
dkprintf("wait_stopped,child->pid=%d,status=%08x\n",
child->pid, status ? *status : -1);
ret = child->pid;
out:
return ret;
}
static int wait_continued(struct process *proc, struct fork_tree_node *child, int *status, int options) {
int ret;
if (status) {
*status = 0xffff;
}
/* Reap signal_flags */
if(!(options & WNOWAIT)) {
child->signal_flags &= ~SIGNAL_STOP_CONTINUED;
}
dkprintf("wait4,SIGNAL_STOP_CONTINUED,pid=%d,status=%08x\n",
child->pid, status ? *status : -1);
ret = child->pid;
return ret;
}
/*
* From glibc: INLINE_SYSCALL (wait4, 4, pid, stat_loc, options, NULL);
*/
SYSCALL_DECLARE(wait4)
{
struct process *proc = cpu_local_var(current);
struct fork_tree_node *child_iter, *next;
int pid = (int)ihk_mc_syscall_arg0(ctx);
int pgid = proc->ftn->pgid;
int *status = (int *)ihk_mc_syscall_arg1(ctx);
int options = (int)ihk_mc_syscall_arg2(ctx);
int ret;
struct waitq_entry waitpid_wqe;
int empty = 1;
dkprintf("wait4,proc->pid=%d,pid=%d\n", proc->ftn->pid, pid);
if (options & ~(WNOHANG | WUNTRACED | WCONTINUED | __WCLONE)) {
dkprintf("wait4: unexpected options(%x).\n", options);
ret = -EINVAL;
goto exit;
}
rescan:
pid = (int)ihk_mc_syscall_arg0(ctx);
ihk_mc_spinlock_lock_noirq(&proc->ftn->lock);
list_for_each_entry_safe(child_iter, next, &proc->ftn->children, siblings_list) {
if (!(!!(options & __WCLONE) ^ (child_iter->termsig == SIGCHLD))) {
continue;
}
ihk_mc_spinlock_lock_noirq(&child_iter->lock);
if ((pid < 0 && -pid == child_iter->pgid) ||
pid == -1 ||
(pid == 0 && pgid == child_iter->pgid) ||
(pid > 0 && pid == child_iter->pid)) {
empty = 0;
if(child_iter->status == PS_ZOMBIE) {
ret = wait_zombie(proc, child_iter, status, ctx);
if(ret) {
list_del(&child_iter->siblings_list);
release_fork_tree_node(child_iter);
goto out_found;
}
}
if((child_iter->signal_flags & SIGNAL_STOP_STOPPED) &&
(options & WUNTRACED)) {
/* Not ptraced and in stopped state and WUNTRACED is specified */
ret = wait_stopped(proc, child_iter, status, options);
if(ret) {
goto out_found;
}
}
if((child_iter->signal_flags & SIGNAL_STOP_CONTINUED) &&
(options & WCONTINUED)) {
ret = wait_continued(proc, child_iter, status, options);
if(ret) {
goto out_found;
}
}
}
ihk_mc_spinlock_unlock_noirq(&child_iter->lock);
}
list_for_each_entry_safe(child_iter, next, &proc->ftn->ptrace_children, ptrace_siblings_list) {
if (!(!!(options & __WCLONE) ^ (child_iter->termsig == SIGCHLD))) {
continue;
}
ihk_mc_spinlock_lock_noirq(&child_iter->lock);
if ((pid < 0 && -pid == child_iter->pgid) ||
pid == -1 ||
(pid == 0 && pgid == child_iter->pgid) ||
(pid > 0 && pid == child_iter->pid)) {
empty = 0;
if(child_iter->status == PS_ZOMBIE) {
ret = wait_zombie(proc, child_iter, status, ctx);
if(ret) {
list_del(&child_iter->ptrace_siblings_list);
release_fork_tree_node(child_iter);
goto out_found;
}
}
if(child_iter->status & (PS_STOPPED | PS_TRACED)) {
/* ptraced and in stopped or trace-stopped state */
ret = wait_stopped(proc, child_iter, status, options);
if(ret) {
goto out_found;
}
} else {
/* ptraced and in running or sleeping state */
}
if((child_iter->signal_flags & SIGNAL_STOP_CONTINUED) &&
(options & WCONTINUED)) {
ret = wait_continued(proc, child_iter, status, options);
if(ret) {
goto out_found;
}
}
}
ihk_mc_spinlock_unlock_noirq(&child_iter->lock);
}
if (empty) {
ret = -ECHILD;
goto out_notfound;
}
/* Don't sleep if WNOHANG requested */
if (options & WNOHANG) {
*status = 0;
ret = 0;
goto out_notfound;
}
/* Sleep */
dkprintf("wait4,sleeping\n");
waitq_init_entry(&waitpid_wqe, proc);
waitq_prepare_to_wait(&proc->ftn->waitpid_q, &waitpid_wqe, PS_INTERRUPTIBLE);
ihk_mc_spinlock_unlock_noirq(&proc->ftn->lock);
schedule();
dkprintf("wait4(): woken up\n");
waitq_finish_wait(&proc->ftn->waitpid_q, &waitpid_wqe);
goto rescan;
exit:
return ret;
out_found:
dkprintf("wait4,out_found\n");
ihk_mc_spinlock_unlock_noirq(&child_iter->lock);
out_notfound:
dkprintf("wait4,out_notfound\n");
ihk_mc_spinlock_unlock_noirq(&proc->ftn->lock);
goto exit;
}
void
terminate(int rc, int sig, ihk_mc_user_context_t *ctx)
{
struct syscall_request request IHK_DMA_ALIGN;
struct process *proc = cpu_local_var(current);
struct fork_tree_node *ftn = proc->ftn;
struct fork_tree_node *child, *next;
struct process *parent_owner;
int error;
dkprintf("terminate,pid=%d\n", proc->ftn->pid);
request.number = __NR_exit_group;
request.args[0] = ((rc & 0x00ff) << 8) | (sig & 0xff);
#ifdef DCFA_KMOD
do_mod_exit(rc);
#endif
/* XXX: send SIGKILL to all threads in this process */
flush_process_memory(proc); /* temporary hack */
do_syscall(&request, ctx, ihk_mc_get_processor_id(), 0);
#define IS_DETACHED_PROCESS(proc) (1) /* should be implemented in the future */
/* Do a "wait" on all children and detach owner process */
ihk_mc_spinlock_lock_noirq(&ftn->lock);
list_for_each_entry_safe(child, next, &ftn->children, siblings_list) {
list_del(&child->siblings_list);
release_fork_tree_node(child);
}
list_for_each_entry_safe(child, next, &ftn->ptrace_children, ptrace_siblings_list) {
list_del(&child->ptrace_siblings_list);
release_fork_tree_node(child);
}
ftn->owner = NULL;
ihk_mc_spinlock_unlock_noirq(&ftn->lock);
/* Send signal to parent */
if (ftn->parent) {
int parent_owner_pid;
ihk_mc_spinlock_lock_noirq(&ftn->lock);
ftn->exit_status = ((rc & 0x00ff) << 8) | (sig & 0xff);
ftn->status = PS_ZOMBIE;
ihk_mc_spinlock_unlock_noirq(&ftn->lock);
/* Wake parent (if sleeping in wait4()) */
dkprintf("terminate,wakeup\n");
waitq_wakeup(&ftn->parent->waitpid_q);
/* Signal parent if still attached */
ihk_mc_spinlock_lock_noirq(&ftn->parent->lock);
parent_owner = ftn->parent->owner;
parent_owner_pid = parent_owner ? ftn->parent->pid : 0;
ihk_mc_spinlock_unlock_noirq(&ftn->parent->lock);
if (parent_owner && (ftn->termsig != 0)) {
struct siginfo info;
memset(&info, '\0', sizeof info);
info.si_signo = SIGCHLD;
info.si_code = sig? ((sig & 0x80)? CLD_DUMPED: CLD_KILLED): CLD_EXITED;
info._sifields._sigchld.si_pid = proc->ftn->pid;
info._sifields._sigchld.si_status = ((rc & 0x00ff) << 8) | (sig & 0xff);
dkprintf("terminate,kill %d,target pid=%d\n",
ftn->termsig, parent_owner_pid);
error = do_kill(ftn->parent->pid, -1, SIGCHLD, &info);
/*
sigchld_parent(ftn->parent->owner, 0);
*/
dkprintf("terminate,klll %d,error=%d\n",
ftn->termsig, error);
}
release_fork_tree_node(ftn->parent);
} else {
ihk_mc_spinlock_lock_noirq(&ftn->lock);
ftn->status = PS_EXITED;
ihk_mc_spinlock_unlock_noirq(&ftn->lock);
}
release_fork_tree_node(ftn);
release_process(proc);
schedule();
}
void
interrupt_syscall(int pid, int cpuid)
{
dkprintf("interrupt_syscall,target pid=%d,target cpuid=%d\n", pid, cpuid);
ihk_mc_user_context_t ctx;
long lerror;
ihk_mc_syscall_arg0(&ctx) = pid;
ihk_mc_syscall_arg1(&ctx) = cpuid;
lerror = syscall_generic_forwarding(__NR_kill, &ctx);
if (lerror) {
kprintf("clear_host_pte failed. %ld\n", lerror);
}
return;
}
SYSCALL_DECLARE(exit_group)
{
#if 0
SYSCALL_HEADER;
#endif
dkprintf("sys_exit_group,pid=%d\n", cpu_local_var(current)->ftn->pid);
terminate((int)ihk_mc_syscall_arg0(ctx), 0, ctx);
#if 0
struct process *proc = cpu_local_var(current);
#ifdef DCFA_KMOD
do_mod_exit((int)ihk_mc_syscall_arg0(ctx));
#endif
/* XXX: send SIGKILL to all threads in this process */
do_syscall(&request, ctx, ihk_mc_get_processor_id(), 0);
#define IS_DETACHED_PROCESS(proc) (1) /* should be implemented in the future */
proc->status = PS_ZOMBIE;
if (IS_DETACHED_PROCESS(proc)) {
/* release a reference for wait(2) */
proc->status = PS_EXITED;
free_process(proc);
}
schedule();
#endif
return 0;
}
static void clear_host_pte(uintptr_t addr, size_t len)
{
ihk_mc_user_context_t ctx;
long lerror;
ihk_mc_syscall_arg0(&ctx) = addr;
ihk_mc_syscall_arg1(&ctx) = len;
/* NOTE: 3rd parameter denotes new rpgtable of host process (if not zero) */
ihk_mc_syscall_arg2(&ctx) = 0;
lerror = syscall_generic_forwarding(__NR_munmap, &ctx);
if (lerror) {
kprintf("clear_host_pte failed. %ld\n", lerror);
}
return;
}
static int set_host_vma(uintptr_t addr, size_t len, int prot)
{
ihk_mc_user_context_t ctx;
long lerror;
ihk_mc_syscall_arg0(&ctx) = addr;
ihk_mc_syscall_arg1(&ctx) = len;
ihk_mc_syscall_arg2(&ctx) = prot;
lerror = syscall_generic_forwarding(__NR_mprotect, &ctx);
if (lerror) {
kprintf("set_host_vma(%lx,%lx,%x) failed. %ld\n",
addr, len, prot, lerror);
goto out;
}
lerror = 0;
out:
return (int)lerror;
}
static int do_munmap(void *addr, size_t len)
{
int error;
int ro_freed;
begin_free_pages_pending();
error = remove_process_memory_range(cpu_local_var(current),
(intptr_t)addr, (intptr_t)addr+len, &ro_freed);
// XXX: TLB flush
flush_tlb();
if (error || !ro_freed) {
clear_host_pte((uintptr_t)addr, len);
}
else {
error = set_host_vma((uintptr_t)addr, len, PROT_READ|PROT_WRITE);
if (error) {
kprintf("sys_munmap:set_host_vma failed. %d\n", error);
/* through */
}
}
finish_free_pages_pending();
return error;
}
static int search_free_space(size_t len, intptr_t hint, intptr_t *addrp)
{
struct process *proc = cpu_local_var(current);
struct vm_regions *region = &proc->vm->region;
intptr_t addr;
int error;
struct vm_range *range;
dkprintf("search_free_space(%lx,%lx,%p)\n", len, hint, addrp);
addr = hint;
for (;;) {
#ifdef USE_LARGE_PAGES
if (len >= LARGE_PAGE_SIZE) {
addr = (addr + LARGE_PAGE_SIZE - 1) & LARGE_PAGE_MASK;
}
#endif /* USE_LARGE_PAGES */
if ((region->user_end <= addr)
|| ((region->user_end - len) < addr)) {
ekprintf("search_free_space(%lx,%lx,%p):"
"no space. %lx %lx\n",
len, hint, addrp, addr,
region->user_end);
error = -ENOMEM;
goto out;
}
range = lookup_process_memory_range(proc->vm, addr, addr+len);
if (range == NULL) {
break;
}
addr = range->end;
}
error = 0;
*addrp = addr;
out:
dkprintf("search_free_space(%lx,%lx,%p): %d %lx\n",
len, hint, addrp, error, addr);
return error;
}
SYSCALL_DECLARE(mmap)
{
const int supported_flags = 0
| MAP_SHARED // 01
| MAP_PRIVATE // 02
| MAP_FIXED // 10
| MAP_ANONYMOUS // 20
| MAP_LOCKED // 2000
| MAP_POPULATE // 8000
;
const int ignored_flags = 0
#ifdef USE_NOCACHE_MMAP
| MAP_32BIT // 40
#endif /* USE_NOCACHE_MMAP */
| MAP_DENYWRITE // 0800
| MAP_NORESERVE // 4000
| MAP_STACK // 00020000
;
const int error_flags = 0
#ifndef USE_NOCACHE_MMAP
| MAP_32BIT // 40
#endif /* ndef USE_NOCACHE_MMAP */
| MAP_GROWSDOWN // 0100
| MAP_EXECUTABLE // 1000
| MAP_NONBLOCK // 00010000
| MAP_HUGETLB // 00040000
;
const intptr_t addr0 = ihk_mc_syscall_arg0(ctx);
const size_t len0 = ihk_mc_syscall_arg1(ctx);
const int prot = ihk_mc_syscall_arg2(ctx);
const int flags = ihk_mc_syscall_arg3(ctx);
const int fd = ihk_mc_syscall_arg4(ctx);
const off_t off0 = ihk_mc_syscall_arg5(ctx);
struct process *proc = cpu_local_var(current);
struct vm_regions *region = &proc->vm->region;
intptr_t addr;
size_t len;
off_t off;
int error;
intptr_t npages;
int p2align;
void *p = NULL;
int vrflags;
intptr_t phys;
struct memobj *memobj = NULL;
int maxprot;
int denied;
int ro_vma_mapped = 0;
struct shmid_ds ads;
dkprintf("[%d]sys_mmap(%lx,%lx,%x,%x,%d,%lx)\n",
ihk_mc_get_processor_id(),
addr0, len0, prot, flags, fd, off0);
/* check constants for flags */
if (1) {
int dup_flags;
dup_flags = (supported_flags & ignored_flags);
dup_flags |= (ignored_flags & error_flags);
dup_flags |= (error_flags & supported_flags);
if (dup_flags) {
ekprintf("sys_mmap:duplicate flags: %lx\n", dup_flags);
ekprintf("s-flags: %08x\n", supported_flags);
ekprintf("i-flags: %08x\n", ignored_flags);
ekprintf("e-flags: %08x\n", error_flags);
panic("sys_mmap:duplicate flags\n");
/* no return */
}
}
/* check arguments */
#define VALID_DUMMY_ADDR (region->user_start)
addr = (flags & MAP_FIXED)? addr0: VALID_DUMMY_ADDR;
len = (len0 + PAGE_SIZE - 1) & PAGE_MASK;
if ((addr & (PAGE_SIZE - 1))
|| (addr < region->user_start)
|| (region->user_end <= addr)
|| (len == 0)
|| (len > (region->user_end - region->user_start))
|| ((region->user_end - len) < addr)
|| !(flags & (MAP_SHARED | MAP_PRIVATE))
|| ((flags & MAP_SHARED) && (flags & MAP_PRIVATE))
|| (off0 & (PAGE_SIZE - 1))) {
ekprintf("sys_mmap(%lx,%lx,%x,%x,%x,%lx):EINVAL\n",
addr0, len0, prot, flags, fd, off0);
error = -EINVAL;
goto out2;
}
/* check not supported requests */
if ((flags & error_flags)
|| (flags & ~(supported_flags | ignored_flags))) {
ekprintf("sys_mmap(%lx,%lx,%x,%x,%x,%lx):unknown flags %x\n",
addr0, len0, prot, flags, fd, off0,
(flags & ~(supported_flags | ignored_flags)));
error = -EINVAL;
goto out2;
}
ihk_mc_spinlock_lock_noirq(&proc->vm->memory_range_lock);
if (flags & MAP_FIXED) {
/* clear specified address range */
error = do_munmap((void *)addr, len);
if (error) {
ekprintf("sys_mmap:do_munmap(%lx,%lx) failed. %d\n",
addr, len, error);
goto out;
}
}
else {
/* choose mapping address */
error = search_free_space(len, region->map_end, &addr);
if (error) {
ekprintf("sys_mmap:search_free_space(%lx,%lx) failed. %d\n",
len, region->map_end, error);
goto out;
}
region->map_end = addr + len;
}
/* do the map */
vrflags = VR_NONE;
vrflags |= PROT_TO_VR_FLAG(prot);
vrflags |= (flags & MAP_PRIVATE)? VR_PRIVATE: 0;
vrflags |= (flags & MAP_LOCKED)? VR_LOCKED: 0;
if (flags & MAP_ANONYMOUS) {
if (0) {
/* dummy */
}
#ifdef USE_NOCACHE_MMAP
#define X_MAP_NOCACHE MAP_32BIT
else if (flags & X_MAP_NOCACHE) {
vrflags |= VR_IO_NOCACHE;
}
#endif
else {
vrflags |= VR_DEMAND_PAGING;
}
}
else {
vrflags |= VR_DEMAND_PAGING;
}
if (!(prot & PROT_WRITE)) {
error = set_host_vma(addr, len, PROT_READ);
if (error) {
kprintf("sys_mmap:set_host_vma failed. %d\n", error);
goto out;
}
ro_vma_mapped = 1;
}
phys = 0;
off = 0;
maxprot = PROT_READ | PROT_WRITE | PROT_EXEC;
if (!(flags & MAP_ANONYMOUS)) {
off = off0;
error = fileobj_create(fd, &memobj, &maxprot);
#ifdef ATTACHED_MIC
/*
* XXX: refuse device mapping in attached-mic now:
*
* In attached-mic, ihk_mc_map_memory() cannot convert into a local
* physical address a remote physical address which point KNC's memory.
* It seems that ihk_mc_map_memory() needs to set up SMPT.
*/
if (error == -ESRCH) {
error = -ENODEV;
}
#endif
if (error == -ESRCH) {
kprintf("sys_mmap:hit non VREG\n");
/*
* XXX: temporary:
*
* device mappings are uncachable
* until memory type setting codes are implemented.
*/
if (1) {
vrflags &= ~VR_MEMTYPE_MASK;
vrflags |= VR_MEMTYPE_UC;
}
error = devobj_create(fd, len, off, &memobj, &maxprot);
}
if (error) {
ekprintf("sys_mmap:fileobj_create failed. %d\n", error);
goto out;
}
}
else if (!(vrflags & VR_DEMAND_PAGING)
&& ((vrflags & VR_PROT_MASK) != VR_PROT_NONE)) {
npages = len >> PAGE_SHIFT;
p2align = PAGE_P2ALIGN;
#ifdef USE_LARGE_PAGES
if ((len >= LARGE_PAGE_SIZE)
&& ((addr & (LARGE_PAGE_SIZE - 1)) == 0)) {
p2align = LARGE_PAGE_P2ALIGN;
}
#endif /* USE_LARGE_PAGES */
p = ihk_mc_alloc_aligned_pages(npages, p2align, IHK_MC_AP_NOWAIT);
if (p == NULL) {
ekprintf("sys_mmap:allocate_pages(%d,%d) failed.\n",
npages, p2align);
error = -ENOMEM;
goto out;
}
phys = virt_to_phys(p);
}
else if (flags & MAP_SHARED) {
memset(&ads, 0, sizeof(ads));
ads.shm_segsz = len;
error = shmobj_create(&ads, &memobj);
if (error) {
ekprintf("sys_mmap:shmobj_create failed. %d\n", error);
goto out;
}
}
else {
error = zeroobj_create(&memobj);
if (error) {
ekprintf("sys_mmap:zeroobj_create failed. %d\n", error);
goto out;
}
}
if ((flags & MAP_PRIVATE) && (maxprot & PROT_READ)) {
maxprot |= PROT_WRITE;
}
denied = prot & ~maxprot;
if (denied) {
ekprintf("sys_mmap:denied %x. %x %x\n", denied, prot, maxprot);
error = (denied == PROT_EXEC)? -EPERM: -EACCES;
goto out;
}
vrflags |= VRFLAG_PROT_TO_MAXPROT(PROT_TO_VR_FLAG(maxprot));
error = add_process_memory_range(proc, addr, addr+len, phys, vrflags, memobj, off);
if (error) {
ekprintf("sys_mmap:add_process_memory_range"
"(%p,%lx,%lx,%lx,%lx) failed %d\n",
proc, addr, addr+len,
virt_to_phys(p), vrflags, error);
goto out;
}
error = 0;
p = NULL;
memobj = NULL;
ro_vma_mapped = 0;
out:
if (ro_vma_mapped) {
(void)set_host_vma(addr, len, PROT_READ|PROT_WRITE);
}
ihk_mc_spinlock_unlock_noirq(&proc->vm->memory_range_lock);
if (!error && (flags & (MAP_POPULATE | MAP_LOCKED))) {
error = populate_process_memory(proc, (void *)addr, len);
if (error) {
ekprintf("sys_mmap:populate_process_memory"
"(%p,%p,%lx) failed %d\n",
proc, (void *)addr, len, error);
/*
* In this case,
* the mapping established by this call should be unmapped
* before mmap() returns with error.
*
* However, the mapping cannot be unmaped simply,
* because the mapping can be modified by other thread
* because memory_range_lock has been released.
*
* For the moment, like a linux-2.6.38-8,
* the physical page allocation failure is ignored.
*/
error = 0;
}
}
out2:
if (p) {
ihk_mc_free_pages(p, npages);
}
if (memobj) {
memobj_release(memobj);
}
dkprintf("[%d]sys_mmap(%lx,%lx,%x,%x,%d,%lx): %ld %lx\n",
ihk_mc_get_processor_id(),
addr0, len0, prot, flags, fd, off0, error, addr);
return (!error)? addr: error;
}
SYSCALL_DECLARE(munmap)
{
const uintptr_t addr = ihk_mc_syscall_arg0(ctx);
const size_t len0 = ihk_mc_syscall_arg1(ctx);
struct process *proc = cpu_local_var(current);
struct vm_regions *region = &proc->vm->region;
size_t len;
int error;
dkprintf("[%d]sys_munmap(%lx,%lx)\n",
ihk_mc_get_processor_id(), addr, len0);
len = (len0 + PAGE_SIZE - 1) & PAGE_MASK;
if ((addr & (PAGE_SIZE - 1))
|| (addr < region->user_start)
|| (region->user_end <= addr)
|| (len == 0)
|| (len > (region->user_end - region->user_start))
|| ((region->user_end - len) < addr)) {
error = -EINVAL;
goto out;
}
ihk_mc_spinlock_lock_noirq(&proc->vm->memory_range_lock);
error = do_munmap((void *)addr, len);
ihk_mc_spinlock_unlock_noirq(&proc->vm->memory_range_lock);
out:
dkprintf("[%d]sys_munmap(%lx,%lx): %d\n",
ihk_mc_get_processor_id(), addr, len0, error);
return error;
}
SYSCALL_DECLARE(mprotect)
{
const intptr_t start = ihk_mc_syscall_arg0(ctx);
const size_t len0 = ihk_mc_syscall_arg1(ctx);
const int prot = ihk_mc_syscall_arg2(ctx);
struct process *proc = cpu_local_var(current);
struct vm_regions *region = &proc->vm->region;
size_t len;
intptr_t end;
struct vm_range *first;
intptr_t addr;
struct vm_range *range;
int error;
struct vm_range *changed;
const unsigned long protflags = PROT_TO_VR_FLAG(prot);
unsigned long denied;
int ro_changed = 0;
dkprintf("[%d]sys_mprotect(%lx,%lx,%x)\n",
ihk_mc_get_processor_id(), start, len0, prot);
len = (len0 + PAGE_SIZE - 1) & PAGE_MASK;
end = start + len;
/* check arguments */
if ((start & (PAGE_SIZE - 1))
|| (start < region->user_start)
|| (region->user_end <= start)
|| (len > (region->user_end - region->user_start)
|| ((region->user_end - len) < start))) {
ekprintf("[%d]sys_mprotect(%lx,%lx,%x): -EINVAL\n",
ihk_mc_get_processor_id(), start, len0, prot);
return -EINVAL;
}
if (len == 0) {
/* nothing to do */
return 0;
}
ihk_mc_spinlock_lock_noirq(&proc->vm->memory_range_lock);
#if 0
/* check contiguous map */
first = NULL;
for (addr = start; addr < end; addr = range->end) {
if (first == NULL) {
range = lookup_process_memory_range(proc->vm, start, start+PAGE_SIZE);
first = range;
}
else {
range = next_process_memory_range(proc->vm, range);
}
if ((range == NULL) || (addr < range->start)) {
/* not contiguous */
ekprintf("sys_mprotect(%lx,%lx,%x):not contiguous\n",
start, len0, prot);
error = -ENOMEM;
goto out;
}
if (range->flag & (VR_REMOTE | VR_RESERVED | VR_IO_NOCACHE)) {
ekprintf("sys_mprotect(%lx,%lx,%x):cannot change\n",
start, len0, prot);
error = -EINVAL;
goto out;
}
}
#else
first = lookup_process_memory_range(proc->vm, start, start+PAGE_SIZE);
#endif
/* do the mprotect */
changed = NULL;
for (addr = start; addr < end; addr = changed->end) {
if (changed == NULL) {
range = first;
}
else {
range = next_process_memory_range(proc->vm, changed);
}
if ((range == NULL) || (addr < range->start)) {
/* not contiguous */
ekprintf("sys_mprotect(%lx,%lx,%x):not contiguous\n",
start, len0, prot);
error = -ENOMEM;
goto out;
}
denied = protflags & ~VRFLAG_MAXPROT_TO_PROT(range->flag);
if (denied) {
ekprintf("sys_mprotect(%lx,%lx,%x):denied %lx. %lx %lx\n",
start, len0, prot, denied, protflags, range->flag);
error = -EACCES;
goto out;
}
if (range->flag & (VR_REMOTE | VR_RESERVED | VR_IO_NOCACHE)) {
ekprintf("sys_mprotect(%lx,%lx,%x):cannot change\n",
start, len0, prot);
error = -ENOMEM;
goto out;
}
if (range->start < addr) {
error = split_process_memory_range(proc, range, addr, &range);
if (error) {
ekprintf("sys_mprotect(%lx,%lx,%x):split failed. %d\n",
start, len0, prot, error);
goto out;
}
}
if (end < range->end) {
error = split_process_memory_range(proc, range, end, NULL);
if (error) {
ekprintf("sys_mprotect(%lx,%lx,%x):split failed. %d\n",
start, len0, prot, error);
goto out;
}
}
if ((range->flag ^ protflags) & VR_PROT_WRITE) {
ro_changed = 1;
}
error = change_prot_process_memory_range(proc, range, protflags);
if (error) {
ekprintf("sys_mprotect(%lx,%lx,%x):change failed. %d\n",
start, len0, prot, error);
goto out;
}
if (changed == NULL) {
changed = range;
}
else {
error = join_process_memory_range(proc, changed, range);
if (error) {
ekprintf("sys_mprotect(%lx,%lx,%x):join failed. %d\n",
start, len0, prot, error);
changed = range;
/* through */
}
}
}
error = 0;
out:
// XXX: TLB flush
flush_tlb();
if (ro_changed && !error) {
error = set_host_vma(start, len, prot & (PROT_READ|PROT_WRITE));
if (error) {
kprintf("sys_mprotect:set_host_vma failed. %d\n", error);
/* through */
}
}
ihk_mc_spinlock_unlock_noirq(&proc->vm->memory_range_lock);
dkprintf("[%d]sys_mprotect(%lx,%lx,%x): %d\n",
ihk_mc_get_processor_id(), start, len0, prot, error);
return error;
}
SYSCALL_DECLARE(brk)
{
unsigned long address = ihk_mc_syscall_arg0(ctx);
struct vm_regions *region = &cpu_local_var(current)->vm->region;
unsigned long r;
unsigned long vrflag;
dkprintf("SC(%d)[sys_brk] brk_start=%lx,end=%lx\n",
ihk_mc_get_processor_id(), region->brk_start, region->brk_end);
/* brk change fail, including glibc trick brk(0) to obtain current brk */
if(address < region->brk_start) {
r = region->brk_end;
goto out;
}
/* brk change fail, because we don't shrink memory region */
if(address < region->brk_end) {
r = region->brk_end;
goto out;
}
/* try to extend memory region */
vrflag = VR_PROT_READ | VR_PROT_WRITE;
vrflag |= VRFLAG_PROT_TO_MAXPROT(vrflag);
ihk_mc_spinlock_lock_noirq(&cpu_local_var(current)->vm->memory_range_lock);
region->brk_end = extend_process_region(cpu_local_var(current),
region->brk_start, region->brk_end, address, vrflag);
ihk_mc_spinlock_unlock_noirq(&cpu_local_var(current)->vm->memory_range_lock);
dkprintf("SC(%d)[sys_brk] brk_end set to %lx\n",
ihk_mc_get_processor_id(), region->brk_end);
r = region->brk_end;
out:
return r;
}
SYSCALL_DECLARE(getpid)
{
return cpu_local_var(current)->ftn->pid;
}
void
settid(struct process *proc, int mode, int newcpuid, int oldcpuid)
{
ihk_mc_user_context_t ctx;
unsigned long rc;
ihk_mc_syscall_arg0(&ctx) = mode;
ihk_mc_syscall_arg1(&ctx) = proc->ftn->pid;
ihk_mc_syscall_arg2(&ctx) = newcpuid;
ihk_mc_syscall_arg3(&ctx) = oldcpuid;
rc = syscall_generic_forwarding(__NR_gettid, &ctx);
proc->ftn->tid = rc;
}
SYSCALL_DECLARE(gettid)
{
return cpu_local_var(current)->ftn->tid;
}
long do_arch_prctl(unsigned long code, unsigned long address)
{
int err = 0;
enum ihk_asr_type type;
switch (code) {
case ARCH_SET_FS:
case ARCH_GET_FS:
type = IHK_ASR_X86_FS;
break;
case ARCH_GET_GS:
type = IHK_ASR_X86_GS;
break;
case ARCH_SET_GS:
return -ENOTSUPP;
default:
return -EINVAL;
}
switch (code) {
case ARCH_SET_FS:
dkprintf("[%d] arch_prctl: ARCH_SET_FS: 0x%lX\n",
ihk_mc_get_processor_id(), address);
cpu_local_var(current)->thread.tlsblock_base = address;
err = ihk_mc_arch_set_special_register(type, address);
break;
case ARCH_SET_GS:
err = ihk_mc_arch_set_special_register(type, address);
break;
case ARCH_GET_FS:
case ARCH_GET_GS:
err = ihk_mc_arch_get_special_register(type,
(unsigned long*)address);
break;
default:
break;
}
return err;
}
SYSCALL_DECLARE(arch_prctl)
{
return do_arch_prctl(ihk_mc_syscall_arg0(ctx),
ihk_mc_syscall_arg1(ctx));
}
extern void peekuser(struct process *proc, void *regs);
static int ptrace_report_exec(struct process *proc)
{
dkprintf("ptrace_report_exec,enter\n");
int error = 0;
long rc;
struct siginfo info;
if (!(proc->ftn->ptrace & PT_TRACE_EXEC)) {
goto out;
}
/* Save reason why stopped and process state for wait4() to reap */
ihk_mc_spinlock_lock_noirq(&proc->ftn->lock);
proc->ftn->exit_status = (SIGTRAP | (PTRACE_EVENT_EXEC << 8));
/* Transition process state */
proc->ftn->status = PS_TRACED;
ihk_mc_spinlock_unlock_noirq(&proc->ftn->lock);
dkprintf("ptrace_report_exec,kill SIGCHLD\n");
if (proc->ftn->parent) {
/* kill SIGCHLD */
ihk_mc_spinlock_lock_noirq(&proc->ftn->parent->lock);
if (proc->ftn->parent->owner) {
memset(&info, '\0', sizeof info);
info.si_signo = SIGCHLD;
info.si_code = CLD_TRAPPED;
info._sifields._sigchld.si_pid = proc->ftn->pid;
info._sifields._sigchld.si_status = proc->ftn->exit_status;
rc = do_kill(proc->ftn->parent->pid, -1, SIGCHLD, &info);
if(rc < 0) {
dkprintf("ptrace_report_exec,do_kill failed\n");
}
}
ihk_mc_spinlock_unlock_noirq(&proc->ftn->parent->lock);
/* Wake parent (if sleeping in wait4()) */
waitq_wakeup(&proc->ftn->parent->waitpid_q);
}
peekuser(proc, NULL);
/* Sleep */
dkprintf("ptrace_report_exec,sleeping\n");
schedule();
dkprintf("ptrace_report_exec,woken up\n");
out:
return error;
}
SYSCALL_DECLARE(execve)
{
int error;
long ret;
char *empty_envp[1] = {NULL};
const char *filename = (const char *)ihk_mc_syscall_arg0(ctx);
char **argv = (char **)ihk_mc_syscall_arg1(ctx);
char **envp = (char **)ihk_mc_syscall_arg2(ctx) ?
(char **)ihk_mc_syscall_arg2(ctx) : empty_envp;
char *argv_flat = NULL;
int argv_flat_len = 0;
char *envp_flat = NULL;
int envp_flat_len = 0;
struct syscall_request request IHK_DMA_ALIGN;
struct program_load_desc *desc;
struct process_vm *vm = cpu_local_var(current)->vm;
struct vm_range *range;
ihk_mc_spinlock_lock_noirq(&vm->memory_range_lock);
range = lookup_process_memory_range(vm, (unsigned long)filename,
(unsigned long)filename+1);
if (range == NULL || !(range->flag & VR_PROT_READ)) {
ihk_mc_spinlock_unlock_noirq(&vm->memory_range_lock);
kprintf("execve(): ERROR: filename is bad address\n");
return -EFAULT;
}
ihk_mc_spinlock_unlock_noirq(&vm->memory_range_lock);
desc = ihk_mc_alloc_pages(1, IHK_MC_AP_NOWAIT);
if (!desc) {
kprintf("execve(): ERROR: allocating program descriptor\n");
return -ENOMEM;
}
memset((void*)desc, 0, PAGE_SIZE);
/* Request host to open executable and load ELF section descriptions */
request.number = __NR_execve;
request.args[0] = 1; /* 1st phase - get ELF desc */
request.args[1] = (unsigned long)filename;
request.args[2] = virt_to_phys(desc);
ret = do_syscall(&request, ctx, ihk_mc_get_processor_id(), 0);
if (ret != 0) {
kprintf("execve(): ERROR: host failed to load elf header, errno: %d\n",
ret);
return -ret;
}
dkprintf("execve(): ELF desc received, num sections: %d\n",
desc->num_sections);
if (desc->shell_path[0]) {
dkprintf("execve(): shell interpreter: %s\n", desc->shell_path);
}
/* Flatten argv and envp into kernel-space buffers */
argv_flat_len = flatten_strings(-1, (desc->shell_path[0] ?
desc->shell_path : NULL), argv, &argv_flat);
if (argv_flat_len == 0) {
kprintf("ERROR: no argv for executable: %s?\n", filename);
return -EINVAL;
}
envp_flat_len = flatten_strings(-1, NULL, envp, &envp_flat);
if (envp_flat_len == 0) {
kprintf("ERROR: no envp for executable: %s?\n", filename);
return -EINVAL;
}
/* Unmap all memory areas of the process, userspace will be gone */
free_process_memory_ranges(cpu_local_var(current));
ihk_mc_init_user_process(&cpu_local_var(current)->ctx,
&cpu_local_var(current)->uctx,
((char *)cpu_local_var(current)) +
KERNEL_STACK_NR_PAGES * PAGE_SIZE, desc->entry, 0);
/* Create virtual memory ranges and update args/envs */
if (prepare_process_ranges_args_envs(cpu_local_var(current), desc, desc,
PTATTR_NO_EXECUTE | PTATTR_WRITABLE | PTATTR_FOR_USER,
argv_flat, argv_flat_len, envp_flat, envp_flat_len) != 0) {
kprintf("execve(): PANIC: preparing ranges, args, envs, stack\n");
panic("");
}
/* Clear host user space PTEs */
request.number = __NR_munmap;
request.args[0] = cpu_local_var(current)->vm->region.user_start;
request.args[1] = cpu_local_var(current)->vm->region.user_end -
cpu_local_var(current)->vm->region.user_start;
dkprintf("execve(): requesting host PTE clear\n");
if (do_syscall(&request, ctx, ihk_mc_get_processor_id(), 0)) {
kprintf("execve(): ERROR: clearing PTEs in host process\n");
panic("");
}
/* Request host to transfer ELF image */
request.number = __NR_execve;
request.args[0] = 2; /* 2nd phase - transfer ELF image */
request.args[1] = virt_to_phys(desc);
request.args[2] = sizeof(struct program_load_desc) +
sizeof(struct program_image_section) * desc->num_sections;
ret = do_syscall(&request, ctx, ihk_mc_get_processor_id(), 0);
if (ret != 0) {
kprintf("execve(): PANIC: host failed to load elf image\n");
panic("");
}
error = ptrace_report_exec(cpu_local_var(current));
if(error) {
kprintf("execve(): ERROR: ptrace_report_exec()\n");
}
/* Switch to new execution context */
dkprintf("execve(): switching to new process\n");
ihk_mc_switch_context(NULL, &cpu_local_var(current)->ctx,
cpu_local_var(current));
/* Never reach here */
return 0;
}
unsigned long do_fork(int clone_flags, unsigned long newsp,
unsigned long parent_tidptr, unsigned long child_tidptr,
unsigned long tlsblock_base, unsigned long curpc,
unsigned long cursp)
{
int cpuid;
struct process *new;
ihk_mc_user_context_t ctx1;
struct syscall_request request1 IHK_DMA_ALIGN;
dkprintf("do_fork,flags=%08x,newsp=%lx,ptidptr=%lx,ctidptr=%lx,tls=%lx,curpc=%lx,cursp=%lx",
clone_flags, newsp, parent_tidptr, child_tidptr, tlsblock_base, curpc, cursp);
dkprintf("do_fork(): stack_pointr passed in: 0x%lX, stack pointer of caller: 0x%lx\n",
newsp, cursp);
cpuid = obtain_clone_cpuid();
if (cpuid == -1) {
kprintf("do_fork,core not available\n");
return -EAGAIN;
}
new = clone_process(cpu_local_var(current), curpc,
newsp ? newsp : cursp,
clone_flags);
if (!new) {
return -ENOMEM;
}
new->ftn->pgid = cpu_local_var(current)->ftn->pgid;
cpu_set(cpuid, &new->vm->cpu_set, &new->vm->cpu_set_lock);
if (clone_flags & CLONE_VM) {
new->ftn->pid = cpu_local_var(current)->ftn->pid;
settid(new, 1, cpuid, -1);
}
/* fork() a new process on the host */
else {
request1.number = __NR_fork;
new->ftn->pid = do_syscall(&request1, &ctx1, ihk_mc_get_processor_id(), 0);
if (new->ftn->pid == -1) {
kprintf("ERROR: forking host process\n");
/* TODO: clean-up new */
return -EFAULT;
}
/* In a single threaded process TID equals to PID */
settid(new, 0, cpuid, -1);
dkprintf("fork(): new pid: %d\n", new->pid);
/* clear user space PTEs and set new rpgtable so that consequent
* page faults will look up the right mappings */
request1.number = __NR_munmap;
request1.args[0] = new->vm->region.user_start;
request1.args[1] = new->vm->region.user_end -
new->vm->region.user_start;
/* 3rd parameter denotes new rpgtable of host process */
request1.args[2] = virt_to_phys(new->vm->page_table);
request1.args[3] = new->ftn->pid;
dkprintf("fork(): requesting PTE clear and rpgtable (0x%lx) update\n",
request1.args[2]);
if (do_syscall(&request1, &ctx1, ihk_mc_get_processor_id(), new->ftn->pid)) {
kprintf("ERROR: clearing PTEs in host process\n");
}
}
if (clone_flags & CLONE_PARENT_SETTID) {
dkprintf("clone_flags & CLONE_PARENT_SETTID: 0x%lX\n",
parent_tidptr);
*(int*)parent_tidptr = new->ftn->pid;
}
if (clone_flags & CLONE_CHILD_CLEARTID) {
dkprintf("clone_flags & CLONE_CHILD_CLEARTID: 0x%lX\n",
child_tidptr);
new->thread.clear_child_tid = (int*)child_tidptr;
}
if (clone_flags & CLONE_CHILD_SETTID) {
unsigned long phys;
dkprintf("clone_flags & CLONE_CHILD_SETTID: 0x%lX\n",
child_tidptr);
if (ihk_mc_pt_virt_to_phys(new->vm->page_table,
(void *)child_tidptr, &phys)) {
kprintf("ERROR: looking up physical addr for child process\n");
return -EFAULT;
}
*((int*)phys_to_virt(phys)) = new->ftn->tid;
}
if (clone_flags & CLONE_SETTLS) {
dkprintf("clone_flags & CLONE_SETTLS: 0x%lX\n",
tlsblock_base);
new->thread.tlsblock_base = tlsblock_base;
}
else {
new->thread.tlsblock_base =
cpu_local_var(current)->thread.tlsblock_base;
}
ihk_mc_syscall_ret(new->uctx) = 0;
dkprintf("clone: kicking scheduler!,cpuid=%d pid=%d tid=%d\n", cpuid, new->ftn->pid, new->ftn->tid);
runq_add_proc(new, cpuid);
return new->ftn->tid;
}
SYSCALL_DECLARE(vfork)
{
return do_fork(SIGCHLD, 0, 0, 0, 0, ihk_mc_syscall_pc(ctx), ihk_mc_syscall_sp(ctx));
}
SYSCALL_DECLARE(clone)
{
return do_fork((int)ihk_mc_syscall_arg0(ctx), ihk_mc_syscall_arg1(ctx),
ihk_mc_syscall_arg2(ctx), ihk_mc_syscall_arg3(ctx),
ihk_mc_syscall_arg4(ctx), ihk_mc_syscall_pc(ctx),
ihk_mc_syscall_sp(ctx));
}
SYSCALL_DECLARE(set_tid_address)
{
cpu_local_var(current)->thread.clear_child_tid =
(int*)ihk_mc_syscall_arg0(ctx);
return cpu_local_var(current)->ftn->pid;
}
SYSCALL_DECLARE(kill)
{
int pid = ihk_mc_syscall_arg0(ctx);
int sig = ihk_mc_syscall_arg1(ctx);
struct process *proc = cpu_local_var(current);
struct siginfo info;
int error;
memset(&info, '\0', sizeof info);
info.si_signo = sig;
info.si_code = SI_USER;
info._sifields._kill.si_pid = proc->ftn->pid;
dkprintf("sys_kill,enter,pid=%d,sig=%d\n", pid, sig);
error = do_kill(pid, -1, sig, &info);
dkprintf("sys_kill,returning,pid=%d,sig=%d,error=%d\n", pid, sig, error);
return error;
}
// see linux-2.6.34.13/kernel/signal.c
SYSCALL_DECLARE(tgkill)
{
int tgid = ihk_mc_syscall_arg0(ctx);
int tid = ihk_mc_syscall_arg1(ctx);
int sig = ihk_mc_syscall_arg2(ctx);
struct process *proc = cpu_local_var(current);
struct siginfo info;
memset(&info, '\0', sizeof info);
info.si_signo = sig;
info.si_code = SI_TKILL;
info._sifields._kill.si_pid = proc->ftn->pid;
if(tid <= 0)
return -EINVAL;
if(tgid <= 0 && tgid != -1)
return -EINVAL;
return do_kill(tgid, tid, sig, &info);
}
SYSCALL_DECLARE(setpgid)
{
int pid = ihk_mc_syscall_arg0(ctx);
int pgid = ihk_mc_syscall_arg1(ctx);
long rc;
rc = syscall_generic_forwarding(__NR_setpgid, ctx);
if(rc == 0){
do_setpgid(pid, pgid);
}
return rc;
}
SYSCALL_DECLARE(set_robust_list)
{
return -ENOSYS;
}
int
do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
{
struct process *proc = cpu_local_var(current);
struct k_sigaction *k;
int irqstate;
irqstate = ihk_mc_spinlock_lock(&proc->sighandler->lock);
k = proc->sighandler->action + sig - 1;
if(oact)
memcpy(oact, k, sizeof(struct k_sigaction));
if(act)
memcpy(k, act, sizeof(struct k_sigaction));
ihk_mc_spinlock_unlock(&proc->sighandler->lock, irqstate);
return 0;
}
SYSCALL_DECLARE(rt_sigprocmask)
{
int how = ihk_mc_syscall_arg0(ctx);
const sigset_t *set = (const sigset_t *)ihk_mc_syscall_arg1(ctx);
sigset_t *oldset = (sigset_t *)ihk_mc_syscall_arg2(ctx);
size_t sigsetsize = (size_t)ihk_mc_syscall_arg3(ctx);
struct process *proc = cpu_local_var(current);
int flag;
__sigset_t wsig;
if(sigsetsize != sizeof(sigset_t))
return -EINVAL;
if(set &&
how != SIG_BLOCK &&
how != SIG_UNBLOCK &&
how != SIG_SETMASK)
return -EINVAL;
flag = ihk_mc_spinlock_lock(&proc->sighandler->lock);
if(oldset){
wsig = proc->sigmask.__val[0];
if(copy_to_user(proc, oldset->__val, &wsig, sizeof wsig))
goto fault;
}
if(set){
if(copy_from_user(proc, &wsig, set->__val, sizeof wsig))
goto fault;
switch(how){
case SIG_BLOCK:
proc->sigmask.__val[0] |= wsig;
break;
case SIG_UNBLOCK:
proc->sigmask.__val[0] &= ~wsig;
break;
case SIG_SETMASK:
proc->sigmask.__val[0] = wsig;
break;
}
}
ihk_mc_spinlock_unlock(&proc->sighandler->lock, flag);
return 0;
fault:
ihk_mc_spinlock_unlock(&proc->sighandler->lock, flag);
return -EFAULT;
}
SYSCALL_DECLARE(rt_sigpending)
{
int flag;
struct sig_pending *pending;
struct list_head *head;
ihk_spinlock_t *lock;
__sigset_t w = 0;
struct process *proc = cpu_local_var(current);
sigset_t *set = (sigset_t *)ihk_mc_syscall_arg0(ctx);
size_t sigsetsize = (size_t)ihk_mc_syscall_arg1(ctx);
if (sigsetsize > sizeof(sigset_t))
return -EINVAL;
lock = &proc->sigshared->lock;
head = &proc->sigshared->sigpending;
flag = ihk_mc_spinlock_lock(lock);
list_for_each_entry(pending, head, list){
w |= pending->sigmask.__val[0];
}
ihk_mc_spinlock_unlock(lock, flag);
lock = &proc->sigpendinglock;
head = &proc->sigpending;
flag = ihk_mc_spinlock_lock(lock);
list_for_each_entry(pending, head, list){
w |= pending->sigmask.__val[0];
}
ihk_mc_spinlock_unlock(lock, flag);
if(copy_to_user(proc, set->__val, &w, sizeof w))
return -EFAULT;
return 0;
}
SYSCALL_DECLARE(signalfd)
{
return -EOPNOTSUPP;
}
SYSCALL_DECLARE(signalfd4)
{
return -EOPNOTSUPP;
}
SYSCALL_DECLARE(rt_sigtimedwait)
{
struct process *proc = cpu_local_var(current);
const sigset_t *set = (const sigset_t *)ihk_mc_syscall_arg0(ctx);
siginfo_t *info = (siginfo_t *)ihk_mc_syscall_arg1(ctx);
void *timeout = (void *)ihk_mc_syscall_arg2(ctx);
size_t sigsetsize = (size_t)ihk_mc_syscall_arg3(ctx);
siginfo_t winfo;
__sigset_t wset;
long wtimeout[2];
if (sigsetsize > sizeof(sigset_t))
return -EINVAL;
if(set == NULL)
return -EFAULT;
memset(&winfo, '\0', sizeof winfo);
if(copy_from_user(proc, &wset, set, sizeof wset))
return -EFAULT;
if(timeout)
if(copy_from_user(proc, wtimeout, timeout, sizeof wtimeout))
return -EFAULT;
if(info)
if(copy_to_user(proc, info, &winfo, sizeof winfo))
return -EFAULT;
return -EOPNOTSUPP;
}
SYSCALL_DECLARE(rt_sigqueueinfo)
{
int pid = (int)ihk_mc_syscall_arg0(ctx);
int sig = (int)ihk_mc_syscall_arg1(ctx);
void *winfo = (void *)ihk_mc_syscall_arg2(ctx);
struct process *proc = cpu_local_var(current);
struct siginfo info;
if(pid <= 0)
return -ESRCH;
if(copy_from_user(proc, &info, winfo, sizeof info))
return -EFAULT;
return do_kill(pid, -1, sig, &info);
}
static int
do_sigsuspend(struct process *proc, const sigset_t *set)
{
__sigset_t wset;
__sigset_t bset;
int flag;
struct sig_pending *pending;
struct list_head *head;
ihk_spinlock_t *lock;
wset = set->__val[0];
wset &= ~__sigmask(SIGKILL);
wset &= ~__sigmask(SIGSTOP);
bset = proc->sigmask.__val[0];
proc->sigmask.__val[0] = wset;
for(;;){
while(proc->sigevent == 0);
proc->sigevent = 0;
lock = &proc->sigshared->lock;
head = &proc->sigshared->sigpending;
flag = ihk_mc_spinlock_lock(lock);
list_for_each_entry(pending, head, list){
if(!(pending->sigmask.__val[0] & wset))
break;
}
if(&pending->list == head){
ihk_mc_spinlock_unlock(lock, flag);
lock = &proc->sigpendinglock;
head = &proc->sigpending;
flag = ihk_mc_spinlock_lock(lock);
list_for_each_entry(pending, head, list){
if(!(pending->sigmask.__val[0] & wset))
break;
}
}
if(&pending->list == head){
ihk_mc_spinlock_unlock(lock, flag);
continue;
}
list_del(&pending->list);
ihk_mc_spinlock_unlock(lock, flag);
proc->sigmask.__val[0] = bset;
do_signal(-EINTR, NULL, proc, pending);
break;
}
return -EINTR;
}
SYSCALL_DECLARE(pause)
{
struct process *proc = cpu_local_var(current);
return do_sigsuspend(proc, &proc->sigmask);
}
SYSCALL_DECLARE(rt_sigsuspend)
{
struct process *proc = cpu_local_var(current);
const sigset_t *set = (const sigset_t *)ihk_mc_syscall_arg0(ctx);
size_t sigsetsize = (size_t)ihk_mc_syscall_arg1(ctx);
sigset_t wset;
if (sigsetsize > sizeof(sigset_t))
return -EINVAL;
if(copy_from_user(proc, &wset, set, sizeof wset))
return -EFAULT;
return do_sigsuspend(proc, &wset);
}
SYSCALL_DECLARE(sigaltstack)
{
struct process *proc = cpu_local_var(current);
const stack_t *ss = (const stack_t *)ihk_mc_syscall_arg0(ctx);
stack_t *oss = (stack_t *)ihk_mc_syscall_arg1(ctx);
stack_t wss;
if(oss)
if(copy_to_user(proc, oss, &proc->sigstack, sizeof wss))
return -EFAULT;
if(ss){
if(copy_from_user(proc, &wss, ss, sizeof wss))
return -EFAULT;
if(wss.ss_flags != 0 && wss.ss_flags != SS_DISABLE)
return -EINVAL;
if(wss.ss_flags == SS_DISABLE){
proc->sigstack.ss_sp = NULL;
proc->sigstack.ss_flags = SS_DISABLE;
proc->sigstack.ss_size = 0;
}
else{
if(wss.ss_size < MINSIGSTKSZ)
return -ENOMEM;
memcpy(&proc->sigstack, &wss, sizeof wss);
}
}
return 0;
}
SYSCALL_DECLARE(madvise)
{
const uintptr_t start = (uintptr_t)ihk_mc_syscall_arg0(ctx);
const size_t len0 = (size_t)ihk_mc_syscall_arg1(ctx);
const int advice = (int)ihk_mc_syscall_arg2(ctx);
size_t len;
uintptr_t end;
struct process *proc = cpu_local_var(current);
struct vm_regions *region = &proc->vm->region;
struct vm_range *first;
uintptr_t addr;
struct vm_range *range;
int error;
dkprintf("[%d]sys_madvise(%lx,%lx,%x)\n",
ihk_mc_get_processor_id(), start, len0, advice);
len = (len0 + PAGE_SIZE - 1) & PAGE_MASK;
end = start + len;
if ((start & (PAGE_SIZE - 1))
|| (len < len0)
|| (end < start)) {
error = -EINVAL;
goto out2;
}
if ((start < region->user_start)
|| (region->user_end <= start)
|| (len > (region->user_end - region->user_start))
|| ((region->user_end - len) < start)) {
error = -ENOMEM;
goto out2;
}
error = 0;
switch (advice) {
default:
case MADV_MERGEABLE:
case MADV_UNMERGEABLE:
case MADV_HUGEPAGE:
case MADV_NOHUGEPAGE:
case MADV_DONTDUMP:
case MADV_DODUMP:
error = -EINVAL;
break;
case MADV_NORMAL:
case MADV_RANDOM:
case MADV_SEQUENTIAL:
case MADV_WILLNEED:
case MADV_DONTNEED:
case MADV_DONTFORK:
case MADV_DOFORK:
break;
case MADV_REMOVE:
error = -EACCES;
break;
case MADV_HWPOISON:
case MADV_SOFT_OFFLINE:
error = -EPERM;
break;
}
if (error) {
goto out2;
}
if (start == end) {
error = 0;
goto out2;
}
ihk_mc_spinlock_lock_noirq(&proc->vm->memory_range_lock);
/* check contiguous map */
first = NULL;
for (addr = start; addr < end; addr = range->end) {
if (first == NULL) {
range = lookup_process_memory_range(proc->vm, start, start+PAGE_SIZE);
first = range;
}
else {
range = next_process_memory_range(proc->vm, range);
}
if ((range == NULL) || (addr < range->start)) {
/* not contiguous */
dkprintf("[%d]sys_madvise(%lx,%lx,%x):not contig "
"%lx [%lx-%lx)\n",
ihk_mc_get_processor_id(), start,
len0, advice, addr, range?range->start:0,
range?range->end:0);
error = -ENOMEM;
goto out;
}
if (!range->memobj || !memobj_has_pager(range->memobj)) {
dkprintf("[%d]sys_madvise(%lx,%lx,%x):has not pager"
"[%lx-%lx) %lx\n",
ihk_mc_get_processor_id(), start,
len0, advice, range->start,
range->end, range->memobj);
error = -EBADF;
goto out;
}
if ((advice == MADV_DONTNEED)
&& (range->flag & VR_LOCKED)) {
dkprintf("[%d]sys_madvise(%lx,%lx,%x):locked"
"[%lx-%lx) %lx\n",
ihk_mc_get_processor_id(), start,
len0, advice, range->start,
range->end, range->flag);
error = -EINVAL;
goto out;
}
}
error = 0;
out:
ihk_mc_spinlock_unlock_noirq(&proc->vm->memory_range_lock);
out2:
dkprintf("[%d]sys_madvise(%lx,%lx,%x): %d\n",
ihk_mc_get_processor_id(), start, len0, advice, error);
return error;
}
SYSCALL_DECLARE(futex)
{
uint64_t timeout = 0; // No timeout
uint32_t val2 = 0;
uint32_t *uaddr = (uint32_t *)ihk_mc_syscall_arg0(ctx);
int op = (int)ihk_mc_syscall_arg1(ctx);
uint32_t val = (uint32_t)ihk_mc_syscall_arg2(ctx);
struct timespec *utime = (struct timespec*)ihk_mc_syscall_arg3(ctx);
uint32_t *uaddr2 = (uint32_t *)ihk_mc_syscall_arg4(ctx);
uint32_t val3 = (uint32_t)ihk_mc_syscall_arg5(ctx);
/* Mask off the FUTEX_PRIVATE_FLAG,
* assume all futexes are address space private */
op = (op & FUTEX_CMD_MASK);
dkprintf("futex op=[%x, %s],uaddr=%lx, val=%x, utime=%lx, uaddr2=%lx, val3=%x, []=%x\n",
op,
(op == FUTEX_WAIT) ? "FUTEX_WAIT" :
(op == FUTEX_WAIT_BITSET) ? "FUTEX_WAIT_BITSET" :
(op == FUTEX_WAKE) ? "FUTEX_WAKE" :
(op == FUTEX_WAKE_OP) ? "FUTEX_WAKE_OP" :
(op == FUTEX_WAKE_BITSET) ? "FUTEX_WAKE_BITSET" :
(op == FUTEX_CMP_REQUEUE) ? "FUTEX_CMP_REQUEUE" :
(op == FUTEX_REQUEUE) ? "FUTEX_REQUEUE (NOT IMPL!)" : "unknown",
(unsigned long)uaddr, op, val, utime, uaddr2, val3, *uaddr);
if (utime && (op == FUTEX_WAIT_BITSET || op == FUTEX_WAIT)) {
struct syscall_request request IHK_DMA_ALIGN;
struct timeval tv_now;
request.number = n;
unsigned long __phys;
dkprintf("futex,utime and FUTEX_WAIT_*, uaddr=%lx, []=%x\n", (unsigned long)uaddr, *uaddr);
if (ihk_mc_pt_virt_to_phys(cpu_local_var(current)->vm->page_table,
(void *)&tv_now, &__phys)) {
return -EFAULT;
}
request.args[0] = __phys;
int r = do_syscall(&request, ctx, ihk_mc_get_processor_id(), 0);
if (r < 0) {
return -EFAULT;
}
dkprintf("futex, FUTEX_WAIT_*, arg3 != NULL, pc=%lx\n", (unsigned long)ihk_mc_syscall_pc(ctx));
dkprintf("now->tv_sec=%016ld,tv_nsec=%016ld\n", tv_now.tv_sec, tv_now.tv_usec * 1000);
dkprintf("utime->tv_sec=%016ld,tv_nsec=%016ld\n", utime->tv_sec, utime->tv_nsec);
long nsec_now = ((long)tv_now.tv_sec * 1000000000ULL) +
tv_now.tv_usec * 1000;
long nsec_timeout = ((long)utime->tv_sec * 1000000000ULL) +
utime->tv_nsec * 1;
long diff_nsec = nsec_timeout - nsec_now;
timeout = (diff_nsec / 1000) * 1100; // (usec * 1.1GHz)
dkprintf("futex timeout: %lu\n", timeout);
}
/* Requeue parameter in 'utime' if op == FUTEX_CMP_REQUEUE.
* number of waiters to wake in 'utime' if op == FUTEX_WAKE_OP. */
if (op == FUTEX_CMP_REQUEUE || op == FUTEX_WAKE_OP)
val2 = (uint32_t) (unsigned long) ihk_mc_syscall_arg3(ctx);
return futex(uaddr, op, val, timeout, uaddr2, val2, val3);
}
SYSCALL_DECLARE(exit)
{
struct process *proc = cpu_local_var(current);
dkprintf("sys_exit,pid=%d\n", proc->ftn->pid);
#ifdef DCFA_KMOD
do_mod_exit((int)ihk_mc_syscall_arg0(ctx));
#endif
/* XXX: for if all threads issued the exit(2) rather than exit_group(2),
* exit(2) also should delegate.
*/
/* If there is a clear_child_tid address set, clear it and wake it.
* This unblocks any pthread_join() waiters. */
if (proc->thread.clear_child_tid) {
dkprintf("exit clear_child!\n");
*proc->thread.clear_child_tid = 0;
barrier();
futex((uint32_t *)proc->thread.clear_child_tid,
FUTEX_WAKE, 1, 0, NULL, 0, 0);
}
proc->ftn->status = PS_ZOMBIE;
release_fork_tree_node(proc->ftn);
release_process(proc);
schedule();
return 0;
}
SYSCALL_DECLARE(getrlimit)
{
int ret;
int resource = ihk_mc_syscall_arg0(ctx);
struct rlimit *rlm = (struct rlimit *)ihk_mc_syscall_arg1(ctx);
struct process *proc = cpu_local_var(current);
switch (resource) {
case RLIMIT_STACK:
dkprintf("[%d] getrlimit() RLIMIT_STACK\n", ihk_mc_get_processor_id());
if(copy_to_user(proc, &rlm->rlim_cur, &proc->rlimit_stack.rlim_cur, sizeof rlm->rlim_cur))
return -EFAULT;
if(copy_to_user(proc, &rlm->rlim_max, &proc->rlimit_stack.rlim_max, sizeof rlm->rlim_max))
return -EFAULT;
ret = 0;
break;
case RLIMIT_FSIZE:
case RLIMIT_LOCKS:
case RLIMIT_NOFILE:
/* just forward */
ret = syscall_generic_forwarding(n, ctx);
break;
default:
return -ENOSYS;
}
return ret;
}
extern int ptrace_traceme(void);
static int ptrace_wakeup_sig(int pid, long request, long data) {
dkprintf("ptrace_wakeup_sig,pid=%d,data=%08x\n", pid, data);
int error;
struct process *child;
ihk_spinlock_t *savelock;
unsigned long irqstate;
struct siginfo info;
child = findthread_and_lock(pid, -1, &savelock, &irqstate);
if (!child) {
error = -ESRCH;
goto out;
}
ihk_mc_spinlock_unlock(savelock, irqstate);
if (data > 64 || data < 0) {
error = -EINVAL;
goto out;
}
switch (request) {
case PTRACE_KILL:
memset(&info, '\0', sizeof info);
info.si_signo = SIGKILL;
error = do_kill(pid, -1, SIGKILL, &info);
if (error < 0) {
goto out;
}
break;
case PTRACE_CONT:
if(data != 0 && data != SIGSTOP) {
struct process *proc;
/* TODO: Tracing process replace the original
signal with "data" */
proc = cpu_local_var(current);
memset(&info, '\0', sizeof info);
info.si_signo = data;
info.si_code = SI_USER;
info._sifields._kill.si_pid = proc->ftn->pid;
error = do_kill(pid, -1, data, &info);
if (error < 0) {
goto out;
}
}
break;
default:
break;
}
error = sched_wakeup_process(child, PS_TRACED | PS_STOPPED);
if (error < 0) {
goto out;
}
out:
return error;
}
static long ptrace_pokeuser(int pid, long addr, long data)
{
long rc = -EIO;
struct process *child;
ihk_spinlock_t *savelock;
unsigned long irqstate;
if(addr > sizeof(struct user) - 8 || addr < 0)
return -EFAULT;
child = findthread_and_lock(pid, -1, &savelock, &irqstate);
if (!child)
return -ESRCH;
if(child->ftn->status == PS_TRACED){
memcpy((char *)child->userp + addr, &data, 8);
rc = 0;
}
ihk_mc_spinlock_unlock(savelock, irqstate);
return rc;
}
static long ptrace_peekuser(int pid, long addr, long data)
{
long rc = -EIO;
struct process *child;
ihk_spinlock_t *savelock;
unsigned long irqstate;
unsigned long *p = (unsigned long *)data;
if(addr > sizeof(struct user) - 8|| addr < 0)
return -EFAULT;
child = findthread_and_lock(pid, -1, &savelock, &irqstate);
if (!child)
return -ESRCH;
if(child->ftn->status == PS_TRACED){
if(copy_to_user(child, p, (char *)child->userp + addr, 8))
rc = -EFAULT;
else
rc = 0;
}
ihk_mc_spinlock_unlock(savelock, irqstate);
return rc;
}
static long ptrace_getregs(int pid, long data)
{
struct user_regs_struct *regs = (struct user_regs_struct *)data;
long rc = -EIO;
struct process *child;
ihk_spinlock_t *savelock;
unsigned long irqstate;
child = findthread_and_lock(pid, -1, &savelock, &irqstate);
if (!child)
return -ESRCH;
if(child->ftn->status == PS_TRACED){
if(copy_to_user(child, regs, child->userp, sizeof(struct user_regs_struct)))
rc = -EFAULT;
else
rc = 0;
}
ihk_mc_spinlock_unlock(savelock, irqstate);
return rc;
}
static int ptrace_setoptions(int pid, int flags)
{
int ret;
struct process *child;
ihk_spinlock_t *savelock;
unsigned long irqstate;
/* Only supported options are enabled.
* PTRACE_O_TRACESYSGOOD is pretended to be supported for the time being.
*/
if (flags & ~PTRACE_O_TRACESYSGOOD) {
kprintf("ptrace_setoptions: not supported flag %x\n", flags);
ret = -EINVAL;
goto out;
}
child = findthread_and_lock(pid, -1, &savelock, &irqstate);
if (!child || !child->ftn || !(child->ftn->ptrace & PT_TRACED)) {
ret = -ESRCH;
goto unlockout;
}
child->ftn->ptrace |= flags;
ret = 0;
unlockout:
ihk_mc_spinlock_unlock(savelock, irqstate);
out:
return ret;
}
SYSCALL_DECLARE(ptrace)
{
const long request = (long)ihk_mc_syscall_arg0(ctx);
const int pid = (int)ihk_mc_syscall_arg1(ctx);
const long addr = (long)ihk_mc_syscall_arg2(ctx);
const long data = (long)ihk_mc_syscall_arg3(ctx);
long error = -EOPNOTSUPP;
switch(request) {
case PTRACE_TRACEME:
dkprintf("ptrace: PTRACE_TRACEME\n");
error = ptrace_traceme();
break;
case PTRACE_KILL:
case PTRACE_CONT:
dkprintf("ptrace: PTRACE_KILL/CONT\n");
error = ptrace_wakeup_sig(pid, request, data);
break;
case PTRACE_GETREGS:
error = ptrace_getregs(pid, data);
dkprintf("PTRACE_GETREGS: data=%p return=%p\n", data, error);
break;
case PTRACE_PEEKUSER:
error = ptrace_peekuser(pid, addr, data);
dkprintf("PTRACE_PEEKUSER: addr=%p return=%p\n", addr, error);
break;
case PTRACE_POKEUSER:
error = ptrace_pokeuser(pid, addr, data);
dkprintf("PTRACE_POKEUSER: addr=%p data=%p return=%p\n", addr, data, error);
break;
case PTRACE_SETOPTIONS:
error = ptrace_setoptions(pid, data);
dkprintf("PTRACE_SETOPTIONS: flags=%d return=%p\n", data, error);
break;
case PTRACE_PEEKTEXT:
dkprintf("ptrace: unimplemented ptrace(PTRACE_PEEKTEXT) called.\n");
break;
case PTRACE_PEEKDATA:
dkprintf("ptrace: unimplemented ptrace(PTRACE_PEEKDATA) called.\n");
break;
case PTRACE_POKETEXT:
dkprintf("ptrace: unimplemented ptrace(PTRACE_POKETEXT) called.\n");
break;
case PTRACE_POKEDATA:
dkprintf("ptrace: unimplemented ptrace(PTRACE_POKEDATA) called.\n");
break;
case PTRACE_SINGLESTEP:
dkprintf("ptrace: unimplemented ptrace(PTRACE_SINGLESTEP) called.\n");
break;
case PTRACE_GETFPREGS:
dkprintf("ptrace: unimplemented ptrace(PTRACE_GETFPREGS) called.\n");
break;
case PTRACE_SETFPREGS:
dkprintf("ptrace: unimplemented ptrace(PTRACE_SETFPREGS) called.\n");
break;
case PTRACE_SETREGS:
dkprintf("ptrace: unimplemented ptrace(PTRACE_SETREGS) called.\n");
break;
case PTRACE_ATTACH:
dkprintf("ptrace: unimplemented ptrace(PTRACE_ATTACH) called.\n");
break;
case PTRACE_DETACH:
dkprintf("ptrace: unimplemented ptrace(PTRACE_DETACH) called.\n");
break;
case PTRACE_GETFPXREGS:
dkprintf("ptrace: unimplemented ptrace(PTRACE_GETFPXREGS) called.\n");
break;
case PTRACE_SYSCALL:
dkprintf("ptrace: unimplemented ptrace(PTRACE_SYSCALL) called.\n");
break;
case PTRACE_GETSIGINFO:
dkprintf("ptrace: unimplemented ptrace(PTRACE_GETSIGINFO) called.\n");
break;
case PTRACE_SETSIGINFO:
dkprintf("ptrace: unimplemented ptrace(PTRACE_SETSIGINFO) called.\n");
break;
case PTRACE_GETREGSET:
dkprintf("ptrace: unimplemented ptrace(PTRACE_GETREGSET) called.\n");
break;
case PTRACE_SETREGSET:
dkprintf("ptrace: unimplemented ptrace(PTRACE_SETREGSET) called.\n");
break;
case PTRACE_GET_THREAD_AREA:
dkprintf("ptrace: unimplemented ptrace(PTRACE_GET_THREAD_AREA) called.\n");
break;
case PTRACE_ARCH_PRCTL:
dkprintf("ptrace: unimplemented ptrace(PTRACE_ARCH_PRCTL) called.\n");
break;
default:
dkprintf("ptrace: unimplemented ptrace called.\n");
break;
}
dkprintf("ptrace(%d,%ld,%p,%p): returning %d\n", request, pid, addr, data, error);
return error;
}
#define MIN2(x,y) (x) < (y) ? (x) : (y)
SYSCALL_DECLARE(sched_setaffinity)
{
int tid = (int)ihk_mc_syscall_arg0(ctx);
size_t len = (size_t)ihk_mc_syscall_arg1(ctx);
cpu_set_t *u_cpu_set = (cpu_set_t *)ihk_mc_syscall_arg2(ctx);
cpu_set_t k_cpu_set, cpu_set;
struct process *thread;
int cpu_id;
unsigned long irqstate;
extern int num_processors;
if (sizeof(k_cpu_set) > len) {
kprintf("%s:%d\n Too small buffer.", __FILE__, __LINE__);
return -EINVAL;
}
len = MIN2(len, sizeof(k_cpu_set));
if (copy_from_user(cpu_local_var(current), &k_cpu_set, u_cpu_set, len)) {
kprintf("%s:%d copy_from_user failed.\n", __FILE__, __LINE__);
return -EFAULT;
}
// XXX: We should build something like cpu_available_mask in advance
CPU_ZERO(&cpu_set);
for (cpu_id = 0; cpu_id < num_processors; cpu_id++)
if (CPU_ISSET(cpu_id, &k_cpu_set))
CPU_SET(cpu_id, &cpu_set);
if(tid == 0)
tid = cpu_local_var(current)->ftn->tid;
for (cpu_id = 0; cpu_id < num_processors; cpu_id++) {
irqstate = ihk_mc_spinlock_lock(&get_cpu_local_var(cpu_id)->runq_lock);
list_for_each_entry(thread, &get_cpu_local_var(cpu_id)->runq, sched_list)
if (thread->ftn->pid && thread->ftn->tid == tid)
goto found; /* without unlocking runq_lock */
ihk_mc_spinlock_unlock(&get_cpu_local_var(cpu_id)->runq_lock, irqstate);
}
kprintf("%s:%d Thread not found.\n", __FILE__, __LINE__);
return -ESRCH;
found:
memcpy(&thread->cpu_set, &cpu_set, sizeof(cpu_set));
if (!CPU_ISSET(cpu_id, &thread->cpu_set)) {
hold_process(thread);
ihk_mc_spinlock_unlock(&get_cpu_local_var(cpu_id)->runq_lock, irqstate);
sched_request_migrate(cpu_id, thread);
release_process(thread);
return 0;
} else {
ihk_mc_spinlock_unlock(&get_cpu_local_var(cpu_id)->runq_lock, irqstate);
return 0;
}
}
// see linux-2.6.34.13/kernel/sched.c
SYSCALL_DECLARE(sched_getaffinity)
{
int tid = (int)ihk_mc_syscall_arg0(ctx);
size_t len = (size_t)ihk_mc_syscall_arg1(ctx);
cpu_set_t k_cpu_set, *u_cpu_set = (cpu_set_t *)ihk_mc_syscall_arg2(ctx);
int ret;
int found = 0;
int i;
unsigned long irqstate;
extern int num_processors;
if (sizeof(k_cpu_set) > len) {
kprintf("%s:%d Too small buffer.\n", __FILE__, __LINE__);
return -EINVAL;
}
len = MIN2(len, sizeof(k_cpu_set));
if(tid == 0)
tid = cpu_local_var(current)->ftn->tid;
for (i = 0; i < num_processors && !found; i++) {
struct process *thread;
irqstate = ihk_mc_spinlock_lock(&get_cpu_local_var(i)->runq_lock);
list_for_each_entry(thread, &get_cpu_local_var(i)->runq, sched_list) {
if (thread->ftn->pid && thread->ftn->tid == tid) {
found = 1;
memcpy(&k_cpu_set, &thread->cpu_set, sizeof(k_cpu_set));
break;
}
}
ihk_mc_spinlock_unlock(&get_cpu_local_var(i)->runq_lock, irqstate);
}
if (!found) {
kprintf("%s:%d Thread not found.\n", __FILE__, __LINE__);
return -ESRCH;
}
ret = copy_to_user(cpu_local_var(current), u_cpu_set, &k_cpu_set, len);
kprintf("%s %d %d\n", __FILE__, __LINE__, ret);
if (ret < 0)
return ret;
return len;
}
SYSCALL_DECLARE(get_cpu_id)
{
return ihk_mc_get_processor_id();
}
SYSCALL_DECLARE(sched_yield)
{
return -ENOSYS;
}
SYSCALL_DECLARE(mlock)
{
const uintptr_t start0 = ihk_mc_syscall_arg0(ctx);
const size_t len0 = ihk_mc_syscall_arg1(ctx);
struct process *proc = cpu_local_var(current);
struct vm_regions *region = &proc->vm->region;
uintptr_t start;
size_t len;
uintptr_t end;
struct vm_range *first;
uintptr_t addr;
struct vm_range *range;
int error;
struct vm_range *changed;
dkprintf("[%d]sys_mlock(%lx,%lx)\n",
ihk_mc_get_processor_id(), start0, len0);
start = start0 & PAGE_MASK;
len = (start & (PAGE_SIZE - 1)) + len0;
len = (len + PAGE_SIZE - 1) & PAGE_MASK;
end = start + len;
if (end < start) {
error = -EINVAL;
goto out2;
}
if ((start < region->user_start)
|| (region->user_end <= start)
|| (len > (region->user_end - region->user_start))
|| ((region->user_end - len) < start)) {
error = -ENOMEM;
goto out2;
}
if (start == end) {
error = 0;
goto out2;
}
ihk_mc_spinlock_lock_noirq(&proc->vm->memory_range_lock);
/* check contiguous map */
first = NULL;
for (addr = start; addr < end; addr = range->end) {
if (first == NULL) {
range = lookup_process_memory_range(proc->vm, start, start+PAGE_SIZE);
first = range;
}
else {
range = next_process_memory_range(proc->vm, range);
}
if (!range || (addr < range->start)) {
/* not contiguous */
dkprintf("[%d]sys_mlock(%lx,%lx):not contiguous."
" %lx [%lx-%lx)\n",
ihk_mc_get_processor_id(), start0,
len0, addr, range->start, range->end);
error = -ENOMEM;
goto out;
}
if (range->flag & (VR_REMOTE | VR_RESERVED | VR_IO_NOCACHE)) {
ekprintf("[%d]sys_mlock(%lx,%lx):cannot change."
" [%lx-%lx) %lx\n",
ihk_mc_get_processor_id(), start0,
len0, range->start, range->end,
range->flag);
error = -EINVAL;
goto out;
}
}
/* do the mlock */
changed = NULL;
for (addr = start; addr < end; addr = changed->end) {
if (!changed) {
range = first;
}
else {
range = next_process_memory_range(proc->vm, changed);
}
if (!range || (addr < range->start)) {
/* not contiguous */
dkprintf("[%d]sys_mlock(%lx,%lx):not contiguous."
" %lx [%lx-%lx)\n",
ihk_mc_get_processor_id(), start0,
len0, addr, range?range->start:0,
range?range->end:0);
error = -ENOMEM;
goto out;
}
if (range->start < addr) {
error = split_process_memory_range(proc, range, addr, &range);
if (error) {
ekprintf("[%d]sys_mlock(%lx,%lx):split failed. "
" [%lx-%lx) %lx %d\n",
ihk_mc_get_processor_id(),
start0, len0, range->start,
range->end, addr, error);
goto out;
}
}
if (end < range->end) {
error = split_process_memory_range(proc, range, end, NULL);
if (error) {
ekprintf("[%d]sys_mlock(%lx,%lx):split failed. "
" [%lx-%lx) %lx %d\n",
ihk_mc_get_processor_id(),
start0, len0, range->start,
range->end, addr, error);
goto out;
}
}
range->flag |= VR_LOCKED;
if (!changed) {
changed = range;
}
else {
error = join_process_memory_range(proc, changed, range);
if (error) {
dkprintf("[%d]sys_mlock(%lx,%lx):join failed. %d",
ihk_mc_get_processor_id(),
start0, len0, error);
dkprintf("LHS: %p [%lx-%lx) %lx %p\n",
changed, changed->start,
changed->end, changed->flag,
changed->memobj);
dkprintf("RHS: %p [%lx-%lx) %lx %p\n",
range, range->start,
range->end, range->flag,
range->memobj);
changed = range;
/* through */
}
}
}
error = 0;
out:
ihk_mc_spinlock_unlock_noirq(&proc->vm->memory_range_lock);
if (!error) {
error = populate_process_memory(proc, (void *)start, len);
if (error) {
ekprintf("sys_mlock(%lx,%lx):populate failed. %d\n",
start0, len0, error);
/*
* In this case,
* the region locked by this call should be unlocked
* before mlock() returns with error.
*
* However, the region cannot be unlocked simply,
* because the region can be modified by other thread
* because memory_range_lock has been released.
*
* For the time being, like a linux-2.6.38-8,
* the physical page allocation failure is ignored.
*/
error = 0;
}
}
out2:
dkprintf("[%d]sys_mlock(%lx,%lx): %d\n",
ihk_mc_get_processor_id(), start0, len0, error);
return error;
}
SYSCALL_DECLARE(munlock)
{
const uintptr_t start0 = ihk_mc_syscall_arg0(ctx);
const size_t len0 = ihk_mc_syscall_arg1(ctx);
struct process *proc = cpu_local_var(current);
struct vm_regions *region = &proc->vm->region;
uintptr_t start;
size_t len;
uintptr_t end;
struct vm_range *first;
uintptr_t addr;
struct vm_range *range;
int error;
struct vm_range *changed;
dkprintf("[%d]sys_munlock(%lx,%lx)\n",
ihk_mc_get_processor_id(), start0, len0);
start = start0 & PAGE_MASK;
len = (start & (PAGE_SIZE - 1)) + len0;
len = (len + PAGE_SIZE - 1) & PAGE_MASK;
end = start + len;
if (end < start) {
error = -EINVAL;
goto out2;
}
if ((start < region->user_start)
|| (region->user_end <= start)
|| (len > (region->user_end - region->user_start))
|| ((region->user_end - len) < start)) {
error = -ENOMEM;
goto out2;
}
if (start == end) {
error = 0;
goto out2;
}
ihk_mc_spinlock_lock_noirq(&proc->vm->memory_range_lock);
/* check contiguous map */
first = NULL;
for (addr = start; addr < end; addr = range->end) {
if (first == NULL) {
range = lookup_process_memory_range(proc->vm, start, start+PAGE_SIZE);
first = range;
}
else {
range = next_process_memory_range(proc->vm, range);
}
if (!range || (addr < range->start)) {
/* not contiguous */
dkprintf("[%d]sys_munlock(%lx,%lx):not contiguous."
" %lx [%lx-%lx)\n",
ihk_mc_get_processor_id(), start0,
len0, addr, range->start, range->end);
error = -ENOMEM;
goto out;
}
if (range->flag & (VR_REMOTE | VR_RESERVED | VR_IO_NOCACHE)) {
ekprintf("[%d]sys_munlock(%lx,%lx):cannot change."
" [%lx-%lx) %lx\n",
ihk_mc_get_processor_id(), start0,
len0, range->start, range->end,
range->flag);
error = -EINVAL;
goto out;
}
}
/* do the munlock */
changed = NULL;
for (addr = start; addr < end; addr = changed->end) {
if (!changed) {
range = first;
}
else {
range = next_process_memory_range(proc->vm, changed);
}
if (!range || (addr < range->start)) {
/* not contiguous */
dkprintf("[%d]sys_munlock(%lx,%lx):not contiguous."
" %lx [%lx-%lx)\n",
ihk_mc_get_processor_id(), start0,
len0, addr, range?range->start:0,
range?range->end:0);
error = -ENOMEM;
goto out;
}
if (range->start < addr) {
error = split_process_memory_range(proc, range, addr, &range);
if (error) {
ekprintf("[%d]sys_munlock(%lx,%lx):split failed. "
" [%lx-%lx) %lx %d\n",
ihk_mc_get_processor_id(),
start0, len0, range->start,
range->end, addr, error);
goto out;
}
}
if (end < range->end) {
error = split_process_memory_range(proc, range, end, NULL);
if (error) {
ekprintf("[%d]sys_munlock(%lx,%lx):split failed. "
" [%lx-%lx) %lx %d\n",
ihk_mc_get_processor_id(),
start0, len0, range->start,
range->end, addr, error);
goto out;
}
}
range->flag &= ~VR_LOCKED;
if (!changed) {
changed = range;
}
else {
error = join_process_memory_range(proc, changed, range);
if (error) {
dkprintf("[%d]sys_munlock(%lx,%lx):join failed. %d",
ihk_mc_get_processor_id(),
start0, len0, error);
dkprintf("LHS: %p [%lx-%lx) %lx %p\n",
changed, changed->start,
changed->end, changed->flag,
changed->memobj);
dkprintf("RHS: %p [%lx-%lx) %lx %p\n",
range, range->start,
range->end, range->flag,
range->memobj);
changed = range;
/* through */
}
}
}
error = 0;
out:
ihk_mc_spinlock_unlock_noirq(&proc->vm->memory_range_lock);
out2:
dkprintf("[%d]sys_munlock(%lx,%lx): %d\n",
ihk_mc_get_processor_id(), start0, len0, error);
return error;
}
SYSCALL_DECLARE(remap_file_pages)
{
const uintptr_t start0 = ihk_mc_syscall_arg0(ctx);
const size_t size = ihk_mc_syscall_arg1(ctx);
const int prot = ihk_mc_syscall_arg2(ctx);
const size_t pgoff = ihk_mc_syscall_arg3(ctx);
const int flags = ihk_mc_syscall_arg4(ctx);
int error;
const uintptr_t start = start0 & PAGE_MASK;
const uintptr_t end = start + size;
const off_t off = (off_t)pgoff << PAGE_SHIFT;
struct process * const proc = cpu_local_var(current);
struct vm_range *range;
int er;
int need_populate = 0;
dkprintf("sys_remap_file_pages(%#lx,%#lx,%#x,%#lx,%#x)\n",
start0, size, prot, pgoff, flags);
ihk_mc_spinlock_lock_noirq(&proc->vm->memory_range_lock);
#define PGOFF_LIMIT ((off_t)1 << ((8*sizeof(off_t) - 1) - PAGE_SHIFT))
if ((size <= 0) || (size & (PAGE_SIZE - 1)) || (prot != 0)
|| (pgoff < 0) || (PGOFF_LIMIT <= pgoff)
|| ((PGOFF_LIMIT - pgoff) < (size / PAGE_SIZE))
|| !((start < end) || (end == 0))) {
ekprintf("sys_remap_file_pages(%#lx,%#lx,%#x,%#lx,%#x):"
"invalid args\n",
start0, size, prot, pgoff, flags);
error = -EINVAL;
goto out;
}
range = lookup_process_memory_range(proc->vm, start, end);
if (!range || (start < range->start) || (range->end < end)
|| (range->flag & VR_PRIVATE)
|| (range->flag & (VR_REMOTE|VR_IO_NOCACHE|VR_RESERVED))
|| !range->memobj) {
ekprintf("sys_remap_file_pages(%#lx,%#lx,%#x,%#lx,%#x):"
"invalid VMR:[%#lx-%#lx) %#lx %p\n",
start0, size, prot, pgoff, flags,
range?range->start:0, range?range->end:0,
range?range->flag:0, range?range->memobj:NULL);
error = -EINVAL;
goto out;
}
range->flag |= VR_FILEOFF;
error = remap_process_memory_range(proc->vm, range, start, end, off);
if (error) {
ekprintf("sys_remap_file_pages(%#lx,%#lx,%#x,%#lx,%#x):"
"remap failed %d\n",
start0, size, prot, pgoff, flags, error);
goto out;
}
clear_host_pte(start, size); /* XXX: workaround */
if (range->flag & VR_LOCKED) {
need_populate = 1;
}
error = 0;
out:
ihk_mc_spinlock_unlock_noirq(&proc->vm->memory_range_lock);
if (need_populate
&& (er = populate_process_memory(
proc, (void *)start, size))) {
ekprintf("sys_remap_file_pages(%#lx,%#lx,%#x,%#lx,%#x):"
"populate failed %d\n",
start0, size, prot, pgoff, flags, er);
/* ignore populate error */
}
dkprintf("sys_remap_file_pages(%#lx,%#lx,%#x,%#lx,%#x): %d\n",
start0, size, prot, pgoff, flags, error);
return error;
}
SYSCALL_DECLARE(mremap)
{
const uintptr_t oldaddr = ihk_mc_syscall_arg0(ctx);
const size_t oldsize0 = ihk_mc_syscall_arg1(ctx);
const size_t newsize0 = ihk_mc_syscall_arg2(ctx);
const int flags = ihk_mc_syscall_arg3(ctx);
const uintptr_t newaddr = ihk_mc_syscall_arg4(ctx);
const ssize_t oldsize = (oldsize0 + PAGE_SIZE - 1) & PAGE_MASK;
const ssize_t newsize = (newsize0 + PAGE_SIZE - 1) & PAGE_MASK;
const uintptr_t oldstart = oldaddr;
const uintptr_t oldend = oldstart + oldsize;
struct process *proc = cpu_local_var(current);
struct process_vm *vm = proc->vm;
int error;
struct vm_range *range;
int need_relocate;
uintptr_t newstart;
uintptr_t newend;
size_t size;
uintptr_t ret;
uintptr_t lckstart = -1;
uintptr_t lckend = -1;
dkprintf("sys_mremap(%#lx,%#lx,%#lx,%#x,%#lx)\n",
oldaddr, oldsize0, newsize0, flags, newaddr);
ihk_mc_spinlock_lock_noirq(&vm->memory_range_lock);
if ((oldaddr & ~PAGE_MASK)
|| (oldsize < 0)
|| (newsize <= 0)
|| (flags & ~(MREMAP_MAYMOVE | MREMAP_FIXED))
|| ((flags & MREMAP_FIXED)
&& !(flags & MREMAP_MAYMOVE))
|| ((flags & MREMAP_FIXED)
&& (newaddr & ~PAGE_MASK))) {
error = -EINVAL;
ekprintf("sys_mremap(%#lx,%#lx,%#lx,%#x,%#lx):invalid. %d\n",
oldaddr, oldsize0, newsize0, flags, newaddr,
error);
goto out;
}
/* check original mapping */
range = lookup_process_memory_range(vm, oldstart, oldstart+PAGE_SIZE);
if (!range || (oldstart < range->start) || (range->end < oldend)
|| (range->flag & (VR_FILEOFF))
|| (range->flag & (VR_REMOTE|VR_IO_NOCACHE|VR_RESERVED))) {
error = -EFAULT;
ekprintf("sys_mremap(%#lx,%#lx,%#lx,%#x,%#lx):"
"lookup failed. %d %p %#lx-%#lx %#lx\n",
oldaddr, oldsize0, newsize0, flags, newaddr,
error, range, range?range->start:0,
range?range->end:0, range?range->flag:0);
goto out;
}
if (oldend < oldstart) {
error = -EINVAL;
ekprintf("sys_mremap(%#lx,%#lx,%#lx,%#x,%#lx):"
"old range overflow. %d\n",
oldaddr, oldsize0, newsize0, flags, newaddr,
error);
goto out;
}
/* determine new mapping range */
need_relocate = 0;
if (flags & MREMAP_FIXED) {
need_relocate = 1;
newstart = newaddr;
newend = newstart + newsize;
if (newstart < vm->region.user_start) {
error = -EPERM;
ekprintf("sys_mremap(%#lx,%#lx,%#lx,%#x,%#lx):"
"mmap_min_addr %#lx. %d\n",
oldaddr, oldsize0, newsize0, flags,
newaddr, vm->region.user_start,
error);
goto out;
}
if ((newstart < oldend) && (oldstart < newend)) {
error = -EINVAL;
ekprintf("sys_mremap(%#lx,%#lx,%#lx,%#x,%#lx):"
"fixed:overlapped. %d\n",
oldaddr, oldsize0, newsize0, flags,
newaddr, error);
goto out;
}
}
else if (!(flags & MREMAP_FIXED) && (oldsize < newsize)) {
if (oldend == range->end) {
newstart = oldstart;
newend = newstart + newsize;
error = extend_up_process_memory_range(vm, range,
newend);
if (!error) {
if (range->flag & VR_LOCKED) {
lckstart = oldend;
lckend = newend;
}
goto out;
}
}
if (!(flags & MREMAP_MAYMOVE)) {
error = -ENOMEM;
ekprintf("sys_mremap(%#lx,%#lx,%#lx,%#x,%#lx):"
"cannot relocate. %d\n",
oldaddr, oldsize0, newsize0, flags,
newaddr, error);
goto out;
}
need_relocate = 1;
error = search_free_space(newsize, vm->region.map_end,
(intptr_t *)&newstart);
if (error) {
ekprintf("sys_mremap(%#lx,%#lx,%#lx,%#x,%#lx):"
"search failed. %d\n",
oldaddr, oldsize0, newsize0, flags,
newaddr, error);
goto out;
}
newend = newstart + newsize;
}
else {
newstart = oldstart;
newend = newstart + newsize;
}
/* do the remap */
if (need_relocate) {
if (flags & MREMAP_FIXED) {
error = do_munmap((void *)newstart, newsize);
if (error) {
ekprintf("sys_mremap(%#lx,%#lx,%#lx,%#x,%#lx):"
"fixed:munmap failed. %d\n",
oldaddr, oldsize0, newsize0,
flags, newaddr, error);
goto out;
}
}
if (range->memobj) {
memobj_ref(range->memobj);
}
error = add_process_memory_range(proc, newstart, newend, -1,
range->flag, range->memobj,
range->objoff + (oldstart - range->start));
if (error) {
ekprintf("sys_mremap(%#lx,%#lx,%#lx,%#x,%#lx):"
"add failed. %d\n",
oldaddr, oldsize0, newsize0, flags,
newaddr, error);
if (range->memobj) {
memobj_release(range->memobj);
}
goto out;
}
if (range->flag & VR_LOCKED) {
lckstart = newstart;
lckend = newend;
}
if (oldsize > 0) {
size = (oldsize < newsize)? oldsize: newsize;
ihk_mc_spinlock_lock_noirq(&vm->page_table_lock);
error = move_pte_range(vm->page_table, vm,
(void *)oldstart, (void *)newstart,
size);
ihk_mc_spinlock_unlock_noirq(&vm->page_table_lock);
if (error) {
ekprintf("sys_mremap(%#lx,%#lx,%#lx,%#x,%#lx):"
"move failed. %d\n",
oldaddr, oldsize0, newsize0,
flags, newaddr, error);
goto out;
}
error = do_munmap((void *)oldstart, oldsize);
if (error) {
ekprintf("sys_mremap(%#lx,%#lx,%#lx,%#x,%#lx):"
"relocate:munmap failed. %d\n",
oldaddr, oldsize0, newsize0,
flags, newaddr, error);
goto out;
}
}
}
else if (newsize < oldsize) {
error = do_munmap((void *)newend, (oldend - newend));
if (error) {
ekprintf("sys_mremap(%#lx,%#lx,%#lx,%#x,%#lx):"
"shrink:munmap failed. %d\n",
oldaddr, oldsize0, newsize0, flags,
newaddr, error);
goto out;
}
}
else {
/* nothing to do */
}
error = 0;
out:
ihk_mc_spinlock_unlock_noirq(&vm->memory_range_lock);
if (!error && (lckstart < lckend)) {
error = populate_process_memory(proc, (void *)lckstart, (lckend - lckstart));
if (error) {
ekprintf("sys_mremap(%#lx,%#lx,%#lx,%#x,%#lx):"
"populate failed. %d %#lx-%#lx\n",
oldaddr, oldsize0, newsize0, flags,
newaddr, error, lckstart, lckend);
error = 0; /* ignore error */
}
}
ret = (error)? error: newstart;
dkprintf("sys_mremap(%#lx,%#lx,%#lx,%#x,%#lx):%d %#lx\n",
oldaddr, oldsize0, newsize0, flags, newaddr, error,
ret);
return ret;
}
#ifdef DCFA_KMOD
#ifdef CMD_DCFA
extern int ibmic_cmd_syscall(char *uargs);
extern void ibmic_cmd_exit(int status);
#endif
#ifdef CMD_DCFAMPI
extern int dcfampi_cmd_syscall(char *uargs);
#endif
static int (*mod_call_table[]) (char *) = {
#ifdef CMD_DCFA
[1] = ibmic_cmd_syscall,
#endif
#ifdef CMD_DCFAMPI
[2] = dcfampi_cmd_syscall,
#endif
};
static void (*mod_exit_table[]) (int) = {
#ifdef CMD_DCFA
[1] = ibmic_cmd_exit,
#endif
#ifdef CMD_DCFAMPI
[2] = NULL,
#endif
};
SYSCALL_DECLARE(mod_call) {
int mod_id;
unsigned long long uargs;
mod_id = ihk_mc_syscall_arg0(ctx);
uargs = ihk_mc_syscall_arg1(ctx);
dkprintf("mod_call id:%d, uargs=0x%llx, type=%s, command=%x\n", mod_id, uargs, mod_id==1?"ibmic":"dcfampi", *((uint32_t*)(((char*)uargs)+0)));
if(mod_call_table[mod_id])
return mod_call_table[mod_id]((char*)uargs);
kprintf("ERROR! undefined mod_call id:%d\n", mod_id);
return -ENOSYS;
}
static void do_mod_exit(int status){
int i;
for(i=1; i<=2; i++){
if(mod_exit_table[i])
mod_exit_table[i](status);
}
}
#endif
/* select counter type */
SYSCALL_DECLARE(pmc_init)
{
int counter = ihk_mc_syscall_arg0(ctx);
enum ihk_perfctr_type type = (enum ihk_perfctr_type)ihk_mc_syscall_arg1(ctx);
/* see ihk/manycore/generic/include/ihk/perfctr.h */
int mode = PERFCTR_USER_MODE;
return ihk_mc_perfctr_init(counter, type, mode);
}
SYSCALL_DECLARE(pmc_start)
{
unsigned long counter = ihk_mc_syscall_arg0(ctx);
return ihk_mc_perfctr_start(1 << counter);
}
SYSCALL_DECLARE(pmc_stop)
{
unsigned long counter = ihk_mc_syscall_arg0(ctx);
return ihk_mc_perfctr_stop(1 << counter);
}
SYSCALL_DECLARE(pmc_reset)
{
int counter = ihk_mc_syscall_arg0(ctx);
return ihk_mc_perfctr_reset(counter);
}
long syscall(int num, ihk_mc_user_context_t *ctx)
{
long l;
cpu_enable_interrupt();
#if 0
if(num != 24) // if not sched_yield
#endif
dkprintf("SC(%d:%d)[%3d=%s](%lx, %lx,%lx, %lx, %lx, %lx)@%lx,sp:%lx",
ihk_mc_get_processor_id(),
ihk_mc_get_hardware_processor_id(),
num, syscall_name[num],
ihk_mc_syscall_arg0(ctx), ihk_mc_syscall_arg1(ctx),
ihk_mc_syscall_arg2(ctx), ihk_mc_syscall_arg3(ctx),
ihk_mc_syscall_arg4(ctx), ihk_mc_syscall_arg5(ctx),
ihk_mc_syscall_pc(ctx), ihk_mc_syscall_sp(ctx));
#if 1
#if 0
if(num != 24) // if not sched_yield
#endif
dkprintf(",*sp:%lx,*(sp+8):%lx,*(sp+16):%lx,*(sp+24):%lx",
*((unsigned long*)ihk_mc_syscall_sp(ctx)),
*((unsigned long*)(ihk_mc_syscall_sp(ctx)+8)),
*((unsigned long*)(ihk_mc_syscall_sp(ctx)+16)),
*((unsigned long*)(ihk_mc_syscall_sp(ctx)+24)));
#endif
#if 0
if(num != 24) // if not sched_yield
#endif
dkprintf("\n");
if ((0 <= num) && (num < (sizeof(syscall_table) / sizeof(syscall_table[0])))
&& (syscall_table[num] != NULL)) {
l = syscall_table[num](num, ctx);
dkprintf("SC(%d)[%3d] ret: %d\n",
ihk_mc_get_processor_id(), num, l);
} else {
dkprintf("USC[%3d](%lx, %lx, %lx, %lx, %lx) @ %lx | %lx\n", num,
ihk_mc_syscall_arg0(ctx), ihk_mc_syscall_arg1(ctx),
ihk_mc_syscall_arg2(ctx), ihk_mc_syscall_arg3(ctx),
ihk_mc_syscall_arg4(ctx), ihk_mc_syscall_pc(ctx),
ihk_mc_syscall_sp(ctx));
l = syscall_generic_forwarding(num, ctx);
}
check_signal(l, NULL);
check_need_resched();
return l;
}
#if 0
void __host_update_process_range(struct process *process,
struct vm_range *range)
{
struct syscall_post *post;
int idx;
memcpy_async_wait(&cpu_local_var(scp).post_fin);
post = &cpu_local_var(scp).post_buf;
post->v[0] = 1;
post->v[1] = range->start;
post->v[2] = range->end;
post->v[3] = range->phys;
cpu_disable_interrupt();
if (cpu_local_var(scp).post_idx >=
PAGE_SIZE / sizeof(struct syscall_post)) {
/* XXX: Wait until it is consumed */
} else {
idx = ++(cpu_local_var(scp).post_idx);
cpu_local_var(scp).post_fin = 0;
memcpy_async(cpu_local_var(scp).post_pa +
idx * sizeof(*post),
virt_to_phys(post), sizeof(*post), 0,
&cpu_local_var(scp).post_fin);
}
cpu_enable_interrupt();
}
#endif