2613 lines
68 KiB
C
2613 lines
68 KiB
C
/**
|
|
* \file process.c
|
|
* License details are found in the file LICENSE.
|
|
* \brief
|
|
* process, thread, and, virtual memory management
|
|
* \author Taku Shimosawa <shimosawa@is.s.u-tokyo.ac.jp> \par
|
|
* Copyright (C) 2011 - 2012 Taku Shimosawa
|
|
* \author Balazs Gerofi <bgerofi@riken.jp> \par
|
|
* Copyright (C) 2012 RIKEN AICS
|
|
* \author Masamichi Takagi <m-takagi@ab.jp.nec.com> \par
|
|
* Copyright (C) 2012 - 2013 NEC Corporation
|
|
* \author Balazs Gerofi <bgerofi@is.s.u-tokyo.ac.jp> \par
|
|
* Copyright (C) 2013 The University of Tokyo
|
|
* \author Gou Nakamura <go.nakamura.yw@hitachi-solutions.com> \par
|
|
* Copyright (C) 2013 Hitachi, Ltd.
|
|
* \author Tomoki Shirasawa <tomoki.shirasawa.kk@hitachi-solutions.com> \par
|
|
* Copyright (C) 2013 Hitachi, Ltd.
|
|
*/
|
|
/*
|
|
* HISTORY:
|
|
*/
|
|
|
|
#include <process.h>
|
|
#include <string.h>
|
|
#include <errno.h>
|
|
#include <kmalloc.h>
|
|
#include <cls.h>
|
|
#include <ihk/debug.h>
|
|
#include <page.h>
|
|
#include <cpulocal.h>
|
|
#include <auxvec.h>
|
|
#include <timer.h>
|
|
#include <mman.h>
|
|
|
|
//#define DEBUG_PRINT_PROCESS
|
|
|
|
#ifdef DEBUG_PRINT_PROCESS
|
|
#define dkprintf(...) kprintf(__VA_ARGS__)
|
|
#define ekprintf(...) kprintf(__VA_ARGS__)
|
|
#else
|
|
#define dkprintf(...) do { if (0) kprintf(__VA_ARGS__); } while (0)
|
|
#define ekprintf(...) kprintf(__VA_ARGS__)
|
|
#endif
|
|
|
|
extern long do_arch_prctl(unsigned long code, unsigned long address);
|
|
extern long alloc_debugreg(struct process *proc);
|
|
extern void save_debugreg(unsigned long *debugreg);
|
|
extern void restore_debugreg(unsigned long *debugreg);
|
|
extern void clear_debugreg(void);
|
|
extern void clear_single_step(struct process *proc);
|
|
static void insert_vm_range_list(struct process_vm *vm,
|
|
struct vm_range *newrange);
|
|
static int copy_user_ranges(struct process *proc, struct process *org);
|
|
extern void release_fp_regs(struct process *proc);
|
|
extern void save_fp_regs(struct process *proc);
|
|
extern void restore_fp_regs(struct process *proc);
|
|
void settid(struct process *proc, int mode, int newcpuid, int oldcpuid);
|
|
extern void __runq_add_proc(struct process *proc, int cpu_id);
|
|
extern void terminate_host(int pid);
|
|
extern void lapic_timer_enable(unsigned int clocks);
|
|
extern void lapic_timer_disable();
|
|
|
|
int refcount_fork_tree_node(struct fork_tree_node *ftn)
|
|
{
|
|
return ihk_atomic_read(&ftn->refcount);
|
|
}
|
|
|
|
void hold_fork_tree_node(struct fork_tree_node *ftn)
|
|
{
|
|
ihk_atomic_inc(&ftn->refcount);
|
|
dkprintf("hold ftn(%d): %d\n",
|
|
ftn->pid, ihk_atomic_read(&ftn->refcount));
|
|
}
|
|
|
|
void release_fork_tree_node(struct fork_tree_node *ftn)
|
|
{
|
|
dkprintf("release ftn(%d): %d\n",
|
|
ftn->pid, ihk_atomic_read(&ftn->refcount));
|
|
|
|
if (!ihk_atomic_dec_and_test(&ftn->refcount)) {
|
|
return;
|
|
}
|
|
|
|
dkprintf("dealloc ftn(%d): %d\n",
|
|
ftn->pid, ihk_atomic_read(&ftn->refcount));
|
|
|
|
/* Dealloc */
|
|
kfree(ftn);
|
|
}
|
|
|
|
|
|
void init_fork_tree_node(struct fork_tree_node *ftn,
|
|
struct fork_tree_node *parent, struct process *owner)
|
|
{
|
|
ihk_mc_spinlock_init(&ftn->lock);
|
|
/* Only the process/thread holds a reference at this point */
|
|
ihk_atomic_set(&ftn->refcount, 1);
|
|
|
|
ftn->owner = owner;
|
|
|
|
/* These will be filled out when changing status */
|
|
ftn->pid = -1;
|
|
ftn->exit_status = -1;
|
|
ftn->status = PS_RUNNING;
|
|
|
|
ftn->group_exit_status = 0;
|
|
ftn->ptrace = 0;
|
|
ftn->signal_flags = 0;
|
|
|
|
ftn->parent = NULL;
|
|
if (parent) {
|
|
ftn->parent = parent;
|
|
ftn->pgid = parent->pgid;
|
|
ftn->ruid = parent->ruid;
|
|
ftn->euid = parent->euid;
|
|
ftn->suid = parent->suid;
|
|
ftn->fsuid = parent->fsuid;
|
|
ftn->rgid = parent->rgid;
|
|
ftn->egid = parent->egid;
|
|
ftn->sgid = parent->sgid;
|
|
ftn->fsgid = parent->fsgid;
|
|
}
|
|
INIT_LIST_HEAD(&ftn->children);
|
|
INIT_LIST_HEAD(&ftn->siblings_list);
|
|
|
|
INIT_LIST_HEAD(&ftn->ptrace_children);
|
|
INIT_LIST_HEAD(&ftn->ptrace_siblings_list);
|
|
|
|
waitq_init(&ftn->waitpid_q);
|
|
}
|
|
|
|
static int init_process_vm(struct process *owner, struct process_vm *vm)
|
|
{
|
|
void *pt = ihk_mc_pt_create(IHK_MC_AP_NOWAIT);
|
|
|
|
if(pt == NULL)
|
|
return -ENOMEM;
|
|
|
|
ihk_mc_spinlock_init(&vm->memory_range_lock);
|
|
ihk_mc_spinlock_init(&vm->page_table_lock);
|
|
|
|
ihk_atomic_set(&vm->refcount, 1);
|
|
INIT_LIST_HEAD(&vm->vm_range_list);
|
|
vm->page_table = pt;
|
|
hold_process(owner);
|
|
vm->owner_process = owner;
|
|
memset(&vm->cpu_set, 0, sizeof(cpu_set_t));
|
|
ihk_mc_spinlock_init(&vm->cpu_set_lock);
|
|
vm->exiting = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct process *create_process(unsigned long user_pc)
|
|
{
|
|
struct process *proc;
|
|
|
|
proc = ihk_mc_alloc_pages(KERNEL_STACK_NR_PAGES, IHK_MC_AP_NOWAIT);
|
|
if (!proc)
|
|
return NULL;
|
|
|
|
memset(proc, 0, sizeof(struct process));
|
|
ihk_atomic_set(&proc->refcount, 2);
|
|
if (1) {
|
|
struct ihk_mc_cpu_info *infop;
|
|
int i;
|
|
|
|
infop = ihk_mc_get_cpu_info();
|
|
for (i = 0; i < infop->ncpus; ++i) {
|
|
CPU_SET(i, &proc->cpu_set);
|
|
}
|
|
}
|
|
|
|
proc->sched_policy = SCHED_NORMAL;
|
|
|
|
proc->sighandler = kmalloc(sizeof(struct sig_handler), IHK_MC_AP_NOWAIT);
|
|
if(!proc->sighandler){
|
|
goto err_free_process;
|
|
}
|
|
proc->sigshared = kmalloc(sizeof(struct sig_shared), IHK_MC_AP_NOWAIT);
|
|
if(!proc->sigshared){
|
|
goto err_free_sighandler;
|
|
}
|
|
memset(proc->sighandler, '\0', sizeof(struct sig_handler));
|
|
ihk_atomic_set(&proc->sighandler->use, 1);
|
|
ihk_mc_spinlock_init(&proc->sighandler->lock);
|
|
ihk_atomic_set(&proc->sigshared->use, 1);
|
|
ihk_mc_spinlock_init(&proc->sigshared->lock);
|
|
INIT_LIST_HEAD(&proc->sigshared->sigpending);
|
|
ihk_mc_spinlock_init(&proc->sigpendinglock);
|
|
INIT_LIST_HEAD(&proc->sigpending);
|
|
|
|
proc->sigstack.ss_sp = NULL;
|
|
proc->sigstack.ss_flags = SS_DISABLE;
|
|
proc->sigstack.ss_size = 0;
|
|
|
|
ihk_mc_init_user_process(&proc->ctx, &proc->uctx,
|
|
((char *)proc) +
|
|
KERNEL_STACK_NR_PAGES * PAGE_SIZE, user_pc, 0);
|
|
|
|
proc->vm = (struct process_vm *)(proc + 1);
|
|
|
|
proc->ftn = kmalloc(sizeof(struct fork_tree_node), IHK_MC_AP_NOWAIT);
|
|
if (!proc->ftn) {
|
|
goto err_free_sigshared;
|
|
}
|
|
|
|
init_fork_tree_node(proc->ftn, NULL, proc);
|
|
|
|
if(init_process_vm(proc, proc->vm) != 0){
|
|
goto err_free_sigshared;
|
|
}
|
|
|
|
cpu_set(ihk_mc_get_processor_id(), &proc->vm->cpu_set,
|
|
&proc->vm->cpu_set_lock);
|
|
|
|
ihk_mc_spinlock_init(&proc->spin_sleep_lock);
|
|
proc->spin_sleep = 0;
|
|
|
|
return proc;
|
|
|
|
err_free_sigshared:
|
|
kfree(proc->sigshared);
|
|
|
|
err_free_sighandler:
|
|
kfree(proc->sighandler);
|
|
|
|
err_free_process:
|
|
ihk_mc_free_pages(proc, KERNEL_STACK_NR_PAGES);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
struct process *clone_process(struct process *org, unsigned long pc,
|
|
unsigned long sp, int clone_flags)
|
|
{
|
|
struct process *proc;
|
|
int termsig = clone_flags & 0xff;
|
|
|
|
if (termsig < 0 || _NSIG < termsig) {
|
|
return (void *)-EINVAL;
|
|
}
|
|
|
|
if ((proc = ihk_mc_alloc_pages(KERNEL_STACK_NR_PAGES,
|
|
IHK_MC_AP_NOWAIT)) == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
memset(proc, 0, sizeof(struct process));
|
|
ihk_atomic_set(&proc->refcount, 2);
|
|
memcpy(&proc->cpu_set, &org->cpu_set, sizeof(proc->cpu_set));
|
|
|
|
/* NOTE: sp is the user mode stack! */
|
|
ihk_mc_init_user_process(&proc->ctx, &proc->uctx,
|
|
((char *)proc) +
|
|
KERNEL_STACK_NR_PAGES * PAGE_SIZE, pc, sp);
|
|
|
|
memcpy(proc->uctx, org->uctx, sizeof(*org->uctx));
|
|
ihk_mc_modify_user_context(proc->uctx, IHK_UCR_STACK_POINTER, sp);
|
|
ihk_mc_modify_user_context(proc->uctx, IHK_UCR_PROGRAM_COUNTER, pc);
|
|
|
|
memcpy(proc->rlimit, org->rlimit, sizeof(struct rlimit) * MCK_RLIM_MAX);
|
|
proc->sigmask = org->sigmask;
|
|
|
|
proc->ftn = kmalloc(sizeof(struct fork_tree_node), IHK_MC_AP_NOWAIT);
|
|
if (!proc->ftn) {
|
|
goto err_free_sigshared;
|
|
}
|
|
|
|
proc->ftn->termsig = termsig;
|
|
|
|
init_fork_tree_node(proc->ftn, org->ftn, proc);
|
|
|
|
proc->sched_policy = org->sched_policy;
|
|
proc->sched_param.sched_priority = org->sched_param.sched_priority;
|
|
|
|
/* clone signal handlers */
|
|
if (clone_flags & CLONE_SIGHAND) {
|
|
proc->sigstack.ss_sp = NULL;
|
|
proc->sigstack.ss_flags = SS_DISABLE;
|
|
proc->sigstack.ss_size = 0;
|
|
|
|
proc->sighandler = org->sighandler;
|
|
ihk_atomic_inc(&org->sighandler->use);
|
|
|
|
proc->sigshared = org->sigshared;
|
|
ihk_atomic_inc(&org->sigshared->use);
|
|
|
|
ihk_mc_spinlock_init(&proc->sigpendinglock);
|
|
INIT_LIST_HEAD(&proc->sigpending);
|
|
}
|
|
/* copy signal handlers (i.e., fork()) */
|
|
else {
|
|
dkprintf("fork(): sighandler\n");
|
|
proc->sighandler = kmalloc(sizeof(struct sig_handler),
|
|
IHK_MC_AP_NOWAIT);
|
|
|
|
if (!proc->sighandler) {
|
|
goto err_free_proc;
|
|
}
|
|
|
|
dkprintf("fork(): sigshared\n");
|
|
proc->sigshared = kmalloc(sizeof(struct sig_shared), IHK_MC_AP_NOWAIT);
|
|
|
|
if (!proc->sigshared) {
|
|
goto err_free_sighandler;
|
|
}
|
|
|
|
memcpy(proc->sighandler, org->sighandler, sizeof(struct sig_handler));
|
|
ihk_atomic_set(&proc->sighandler->use, 1);
|
|
ihk_mc_spinlock_init(&proc->sighandler->lock);
|
|
ihk_atomic_set(&proc->sigshared->use, 1);
|
|
ihk_mc_spinlock_init(&proc->sigshared->lock);
|
|
INIT_LIST_HEAD(&proc->sigshared->sigpending);
|
|
ihk_mc_spinlock_init(&proc->sigpendinglock);
|
|
INIT_LIST_HEAD(&proc->sigpending);
|
|
}
|
|
|
|
/* clone VM */
|
|
if (clone_flags & CLONE_VM) {
|
|
ihk_atomic_inc(&org->vm->refcount);
|
|
proc->vm = org->vm;
|
|
}
|
|
/* fork() */
|
|
else {
|
|
proc->vm = (struct process_vm *)(proc + 1);
|
|
|
|
dkprintf("fork(): init_process_vm()\n");
|
|
if (init_process_vm(proc, proc->vm) != 0) {
|
|
goto err_free_sigshared;
|
|
}
|
|
|
|
memcpy(&proc->vm->region, &org->vm->region, sizeof(struct vm_regions));
|
|
|
|
dkprintf("fork(): copy_user_ranges()\n");
|
|
/* Copy user-space mappings.
|
|
* TODO: do this with COW later? */
|
|
if (copy_user_ranges(proc, org) != 0) {
|
|
goto err_free_sigshared;
|
|
}
|
|
|
|
dkprintf("fork(): copy_user_ranges() OK\n");
|
|
}
|
|
|
|
/* Add thread/proc's fork_tree_node to parent's children list */
|
|
ihk_mc_spinlock_lock_noirq(&org->ftn->lock);
|
|
list_add_tail(&proc->ftn->siblings_list, &org->ftn->children);
|
|
ihk_mc_spinlock_unlock_noirq(&org->ftn->lock);
|
|
|
|
/* We hold a reference to parent */
|
|
hold_fork_tree_node(proc->ftn->parent);
|
|
|
|
/* Parent holds a reference to us */
|
|
hold_fork_tree_node(proc->ftn);
|
|
|
|
ihk_mc_spinlock_init(&proc->spin_sleep_lock);
|
|
proc->spin_sleep = 0;
|
|
|
|
return proc;
|
|
|
|
err_free_sigshared:
|
|
kfree(proc->sigshared);
|
|
|
|
err_free_sighandler:
|
|
ihk_mc_free_pages(proc->sighandler, KERNEL_STACK_NR_PAGES);
|
|
|
|
err_free_proc:
|
|
ihk_mc_free_pages(proc, KERNEL_STACK_NR_PAGES);
|
|
release_process(org);
|
|
return NULL;
|
|
}
|
|
|
|
int ptrace_traceme(void){
|
|
int error = 0;
|
|
struct process *proc = cpu_local_var(current);
|
|
struct fork_tree_node *child, *next;
|
|
dkprintf("ptrace_traceme,pid=%d,proc->ftn->parent=%p\n", proc->ftn->pid, proc->ftn->parent);
|
|
|
|
if (proc->ftn->parent == NULL || proc->ftn->ptrace) {
|
|
error = -EPERM;
|
|
goto out;
|
|
}
|
|
|
|
dkprintf("ptrace_traceme,parent->pid=%d\n", proc->ftn->parent->pid);
|
|
|
|
ihk_mc_spinlock_lock_noirq(&proc->ftn->lock);
|
|
|
|
ihk_mc_spinlock_lock_noirq(&proc->ftn->parent->lock);
|
|
list_for_each_entry_safe(child, next, &proc->ftn->parent->children, siblings_list) {
|
|
if(child == proc->ftn) {
|
|
list_del(&child->siblings_list);
|
|
goto found;
|
|
}
|
|
}
|
|
kprintf("ptrace_traceme,not found\n");
|
|
error = -EPERM;
|
|
goto out_notfound;
|
|
found:
|
|
proc->ftn->ptrace = PT_TRACED | PT_TRACE_EXEC;
|
|
proc->ftn->ppid_parent = proc->ftn->parent;
|
|
|
|
list_add_tail(&proc->ftn->ptrace_siblings_list, &proc->ftn->parent->ptrace_children);
|
|
|
|
ihk_mc_spinlock_unlock_noirq(&proc->ftn->parent->lock);
|
|
ihk_mc_spinlock_unlock_noirq(&proc->ftn->lock);
|
|
|
|
if (proc->ptrace_debugreg == NULL) {
|
|
error = alloc_debugreg(proc);
|
|
}
|
|
|
|
clear_single_step(proc);
|
|
|
|
out:
|
|
dkprintf("ptrace_traceme,returning,error=%d\n", error);
|
|
return error;
|
|
out_notfound:
|
|
ihk_mc_spinlock_unlock_noirq(&proc->ftn->parent->lock);
|
|
ihk_mc_spinlock_unlock_noirq(&proc->ftn->lock);
|
|
goto out;
|
|
}
|
|
|
|
static int copy_user_ranges(struct process *proc, struct process *org)
|
|
{
|
|
struct vm_range *src_range;
|
|
struct vm_range *range;
|
|
|
|
ihk_mc_spinlock_lock_noirq(&org->vm->memory_range_lock);
|
|
|
|
/* Iterate original process' vm_range list and take a copy one-by-one */
|
|
list_for_each_entry(src_range, &org->vm->vm_range_list, list) {
|
|
void *ptepgaddr;
|
|
size_t ptepgsize;
|
|
int ptep2align;
|
|
void *pg_vaddr;
|
|
size_t pgsize;
|
|
void *vaddr;
|
|
int p2align;
|
|
enum ihk_mc_pt_attribute attr;
|
|
pte_t *ptep;
|
|
|
|
range = kmalloc(sizeof(struct vm_range), IHK_MC_AP_NOWAIT);
|
|
if (!range) {
|
|
goto err_rollback;
|
|
}
|
|
|
|
INIT_LIST_HEAD(&range->list);
|
|
range->start = src_range->start;
|
|
range->end = src_range->end;
|
|
range->flag = src_range->flag;
|
|
range->memobj = src_range->memobj;
|
|
range->objoff = src_range->objoff;
|
|
if (range->memobj) {
|
|
memobj_ref(range->memobj);
|
|
}
|
|
|
|
/* Copy actual mappings */
|
|
vaddr = (void *)range->start;
|
|
while ((unsigned long)vaddr < range->end) {
|
|
/* Get source PTE */
|
|
ptep = ihk_mc_pt_lookup_pte(org->vm->page_table, vaddr,
|
|
&ptepgaddr, &ptepgsize, &ptep2align);
|
|
|
|
if (!ptep || pte_is_null(ptep) || !pte_is_present(ptep)) {
|
|
vaddr += PAGE_SIZE;
|
|
continue;
|
|
}
|
|
if (1) {
|
|
struct page *page;
|
|
|
|
page = phys_to_page(pte_get_phys(ptep));
|
|
if (page && page_is_in_memobj(page)) {
|
|
vaddr += PAGE_SIZE;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
dkprintf("copy_user_ranges(): 0x%lx PTE found\n", vaddr);
|
|
|
|
/* Page size */
|
|
if (arch_get_smaller_page_size(NULL, -1, &ptepgsize,
|
|
&ptep2align)) {
|
|
|
|
kprintf("ERROR: copy_user_ranges() "
|
|
"(%p,%lx-%lx %lx,%lx):"
|
|
"get pgsize failed\n", org->vm,
|
|
range->start, range->end,
|
|
range->flag, vaddr);
|
|
|
|
goto err_free_range_rollback;
|
|
}
|
|
|
|
pgsize = ptepgsize;
|
|
p2align = ptep2align;
|
|
dkprintf("copy_user_ranges(): page size: %d\n", pgsize);
|
|
|
|
/* Get physical page */
|
|
pg_vaddr = ihk_mc_alloc_aligned_pages(1, p2align, IHK_MC_AP_NOWAIT);
|
|
|
|
if (!pg_vaddr) {
|
|
kprintf("ERROR: copy_user_ranges() allocating new page\n");
|
|
goto err_free_range_rollback;
|
|
}
|
|
dkprintf("copy_user_ranges(): phys page allocated\n", pgsize);
|
|
|
|
/* Copy content */
|
|
memcpy(pg_vaddr, vaddr, pgsize);
|
|
dkprintf("copy_user_ranges(): memcpy OK\n", pgsize);
|
|
|
|
/* Set up new PTE */
|
|
attr = arch_vrflag_to_ptattr(range->flag, PF_POPULATE, NULL);
|
|
if (ihk_mc_pt_set_range(proc->vm->page_table, proc->vm, vaddr,
|
|
vaddr + pgsize, virt_to_phys(pg_vaddr), attr)) {
|
|
kprintf("ERROR: copy_user_ranges() "
|
|
"(%p,%lx-%lx %lx,%lx):"
|
|
"set range failed.\n",
|
|
org->vm, range->start, range->end,
|
|
range->flag, vaddr);
|
|
|
|
goto err_free_range_rollback;
|
|
}
|
|
dkprintf("copy_user_ranges(): new PTE set\n", pgsize);
|
|
|
|
vaddr += pgsize;
|
|
}
|
|
|
|
insert_vm_range_list(proc->vm, range);
|
|
}
|
|
|
|
ihk_mc_spinlock_unlock_noirq(&org->vm->memory_range_lock);
|
|
|
|
return 0;
|
|
|
|
err_free_range_rollback:
|
|
kfree(range);
|
|
|
|
err_rollback:
|
|
|
|
/* TODO: implement rollback */
|
|
|
|
|
|
ihk_mc_spinlock_unlock_noirq(&org->vm->memory_range_lock);
|
|
|
|
return -1;
|
|
}
|
|
|
|
int update_process_page_table(struct process *process,
|
|
struct vm_range *range, uint64_t phys,
|
|
enum ihk_mc_pt_attribute flag)
|
|
{
|
|
unsigned long p, pa = phys;
|
|
unsigned long pp;
|
|
unsigned long flags = ihk_mc_spinlock_lock(&process->vm->page_table_lock);
|
|
enum ihk_mc_pt_attribute attr;
|
|
|
|
attr = flag | PTATTR_USER | PTATTR_FOR_USER;
|
|
attr |= (range->flag & VR_PROT_WRITE)? PTATTR_WRITABLE: 0;
|
|
attr |= (range->flag & VR_PROT_EXEC)? 0: PTATTR_NO_EXECUTE;
|
|
|
|
p = range->start;
|
|
while (p < range->end) {
|
|
#ifdef USE_LARGE_PAGES
|
|
/* Use large PTE if both virtual and physical addresses are large page
|
|
* aligned and more than LARGE_PAGE_SIZE is left from the range */
|
|
if ((p & (LARGE_PAGE_SIZE - 1)) == 0 &&
|
|
(pa & (LARGE_PAGE_SIZE - 1)) == 0 &&
|
|
(range->end - p) >= LARGE_PAGE_SIZE) {
|
|
|
|
if (ihk_mc_pt_set_large_page(process->vm->page_table, (void *)p,
|
|
pa, attr) != 0) {
|
|
kprintf("ERROR: setting large page for 0x%lX -> 0x%lX\n",
|
|
p, pa);
|
|
goto err;
|
|
}
|
|
|
|
dkprintf("large page set for 0x%lX -> 0x%lX\n", p, pa);
|
|
|
|
pa += LARGE_PAGE_SIZE;
|
|
p += LARGE_PAGE_SIZE;
|
|
}
|
|
else {
|
|
#endif
|
|
if(ihk_mc_pt_set_page(process->vm->page_table, (void *)p,
|
|
pa, attr) != 0){
|
|
kprintf("ERROR: setting page for 0x%lX -> 0x%lX\n", p, pa);
|
|
goto err;
|
|
}
|
|
|
|
pa += PAGE_SIZE;
|
|
p += PAGE_SIZE;
|
|
#ifdef USE_LARGE_PAGES
|
|
}
|
|
#endif
|
|
}
|
|
ihk_mc_spinlock_unlock(&process->vm->page_table_lock, flags);
|
|
return 0;
|
|
|
|
err:
|
|
pp = range->start;
|
|
pa = phys;
|
|
while(pp < p){
|
|
#ifdef USE_LARGE_PAGES
|
|
if ((p & (LARGE_PAGE_SIZE - 1)) == 0 &&
|
|
(pa & (LARGE_PAGE_SIZE - 1)) == 0 &&
|
|
(range->end - p) >= LARGE_PAGE_SIZE) {
|
|
ihk_mc_pt_clear_large_page(process->vm->page_table, (void *)pp);
|
|
pa += LARGE_PAGE_SIZE;
|
|
pp += LARGE_PAGE_SIZE;
|
|
}
|
|
else{
|
|
#endif
|
|
ihk_mc_pt_clear_page(process->vm->page_table, (void *)pp);
|
|
pa += PAGE_SIZE;
|
|
pp += PAGE_SIZE;
|
|
#ifdef USE_LARGE_PAGES
|
|
}
|
|
#endif
|
|
}
|
|
|
|
ihk_mc_spinlock_unlock(&process->vm->page_table_lock, flags);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
int split_process_memory_range(struct process *proc, struct vm_range *range,
|
|
uintptr_t addr, struct vm_range **splitp)
|
|
{
|
|
int error;
|
|
struct vm_range *newrange = NULL;
|
|
|
|
dkprintf("split_process_memory_range(%p,%lx-%lx,%lx,%p)\n",
|
|
proc, range->start, range->end, addr, splitp);
|
|
|
|
newrange = kmalloc(sizeof(struct vm_range), IHK_MC_AP_NOWAIT);
|
|
if (!newrange) {
|
|
ekprintf("split_process_memory_range(%p,%lx-%lx,%lx,%p):"
|
|
"kmalloc failed\n",
|
|
proc, range->start, range->end, addr, splitp);
|
|
error = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
newrange->start = addr;
|
|
newrange->end = range->end;
|
|
newrange->flag = range->flag;
|
|
|
|
if (range->memobj) {
|
|
memobj_ref(range->memobj);
|
|
newrange->memobj = range->memobj;
|
|
newrange->objoff = range->objoff + (addr - range->start);
|
|
}
|
|
else {
|
|
newrange->memobj = NULL;
|
|
newrange->objoff = 0;
|
|
}
|
|
|
|
range->end = addr;
|
|
|
|
list_add(&newrange->list, &range->list);
|
|
|
|
error = 0;
|
|
if (splitp != NULL) {
|
|
*splitp = newrange;
|
|
}
|
|
|
|
out:
|
|
dkprintf("split_process_memory_range(%p,%lx-%lx,%lx,%p): %d %p %lx-%lx\n",
|
|
proc, range->start, range->end, addr, splitp,
|
|
error, newrange,
|
|
newrange? newrange->start: 0, newrange? newrange->end: 0);
|
|
return error;
|
|
}
|
|
|
|
int join_process_memory_range(struct process *proc,
|
|
struct vm_range *surviving, struct vm_range *merging)
|
|
{
|
|
int error;
|
|
|
|
dkprintf("join_process_memory_range(%p,%lx-%lx,%lx-%lx)\n",
|
|
proc, surviving->start, surviving->end,
|
|
merging->start, merging->end);
|
|
|
|
if ((surviving->end != merging->start)
|
|
|| (surviving->flag != merging->flag)
|
|
|| (surviving->memobj != merging->memobj)) {
|
|
error = -EINVAL;
|
|
goto out;
|
|
}
|
|
if (surviving->memobj != NULL) {
|
|
size_t len;
|
|
off_t endoff;
|
|
|
|
len = surviving->end - surviving->start;
|
|
endoff = surviving->objoff + len;
|
|
if (endoff != merging->objoff) {
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
surviving->end = merging->end;
|
|
|
|
if (merging->memobj) {
|
|
memobj_release(merging->memobj);
|
|
}
|
|
list_del(&merging->list);
|
|
ihk_mc_free(merging);
|
|
|
|
error = 0;
|
|
out:
|
|
dkprintf("join_process_memory_range(%p,%lx-%lx,%p): %d\n",
|
|
proc, surviving->start, surviving->end, merging, error);
|
|
return error;
|
|
}
|
|
|
|
int free_process_memory_range(struct process_vm *vm, struct vm_range *range)
|
|
{
|
|
const intptr_t start0 = range->start;
|
|
const intptr_t end0 = range->end;
|
|
int error;
|
|
intptr_t start;
|
|
intptr_t end;
|
|
#ifdef USE_LARGE_PAGES
|
|
struct vm_range *neighbor;
|
|
intptr_t lpstart;
|
|
intptr_t lpend;
|
|
#endif /* USE_LARGE_PAGES */
|
|
|
|
dkprintf("free_process_memory_range(%p, 0x%lx - 0x%lx)\n",
|
|
vm, range->start, range->end);
|
|
|
|
start = range->start;
|
|
end = range->end;
|
|
if (!(range->flag & (VR_REMOTE | VR_IO_NOCACHE | VR_RESERVED))) {
|
|
#ifdef USE_LARGE_PAGES
|
|
lpstart = start & LARGE_PAGE_MASK;
|
|
lpend = (end + LARGE_PAGE_SIZE - 1) & LARGE_PAGE_MASK;
|
|
|
|
|
|
if (lpstart < start) {
|
|
neighbor = previous_process_memory_range(vm, range);
|
|
if ((neighbor == NULL) || (neighbor->end <= lpstart)) {
|
|
start = lpstart;
|
|
}
|
|
}
|
|
|
|
if (end < lpend) {
|
|
neighbor = next_process_memory_range(vm, range);
|
|
if ((neighbor == NULL) || (lpend <= neighbor->start)) {
|
|
end = lpend;
|
|
}
|
|
}
|
|
#endif /* USE_LARGE_PAGES */
|
|
|
|
ihk_mc_spinlock_lock_noirq(&vm->page_table_lock);
|
|
if (range->memobj) {
|
|
memobj_lock(range->memobj);
|
|
}
|
|
error = ihk_mc_pt_free_range(vm->page_table, vm,
|
|
(void *)start, (void *)end,
|
|
(range->flag & VR_PRIVATE)? NULL: range->memobj);
|
|
if (range->memobj) {
|
|
memobj_unlock(range->memobj);
|
|
}
|
|
ihk_mc_spinlock_unlock_noirq(&vm->page_table_lock);
|
|
if (error && (error != -ENOENT)) {
|
|
ekprintf("free_process_memory_range(%p,%lx-%lx):"
|
|
"ihk_mc_pt_free_range(%lx-%lx,%p) failed. %d\n",
|
|
vm, start0, end0, start, end, range->memobj, error);
|
|
/* through */
|
|
}
|
|
}
|
|
else {
|
|
ihk_mc_spinlock_lock_noirq(&vm->page_table_lock);
|
|
error = ihk_mc_pt_clear_range(vm->page_table, vm,
|
|
(void *)start, (void *)end);
|
|
ihk_mc_spinlock_unlock_noirq(&vm->page_table_lock);
|
|
if (error && (error != -ENOENT)) {
|
|
ekprintf("free_process_memory_range(%p,%lx-%lx):"
|
|
"ihk_mc_pt_clear_range(%lx-%lx) failed. %d\n",
|
|
vm, start0, end0, start, end, error);
|
|
/* through */
|
|
}
|
|
}
|
|
|
|
if (range->memobj) {
|
|
memobj_release(range->memobj);
|
|
}
|
|
list_del(&range->list);
|
|
ihk_mc_free(range);
|
|
|
|
dkprintf("free_process_memory_range(%p,%lx-%lx): 0\n",
|
|
vm, start0, end0);
|
|
return 0;
|
|
}
|
|
|
|
int remove_process_memory_range(struct process *process,
|
|
unsigned long start, unsigned long end, int *ro_freedp)
|
|
{
|
|
struct process_vm * const vm = process->vm;
|
|
struct vm_range *range;
|
|
struct vm_range *next;
|
|
int error;
|
|
struct vm_range *freerange;
|
|
int ro_freed = 0;
|
|
|
|
dkprintf("remove_process_memory_range(%p,%lx,%lx)\n",
|
|
process, start, end);
|
|
|
|
list_for_each_entry_safe(range, next, &vm->vm_range_list, list) {
|
|
if ((range->end <= start) || (end <= range->start)) {
|
|
/* no overlap */
|
|
continue;
|
|
}
|
|
freerange = range;
|
|
|
|
if (freerange->start < start) {
|
|
error = split_process_memory_range(process,
|
|
freerange, start, &freerange);
|
|
if (error) {
|
|
ekprintf("remove_process_memory_range(%p,%lx,%lx):"
|
|
"split failed %d\n",
|
|
process, start, end, error);
|
|
return error;
|
|
}
|
|
}
|
|
|
|
if (end < freerange->end) {
|
|
error = split_process_memory_range(process,
|
|
freerange, end, NULL);
|
|
if (error) {
|
|
ekprintf("remove_process_memory_range(%p,%lx,%lx):"
|
|
"split failed %d\n",
|
|
process, start, end, error);
|
|
return error;
|
|
}
|
|
}
|
|
|
|
if (!(freerange->flag & VR_PROT_WRITE)) {
|
|
ro_freed = 1;
|
|
}
|
|
|
|
error = free_process_memory_range(process->vm, freerange);
|
|
if (error) {
|
|
ekprintf("remove_process_memory_range(%p,%lx,%lx):"
|
|
"free failed %d\n",
|
|
process, start, end, error);
|
|
return error;
|
|
}
|
|
|
|
}
|
|
|
|
if (ro_freedp) {
|
|
*ro_freedp = ro_freed;
|
|
}
|
|
dkprintf("remove_process_memory_range(%p,%lx,%lx): 0 %d\n",
|
|
process, start, end, ro_freed);
|
|
return 0;
|
|
}
|
|
|
|
static void insert_vm_range_list(struct process_vm *vm, struct vm_range *newrange)
|
|
{
|
|
struct list_head *next;
|
|
struct vm_range *range;
|
|
|
|
next = &vm->vm_range_list;
|
|
list_for_each_entry(range, &vm->vm_range_list, list) {
|
|
if ((newrange->start < range->end) && (range->start < newrange->end)) {
|
|
ekprintf("insert_vm_range_list(%p,%lx-%lx %lx):overlap %lx-%lx %lx\n",
|
|
vm, newrange->start, newrange->end, newrange->flag,
|
|
range->start, range->end, range->flag);
|
|
panic("insert_vm_range_list\n");
|
|
}
|
|
|
|
if (newrange->end <= range->start) {
|
|
next = &range->list;
|
|
break;
|
|
}
|
|
}
|
|
|
|
list_add_tail(&newrange->list, next);
|
|
return;
|
|
}
|
|
|
|
enum ihk_mc_pt_attribute common_vrflag_to_ptattr(unsigned long flag, uint64_t fault, pte_t *ptep)
|
|
{
|
|
enum ihk_mc_pt_attribute attr;
|
|
|
|
attr = PTATTR_USER | PTATTR_FOR_USER;
|
|
|
|
if (flag & VR_REMOTE) {
|
|
attr |= IHK_PTA_REMOTE;
|
|
}
|
|
else if (flag & VR_IO_NOCACHE) {
|
|
attr |= PTATTR_UNCACHABLE;
|
|
}
|
|
|
|
if ((flag & VR_PROT_MASK) != VR_PROT_NONE) {
|
|
attr |= PTATTR_ACTIVE;
|
|
}
|
|
|
|
if (flag & VR_PROT_WRITE) {
|
|
attr |= PTATTR_WRITABLE;
|
|
}
|
|
|
|
if (!(flag & VR_PROT_EXEC)) {
|
|
attr |= PTATTR_NO_EXECUTE;
|
|
}
|
|
|
|
if (flag & VR_WRITE_COMBINED) {
|
|
attr |= PTATTR_WRITE_COMBINED;
|
|
}
|
|
|
|
return attr;
|
|
}
|
|
|
|
int add_process_memory_range(struct process *process,
|
|
unsigned long start, unsigned long end,
|
|
unsigned long phys, unsigned long flag,
|
|
struct memobj *memobj, off_t offset)
|
|
{
|
|
struct vm_range *range;
|
|
int rc;
|
|
#if 0
|
|
extern void __host_update_process_range(struct process *process,
|
|
struct vm_range *range);
|
|
#endif
|
|
|
|
if ((start < process->vm->region.user_start)
|
|
|| (process->vm->region.user_end < end)) {
|
|
kprintf("range(%#lx - %#lx) is not in user avail(%#lx - %#lx)\n",
|
|
start, end, process->vm->region.user_start,
|
|
process->vm->region.user_end);
|
|
return -EINVAL;
|
|
}
|
|
|
|
range = kmalloc(sizeof(struct vm_range), IHK_MC_AP_NOWAIT);
|
|
if (!range) {
|
|
kprintf("ERROR: allocating pages for range\n");
|
|
return -ENOMEM;
|
|
}
|
|
INIT_LIST_HEAD(&range->list);
|
|
range->start = start;
|
|
range->end = end;
|
|
range->flag = flag;
|
|
range->memobj = memobj;
|
|
range->objoff = offset;
|
|
|
|
if(range->flag & VR_DEMAND_PAGING) {
|
|
dkprintf("range: 0x%lX - 0x%lX => physicall memory area is allocated on demand (%ld) [%lx]\n",
|
|
range->start, range->end, range->end - range->start,
|
|
range->flag);
|
|
} else {
|
|
dkprintf("range: 0x%lX - 0x%lX (%ld) [%lx]\n",
|
|
range->start, range->end, range->end - range->start,
|
|
range->flag);
|
|
}
|
|
|
|
if (flag & VR_REMOTE) {
|
|
rc = update_process_page_table(process, range, phys, IHK_PTA_REMOTE);
|
|
} else if (flag & VR_IO_NOCACHE) {
|
|
rc = update_process_page_table(process, range, phys, PTATTR_UNCACHABLE);
|
|
} else if(flag & VR_DEMAND_PAGING){
|
|
//demand paging no need to update process table now
|
|
dkprintf("demand paging do not update process page table\n");
|
|
rc = 0;
|
|
} else if ((range->flag & VR_PROT_MASK) == VR_PROT_NONE) {
|
|
rc = 0;
|
|
} else {
|
|
rc = update_process_page_table(process, range, phys, 0);
|
|
}
|
|
if(rc != 0){
|
|
kprintf("ERROR: preparing page tables\n");
|
|
kfree(range);
|
|
return rc;
|
|
}
|
|
|
|
#if 0 // disable __host_update_process_range() in add_process_memory_range(), because it has no effect on the actual mapping on the MICs side.
|
|
if (!(flag & VR_REMOTE)) {
|
|
__host_update_process_range(process, range);
|
|
}
|
|
#endif
|
|
|
|
insert_vm_range_list(process->vm, range);
|
|
|
|
/* Clear content! */
|
|
if (!(flag & (VR_REMOTE | VR_DEMAND_PAGING))
|
|
&& ((flag & VR_PROT_MASK) != VR_PROT_NONE)) {
|
|
memset((void*)phys_to_virt(phys), 0, end - start);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct vm_range *lookup_process_memory_range(
|
|
struct process_vm *vm, uintptr_t start, uintptr_t end)
|
|
{
|
|
struct vm_range *range = NULL;
|
|
|
|
dkprintf("lookup_process_memory_range(%p,%lx,%lx)\n", vm, start, end);
|
|
|
|
if (end <= start) {
|
|
goto out;
|
|
}
|
|
|
|
list_for_each_entry(range, &vm->vm_range_list, list) {
|
|
if (end <= range->start) {
|
|
break;
|
|
}
|
|
if ((start < range->end) && (range->start < end)) {
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
range = NULL;
|
|
out:
|
|
dkprintf("lookup_process_memory_range(%p,%lx,%lx): %p %lx-%lx\n",
|
|
vm, start, end, range,
|
|
range? range->start: 0, range? range->end: 0);
|
|
return range;
|
|
}
|
|
|
|
struct vm_range *next_process_memory_range(
|
|
struct process_vm *vm, struct vm_range *range)
|
|
{
|
|
struct vm_range *next;
|
|
|
|
dkprintf("next_process_memory_range(%p,%lx-%lx)\n",
|
|
vm, range->start, range->end);
|
|
|
|
if (list_is_last(&range->list, &vm->vm_range_list)) {
|
|
next = NULL;
|
|
}
|
|
else {
|
|
next = list_entry(range->list.next, struct vm_range, list);
|
|
}
|
|
|
|
dkprintf("next_process_memory_range(%p,%lx-%lx): %p %lx-%lx\n",
|
|
vm, range->start, range->end, next,
|
|
next? next->start: 0, next? next->end: 0);
|
|
return next;
|
|
}
|
|
|
|
struct vm_range *previous_process_memory_range(
|
|
struct process_vm *vm, struct vm_range *range)
|
|
{
|
|
struct vm_range *prev;
|
|
|
|
dkprintf("previous_process_memory_range(%p,%lx-%lx)\n",
|
|
vm, range->start, range->end);
|
|
|
|
if (list_first_entry(&vm->vm_range_list, struct vm_range, list) == range) {
|
|
prev = NULL;
|
|
}
|
|
else {
|
|
prev = list_entry(range->list.prev, struct vm_range, list);
|
|
}
|
|
|
|
dkprintf("previous_process_memory_range(%p,%lx-%lx): %p %lx-%lx\n",
|
|
vm, range->start, range->end, prev,
|
|
prev? prev->start: 0, prev? prev->end: 0);
|
|
return prev;
|
|
}
|
|
|
|
int extend_up_process_memory_range(struct process_vm *vm,
|
|
struct vm_range *range, uintptr_t newend)
|
|
{
|
|
int error;
|
|
struct vm_range *next;
|
|
|
|
dkprintf("exntend_up_process_memory_range(%p,%p %#lx-%#lx,%#lx)\n",
|
|
vm, range, range->start, range->end, newend);
|
|
if (newend <= range->end) {
|
|
error = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (vm->region.user_end < newend) {
|
|
error = -EPERM;
|
|
goto out;
|
|
}
|
|
|
|
next = next_process_memory_range(vm ,range);
|
|
if (next && (next->start < newend)) {
|
|
error = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
error = 0;
|
|
range->end = newend;
|
|
|
|
out:
|
|
dkprintf("exntend_up_process_memory_range(%p,%p %#lx-%#lx,%#lx):%d\n",
|
|
vm, range, range->start, range->end, newend, error);
|
|
return error;
|
|
}
|
|
|
|
int change_prot_process_memory_range(struct process *proc,
|
|
struct vm_range *range, unsigned long protflag)
|
|
{
|
|
unsigned long newflag;
|
|
int error;
|
|
enum ihk_mc_pt_attribute oldattr;
|
|
enum ihk_mc_pt_attribute newattr;
|
|
enum ihk_mc_pt_attribute clrattr;
|
|
enum ihk_mc_pt_attribute setattr;
|
|
|
|
dkprintf("change_prot_process_memory_range(%p,%lx-%lx,%lx)\n",
|
|
proc, range->start, range->end, protflag);
|
|
|
|
newflag = (range->flag & ~VR_PROT_MASK) | (protflag & VR_PROT_MASK);
|
|
if (range->flag == newflag) {
|
|
/* nothing to do */
|
|
error = 0;
|
|
goto out;
|
|
}
|
|
|
|
oldattr = arch_vrflag_to_ptattr(range->flag, PF_POPULATE, NULL);
|
|
newattr = arch_vrflag_to_ptattr(newflag, PF_POPULATE, NULL);
|
|
|
|
clrattr = oldattr & ~newattr;
|
|
setattr = newattr & ~oldattr;
|
|
|
|
ihk_mc_spinlock_lock_noirq(&proc->vm->page_table_lock);
|
|
error = ihk_mc_pt_change_attr_range(proc->vm->page_table,
|
|
(void *)range->start, (void *)range->end,
|
|
clrattr, setattr);
|
|
ihk_mc_spinlock_unlock_noirq(&proc->vm->page_table_lock);
|
|
if (error && (error != -ENOENT)) {
|
|
ekprintf("change_prot_process_memory_range(%p,%lx-%lx,%lx):"
|
|
"ihk_mc_pt_change_attr_range failed: %d\n",
|
|
proc, range->start, range->end, protflag, error);
|
|
goto out;
|
|
}
|
|
|
|
if (((range->flag & VR_PROT_MASK) == PROT_NONE)
|
|
&& !(range->flag & VR_DEMAND_PAGING)) {
|
|
ihk_mc_spinlock_lock_noirq(&proc->vm->page_table_lock);
|
|
error = ihk_mc_pt_alloc_range(proc->vm->page_table,
|
|
(void *)range->start, (void *)range->end,
|
|
newattr);
|
|
ihk_mc_spinlock_unlock_noirq(&proc->vm->page_table_lock);
|
|
if (error) {
|
|
ekprintf("change_prot_process_memory_range(%p,%lx-%lx,%lx):"
|
|
"ihk_mc_pt_alloc_range failed: %d\n",
|
|
proc, range->start, range->end, protflag, error);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
range->flag = newflag;
|
|
error = 0;
|
|
out:
|
|
dkprintf("change_prot_process_memory_range(%p,%lx-%lx,%lx): %d\n",
|
|
proc, range->start, range->end, protflag, error);
|
|
return error;
|
|
}
|
|
|
|
struct rfp_args {
|
|
off_t off;
|
|
uintptr_t start;
|
|
struct memobj *memobj;
|
|
};
|
|
|
|
static int remap_one_page(void *arg0, page_table_t pt, pte_t *ptep,
|
|
void *pgaddr, size_t pgsize)
|
|
{
|
|
struct rfp_args * const args = arg0;
|
|
int error;
|
|
off_t off;
|
|
pte_t apte;
|
|
uintptr_t phys;
|
|
struct page *page;
|
|
|
|
dkprintf("remap_one_page(%p,%p,%p %#lx,%p,%#lx)\n",
|
|
arg0, pt, ptep, *ptep, pgaddr, pgsize);
|
|
|
|
/* XXX: NYI: large pages */
|
|
if (pgsize != PAGE_SIZE) {
|
|
error = -E2BIG;
|
|
ekprintf("remap_one_page(%p,%p,%p %#lx,%p,%#lx):%d\n",
|
|
arg0, pt, ptep, *ptep, pgaddr, pgsize, error);
|
|
goto out;
|
|
}
|
|
|
|
off = args->off + ((uintptr_t)pgaddr - args->start);
|
|
pte_make_fileoff(off, 0, pgsize, &apte);
|
|
|
|
pte_xchg(ptep, &apte);
|
|
flush_tlb_single((uintptr_t)pgaddr); /* XXX: TLB flush */
|
|
|
|
if (pte_is_null(&apte) || pte_is_fileoff(&apte, pgsize)) {
|
|
error = 0;
|
|
goto out;
|
|
}
|
|
phys = pte_get_phys(&apte);
|
|
|
|
if (pte_is_dirty(&apte, pgsize)) {
|
|
memobj_flush_page(args->memobj, phys, pgsize); /* XXX: in lock period */
|
|
}
|
|
|
|
page = phys_to_page(phys);
|
|
if (page && page_unmap(page)) {
|
|
ihk_mc_free_pages(phys_to_virt(phys), pgsize/PAGE_SIZE);
|
|
}
|
|
|
|
error = 0;
|
|
out:
|
|
dkprintf("remap_one_page(%p,%p,%p %#lx,%p,%#lx): %d\n",
|
|
arg0, pt, ptep, *ptep, pgaddr, pgsize, error);
|
|
return error;
|
|
}
|
|
|
|
int remap_process_memory_range(struct process_vm *vm, struct vm_range *range,
|
|
uintptr_t start, uintptr_t end, off_t off)
|
|
{
|
|
struct rfp_args args;
|
|
int error;
|
|
|
|
dkprintf("remap_process_memory_range(%p,%p,%#lx,%#lx,%#lx)\n",
|
|
vm, range, start, end, off);
|
|
ihk_mc_spinlock_lock_noirq(&vm->page_table_lock);
|
|
memobj_lock(range->memobj);
|
|
|
|
args.start = start;
|
|
args.off = off;
|
|
args.memobj = range->memobj;
|
|
|
|
error = visit_pte_range(vm->page_table, (void *)start,
|
|
(void *)end, VPTEF_DEFAULT, &remap_one_page, &args);
|
|
if (error) {
|
|
ekprintf("remap_process_memory_range(%p,%p,%#lx,%#lx,%#lx):"
|
|
"visit pte failed %d\n",
|
|
vm, range, start, end, off, error);
|
|
goto out;
|
|
}
|
|
|
|
error = 0;
|
|
out:
|
|
memobj_unlock(range->memobj);
|
|
ihk_mc_spinlock_unlock_noirq(&vm->page_table_lock);
|
|
dkprintf("remap_process_memory_range(%p,%p,%#lx,%#lx,%#lx):%d\n",
|
|
vm, range, start, end, off, error);
|
|
return error;
|
|
}
|
|
|
|
struct sync_args {
|
|
struct memobj *memobj;
|
|
};
|
|
|
|
static int sync_one_page(void *arg0, page_table_t pt, pte_t *ptep,
|
|
void *pgaddr, size_t pgsize)
|
|
{
|
|
struct sync_args *args = arg0;
|
|
int error;
|
|
uintptr_t phys;
|
|
|
|
dkprintf("sync_one_page(%p,%p,%p %#lx,%p,%#lx)\n",
|
|
arg0, pt, ptep, *ptep, pgaddr, pgsize);
|
|
if (pte_is_null(ptep) || pte_is_fileoff(ptep, pgsize)
|
|
|| !pte_is_dirty(ptep, pgsize)) {
|
|
error = 0;
|
|
goto out;
|
|
}
|
|
|
|
pte_clear_dirty(ptep, pgsize);
|
|
flush_tlb_single((uintptr_t)pgaddr); /* XXX: TLB flush */
|
|
|
|
phys = pte_get_phys(ptep);
|
|
error = memobj_flush_page(args->memobj, phys, pgsize);
|
|
if (error) {
|
|
ekprintf("sync_one_page(%p,%p,%p %#lx,%p,%#lx):"
|
|
"flush failed. %d\n",
|
|
arg0, pt, ptep, *ptep, pgaddr, pgsize, error);
|
|
pte_set_dirty(ptep, pgsize);
|
|
goto out;
|
|
}
|
|
|
|
error = 0;
|
|
out:
|
|
dkprintf("sync_one_page(%p,%p,%p %#lx,%p,%#lx):%d\n",
|
|
arg0, pt, ptep, *ptep, pgaddr, pgsize, error);
|
|
return error;
|
|
}
|
|
|
|
int sync_process_memory_range(struct process_vm *vm, struct vm_range *range,
|
|
uintptr_t start, uintptr_t end)
|
|
{
|
|
int error;
|
|
struct sync_args args;
|
|
|
|
dkprintf("sync_process_memory_range(%p,%p,%#lx,%#lx)\n",
|
|
vm, range, start, end);
|
|
args.memobj = range->memobj;
|
|
|
|
ihk_mc_spinlock_lock_noirq(&vm->page_table_lock);
|
|
memobj_lock(range->memobj);
|
|
error = visit_pte_range(vm->page_table, (void *)start, (void *)end,
|
|
VPTEF_SKIP_NULL, &sync_one_page, &args);
|
|
memobj_unlock(range->memobj);
|
|
ihk_mc_spinlock_unlock_noirq(&vm->page_table_lock);
|
|
if (error) {
|
|
ekprintf("sync_process_memory_range(%p,%p,%#lx,%#lx):"
|
|
"visit failed%d\n",
|
|
vm, range, start, end, error);
|
|
goto out;
|
|
}
|
|
out:
|
|
dkprintf("sync_process_memory_range(%p,%p,%#lx,%#lx):%d\n",
|
|
vm, range, start, end, error);
|
|
return error;
|
|
}
|
|
|
|
struct invalidate_args {
|
|
struct vm_range *range;
|
|
};
|
|
|
|
static int invalidate_one_page(void *arg0, page_table_t pt, pte_t *ptep,
|
|
void *pgaddr, size_t pgsize)
|
|
{
|
|
struct invalidate_args *args = arg0;
|
|
struct vm_range *range = args->range;
|
|
int error;
|
|
uintptr_t phys;
|
|
struct page *page;
|
|
off_t linear_off;
|
|
pte_t apte;
|
|
|
|
dkprintf("invalidate_one_page(%p,%p,%p %#lx,%p,%#lx)\n",
|
|
arg0, pt, ptep, *ptep, pgaddr, pgsize);
|
|
if (pte_is_null(ptep) || pte_is_fileoff(ptep, pgsize)) {
|
|
error = 0;
|
|
goto out;
|
|
}
|
|
|
|
phys = pte_get_phys(ptep);
|
|
page = phys_to_page(phys);
|
|
linear_off = range->objoff + ((uintptr_t)pgaddr - range->start);
|
|
if (page && (page->offset == linear_off)) {
|
|
pte_make_null(&apte, pgsize);
|
|
}
|
|
else {
|
|
pte_make_fileoff(page->offset, 0, pgsize, &apte);
|
|
}
|
|
pte_xchg(ptep, &apte);
|
|
flush_tlb_single((uintptr_t)pgaddr); /* XXX: TLB flush */
|
|
|
|
if (page && page_unmap(page)) {
|
|
panic("invalidate_one_page");
|
|
}
|
|
|
|
error = memobj_invalidate_page(range->memobj, phys, pgsize);
|
|
if (error) {
|
|
ekprintf("invalidate_one_page(%p,%p,%p %#lx,%p,%#lx):"
|
|
"invalidate failed. %d\n",
|
|
arg0, pt, ptep, *ptep, pgaddr, pgsize, error);
|
|
goto out;
|
|
}
|
|
|
|
error = 0;
|
|
out:
|
|
dkprintf("invalidate_one_page(%p,%p,%p %#lx,%p,%#lx):%d\n",
|
|
arg0, pt, ptep, *ptep, pgaddr, pgsize, error);
|
|
return error;
|
|
}
|
|
|
|
int invalidate_process_memory_range(struct process_vm *vm,
|
|
struct vm_range *range, uintptr_t start, uintptr_t end)
|
|
{
|
|
int error;
|
|
struct invalidate_args args;
|
|
|
|
dkprintf("invalidate_process_memory_range(%p,%p,%#lx,%#lx)\n",
|
|
vm, range, start, end);
|
|
args.range = range;
|
|
|
|
ihk_mc_spinlock_lock_noirq(&vm->page_table_lock);
|
|
memobj_lock(range->memobj);
|
|
error = visit_pte_range(vm->page_table, (void *)start, (void *)end,
|
|
VPTEF_SKIP_NULL, &invalidate_one_page, &args);
|
|
memobj_unlock(range->memobj);
|
|
ihk_mc_spinlock_unlock_noirq(&vm->page_table_lock);
|
|
if (error) {
|
|
ekprintf("invalidate_process_memory_range(%p,%p,%#lx,%#lx):"
|
|
"visit failed%d\n",
|
|
vm, range, start, end, error);
|
|
goto out;
|
|
}
|
|
out:
|
|
dkprintf("invalidate_process_memory_range(%p,%p,%#lx,%#lx):%d\n",
|
|
vm, range, start, end, error);
|
|
return error;
|
|
}
|
|
|
|
static int page_fault_process_memory_range(struct process_vm *vm, struct vm_range *range, uintptr_t fault_addr, uint64_t reason)
|
|
{
|
|
int error;
|
|
pte_t *ptep;
|
|
void *pgaddr;
|
|
size_t pgsize;
|
|
int p2align;
|
|
enum ihk_mc_pt_attribute attr;
|
|
uintptr_t phys;
|
|
struct page *page = NULL;
|
|
unsigned long memobj_flag = 0;
|
|
|
|
dkprintf("page_fault_process_memory_range(%p,%lx-%lx %lx,%lx,%lx)\n", vm, range->start, range->end, range->flag, fault_addr, reason);
|
|
ihk_mc_spinlock_lock_noirq(&vm->page_table_lock);
|
|
/*****/
|
|
ptep = ihk_mc_pt_lookup_pte(vm->page_table, (void *)fault_addr, &pgaddr, &pgsize, &p2align);
|
|
if (!(reason & (PF_PROT | PF_PATCH)) && ptep && !pte_is_null(ptep)
|
|
&& !pte_is_fileoff(ptep, pgsize)) {
|
|
if (!pte_is_present(ptep)) {
|
|
error = -EFAULT;
|
|
kprintf("page_fault_process_memory_range(%p,%lx-%lx %lx,%lx,%lx):PROT_NONE. %d\n", vm, range->start, range->end, range->flag, fault_addr, reason, error);
|
|
goto out;
|
|
}
|
|
error = 0;
|
|
goto out;
|
|
}
|
|
if ((reason & PF_PROT) && (!ptep || !pte_is_present(ptep))) {
|
|
flush_tlb_single(fault_addr);
|
|
error = 0;
|
|
goto out;
|
|
}
|
|
/*****/
|
|
if (!ptep || (pgsize != PAGE_SIZE)) {
|
|
ptep = NULL;
|
|
pgsize = PAGE_SIZE;
|
|
p2align = PAGE_P2ALIGN;
|
|
}
|
|
pgaddr = (void *)(fault_addr & ~(pgsize - 1));
|
|
if (!ptep || pte_is_null(ptep) || pte_is_fileoff(ptep, pgsize)) {
|
|
if (range->memobj) {
|
|
off_t off;
|
|
|
|
if (!ptep || !pte_is_fileoff(ptep, pgsize)) {
|
|
off = range->objoff + ((uintptr_t)pgaddr - range->start);
|
|
}
|
|
else {
|
|
off = pte_get_off(ptep, pgsize);
|
|
}
|
|
error = memobj_get_page(range->memobj, off, p2align,
|
|
&phys, &memobj_flag);
|
|
if (error) {
|
|
if (error != -ERESTART) {
|
|
}
|
|
goto out;
|
|
}
|
|
}
|
|
else {
|
|
void *virt;
|
|
size_t npages;
|
|
|
|
npages = pgsize / PAGE_SIZE;
|
|
virt = ihk_mc_alloc_aligned_pages(npages, p2align, IHK_MC_AP_NOWAIT);
|
|
if (!virt) {
|
|
error = -ENOMEM;
|
|
kprintf("page_fault_process_memory_range(%p,%lx-%lx %lx,%lx,%lx):cannot allocate new page. %d\n", vm, range->start, range->end, range->flag, fault_addr, reason, error);
|
|
goto out;
|
|
}
|
|
memset(virt, 0, pgsize);
|
|
phys = virt_to_phys(virt);
|
|
page_map(phys_to_page(phys));
|
|
}
|
|
}
|
|
else {
|
|
phys = pte_get_phys(ptep);
|
|
}
|
|
|
|
page = phys_to_page(phys);
|
|
|
|
attr = arch_vrflag_to_ptattr(range->flag | memobj_flag, reason, ptep);
|
|
|
|
/*****/
|
|
if (((range->flag & VR_PRIVATE)
|
|
|| ((reason & PF_PATCH)
|
|
&& !(range->flag & VR_PROT_WRITE)))
|
|
&& (!page || page_is_in_memobj(page) || page_is_multi_mapped(page))) {
|
|
if (!(attr & PTATTR_DIRTY)) {
|
|
attr &= ~PTATTR_WRITABLE;
|
|
}
|
|
else {
|
|
void *virt;
|
|
size_t npages;
|
|
|
|
npages = pgsize / PAGE_SIZE;
|
|
virt = ihk_mc_alloc_aligned_pages(npages, p2align, IHK_MC_AP_NOWAIT);
|
|
if (!virt) {
|
|
error = -ENOMEM;
|
|
kprintf("page_fault_process_memory_range(%p,%lx-%lx %lx,%lx,%lx):cannot allocate copy page. %d\n", vm, range->start, range->end, range->flag, fault_addr, reason, error);
|
|
goto out;
|
|
}
|
|
memcpy(virt, phys_to_virt(phys), pgsize);
|
|
|
|
phys = virt_to_phys(virt);
|
|
if (page) {
|
|
page_unmap(page);
|
|
}
|
|
page = phys_to_page(phys);
|
|
}
|
|
}
|
|
/*****/
|
|
if (ptep) {
|
|
error = ihk_mc_pt_set_pte(vm->page_table, ptep, pgsize, phys, attr);
|
|
if (error) {
|
|
kprintf("page_fault_process_memory_range(%p,%lx-%lx %lx,%lx,%lx):set_pte failed. %d\n", vm, range->start, range->end, range->flag, fault_addr, reason, error);
|
|
goto out;
|
|
}
|
|
}
|
|
else {
|
|
error = ihk_mc_pt_set_range(vm->page_table, vm, pgaddr, pgaddr + pgsize,
|
|
phys, attr);
|
|
if (error) {
|
|
kprintf("page_fault_process_memory_range(%p,%lx-%lx %lx,%lx,%lx):set_range failed. %d\n", vm, range->start, range->end, range->flag, fault_addr, reason, error);
|
|
goto out;
|
|
}
|
|
}
|
|
flush_tlb_single(fault_addr);
|
|
error = 0;
|
|
page = NULL;
|
|
out:
|
|
ihk_mc_spinlock_unlock_noirq(&vm->page_table_lock);
|
|
if (page) {
|
|
page_unmap(page);
|
|
}
|
|
dkprintf("page_fault_process_memory_range(%p,%lx-%lx %lx,%lx,%lx): %d\n", vm, range->start, range->end, range->flag, fault_addr, reason, error);
|
|
return error;
|
|
}
|
|
|
|
static int do_page_fault_process_vm(struct process_vm *vm, void *fault_addr0, uint64_t reason)
|
|
{
|
|
int error;
|
|
const uintptr_t fault_addr = (uintptr_t)fault_addr0;
|
|
struct vm_range *range;
|
|
|
|
dkprintf("[%d]do_page_fault_process_vm(%p,%lx,%lx)\n",
|
|
ihk_mc_get_processor_id(), vm, fault_addr0, reason);
|
|
|
|
ihk_mc_spinlock_lock_noirq(&vm->memory_range_lock);
|
|
|
|
if (vm->exiting) {
|
|
error = -ECANCELED;
|
|
goto out;
|
|
}
|
|
|
|
range = lookup_process_memory_range(vm, fault_addr, fault_addr+1);
|
|
if (range == NULL) {
|
|
error = -EFAULT;
|
|
kprintf("[%d]do_page_fault_process_vm(%p,%lx,%lx):"
|
|
"out of range. %d\n",
|
|
ihk_mc_get_processor_id(), vm,
|
|
fault_addr0, reason, error);
|
|
goto out;
|
|
}
|
|
|
|
if (((range->flag & VR_PROT_MASK) == VR_PROT_NONE)
|
|
|| (((reason & PF_WRITE) && !(reason & PF_PATCH))
|
|
&& !(range->flag & VR_PROT_WRITE))
|
|
|| ((reason & PF_INSTR)
|
|
&& !(range->flag & VR_PROT_EXEC))) {
|
|
error = -EFAULT;
|
|
kprintf("[%d]do_page_fault_process_vm(%p,%lx,%lx):"
|
|
"access denied. %d\n",
|
|
ihk_mc_get_processor_id(), vm,
|
|
fault_addr0, reason, error);
|
|
if (((range->flag & VR_PROT_MASK) == VR_PROT_NONE))
|
|
kprintf("if (((range->flag & VR_PROT_MASK) == VR_PROT_NONE))\n");
|
|
if (((reason & PF_WRITE) && !(reason & PF_PATCH)))
|
|
kprintf("if (((reason & PF_WRITE) && !(reason & PF_PATCH)))\n");
|
|
if (!(range->flag & VR_PROT_WRITE))
|
|
kprintf("if (!(range->flag & VR_PROT_WRITE))\n");
|
|
if ((reason & PF_INSTR) && !(range->flag & VR_PROT_EXEC))
|
|
kprintf("if ((reason & PF_INSTR) && !(range->flag & VR_PROT_EXEC))\n");
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* XXX: quick fix
|
|
* Corrupt data was read by the following sequence.
|
|
* 1) a process did mmap(MAP_PRIVATE|MAP_ANONYMOUS)
|
|
* 2) the process fetched the contents of a page of (1)'s mapping.
|
|
* 3) the process wrote the contents of the page of (1)'s mapping.
|
|
* 4) the process changed the contents of the page of (1)'s mapping.
|
|
* 5) the process read something in the page of (1)'s mapping.
|
|
*
|
|
* In the case of the above sequence,
|
|
* copy-on-write pages was mapped at (2). And their physical pages
|
|
* were informed to mcctrl/mcexec at (3). However, page remapping
|
|
* at (4) was not informed to mcctrl/mcexec, and the data read at (5)
|
|
* was transferred to old pages which had been mapped at (2).
|
|
*/
|
|
if ((range->flag & VR_PRIVATE) && range->memobj) {
|
|
struct memobj *obj;
|
|
|
|
if (zeroobj_create(&obj)) {
|
|
panic("DPFP: zeroobj_crate");
|
|
}
|
|
|
|
if (range->memobj == obj) {
|
|
reason |= PF_POPULATE;
|
|
}
|
|
}
|
|
|
|
error = page_fault_process_memory_range(vm, range, fault_addr, reason);
|
|
if (error == -ERESTART) {
|
|
goto out;
|
|
}
|
|
if (error) {
|
|
kprintf("[%d]do_page_fault_process_vm(%p,%lx,%lx):"
|
|
"fault range failed. %d\n",
|
|
ihk_mc_get_processor_id(), vm,
|
|
fault_addr0, reason, error);
|
|
goto out;
|
|
}
|
|
|
|
error = 0;
|
|
out:
|
|
ihk_mc_spinlock_unlock_noirq(&vm->memory_range_lock);
|
|
dkprintf("[%d]do_page_fault_process_vm(%p,%lx,%lx): %d\n",
|
|
ihk_mc_get_processor_id(), vm, fault_addr0,
|
|
reason, error);
|
|
return error;
|
|
}
|
|
|
|
int page_fault_process_vm(struct process_vm *fault_vm, void *fault_addr, uint64_t reason)
|
|
{
|
|
int error;
|
|
struct process *proc = cpu_local_var(current);
|
|
|
|
for (;;) {
|
|
error = do_page_fault_process_vm(fault_vm, fault_addr, reason);
|
|
if (error != -ERESTART) {
|
|
break;
|
|
}
|
|
|
|
if (proc->pgio_fp) {
|
|
(*proc->pgio_fp)(proc->pgio_arg);
|
|
proc->pgio_fp = NULL;
|
|
}
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
int init_process_stack(struct process *process, struct program_load_desc *pn,
|
|
int argc, char **argv,
|
|
int envc, char **env)
|
|
{
|
|
int s_ind = 0;
|
|
int arg_ind;
|
|
unsigned long size;
|
|
unsigned long end = process->vm->region.user_end;
|
|
unsigned long start;
|
|
int rc;
|
|
unsigned long vrflag;
|
|
char *stack;
|
|
int error;
|
|
unsigned long *p;
|
|
unsigned long minsz;
|
|
unsigned long at_rand;
|
|
|
|
/* create stack range */
|
|
minsz = PAGE_SIZE;
|
|
size = process->rlimit[MCK_RLIMIT_STACK].rlim_cur & PAGE_MASK;
|
|
if (size > (USER_END / 2)) {
|
|
size = USER_END / 2;
|
|
}
|
|
else if (size < minsz) {
|
|
size = minsz;
|
|
}
|
|
start = end - size;
|
|
|
|
vrflag = VR_STACK | VR_DEMAND_PAGING;
|
|
vrflag |= PROT_TO_VR_FLAG(pn->stack_prot);
|
|
vrflag |= VR_MAXPROT_READ | VR_MAXPROT_WRITE | VR_MAXPROT_EXEC;
|
|
#define NOPHYS ((uintptr_t)-1)
|
|
if ((rc = add_process_memory_range(process, start, end, NOPHYS,
|
|
vrflag, NULL, 0)) != 0) {
|
|
return rc;
|
|
}
|
|
|
|
/* map physical pages for initial stack frame */
|
|
stack = ihk_mc_alloc_pages(minsz >> PAGE_SHIFT, IHK_MC_AP_NOWAIT);
|
|
if (!stack) {
|
|
return -ENOMEM;
|
|
}
|
|
memset(stack, 0, minsz);
|
|
error = ihk_mc_pt_set_range(process->vm->page_table, process->vm,
|
|
(void *)(end-minsz), (void *)end,
|
|
virt_to_phys(stack),
|
|
arch_vrflag_to_ptattr(vrflag, PF_POPULATE, NULL));
|
|
if (error) {
|
|
kprintf("init_process_stack:"
|
|
"set range %lx-%lx %lx failed. %d\n",
|
|
(end-minsz), end, stack, error);
|
|
ihk_mc_free_pages(stack, minsz >> PAGE_SHIFT);
|
|
return error;
|
|
}
|
|
|
|
/* set up initial stack frame */
|
|
p = (unsigned long *)(stack + minsz);
|
|
s_ind = -1;
|
|
|
|
/* "random" 16 bytes on the very top */
|
|
p[s_ind--] = 0x010101011;
|
|
p[s_ind--] = 0x010101011;
|
|
at_rand = end + sizeof(unsigned long) * s_ind;
|
|
|
|
/* auxiliary vector */
|
|
/* If you add/delete entires, please increase/decrease
|
|
AUXV_LEN in include/process.h. */
|
|
p[s_ind--] = 0; /* AT_NULL */
|
|
p[s_ind--] = 0;
|
|
p[s_ind--] = pn->at_entry; /* AT_ENTRY */
|
|
p[s_ind--] = AT_ENTRY;
|
|
p[s_ind--] = pn->at_phnum; /* AT_PHNUM */
|
|
p[s_ind--] = AT_PHNUM;
|
|
p[s_ind--] = pn->at_phent; /* AT_PHENT */
|
|
p[s_ind--] = AT_PHENT;
|
|
p[s_ind--] = pn->at_phdr; /* AT_PHDR */
|
|
p[s_ind--] = AT_PHDR;
|
|
p[s_ind--] = 4096; /* AT_PAGESZ */
|
|
p[s_ind--] = AT_PAGESZ;
|
|
p[s_ind--] = pn->at_clktck; /* AT_CLKTCK */
|
|
p[s_ind--] = AT_CLKTCK;
|
|
p[s_ind--] = at_rand; /* AT_RANDOM */
|
|
p[s_ind--] = AT_RANDOM;
|
|
|
|
/* Save auxiliary vector for later use. */
|
|
memcpy(process->saved_auxv, &p[s_ind + 1],
|
|
sizeof(process->saved_auxv));
|
|
|
|
p[s_ind--] = 0; /* envp terminating NULL */
|
|
/* envp */
|
|
for (arg_ind = envc - 1; arg_ind > -1; --arg_ind) {
|
|
p[s_ind--] = (unsigned long)env[arg_ind];
|
|
}
|
|
|
|
p[s_ind--] = 0; /* argv terminating NULL */
|
|
/* argv */
|
|
for (arg_ind = argc - 1; arg_ind > -1; --arg_ind) {
|
|
p[s_ind--] = (unsigned long)argv[arg_ind];
|
|
}
|
|
/* argc */
|
|
p[s_ind] = argc;
|
|
|
|
ihk_mc_modify_user_context(process->uctx, IHK_UCR_STACK_POINTER,
|
|
end + sizeof(unsigned long) * s_ind);
|
|
process->vm->region.stack_end = end;
|
|
process->vm->region.stack_start = start;
|
|
return 0;
|
|
}
|
|
|
|
|
|
unsigned long extend_process_region(struct process *proc,
|
|
unsigned long start, unsigned long end,
|
|
unsigned long address, unsigned long flag)
|
|
{
|
|
unsigned long aligned_end, aligned_new_end;
|
|
void *p;
|
|
int rc;
|
|
|
|
if (!address || address < start || address >= USER_END) {
|
|
return end;
|
|
}
|
|
|
|
aligned_end = ((end + PAGE_SIZE - 1) & PAGE_MASK);
|
|
|
|
if (aligned_end >= address) {
|
|
return address;
|
|
}
|
|
|
|
aligned_new_end = (address + PAGE_SIZE - 1) & PAGE_MASK;
|
|
|
|
#ifdef USE_LARGE_PAGES
|
|
if (aligned_new_end - aligned_end >= LARGE_PAGE_SIZE) {
|
|
if(flag & VR_DEMAND_PAGING){panic("demand paging for large page is not available!");}
|
|
unsigned long p_aligned;
|
|
unsigned long old_aligned_end = aligned_end;
|
|
|
|
if ((aligned_end & (LARGE_PAGE_SIZE - 1)) != 0) {
|
|
|
|
aligned_end = (aligned_end + (LARGE_PAGE_SIZE - 1)) & LARGE_PAGE_MASK;
|
|
/* Fill in the gap between old_aligned_end and aligned_end
|
|
* with regular pages */
|
|
if((p = allocate_pages((aligned_end - old_aligned_end) >> PAGE_SHIFT,
|
|
IHK_MC_AP_NOWAIT)) == NULL){
|
|
return end;
|
|
}
|
|
if((rc = add_process_memory_range(proc, old_aligned_end,
|
|
aligned_end, virt_to_phys(p), flag)) != 0){
|
|
free_pages(p, (aligned_end - old_aligned_end) >> PAGE_SHIFT);
|
|
return end;
|
|
}
|
|
|
|
dkprintf("filled in gap for LARGE_PAGE_SIZE aligned start: 0x%lX -> 0x%lX\n",
|
|
old_aligned_end, aligned_end);
|
|
}
|
|
|
|
/* Add large region for the actual mapping */
|
|
aligned_new_end = (aligned_new_end + (aligned_end - old_aligned_end) +
|
|
(LARGE_PAGE_SIZE - 1)) & LARGE_PAGE_MASK;
|
|
address = aligned_new_end;
|
|
|
|
if((p = allocate_pages((aligned_new_end - aligned_end + LARGE_PAGE_SIZE) >> PAGE_SHIFT,
|
|
IHK_MC_AP_NOWAIT)) == NULL){
|
|
return end;
|
|
}
|
|
|
|
p_aligned = ((unsigned long)p + (LARGE_PAGE_SIZE - 1)) & LARGE_PAGE_MASK;
|
|
|
|
if (p_aligned > (unsigned long)p) {
|
|
free_pages(p, (p_aligned - (unsigned long)p) >> PAGE_SHIFT);
|
|
}
|
|
free_pages(
|
|
(void *)(p_aligned + aligned_new_end - aligned_end),
|
|
(LARGE_PAGE_SIZE - (p_aligned - (unsigned long)p)) >> PAGE_SHIFT);
|
|
|
|
if((rc = add_process_memory_range(proc, aligned_end,
|
|
aligned_new_end, virt_to_phys((void *)p_aligned),
|
|
flag)) != 0){
|
|
free_pages(p, (aligned_new_end - aligned_end + LARGE_PAGE_SIZE) >> PAGE_SHIFT);
|
|
return end;
|
|
}
|
|
|
|
dkprintf("largePTE area: 0x%lX - 0x%lX (s: %lu) -> 0x%lX - \n",
|
|
aligned_end, aligned_new_end,
|
|
(aligned_new_end - aligned_end),
|
|
virt_to_phys((void *)p_aligned));
|
|
|
|
return address;
|
|
}
|
|
#endif
|
|
if(flag & VR_DEMAND_PAGING){
|
|
// demand paging no need to allocate page now
|
|
kprintf("demand page do not allocate page\n");
|
|
p=0;
|
|
}else{
|
|
|
|
p = allocate_pages((aligned_new_end - aligned_end) >> PAGE_SHIFT, IHK_MC_AP_NOWAIT);
|
|
|
|
if (!p) {
|
|
return end;
|
|
}
|
|
}
|
|
if((rc = add_process_memory_range(proc, aligned_end, aligned_new_end,
|
|
(p==0?0:virt_to_phys(p)), flag, NULL, 0)) != 0){
|
|
free_pages(p, (aligned_new_end - aligned_end) >> PAGE_SHIFT);
|
|
return end;
|
|
}
|
|
|
|
return address;
|
|
}
|
|
|
|
// Original version retained because dcfa (src/mccmd/client/ibmic/main.c) calls this
|
|
int remove_process_region(struct process *proc,
|
|
unsigned long start, unsigned long end)
|
|
{
|
|
if ((start & (PAGE_SIZE - 1)) || (end & (PAGE_SIZE - 1))) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
ihk_mc_spinlock_lock_noirq(&proc->vm->page_table_lock);
|
|
/* We defer freeing to the time of exit */
|
|
// XXX: check error
|
|
ihk_mc_pt_clear_range(proc->vm->page_table, proc->vm,
|
|
(void *)start, (void *)end);
|
|
ihk_mc_spinlock_unlock_noirq(&proc->vm->page_table_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void flush_process_memory(struct process *proc)
|
|
{
|
|
struct process_vm *vm = proc->vm;
|
|
struct vm_range *range;
|
|
struct vm_range *next;
|
|
int error;
|
|
|
|
dkprintf("flush_process_memory(%p)\n", proc);
|
|
ihk_mc_spinlock_lock_noirq(&vm->memory_range_lock);
|
|
/* Let concurrent page faults know the VM will be gone */
|
|
vm->exiting = 1;
|
|
list_for_each_entry_safe(range, next, &vm->vm_range_list, list) {
|
|
if (range->memobj) {
|
|
// XXX: temporary of temporary
|
|
error = free_process_memory_range(vm, range);
|
|
if (error) {
|
|
ekprintf("flush_process_memory(%p):"
|
|
"free range failed. %lx-%lx %d\n",
|
|
proc, range->start, range->end, error);
|
|
/* through */
|
|
}
|
|
}
|
|
}
|
|
ihk_mc_spinlock_unlock_noirq(&vm->memory_range_lock);
|
|
dkprintf("flush_process_memory(%p):\n", proc);
|
|
return;
|
|
}
|
|
|
|
void free_process_memory_ranges(struct process *proc)
|
|
{
|
|
int error;
|
|
struct vm_range *range, *next;
|
|
struct process_vm *vm = proc->vm;
|
|
|
|
if (vm == NULL) {
|
|
return;
|
|
}
|
|
|
|
ihk_mc_spinlock_lock_noirq(&vm->memory_range_lock);
|
|
list_for_each_entry_safe(range, next, &vm->vm_range_list, list) {
|
|
error = free_process_memory_range(vm, range);
|
|
if (error) {
|
|
ekprintf("free_process_memory(%p):"
|
|
"free range failed. %lx-%lx %d\n",
|
|
proc, range->start, range->end, error);
|
|
/* through */
|
|
}
|
|
}
|
|
ihk_mc_spinlock_unlock_noirq(&vm->memory_range_lock);
|
|
}
|
|
|
|
void free_process_memory(struct process *proc)
|
|
{
|
|
struct vm_range *range, *next;
|
|
struct process_vm *vm = proc->vm;
|
|
int error;
|
|
|
|
if (vm == NULL) {
|
|
return;
|
|
}
|
|
|
|
proc->vm = NULL;
|
|
if (!ihk_atomic_dec_and_test(&vm->refcount)) {
|
|
return;
|
|
}
|
|
|
|
ihk_mc_spinlock_lock_noirq(&vm->memory_range_lock);
|
|
list_for_each_entry_safe(range, next, &vm->vm_range_list, list) {
|
|
error = free_process_memory_range(vm, range);
|
|
if (error) {
|
|
ekprintf("free_process_memory(%p):"
|
|
"free range failed. %lx-%lx %d\n",
|
|
proc, range->start, range->end, error);
|
|
/* through */
|
|
}
|
|
}
|
|
ihk_mc_spinlock_unlock_noirq(&vm->memory_range_lock);
|
|
|
|
ihk_mc_pt_destroy(vm->page_table);
|
|
release_process(vm->owner_process);
|
|
}
|
|
|
|
int populate_process_memory(struct process *proc, void *start, size_t len)
|
|
{
|
|
int error;
|
|
const int reason = PF_USER | PF_POPULATE;
|
|
uintptr_t end;
|
|
uintptr_t addr;
|
|
|
|
end = (uintptr_t)start + len;
|
|
for (addr = (uintptr_t)start; addr < end; addr += PAGE_SIZE) {
|
|
error = page_fault_process_vm(proc->vm, (void *)addr, reason);
|
|
if (error) {
|
|
ekprintf("populate_process_range:page_fault_process_vm"
|
|
"(%p,%lx,%lx) failed %d\n",
|
|
proc, addr, reason, error);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
error = 0;
|
|
out:
|
|
return error;
|
|
}
|
|
|
|
void hold_process(struct process *proc)
|
|
{
|
|
if (proc->ftn->status & (PS_ZOMBIE | PS_EXITED)) {
|
|
panic("hold_process: already exited process");
|
|
}
|
|
|
|
ihk_atomic_inc(&proc->refcount);
|
|
return;
|
|
}
|
|
|
|
void destroy_process(struct process *proc)
|
|
{
|
|
struct sig_pending *pending;
|
|
struct sig_pending *next;
|
|
|
|
delete_proc_procfs_files(proc->ftn->pid);
|
|
|
|
if (proc->vm) {
|
|
cpu_clear(proc->cpu_id, &proc->vm->cpu_set, &proc->vm->cpu_set_lock);
|
|
}
|
|
|
|
free_process_memory(proc);
|
|
|
|
if(ihk_atomic_dec_and_test(&proc->sighandler->use)){
|
|
kfree(proc->sighandler);
|
|
}
|
|
if(ihk_atomic_dec_and_test(&proc->sigshared->use)){
|
|
list_for_each_entry_safe(pending, next, &proc->sigshared->sigpending, list){
|
|
list_del(&pending->list);
|
|
kfree(pending);
|
|
}
|
|
list_del(&proc->sigshared->sigpending);
|
|
kfree(proc->sigshared);
|
|
}
|
|
list_for_each_entry_safe(pending, next, &proc->sigpending, list){
|
|
list_del(&pending->list);
|
|
kfree(pending);
|
|
}
|
|
if (proc->ptrace_debugreg) {
|
|
kfree(proc->ptrace_debugreg);
|
|
}
|
|
if (proc->ptrace_recvsig) {
|
|
kfree(proc->ptrace_recvsig);
|
|
}
|
|
if (proc->ptrace_sendsig) {
|
|
kfree(proc->ptrace_sendsig);
|
|
}
|
|
if (proc->fp_regs) {
|
|
release_fp_regs(proc);
|
|
}
|
|
if (proc->saved_cmdline) {
|
|
kfree(proc->saved_cmdline);
|
|
}
|
|
ihk_mc_free_pages(proc, KERNEL_STACK_NR_PAGES);
|
|
}
|
|
|
|
void release_process(struct process *proc)
|
|
{
|
|
if (!ihk_atomic_dec_and_test(&proc->refcount)) {
|
|
return;
|
|
}
|
|
|
|
destroy_process(proc);
|
|
}
|
|
|
|
void cpu_set(int cpu, cpu_set_t *cpu_set, ihk_spinlock_t *lock)
|
|
{
|
|
unsigned int flags;
|
|
flags = ihk_mc_spinlock_lock(lock);
|
|
CPU_SET(cpu, cpu_set);
|
|
ihk_mc_spinlock_unlock(lock, flags);
|
|
}
|
|
|
|
void cpu_clear(int cpu, cpu_set_t *cpu_set, ihk_spinlock_t *lock)
|
|
{
|
|
unsigned int flags;
|
|
flags = ihk_mc_spinlock_lock(lock);
|
|
CPU_CLR(cpu, cpu_set);
|
|
ihk_mc_spinlock_unlock(lock, flags);
|
|
}
|
|
|
|
void cpu_clear_and_set(int c_cpu, int s_cpu,
|
|
cpu_set_t *cpu_set, ihk_spinlock_t *lock)
|
|
{
|
|
unsigned int flags;
|
|
flags = ihk_mc_spinlock_lock(lock);
|
|
CPU_CLR(c_cpu, cpu_set);
|
|
CPU_SET(s_cpu, cpu_set);
|
|
ihk_mc_spinlock_unlock(lock, flags);
|
|
}
|
|
|
|
|
|
static void do_migrate(void);
|
|
|
|
static void idle(void)
|
|
{
|
|
struct cpu_local_var *v = get_this_cpu_local_var();
|
|
|
|
/* Release runq_lock before starting the idle loop.
|
|
* See comments at release_runq_lock().
|
|
*/
|
|
ihk_mc_spinlock_unlock(&(cpu_local_var(runq_lock)),
|
|
cpu_local_var(runq_irqstate));
|
|
|
|
if(v->status == CPU_STATUS_RUNNING)
|
|
v->status = CPU_STATUS_IDLE;
|
|
cpu_enable_interrupt();
|
|
|
|
while (1) {
|
|
schedule();
|
|
cpu_disable_interrupt();
|
|
|
|
/* See if we need to migrate a process somewhere */
|
|
if (v->flags & CPU_FLAG_NEED_MIGRATE) {
|
|
do_migrate();
|
|
v->flags &= ~CPU_FLAG_NEED_MIGRATE;
|
|
}
|
|
|
|
/*
|
|
* XXX: KLUDGE: It is desirable to be resolved in schedule().
|
|
*
|
|
* There is a problem which causes wait4(2) hang when
|
|
* wait4(2) called by a process races with its child process
|
|
* termination. This is a quick fix for this problem.
|
|
*
|
|
* The problem occurrd in the following sequence.
|
|
* 1) The parent process called schedule() from sys_wait4() to
|
|
* wait for an event generated by the child process.
|
|
* 2) schedule() resumed the idle process because there was no
|
|
* runnable process in run queue.
|
|
* 3) At the moment, the child process began to end. It set
|
|
* the parent process runnable, and sent an interrupt to
|
|
* the parent process's cpu. But this interrupt had no
|
|
* effect because the parent process's cpu had not halted.
|
|
* 4) The idle process was resumed, and halted for waiting for
|
|
* the interrupt that had already been handled.
|
|
*/
|
|
if (v->status == CPU_STATUS_IDLE ||
|
|
v->status == CPU_STATUS_RESERVED) {
|
|
long s;
|
|
struct process *p;
|
|
|
|
s = ihk_mc_spinlock_lock(&v->runq_lock);
|
|
list_for_each_entry(p, &v->runq, sched_list) {
|
|
if (p->ftn->status == PS_RUNNING) {
|
|
v->status = CPU_STATUS_RUNNING;
|
|
break;
|
|
}
|
|
}
|
|
ihk_mc_spinlock_unlock(&v->runq_lock, s);
|
|
}
|
|
if (v->status == CPU_STATUS_IDLE ||
|
|
v->status == CPU_STATUS_RESERVED) {
|
|
cpu_safe_halt();
|
|
}
|
|
else {
|
|
cpu_enable_interrupt();
|
|
}
|
|
}
|
|
}
|
|
|
|
void sched_init(void)
|
|
{
|
|
struct process *idle_process = &cpu_local_var(idle);
|
|
|
|
memset(idle_process, 0, sizeof(struct process));
|
|
memset(&cpu_local_var(idle_vm), 0, sizeof(struct process_vm));
|
|
memset(&cpu_local_var(idle_ftn), 0, sizeof(struct fork_tree_node));
|
|
|
|
idle_process->vm = &cpu_local_var(idle_vm);
|
|
idle_process->ftn = &cpu_local_var(idle_ftn);
|
|
|
|
ihk_mc_init_context(&idle_process->ctx, NULL, idle);
|
|
ihk_mc_spinlock_init(&idle_process->vm->memory_range_lock);
|
|
INIT_LIST_HEAD(&idle_process->vm->vm_range_list);
|
|
idle_process->ftn->pid = 0;
|
|
idle_process->ftn->tid = ihk_mc_get_processor_id();
|
|
|
|
INIT_LIST_HEAD(&cpu_local_var(runq));
|
|
cpu_local_var(runq_len) = 0;
|
|
ihk_mc_spinlock_init(&cpu_local_var(runq_lock));
|
|
|
|
INIT_LIST_HEAD(&cpu_local_var(migq));
|
|
ihk_mc_spinlock_init(&cpu_local_var(migq_lock));
|
|
|
|
#ifdef TIMER_CPU_ID
|
|
if (ihk_mc_get_processor_id() == TIMER_CPU_ID) {
|
|
init_timers();
|
|
wake_timers_loop();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void double_rq_lock(struct cpu_local_var *v1, struct cpu_local_var *v2, unsigned long *irqstate)
|
|
{
|
|
if (v1 < v2) {
|
|
*irqstate = ihk_mc_spinlock_lock(&v1->runq_lock);
|
|
ihk_mc_spinlock_lock_noirq(&v2->runq_lock);
|
|
} else {
|
|
*irqstate = ihk_mc_spinlock_lock(&v2->runq_lock);
|
|
ihk_mc_spinlock_lock_noirq(&v1->runq_lock);
|
|
}
|
|
}
|
|
|
|
static void double_rq_unlock(struct cpu_local_var *v1, struct cpu_local_var *v2, unsigned long irqstate)
|
|
{
|
|
ihk_mc_spinlock_unlock_noirq(&v1->runq_lock);
|
|
ihk_mc_spinlock_unlock(&v2->runq_lock, irqstate);
|
|
}
|
|
|
|
struct migrate_request {
|
|
struct list_head list;
|
|
struct process *proc;
|
|
struct waitq wq;
|
|
};
|
|
|
|
static void do_migrate(void)
|
|
{
|
|
int cur_cpu_id = ihk_mc_get_processor_id();
|
|
struct cpu_local_var *cur_v = get_cpu_local_var(cur_cpu_id);
|
|
struct migrate_request *req, *tmp;
|
|
unsigned long irqstate = 0;
|
|
|
|
irqstate = ihk_mc_spinlock_lock(&cur_v->migq_lock);
|
|
list_for_each_entry_safe(req, tmp, &cur_v->migq, list) {
|
|
int cpu_id;
|
|
int old_cpu_id;
|
|
struct cpu_local_var *v;
|
|
|
|
/* 0. check if migration is necessary */
|
|
list_del(&req->list);
|
|
if (req->proc->cpu_id != cur_cpu_id) /* already not here */
|
|
goto ack;
|
|
if (CPU_ISSET(cur_cpu_id, &req->proc->cpu_set)) /* good affinity */
|
|
goto ack;
|
|
|
|
/* 1. select CPU */
|
|
for (cpu_id = 0; cpu_id < CPU_SETSIZE; cpu_id++)
|
|
if (CPU_ISSET(cpu_id, &req->proc->cpu_set))
|
|
break;
|
|
if (CPU_SETSIZE == cpu_id) /* empty affinity (bug?) */
|
|
goto ack;
|
|
|
|
/* 2. migrate thread */
|
|
v = get_cpu_local_var(cpu_id);
|
|
double_rq_lock(cur_v, v, &irqstate);
|
|
list_del(&req->proc->sched_list);
|
|
cur_v->runq_len -= 1;
|
|
old_cpu_id = req->proc->cpu_id;
|
|
req->proc->cpu_id = cpu_id;
|
|
settid(req->proc, 2, cpu_id, old_cpu_id);
|
|
list_add_tail(&req->proc->sched_list, &v->runq);
|
|
v->runq_len += 1;
|
|
|
|
/* update cpu_set of the VM for remote TLB invalidation */
|
|
cpu_clear_and_set(old_cpu_id, cpu_id, &req->proc->vm->cpu_set,
|
|
&req->proc->vm->cpu_set_lock);
|
|
|
|
dkprintf("do_migrate(): migrated TID %d from CPU %d to CPU %d\n",
|
|
req->proc->ftn->tid, old_cpu_id, cpu_id);
|
|
|
|
v->flags |= CPU_FLAG_NEED_RESCHED;
|
|
ihk_mc_interrupt_cpu(get_x86_cpu_local_variable(cpu_id)->apic_id, 0xd1);
|
|
double_rq_unlock(cur_v, v, irqstate);
|
|
|
|
ack:
|
|
waitq_wakeup(&req->wq);
|
|
}
|
|
ihk_mc_spinlock_unlock(&cur_v->migq_lock, irqstate);
|
|
}
|
|
|
|
extern int num_processors;
|
|
extern ihk_spinlock_t cpuid_head_lock;
|
|
|
|
void schedule(void)
|
|
{
|
|
struct cpu_local_var *v;
|
|
struct process *next, *prev, *proc, *tmp = NULL;
|
|
int switch_ctx = 0;
|
|
struct process *last;
|
|
|
|
if (cpu_local_var(no_preempt)) {
|
|
dkprintf("no schedule() while no preemption! \n");
|
|
return;
|
|
}
|
|
|
|
if (cpu_local_var(current)
|
|
&& cpu_local_var(current)->in_syscall_offload) {
|
|
dkprintf("no schedule() while syscall offload!\n");
|
|
return;
|
|
}
|
|
|
|
redo:
|
|
cpu_local_var(runq_irqstate) =
|
|
ihk_mc_spinlock_lock(&(get_this_cpu_local_var()->runq_lock));
|
|
v = get_this_cpu_local_var();
|
|
|
|
next = NULL;
|
|
prev = v->current;
|
|
|
|
v->flags &= ~CPU_FLAG_NEED_RESCHED;
|
|
|
|
/* All runnable processes are on the runqueue */
|
|
if (prev && prev != &cpu_local_var(idle)) {
|
|
list_del(&prev->sched_list);
|
|
--v->runq_len;
|
|
|
|
/* Round-robin if not exited yet */
|
|
if (!(prev->ftn->status & (PS_ZOMBIE | PS_EXITED))) {
|
|
list_add_tail(&prev->sched_list, &(v->runq));
|
|
++v->runq_len;
|
|
}
|
|
|
|
/* Toggle timesharing if CPU core is oversubscribed */
|
|
if (v->runq_len > 1) {
|
|
if (!cpu_local_var(timer_enabled)) {
|
|
lapic_timer_enable(10000000);
|
|
cpu_local_var(timer_enabled) = 1;
|
|
}
|
|
}
|
|
else {
|
|
if (cpu_local_var(timer_enabled)) {
|
|
lapic_timer_disable();
|
|
cpu_local_var(timer_enabled) = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (v->flags & CPU_FLAG_NEED_MIGRATE) {
|
|
next = &cpu_local_var(idle);
|
|
} else {
|
|
/* Pick a new running process */
|
|
list_for_each_entry_safe(proc, tmp, &(v->runq), sched_list) {
|
|
if (proc->ftn->status == PS_RUNNING) {
|
|
next = proc;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* No process? Run idle.. */
|
|
if (!next) {
|
|
next = &cpu_local_var(idle);
|
|
v->status = v->runq_len? CPU_STATUS_RESERVED: CPU_STATUS_IDLE;
|
|
}
|
|
}
|
|
|
|
if (prev != next) {
|
|
switch_ctx = 1;
|
|
v->current = next;
|
|
}
|
|
|
|
if (switch_ctx) {
|
|
dkprintf("schedule: %d => %d \n",
|
|
prev ? prev->ftn->tid : 0, next ? next->ftn->tid : 0);
|
|
|
|
if (prev && prev->ptrace_debugreg) {
|
|
save_debugreg(prev->ptrace_debugreg);
|
|
if (next->ptrace_debugreg == NULL) {
|
|
clear_debugreg();
|
|
}
|
|
}
|
|
if (next->ptrace_debugreg) {
|
|
restore_debugreg(next->ptrace_debugreg);
|
|
}
|
|
|
|
/* Take care of floating point registers except for idle process */
|
|
if (prev && prev != &cpu_local_var(idle)) {
|
|
save_fp_regs(prev);
|
|
}
|
|
|
|
if (next != &cpu_local_var(idle)) {
|
|
restore_fp_regs(next);
|
|
}
|
|
|
|
ihk_mc_load_page_table(next->vm->page_table);
|
|
|
|
dkprintf("[%d] schedule: tlsblock_base: 0x%lX\n",
|
|
ihk_mc_get_processor_id(), next->thread.tlsblock_base);
|
|
|
|
/* Set up new TLS.. */
|
|
do_arch_prctl(ARCH_SET_FS, next->thread.tlsblock_base);
|
|
|
|
if (prev) {
|
|
last = ihk_mc_switch_context(&prev->ctx, &next->ctx, prev);
|
|
}
|
|
else {
|
|
last = ihk_mc_switch_context(NULL, &next->ctx, prev);
|
|
}
|
|
|
|
/*
|
|
* We must hold the lock throughout the context switch, otherwise
|
|
* an IRQ could deschedule this process between page table loading and
|
|
* context switching and leave the execution in an inconsistent state.
|
|
* Since we may be migrated to another core meanwhile, we refer
|
|
* directly to cpu_local_var.
|
|
*/
|
|
ihk_mc_spinlock_unlock(&(cpu_local_var(runq_lock)),
|
|
cpu_local_var(runq_irqstate));
|
|
|
|
/* Have we migrated to another core meanwhile? */
|
|
if (v != get_this_cpu_local_var()) {
|
|
dkprintf("migrated, skipping freeing last\n");
|
|
goto redo;
|
|
}
|
|
|
|
if ((last != NULL) && (last->ftn) && (last->ftn->status & (PS_ZOMBIE | PS_EXITED))) {
|
|
free_process_memory(last);
|
|
release_process(last);
|
|
}
|
|
}
|
|
else {
|
|
ihk_mc_spinlock_unlock(&(cpu_local_var(runq_lock)),
|
|
cpu_local_var(runq_irqstate));
|
|
}
|
|
}
|
|
|
|
void
|
|
release_cpuid(int cpuid)
|
|
{
|
|
if (!get_cpu_local_var(cpuid)->runq_len)
|
|
get_cpu_local_var(cpuid)->status = CPU_STATUS_IDLE;
|
|
}
|
|
|
|
void check_need_resched(void)
|
|
{
|
|
unsigned long irqstate;
|
|
struct cpu_local_var *v = get_this_cpu_local_var();
|
|
irqstate = ihk_mc_spinlock_lock(&v->runq_lock);
|
|
if (v->flags & CPU_FLAG_NEED_RESCHED) {
|
|
if (v->in_interrupt && (v->flags & CPU_FLAG_NEED_MIGRATE)) {
|
|
kprintf("no migration in IRQ context\n");
|
|
ihk_mc_spinlock_unlock(&v->runq_lock, irqstate);
|
|
return;
|
|
}
|
|
ihk_mc_spinlock_unlock(&v->runq_lock, irqstate);
|
|
schedule();
|
|
}
|
|
else {
|
|
ihk_mc_spinlock_unlock(&v->runq_lock, irqstate);
|
|
}
|
|
}
|
|
|
|
|
|
int sched_wakeup_process(struct process *proc, int valid_states)
|
|
{
|
|
int status;
|
|
int spin_slept = 0;
|
|
unsigned long irqstate;
|
|
struct cpu_local_var *v = get_cpu_local_var(proc->cpu_id);
|
|
|
|
dkprintf("sched_wakeup_process,proc->pid=%d,valid_states=%08x,proc->status=%08x,proc->cpu_id=%d,my cpu_id=%d\n",
|
|
proc->ftn->pid, valid_states, proc->ftn->status, proc->cpu_id, ihk_mc_get_processor_id());
|
|
|
|
irqstate = ihk_mc_spinlock_lock(&(proc->spin_sleep_lock));
|
|
if (proc->spin_sleep > 0) {
|
|
dkprintf("sched_wakeup_process() spin wakeup: cpu_id: %d\n",
|
|
proc->cpu_id);
|
|
|
|
spin_slept = 1;
|
|
status = 0;
|
|
}
|
|
--proc->spin_sleep;
|
|
ihk_mc_spinlock_unlock(&(proc->spin_sleep_lock), irqstate);
|
|
|
|
if (spin_slept) {
|
|
return status;
|
|
}
|
|
|
|
irqstate = ihk_mc_spinlock_lock(&(v->runq_lock));
|
|
|
|
if (proc->ftn->status & valid_states) {
|
|
xchg4((int *)(&proc->ftn->status), PS_RUNNING);
|
|
status = 0;
|
|
}
|
|
else {
|
|
status = -EINVAL;
|
|
}
|
|
|
|
ihk_mc_spinlock_unlock(&(v->runq_lock), irqstate);
|
|
|
|
if (!status && (proc->cpu_id != ihk_mc_get_processor_id())) {
|
|
dkprintf("sched_wakeup_process,issuing IPI,proc->cpu_id=%d\n",
|
|
proc->cpu_id);
|
|
ihk_mc_interrupt_cpu(get_x86_cpu_local_variable(proc->cpu_id)->apic_id,
|
|
0xd1);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* 1. Add current process to waitq
|
|
* 2. Queue migration request into the target CPU's queue
|
|
* 3. Kick migration on the CPU
|
|
* 4. Wait for completion of the migration
|
|
*
|
|
* struct migrate_request {
|
|
* list //migq,
|
|
* wq,
|
|
* proc
|
|
* }
|
|
*
|
|
* [expected processing of the target CPU]
|
|
* 1. Interrupted by IPI
|
|
* 2. call schedule() via check_resched()
|
|
* 3. Do migration
|
|
* 4. Wake up this thread
|
|
*/
|
|
void sched_request_migrate(int cpu_id, struct process *proc)
|
|
{
|
|
struct cpu_local_var *v = get_cpu_local_var(cpu_id);
|
|
struct migrate_request req = { .proc = proc };
|
|
unsigned long irqstate;
|
|
DECLARE_WAITQ_ENTRY(entry, cpu_local_var(current));
|
|
|
|
waitq_init(&req.wq);
|
|
waitq_prepare_to_wait(&req.wq, &entry, PS_UNINTERRUPTIBLE);
|
|
|
|
irqstate = ihk_mc_spinlock_lock(&v->migq_lock);
|
|
list_add_tail(&req.list, &v->migq);
|
|
ihk_mc_spinlock_unlock(&v->migq_lock, irqstate);
|
|
|
|
irqstate = ihk_mc_spinlock_lock(&v->runq_lock);
|
|
v->flags |= CPU_FLAG_NEED_RESCHED | CPU_FLAG_NEED_MIGRATE;
|
|
v->status = CPU_STATUS_RUNNING;
|
|
ihk_mc_spinlock_unlock(&v->runq_lock, irqstate);
|
|
|
|
if (cpu_id != ihk_mc_get_processor_id())
|
|
ihk_mc_interrupt_cpu(/* Kick scheduler */
|
|
get_x86_cpu_local_variable(cpu_id)->apic_id, 0xd1);
|
|
|
|
schedule();
|
|
waitq_finish_wait(&req.wq, &entry);
|
|
}
|
|
|
|
/* Runq lock must be held here */
|
|
void __runq_add_proc(struct process *proc, int cpu_id)
|
|
{
|
|
struct cpu_local_var *v = get_cpu_local_var(cpu_id);
|
|
list_add_tail(&proc->sched_list, &v->runq);
|
|
++v->runq_len;
|
|
v->flags |= CPU_FLAG_NEED_RESCHED;
|
|
proc->cpu_id = cpu_id;
|
|
//proc->ftn->status = PS_RUNNING; /* not set here */
|
|
get_cpu_local_var(cpu_id)->status = CPU_STATUS_RUNNING;
|
|
|
|
dkprintf("runq_add_proc(): tid %d added to CPU[%d]'s runq\n",
|
|
proc->ftn->tid, cpu_id);
|
|
}
|
|
|
|
void runq_add_proc(struct process *proc, int cpu_id)
|
|
{
|
|
struct cpu_local_var *v = get_cpu_local_var(cpu_id);
|
|
unsigned long irqstate;
|
|
|
|
irqstate = ihk_mc_spinlock_lock(&(v->runq_lock));
|
|
__runq_add_proc(proc, cpu_id);
|
|
ihk_mc_spinlock_unlock(&(v->runq_lock), irqstate);
|
|
|
|
create_proc_procfs_files(proc->ftn->pid, cpu_id);
|
|
|
|
/* Kick scheduler */
|
|
if (cpu_id != ihk_mc_get_processor_id())
|
|
ihk_mc_interrupt_cpu(
|
|
get_x86_cpu_local_variable(cpu_id)->apic_id, 0xd1);
|
|
}
|
|
|
|
/* NOTE: shouldn't remove a running process! */
|
|
void runq_del_proc(struct process *proc, int cpu_id)
|
|
{
|
|
struct cpu_local_var *v = get_cpu_local_var(cpu_id);
|
|
unsigned long irqstate;
|
|
|
|
irqstate = ihk_mc_spinlock_lock(&(v->runq_lock));
|
|
list_del(&proc->sched_list);
|
|
--v->runq_len;
|
|
|
|
if (!v->runq_len)
|
|
get_cpu_local_var(cpu_id)->status = CPU_STATUS_IDLE;
|
|
|
|
ihk_mc_spinlock_unlock(&(v->runq_lock), irqstate);
|
|
}
|
|
|
|
struct process *
|
|
findthread_and_lock(int pid, int tid, ihk_spinlock_t **savelock, unsigned long *irqstate)
|
|
{
|
|
struct cpu_local_var *v;
|
|
struct process *p;
|
|
int i;
|
|
extern int num_processors;
|
|
|
|
for(i = 0; i < num_processors; i++){
|
|
v = get_cpu_local_var(i);
|
|
*savelock = &(v->runq_lock);
|
|
*irqstate = ihk_mc_spinlock_lock(&(v->runq_lock));
|
|
list_for_each_entry(p, &(v->runq), sched_list){
|
|
if(p->ftn->pid == pid &&
|
|
(tid == -1 || p->ftn->tid == tid)){
|
|
return p;
|
|
}
|
|
}
|
|
ihk_mc_spinlock_unlock(&(v->runq_lock), *irqstate);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
void
|
|
process_unlock(void *savelock, unsigned long irqstate)
|
|
{
|
|
ihk_mc_spinlock_unlock((ihk_spinlock_t *)savelock, irqstate);
|
|
}
|
|
|
|
void
|
|
debug_log(unsigned long arg)
|
|
{
|
|
struct cpu_local_var *v;
|
|
struct process *p;
|
|
int i;
|
|
extern int num_processors;
|
|
unsigned long irqstate;
|
|
|
|
switch(arg){
|
|
case 1:
|
|
for(i = 0; i < num_processors; i++){
|
|
v = get_cpu_local_var(i);
|
|
irqstate = ihk_mc_spinlock_lock(&(v->runq_lock));
|
|
list_for_each_entry(p, &(v->runq), sched_list){
|
|
if(p->ftn->pid <= 0)
|
|
continue;
|
|
kprintf("cpu=%d pid=%d tid=%d status=%d\n",
|
|
i, p->ftn->pid, p->ftn->tid, p->ftn->status);
|
|
}
|
|
ihk_mc_spinlock_unlock(&(v->runq_lock), irqstate);
|
|
}
|
|
break;
|
|
}
|
|
}
|