Files
mckernel/arch/x86_64/kernel/syscall.c
Yoshihisa Morizumi d2db639853 xpmem: support large page
1. try to use as large page as possible on attach
2. pre-map resident remote pages on attach

Change-Id: I5580682a4199e94085a9bad9ce3958a0f14cdcea
2021-03-03 05:07:49 +00:00

2693 lines
64 KiB
C

/* syscall.c COPYRIGHT FUJITSU LIMITED 2018 */
/**
* \file syscall.c
* License details are found in the file LICENSE.
* \brief
* archtecture depended system call handlers
* \author Gou Nakamura <go.nakamura.yw@hitachi-solutions.com> \par
* Copyright (C) 2013 Hitachi, Ltd.
* \author Masamichi Takagi <m-takagi@ab.jp.nec.com> \par
* Copyright (C) 2013 NEC Corporation
* \author Tomoki Shirasawa <tomoki.shirasawa.kk@hitachi-solutions.com> \par
* Copyright (C) 2013 Hitachi, Ltd.
*/
/*
* HISTORY:
*/
#include <ihk/cpu.h>
#include <cls.h>
#include <cpulocal.h>
#include <syscall.h>
#include <process.h>
#include <string.h>
#include <errno.h>
#include <kmalloc.h>
#include <uio.h>
#include <mman.h>
#include <shm.h>
#include <prctl.h>
#include <ihk/ikc.h>
#include <page.h>
#include <limits.h>
#include <syscall.h>
#include <bitops.h>
#include <rusage_private.h>
#include <memory.h>
#include <ihk/debug.h>
void terminate_mcexec(int, int);
extern long do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact);
long syscall(int num, ihk_mc_user_context_t *ctx);
extern unsigned long do_fork(int, unsigned long, unsigned long, unsigned long,
unsigned long, unsigned long, unsigned long);
extern int get_xsave_size();
extern uint64_t get_xsave_mask();
//#define DEBUG_PRINT_SC
#ifdef DEBUG_PRINT_SC
#undef DDEBUG_DEFAULT
#define DDEBUG_DEFAULT DDEBUG_PRINT
#endif
uintptr_t debug_constants[] = {
sizeof(struct cpu_local_var),
offsetof(struct cpu_local_var, current),
offsetof(struct cpu_local_var, runq),
offsetof(struct cpu_local_var, status),
offsetof(struct cpu_local_var, idle),
offsetof(struct thread, ctx),
offsetof(struct thread, sched_list),
offsetof(struct thread, proc),
offsetof(struct thread, status),
offsetof(struct process, pid),
offsetof(struct thread, tid),
-1,
};
#define VDSO_MAXPAGES 2
struct vdso {
long busy;
int vdso_npages;
char vvar_is_global;
char hpet_is_global;
char pvti_is_global;
char padding;
long vdso_physlist[VDSO_MAXPAGES];
void *vvar_virt;
long vvar_phys;
void *hpet_virt;
long hpet_phys;
void *pvti_virt;
long pvti_phys;
void *vgtod_virt;
};
struct vsyscall_gtod_data {
int seq;
struct {
int vclock_mode;
unsigned long cycle_last;
unsigned long mask;
unsigned int mult;
unsigned int shift;
} clock;
/* open coded 'struct timespec' */
time_t wall_time_sec;
unsigned long wall_time_snsec;
};
static struct vdso vdso;
static size_t container_size = 0;
static ptrdiff_t vdso_offset;
extern int num_processors;
int obtain_clone_cpuid(cpu_set_t *cpu_set, int use_last) {
int min_queue_len = -1;
int cpu, min_cpu = -1, uti_cpu = -1;
unsigned long irqstate;
irqstate = ihk_mc_spinlock_lock(&runq_reservation_lock);
/* Find the first allowed core with the shortest run queue */
for (cpu = 0; cpu < num_processors; ++cpu) {
struct cpu_local_var *v;
if (!CPU_ISSET(cpu, cpu_set)) continue;
v = get_cpu_local_var(cpu);
ihk_mc_spinlock_lock_noirq(&v->runq_lock);
dkprintf("%s: cpu=%d,runq_len=%d,runq_reserved=%d\n", __FUNCTION__, cpu, v->runq_len, v->runq_reserved);
if (min_queue_len == -1 || v->runq_len + v->runq_reserved < min_queue_len) {
min_queue_len = v->runq_len + v->runq_reserved;
min_cpu = cpu;
}
/* Record the last tie CPU */
if (min_cpu != cpu && v->runq_len + v->runq_reserved == min_queue_len) {
uti_cpu = cpu;
}
dkprintf("%s: cpu=%d,runq_len=%d,runq_reserved=%d,min_cpu=%d,uti_cpu=%d\n", __FUNCTION__, cpu, v->runq_len, v->runq_reserved, min_cpu, uti_cpu);
ihk_mc_spinlock_unlock_noirq(&v->runq_lock);
#if 0
if (min_queue_len == 0)
break;
#endif
}
min_cpu = use_last ? uti_cpu : min_cpu;
if (min_cpu != -1) {
if (get_cpu_local_var(min_cpu)->status != CPU_STATUS_RESERVED)
get_cpu_local_var(min_cpu)->status = CPU_STATUS_RESERVED;
__sync_fetch_and_add(&get_cpu_local_var(min_cpu)->runq_reserved, 1);
}
ihk_mc_spinlock_unlock(&runq_reservation_lock, irqstate);
return min_cpu;
}
SYSCALL_DECLARE(prctl)
{
struct process *proc = cpu_local_var(current)->proc;
int option = (int)ihk_mc_syscall_arg0(ctx);
unsigned long arg2 = (unsigned long)ihk_mc_syscall_arg1(ctx);
unsigned long arg3 = (unsigned long)ihk_mc_syscall_arg2(ctx);
unsigned long arg4 = (unsigned long)ihk_mc_syscall_arg3(ctx);
unsigned long arg5 = (unsigned long)ihk_mc_syscall_arg4(ctx);
int ret = 0;
switch (option) {
case PR_SET_THP_DISABLE:
if (arg3 || arg4 || arg5) {
return -EINVAL;
}
proc->thp_disable = arg2;
ret = 0;
break;
case PR_GET_THP_DISABLE:
if (arg2 || arg3 || arg4 || arg5) {
return -EINVAL;
}
ret = proc->thp_disable;
break;
default:
ret = syscall_generic_forwarding(__NR_prctl, ctx);
break;
}
return ret;
}
struct sigsp {
unsigned long flags;
void *link;
stack_t sigstack;
unsigned long regs[23];
#define _r8 regs[0]
#define _r9 regs[1]
#define _r10 regs[2]
#define _r11 regs[3]
#define _r12 regs[4]
#define _r13 regs[5]
#define _r14 regs[6]
#define _r15 regs[7]
#define _rdi regs[8]
#define _rsi regs[9]
#define _rbp regs[10]
#define _rbx regs[11]
#define _rdx regs[12]
#define _rax regs[13]
#define _rcx regs[14]
#define _rsp regs[15]
#define _rip regs[16]
#define _rflags regs[17]
#define _csgsfs regs[18]
#define _error regs[19]
#define _trapno regs[20]
#define _oldmask regs[21]
#define _cr2 regs[22]
void *fpregs;
unsigned long reserve[8];
unsigned long sigrc;
unsigned long sigmask;
int num;
int restart;
unsigned long ss;
siginfo_t info;
};
SYSCALL_DECLARE(rt_sigreturn)
{
struct thread *thread = cpu_local_var(current);
struct x86_user_context *regs;
struct sigsp ksigsp;
struct sigsp *sigsp;
int xsavesize = get_xsave_size();
asm ("movq %%gs:(%1),%0"
: "=r"(regs)
: "r"(offsetof(struct x86_cpu_local_variables, tss.rsp0)));
--regs;
sigsp = (struct sigsp *)regs->gpr.rsp;
if(copy_from_user(&ksigsp, sigsp, sizeof ksigsp))
return -EFAULT;
regs->gpr.r15 = ksigsp._r15;
regs->gpr.r14 = ksigsp._r14;
regs->gpr.r13 = ksigsp._r13;
regs->gpr.r12 = ksigsp._r12;
regs->gpr.rbp = ksigsp._rbp;
regs->gpr.rbx = ksigsp._rbx;
regs->gpr.r11 = ksigsp._r11;
regs->gpr.r10 = ksigsp._r10;
regs->gpr.r9 = ksigsp._r9;
regs->gpr.r8 = ksigsp._r8;
regs->gpr.rax = ksigsp._rax;
regs->gpr.rcx = ksigsp._rcx;
regs->gpr.rdx = ksigsp._rdx;
regs->gpr.rsi = ksigsp._rsi;
regs->gpr.rdi = ksigsp._rdi;
regs->gpr.error = ksigsp._error;
regs->gpr.rip = ksigsp._rip;
regs->gpr.rflags = ksigsp._rflags;
regs->gpr.rsp = ksigsp._rsp;
thread->sigmask.__val[0] = ksigsp._oldmask;
memcpy(&thread->sigstack, &ksigsp.sigstack, sizeof(stack_t));
if(sigsp->restart){
return syscall(sigsp->num, (ihk_mc_user_context_t *)regs);
}
if(regs->gpr.rflags & RFLAGS_TF){
struct siginfo info;
regs->gpr.rax = sigsp->sigrc;
memset(&info, '\0', sizeof info);
regs->gpr.rflags &= ~RFLAGS_TF;
info.si_code = TRAP_TRACE;
set_signal(SIGTRAP, regs, &info);
check_need_resched();
check_signal(0, regs, -1);
}
if(ksigsp.fpregs && xsavesize){
void *fpregs = kmalloc(xsavesize + 64, IHK_MC_AP_NOWAIT);
if(fpregs){
uint64_t xsave_mask = get_xsave_mask();
unsigned int low = (unsigned int)xsave_mask;
unsigned int high = (unsigned int)(xsave_mask >> 32);
struct xsave_struct *kfpregs;
kfpregs = (void *)((((unsigned long)fpregs) + 63) & ~63);
if(copy_from_user(kfpregs, ksigsp.fpregs, xsavesize))
return -EFAULT;
asm volatile("xrstor %0" : : "m"(*kfpregs), "a"(low), "d"(high) : "memory");
kfree(fpregs);
}
}
return sigsp->sigrc;
}
extern struct cpu_local_var *clv;
extern void interrupt_syscall(struct thread *, int sig);
extern void terminate(int, int);
extern int num_processors;
#define RFLAGS_MASK (RFLAGS_CF | RFLAGS_PF | RFLAGS_AF | RFLAGS_ZF | \
RFLAGS_SF | RFLAGS_TF | RFLAGS_DF | RFLAGS_OF | \
RFLAGS_NT | RFLAGS_RF | RFLAGS_AC)
#define DB6_RESERVED_MASK (0xffffffffffff1ff0UL)
#define DB6_RESERVED_SET (0xffff0ff0UL)
#define DB7_RESERVED_MASK (0xffffffff0000dc00UL)
#define DB7_RESERVED_SET (0x400UL)
extern ihk_mc_user_context_t *lookup_user_context(struct thread *thread);
long
ptrace_read_user(struct thread *thread, long addr, unsigned long *value)
{
unsigned long *p;
struct x86_user_context *uctx;
size_t off;
if ((addr < 0) || (addr & (sizeof(*value) - 1))) {
return -EIO;
}
else if (addr < sizeof(struct user_regs_struct)) {
uctx = lookup_user_context(thread);
if (!uctx) {
return -EIO;
}
if (addr < offsetof(struct user_regs_struct, fs_base)) {
*value = *(unsigned long *)(
(uintptr_t)(&uctx->gpr) + addr);
}
else {
off = addr - offsetof(struct user_regs_struct, fs_base);
*value = *(unsigned long *)(
(uintptr_t)(&uctx->sr) + off);
}
return 0;
}
if (offsetof(struct user, u_debugreg[0]) <= addr &&
addr < offsetof(struct user, u_debugreg[8])) {
if (addr & (sizeof(*value) - 1)) return -EIO;
if (thread->ptrace_debugreg == NULL) {
kprintf("ptrace_read_user: missing ptrace_debugreg\n");
return -EFAULT;
}
p = &thread->ptrace_debugreg[(addr - offsetof(struct user, u_debugreg[0])) / sizeof(*value)];
*value = *p;
return 0;
}
/* SUCCESS others */
dkprintf("ptrace_read_user,addr=%d\n", addr);
*value = 0;
return 0;
}
long
ptrace_write_user(struct thread *thread, long addr, unsigned long value)
{
unsigned long *p;
struct x86_user_context *uctx;
size_t off;
if ((addr < 0) || (addr & (sizeof(value) - 1))) {
return -EIO;
}
else if (addr < sizeof(struct user_regs_struct)) {
uctx = lookup_user_context(thread);
if (!uctx) {
return -EIO;
}
if (addr == offsetof(struct user_regs_struct, eflags)) {
uctx->gpr.rflags &= ~RFLAGS_MASK;
uctx->gpr.rflags |= (value & RFLAGS_MASK);
}
else if (addr < offsetof(struct user_regs_struct, fs_base)) {
*(unsigned long *)((uintptr_t)(&uctx->gpr) + addr)
= value;
}
else {
off = addr - offsetof(struct user_regs_struct,
fs_base);
*(unsigned long *)((uintptr_t)(&uctx->sr) + off)
= value;
}
return 0;
}
if (offsetof(struct user, u_debugreg[0]) <= addr &&
addr < offsetof(struct user, u_debugreg[8])) {
if (addr & (sizeof(value) - 1)) return -EIO;
if (thread->ptrace_debugreg == NULL) {
kprintf("ptrace_write_user: missing ptrace_debugreg\n");
return -EFAULT;
}
p = &thread->ptrace_debugreg[(addr - offsetof(struct user, u_debugreg[0])) / sizeof(value)];
if (addr == offsetof(struct user, u_debugreg[6])) {
value &= ~DB6_RESERVED_MASK;
value |= DB6_RESERVED_SET;
}
if (addr == offsetof(struct user, u_debugreg[7])) {
value &= ~DB7_RESERVED_MASK;
value |= DB7_RESERVED_SET;
}
*p = value;
return 0;
}
/* SUCCESS others */
dkprintf("ptrace_write_user,addr=%d\n", addr);
return 0;
}
long
alloc_debugreg(struct thread *thread)
{
thread->ptrace_debugreg = kmalloc(sizeof(*thread->ptrace_debugreg) * 8, IHK_MC_AP_NOWAIT);
if (thread->ptrace_debugreg == NULL) {
kprintf("alloc_debugreg: no memory.\n");
return -ENOMEM;
}
memset(thread->ptrace_debugreg, '\0', sizeof(*thread->ptrace_debugreg) * 8);
thread->ptrace_debugreg[6] = DB6_RESERVED_SET;
thread->ptrace_debugreg[7] = DB7_RESERVED_SET;
return 0;
}
void
save_debugreg(unsigned long *debugreg)
{
asm("mov %%db0, %0" :"=r" (debugreg[0]));
asm("mov %%db1, %0" :"=r" (debugreg[1]));
asm("mov %%db2, %0" :"=r" (debugreg[2]));
asm("mov %%db3, %0" :"=r" (debugreg[3]));
// asm("mov %%db4, %0" :"=r" (debugreg[4]));
// asm("mov %%db5, %0" :"=r" (debugreg[5]));
debugreg[4] = debugreg[5] = 0;
asm("mov %%db6, %0" :"=r" (debugreg[6]));
asm("mov %%db7, %0" :"=r" (debugreg[7]));
}
void
restore_debugreg(unsigned long *debugreg)
{
asm("mov %0, %%db0" ::"r" (debugreg[0]));
asm("mov %0, %%db1" ::"r" (debugreg[1]));
asm("mov %0, %%db2" ::"r" (debugreg[2]));
asm("mov %0, %%db3" ::"r" (debugreg[3]));
// asm("mov %0, %%db4" ::"r" (debugreg[4]));
// asm("mov %0, %%db5" ::"r" (debugreg[5]));
asm("mov %0, %%db6" ::"r" (debugreg[6]));
asm("mov %0, %%db7" ::"r" (debugreg[7]));
}
void
clear_debugreg(void)
{
unsigned long r = 0;
asm("mov %0, %%db0" ::"r" (r));
asm("mov %0, %%db1" ::"r" (r));
asm("mov %0, %%db2" ::"r" (r));
asm("mov %0, %%db3" ::"r" (r));
// asm("mov %0, %%db4" ::"r" (r));
// asm("mov %0, %%db5" ::"r" (r));
r = DB6_RESERVED_SET;
asm("mov %0, %%db6" ::"r" (r));
r = DB7_RESERVED_SET;
asm("mov %0, %%db7" ::"r" (r));
}
void clear_single_step(struct thread *thread)
{
thread->uctx->gpr.rflags &= ~RFLAGS_TF;
}
void set_single_step(struct thread *thread)
{
thread->uctx->gpr.rflags |= RFLAGS_TF;
}
long ptrace_read_fpregs(struct thread *thread, void *fpregs)
{
if (thread->fp_regs == NULL) {
return -ENOMEM;
}
return copy_to_user(fpregs, &thread->fp_regs->i387,
sizeof(struct i387_fxsave_struct));
}
long ptrace_write_fpregs(struct thread *thread, void *fpregs)
{
if (thread->fp_regs == NULL) {
return -ENOMEM;
}
return copy_from_user(&thread->fp_regs->i387, fpregs,
sizeof(struct i387_fxsave_struct));
}
long ptrace_read_regset(struct thread *thread, long type, struct iovec *iov)
{
long rc = -EINVAL;
switch (type) {
case NT_X86_XSTATE:
if (thread->fp_regs == NULL) {
return -ENOMEM;
}
if (iov->iov_len > sizeof(fp_regs_struct)) {
iov->iov_len = sizeof(fp_regs_struct);
}
rc = copy_to_user(iov->iov_base, thread->fp_regs, iov->iov_len);
break;
default:
kprintf("ptrace_read_regset: not supported type 0x%x\n", type);
break;
}
return rc;
}
long ptrace_write_regset(struct thread *thread, long type, struct iovec *iov)
{
long rc = -EINVAL;
switch (type) {
case NT_X86_XSTATE:
if (thread->fp_regs == NULL) {
return -ENOMEM;
}
if (iov->iov_len > sizeof(fp_regs_struct)) {
iov->iov_len = sizeof(fp_regs_struct);
}
rc = copy_from_user(thread->fp_regs, iov->iov_base, iov->iov_len);
break;
default:
kprintf("ptrace_write_regset: not supported type 0x%x\n", type);
break;
}
return rc;
}
extern int coredump(struct thread *thread, void *regs, int sig);
void ptrace_report_signal(struct thread *thread, int sig)
{
struct mcs_rwlock_node_irqsave lock;
struct process *proc = thread->proc;
int parent_pid;
struct siginfo info;
dkprintf("ptrace_report_signal, tid=%d, pid=%d\n", thread->tid, thread->proc->pid);
mcs_rwlock_writer_lock(&proc->update_lock, &lock);
if (!(thread->ptrace & PT_TRACED)) {
mcs_rwlock_writer_unlock(&proc->update_lock, &lock);
return;
}
/* Transition thread state */
thread->exit_status = sig;
thread->status = PS_TRACED;
thread->ptrace &= ~PT_TRACE_SYSCALL;
save_debugreg(thread->ptrace_debugreg);
if (sig == SIGSTOP || sig == SIGTSTP ||
sig == SIGTTIN || sig == SIGTTOU) {
thread->signal_flags |= SIGNAL_STOP_STOPPED;
}
else {
thread->signal_flags &= ~SIGNAL_STOP_STOPPED;
}
if (thread == proc->main_thread) {
proc->status = PS_DELAY_TRACED;
parent_pid = proc->parent->pid;
}
else {
parent_pid = thread->report_proc->pid;
waitq_wakeup(&thread->report_proc->waitpid_q);
}
mcs_rwlock_writer_unlock(&proc->update_lock, &lock);
memset(&info, '\0', sizeof info);
info.si_signo = SIGCHLD;
info.si_code = CLD_TRAPPED;
info._sifields._sigchld.si_pid = thread->tid;
info._sifields._sigchld.si_status = thread->exit_status;
do_kill(cpu_local_var(current), parent_pid, -1, SIGCHLD, &info, 0);
dkprintf("ptrace_report_signal,sleeping\n");
/* Sleep */
schedule();
dkprintf("ptrace_report_signal,wake up\n");
}
static long
ptrace_arch_prctl(int pid, long code, long addr)
{
long rc = -EIO;
struct thread *child;
child = find_thread(pid, pid);
if (!child)
return -ESRCH;
if (child->proc->status & (PS_TRACED | PS_STOPPED)) {
switch (code) {
case ARCH_GET_FS: {
unsigned long value;
unsigned long *p = (unsigned long *)addr;
rc = ptrace_read_user(child,
offsetof(struct user_regs_struct, fs_base),
&value);
if (rc == 0) {
rc = copy_to_user(p, (char *)&value, sizeof(value));
}
break;
}
case ARCH_GET_GS: {
unsigned long value;
unsigned long *p = (unsigned long *)addr;
rc = ptrace_read_user(child,
offsetof(struct user_regs_struct, gs_base),
&value);
if (rc == 0) {
rc = copy_to_user(p, (char *)&value, sizeof(value));
}
break;
}
case ARCH_SET_FS:
rc = ptrace_write_user(child,
offsetof(struct user_regs_struct, fs_base),
(unsigned long)addr);
break;
case ARCH_SET_GS:
rc = ptrace_write_user(child,
offsetof(struct user_regs_struct, gs_base),
(unsigned long)addr);
break;
default:
rc = -EINVAL;
break;
}
}
thread_unlock(child);
return rc;
}
long
arch_ptrace(long request, int pid, long addr, long data)
{
switch(request) {
case PTRACE_ARCH_PRCTL:
return ptrace_arch_prctl(pid, data, addr);
break;
default:
break;
}
return -EOPNOTSUPP;
}
static int
isrestart(int num, unsigned long rc, int sig, int restart)
{
if (sig == SIGKILL || sig == SIGSTOP)
return 0;
if (num < 0 || rc != -EINTR)
return 0;
if (sig == SIGCHLD)
return 1;
switch (num) {
case __NR_pause:
case __NR_rt_sigsuspend:
case __NR_rt_sigtimedwait:
// case __NR_rt_sigwaitinfo:
case __NR_epoll_wait:
case __NR_epoll_pwait:
case __NR_poll:
case __NR_ppoll:
case __NR_select:
case __NR_pselect6:
case __NR_msgrcv:
case __NR_msgsnd:
case __NR_semop:
case __NR_semtimedop:
case __NR_clock_nanosleep:
case __NR_nanosleep:
// case __NR_usleep:
case __NR_io_getevents:
return 0;
}
if (restart)
return 1;
return 0;
}
int
do_signal(unsigned long rc, void *regs0, struct thread *thread, struct sig_pending *pending, int num)
{
struct x86_user_context *regs = regs0;
struct k_sigaction *k;
int sig;
__sigset_t w;
struct process *proc = thread->proc;
int orgsig;
int ptraceflag = 0;
struct mcs_rwlock_node_irqsave lock;
struct mcs_rwlock_node_irqsave mcs_rw_node;
int restart = 0;
int ret;
for(w = pending->sigmask.__val[0], sig = 0; w; sig++, w >>= 1);
dkprintf("do_signal(): tid=%d, pid=%d, sig=%d\n", thread->tid, proc->pid, sig);
orgsig = sig;
if ((thread->ptrace & PT_TRACED) &&
pending->ptracecont == 0 &&
sig != SIGKILL) {
ptraceflag = 1;
sig = SIGSTOP;
}
if(regs == NULL){ /* call from syscall */
asm ("movq %%gs:(%1),%0"
: "=r"(regs)
: "r"(offsetof(struct x86_cpu_local_variables, tss.rsp0)));
--regs;
}
else{
rc = regs->gpr.rax;
}
mcs_rwlock_writer_lock(&thread->sigcommon->lock, &mcs_rw_node);
k = thread->sigcommon->action + sig - 1;
if(k->sa.sa_handler == SIG_IGN){
kfree(pending);
mcs_rwlock_writer_unlock(&thread->sigcommon->lock, &mcs_rw_node);
goto out;
}
else if(k->sa.sa_handler){
unsigned long *usp; /* user stack */
struct sigsp ksigsp;
struct sigsp *sigsp;
int xsavesize = get_xsave_size();
unsigned long fpregs;
if((k->sa.sa_flags & SA_ONSTACK) &&
!(thread->sigstack.ss_flags & SS_DISABLE) &&
!(thread->sigstack.ss_flags & SS_ONSTACK)){
unsigned long lsp;
lsp = ((unsigned long)(((char *)thread->sigstack.ss_sp) + thread->sigstack.ss_size)) & 0xfffffffffffffff8UL;
usp = (unsigned long *)lsp;
thread->sigstack.ss_flags |= SS_ONSTACK;
}
else{
usp = (unsigned long *)regs->gpr.rsp;
}
fpregs = (unsigned long)usp - xsavesize;
sigsp = ((struct sigsp *)fpregs) - 1;
sigsp = (struct sigsp *)((unsigned long)sigsp & 0xfffffffffffffff0UL);
memset(&ksigsp, '\0', sizeof ksigsp);
ksigsp._r15 = regs->gpr.r15;
ksigsp._r14 = regs->gpr.r14;
ksigsp._r13 = regs->gpr.r13;
ksigsp._r12 = regs->gpr.r12;
ksigsp._rbp = regs->gpr.rbp;
ksigsp._rbx = regs->gpr.rbx;
ksigsp._r11 = regs->gpr.r11;
ksigsp._r10 = regs->gpr.r10;
ksigsp._r9 = regs->gpr.r9;
ksigsp._r8 = regs->gpr.r8;
ksigsp._rax = regs->gpr.rax;
ksigsp._rcx = regs->gpr.rcx;
ksigsp._rdx = regs->gpr.rdx;
ksigsp._rsi = regs->gpr.rsi;
ksigsp._rdi = regs->gpr.rdi;
ksigsp._error = regs->gpr.error;
ksigsp._rip = regs->gpr.rip;
ksigsp._rflags = regs->gpr.rflags;
ksigsp._rsp = regs->gpr.rsp;
ksigsp._cr2 = (unsigned long)pending->info._sifields._sigfault.si_addr;
ksigsp._oldmask = thread->sigmask.__val[0];
memcpy(&ksigsp.sigstack, &thread->sigstack, sizeof(stack_t));
ksigsp.sigrc = rc;
ksigsp.num = num;
restart = isrestart(num, rc, sig, k->sa.sa_flags & SA_RESTART);
ksigsp.restart = restart;
if(xsavesize){
uint64_t xsave_mask = get_xsave_mask();
unsigned int low = (unsigned int)xsave_mask;
unsigned int high = (unsigned int)(xsave_mask >> 32);
void *_kfpregs = kmalloc(xsavesize + 64, IHK_MC_AP_NOWAIT);
struct xsave_struct *kfpregs;
if(!_kfpregs){
kfree(pending);
kfree(_kfpregs);
kprintf("do_signal,no space available\n");
terminate(0, sig);
goto out;
}
kfpregs = (void *)((((unsigned long)_kfpregs) + 63) & ~63);
memset(kfpregs, '\0', xsavesize);
asm volatile("xsave %0" : : "m"(*kfpregs), "a"(low), "d"(high) : "memory");
if(copy_to_user((void *)fpregs, kfpregs, xsavesize)){
kfree(pending);
kfree(_kfpregs);
kprintf("do_signal,write_process_vm failed\n");
terminate(0, sig);
goto out;
}
ksigsp.fpregs = (void *)fpregs;
kfree(_kfpregs);
}
memcpy(&ksigsp.info, &pending->info, sizeof(siginfo_t));
if(copy_to_user(sigsp, &ksigsp, sizeof ksigsp)){
kfree(pending);
mcs_rwlock_writer_unlock(&thread->sigcommon->lock, &mcs_rw_node);
kprintf("do_signal,write_process_vm failed\n");
terminate(0, sig);
goto out;
}
usp = (unsigned long *)sigsp;
usp--;
*usp = (unsigned long)k->sa.sa_restorer;
regs->gpr.rdi = (unsigned long)sig;
regs->gpr.rsi = (unsigned long)&sigsp->info;
regs->gpr.rdx = (unsigned long)sigsp;
regs->gpr.rip = (unsigned long)k->sa.sa_handler;
regs->gpr.rsp = (unsigned long)usp;
// check signal handler is ONESHOT
if (k->sa.sa_flags & SA_RESETHAND) {
k->sa.sa_handler = SIG_DFL;
}
if(!(k->sa.sa_flags & SA_NODEFER))
thread->sigmask.__val[0] |= pending->sigmask.__val[0];
kfree(pending);
mcs_rwlock_writer_unlock(&thread->sigcommon->lock, &mcs_rw_node);
if(regs->gpr.rflags & RFLAGS_TF){
struct siginfo info;
memset(&info, '\0', sizeof info);
regs->gpr.rflags &= ~RFLAGS_TF;
info.si_code = TRAP_TRACE;
set_signal(SIGTRAP, regs, &info);
check_need_resched();
check_signal(0, regs, -1);
}
}
else {
int coredumped = 0;
siginfo_t info;
int ptc = pending->ptracecont;
if(ptraceflag){
if(thread->ptrace_recvsig)
kfree(thread->ptrace_recvsig);
thread->ptrace_recvsig = pending;
if(thread->ptrace_sendsig)
kfree(thread->ptrace_sendsig);
thread->ptrace_sendsig = NULL;
}
else
kfree(pending);
mcs_rwlock_writer_unlock(&thread->sigcommon->lock, &mcs_rw_node);
switch (sig) {
case SIGSTOP:
case SIGTSTP:
case SIGTTIN:
case SIGTTOU:
if(ptraceflag){
ptrace_report_signal(thread, orgsig);
}
else{
memset(&info, '\0', sizeof info);
info.si_signo = SIGCHLD;
info.si_code = CLD_STOPPED;
info._sifields._sigchld.si_pid = thread->proc->pid;
info._sifields._sigchld.si_status = (sig << 8) | 0x7f;
if (ptc == 2 &&
thread != thread->proc->main_thread) {
thread->signal_flags =
SIGNAL_STOP_STOPPED;
thread->status = PS_STOPPED;
thread->exit_status = SIGSTOP;
do_kill(thread,
thread->report_proc->pid, -1,
SIGCHLD, &info, 0);
waitq_wakeup(
&thread->report_proc->waitpid_q);
}
else {
/* Update thread state in fork tree */
mcs_rwlock_writer_lock(
&proc->update_lock, &lock);
proc->group_exit_status = SIGSTOP;
/* Reap and set new signal_flags */
proc->main_thread->signal_flags =
SIGNAL_STOP_STOPPED;
proc->status = PS_DELAY_STOPPED;
thread->status = PS_STOPPED;
mcs_rwlock_writer_unlock(
&proc->update_lock, &lock);
do_kill(thread,
thread->proc->parent->pid, -1,
SIGCHLD, &info, 0);
}
/* Sleep */
schedule();
dkprintf("SIGSTOP(): woken up\n");
}
break;
case SIGTRAP:
dkprintf("do_signal,SIGTRAP\n");
if (!(thread->ptrace & PT_TRACED)) {
goto core;
}
/* Update thread state in fork tree */
thread->exit_status = SIGTRAP;
thread->status = PS_TRACED;
if (thread == proc->main_thread) {
mcs_rwlock_writer_lock(&proc->update_lock,
&lock);
proc->group_exit_status = SIGTRAP;
proc->status = PS_DELAY_TRACED;
mcs_rwlock_writer_unlock(&proc->update_lock,
&lock);
do_kill(thread, thread->proc->parent->pid, -1,
SIGCHLD, &info, 0);
}
else {
do_kill(thread, thread->report_proc->pid, -1,
SIGCHLD, &info, 0);
waitq_wakeup(&thread->report_proc->waitpid_q);
}
/* Sleep */
dkprintf("do_signal,SIGTRAP,sleeping\n");
schedule();
dkprintf("SIGTRAP(): woken up\n");
break;
case SIGCONT:
break;
case SIGQUIT:
case SIGILL:
case SIGABRT:
case SIGFPE:
case SIGSEGV:
case SIGBUS:
case SIGSYS:
case SIGXCPU:
case SIGXFSZ:
core:
thread->coredump_regs =
kmalloc(sizeof(struct x86_user_context),
IHK_MC_AP_NOWAIT);
if (!thread->coredump_regs) {
kprintf("%s: Out of memory\n", __func__);
goto skip;
}
memcpy(thread->coredump_regs, regs,
sizeof(struct x86_user_context));
ret = coredump(thread, regs, sig);
switch (ret) {
case -EBUSY:
kprintf("%s: INFO: coredump not performed, try ulimit -c <non-zero>\n",
__func__);
break;
case 0:
coredumped = 0x80;
break;
default:
kprintf("%s: ERROR: coredump failed (%d)\n",
__func__, ret);
break;
}
skip:
terminate(0, sig | coredumped);
break;
case SIGCHLD:
case SIGURG:
case SIGWINCH:
break;
default:
dkprintf("do_signal,default,terminate,sig=%d\n", sig);
terminate(0, sig);
break;
}
}
out:
return restart;
}
int
interrupt_from_user(void *regs0)
{
struct x86_user_context *regs = regs0;
return !(regs->gpr.rsp & 0x8000000000000000);
}
void save_syscall_return_value(int num, unsigned long rc)
{
/* Empty on x86 */
return;
}
unsigned long
do_kill(struct thread *thread, int pid, int tid, int sig, siginfo_t *info,
int ptracecont)
{
dkprintf("do_kill,pid=%d,tid=%d,sig=%d\n", pid, tid, sig);
struct thread *t;
struct process *tproc;
struct process *proc = thread? thread->proc: NULL;
struct thread *tthread = NULL;
int i;
__sigset_t mask;
mcs_rwlock_lock_t *savelock = NULL;
struct mcs_rwlock_node mcs_rw_node;
struct list_head *head = NULL;
int rc;
unsigned long irqstate = 0;
int doint;
int found = 0;
siginfo_t info0;
struct resource_set *rset = cpu_local_var(resource_set);
int hash;
struct thread_hash *thash = rset->thread_hash;
struct process_hash *phash = rset->process_hash;
struct mcs_rwlock_node lock;
struct mcs_rwlock_node updatelock;
struct sig_pending *pending = NULL;
if(sig > 64 || sig < 0)
return -EINVAL;
if(info == NULL){
memset(&info0, '\0', sizeof info0);
info = &info0;
info0.si_signo = sig;
info0.si_code = SI_KERNEL;
}
if(tid == -1 && pid <= 0){
struct process *p;
struct mcs_rwlock_node_irqsave slock;
int pgid = -pid;
int rc = -ESRCH;
int *pids = NULL;
int n = 0, nr_pids = 0;
int sendme = 0;
if(pid == 0){
if(thread == NULL || thread->proc->pid <= 0)
return -ESRCH;
pgid = thread->proc->pgid;
}
// Count nr of pids
for(i = 0; i < HASH_SIZE; i++){
mcs_rwlock_reader_lock(&phash->lock[i], &slock);
list_for_each_entry(p, &phash->list[i], hash_list){
if(pgid != 1 && p->pgid != pgid)
continue;
if(thread && p->pid == thread->proc->pid){
sendme = 1;
continue;
}
++nr_pids;
}
mcs_rwlock_reader_unlock(&phash->lock[i], &slock);
}
if (nr_pids) {
pids = kmalloc(sizeof(int) * nr_pids, IHK_MC_AP_NOWAIT);
if(!pids)
return -ENOMEM;
}
else {
if (sendme) {
goto sendme;
}
return rc;
}
// Collect pids and do the kill
for(i = 0; i < HASH_SIZE; i++){
if (n == nr_pids) {
break;
}
mcs_rwlock_reader_lock(&phash->lock[i], &slock);
list_for_each_entry(p, &phash->list[i], hash_list){
if(pgid != 1 && p->pgid != pgid)
continue;
if(thread && p->pid == thread->proc->pid){
sendme = 1;
continue;
}
pids[n] = p->pid;
n++;
if (n == nr_pids) {
break;
}
}
mcs_rwlock_reader_unlock(&phash->lock[i], &slock);
}
for(i = 0; i < n; i++)
rc = do_kill(thread, pids[i], -1, sig, info, ptracecont);
sendme:
if(sendme)
rc = do_kill(thread, thread->proc->pid, -1, sig, info, ptracecont);
kfree(pids);
return rc;
}
irqstate = cpu_disable_interrupt_save();
mask = __sigmask(sig);
if(tid == -1){
struct thread *tthread0 = NULL;
struct mcs_rwlock_node plock;
struct mcs_rwlock_node updatelock;
found = 0;
hash = process_hash(pid);
mcs_rwlock_reader_lock_noirq(&phash->lock[hash], &plock);
list_for_each_entry(tproc, &phash->list[hash], hash_list){
if(tproc->pid == pid){
found = 1;
break;
}
}
if(!found){
mcs_rwlock_reader_unlock_noirq(&phash->lock[hash], &plock);
cpu_restore_interrupt(irqstate);
return -ESRCH;
}
mcs_rwlock_reader_lock_noirq(&tproc->update_lock, &updatelock);
if(tproc->status == PS_EXITED || tproc->status == PS_ZOMBIE){
goto done;
}
mcs_rwlock_reader_lock_noirq(&tproc->threads_lock, &lock);
list_for_each_entry(t, &tproc->threads_list, siblings_list){
if(t->tid == pid || tthread == NULL){
if(t->status == PS_EXITED){
continue;
}
if(!(mask & t->sigmask.__val[0])){
tthread = t;
found = 1;
}
else if(tthread == NULL && tthread0 == NULL){
tthread0 = t;
found = 1;
}
}
}
if(tthread == NULL){
tthread = tthread0;
}
if(tthread && tthread->status != PS_EXITED){
savelock = &tthread->sigcommon->lock;
head = &tthread->sigcommon->sigpending;
hold_thread(tthread);
}
else
tthread = NULL;
mcs_rwlock_reader_unlock_noirq(&tproc->threads_lock, &lock);
done:
mcs_rwlock_reader_unlock_noirq(&tproc->update_lock, &updatelock);
mcs_rwlock_reader_unlock_noirq(&phash->lock[hash], &plock);
}
else{
found = 0;
hash = thread_hash(tid);
mcs_rwlock_reader_lock_noirq(&thash->lock[hash], &lock);
list_for_each_entry(tthread, &thash->list[hash], hash_list){
if(pid != -1 && tthread->proc->pid != pid){
continue;
}
if (tthread->tid == tid &&
tthread->status != PS_EXITED) {
found = 1;
break;
}
}
if(!found){
mcs_rwlock_reader_unlock_noirq(&thash->lock[hash], &lock);
cpu_restore_interrupt(irqstate);
return -ESRCH;
}
tproc = tthread->proc;
mcs_rwlock_reader_lock_noirq(&tproc->update_lock, &updatelock);
savelock = &tthread->sigpendinglock;
head = &tthread->sigpending;
mcs_rwlock_reader_lock_noirq(&tproc->threads_lock, &lock);
if (tthread->status != PS_EXITED &&
(sig == SIGKILL ||
(tproc->status != PS_EXITED && tproc->status != PS_ZOMBIE))) {
if ((rc = hold_thread(tthread))) {
kprintf("%s: ERROR hold_thread returned %d,tid=%d\n", __FUNCTION__, rc, tthread->tid);
tthread = NULL;
}
}
else{
tthread = NULL;
}
mcs_rwlock_reader_unlock_noirq(&tproc->threads_lock, &lock);
mcs_rwlock_reader_unlock_noirq(&tproc->update_lock, &updatelock);
mcs_rwlock_reader_unlock_noirq(&thash->lock[hash], &lock);
}
if(sig != SIGCONT &&
proc &&
proc->euid != 0 &&
proc->ruid != tproc->ruid &&
proc->euid != tproc->ruid &&
proc->ruid != tproc->suid &&
proc->euid != tproc->suid){
if(tthread)
release_thread(tthread);
cpu_restore_interrupt(irqstate);
return -EPERM;
}
if(sig == 0 || tthread == NULL || tthread->status == PS_EXITED){
if(tthread)
release_thread(tthread);
cpu_restore_interrupt(irqstate);
return 0;
}
/* Forward signal to Linux by interrupt_syscall mechanism */
if (tthread->uti_state == UTI_STATE_RUNNING_IN_LINUX) {
if (!tthread->proc->nohost) {
interrupt_syscall(tthread, sig);
}
release_thread(tthread);
return 0;
}
doint = 0;
mcs_rwlock_writer_lock_noirq(savelock, &mcs_rw_node);
rc = 0;
if (sig < 33) { // SIGRTMIN - SIGRTMAX
list_for_each_entry(pending, head, list) {
if (pending->sigmask.__val[0] == mask &&
pending->ptracecont == ptracecont)
break;
}
if (&pending->list == head)
pending = NULL;
}
if (pending == NULL) {
doint = 1;
pending = kmalloc(sizeof(struct sig_pending), IHK_MC_AP_NOWAIT);
if (!pending) {
rc = -ENOMEM;
}
else {
memset(pending, 0, sizeof(struct sig_pending));
pending->sigmask.__val[0] = mask;
memcpy(&pending->info, info, sizeof(siginfo_t));
pending->ptracecont = ptracecont;
if (sig == SIGKILL || sig == SIGSTOP)
list_add(&pending->list, head);
else
list_add_tail(&pending->list, head);
tthread->sigevent = 1;
}
}
mcs_rwlock_writer_unlock_noirq(savelock, &mcs_rw_node);
cpu_restore_interrupt(irqstate);
if (sig == SIGCONT || ptracecont == 1) {
/* Wake up the target only when stopped by SIGSTOP */
if (sched_wakeup_thread(tthread, PS_STOPPED) == 0) {
struct siginfo info;
tthread->proc->main_thread->signal_flags =
SIGNAL_STOP_CONTINUED;
tthread->proc->status = PS_RUNNING;
memset(&info, '\0', sizeof(info));
info.si_signo = SIGCHLD;
info.si_code = CLD_CONTINUED;
info._sifields._sigchld.si_pid = tthread->proc->pid;
info._sifields._sigchld.si_status = 0x0000ffff;
do_kill(tthread, tthread->proc->parent->pid, -1,
SIGCHLD, &info, 0);
tthread->proc->status = PS_RUNNING;
if (thread != tthread) {
ihk_mc_interrupt_cpu(tthread->cpu_id,
ihk_mc_get_vector(IHK_GV_IKC));
}
doint = 0;
}
}
if (doint && !(mask & tthread->sigmask.__val[0])) {
int status = tthread->status;
if (thread != tthread) {
dkprintf("do_kill,ipi,pid=%d,cpu_id=%d\n",
tproc->pid, tthread->cpu_id);
ihk_mc_interrupt_cpu(tthread->cpu_id,
ihk_mc_get_vector(IHK_GV_IKC));
}
if (status != PS_RUNNING) {
if(sig == SIGKILL){
/* Wake up the target only when stopped by ptrace-reporting */
sched_wakeup_thread(tthread, PS_TRACED | PS_STOPPED | PS_INTERRUPTIBLE);
}
else {
sched_wakeup_thread(tthread, PS_INTERRUPTIBLE);
}
}
}
release_thread(tthread);
return rc;
}
void
set_signal(int sig, void *regs0, siginfo_t *info)
{
struct x86_user_context *regs = regs0;
struct thread *thread = cpu_local_var(current);
if (thread == NULL || thread->proc->pid == 0)
return;
if (!interrupt_from_user(regs)) {
ihk_mc_debug_show_interrupt_context(regs);
panic("panic: kernel mode signal");
}
if ((__sigmask(sig) & thread->sigmask.__val[0])) {
coredump(thread, regs0, sig);
terminate(0, sig | 0x80);
}
do_kill(thread, thread->proc->pid, thread->tid, sig, info, 0);
}
SYSCALL_DECLARE(mmap)
{
const unsigned int supported_flags = 0
| MAP_SHARED // 01
| MAP_PRIVATE // 02
| MAP_FIXED // 10
| MAP_ANONYMOUS // 20
| MAP_LOCKED // 2000
| MAP_POPULATE // 8000
| MAP_HUGETLB // 00040000
| (0x3FU << MAP_HUGE_SHIFT) // FC000000
;
const int ignored_flags = 0
#ifdef USE_NOCACHE_MMAP
| MAP_32BIT // 40
#endif /* USE_NOCACHE_MMAP */
| MAP_DENYWRITE // 0800
| MAP_NORESERVE // 4000
| MAP_STACK // 00020000
;
const int error_flags = 0
#ifndef USE_NOCACHE_MMAP
| MAP_32BIT // 40
#endif /* ndef USE_NOCACHE_MMAP */
| MAP_GROWSDOWN // 0100
| MAP_EXECUTABLE // 1000
| MAP_NONBLOCK // 00010000
;
const uintptr_t addr0 = ihk_mc_syscall_arg0(ctx);
size_t len0 = ihk_mc_syscall_arg1(ctx);
const int prot = ihk_mc_syscall_arg2(ctx);
const int flags0 = ihk_mc_syscall_arg3(ctx);
const int fd = ihk_mc_syscall_arg4(ctx);
const off_t off0 = ihk_mc_syscall_arg5(ctx);
struct thread *thread = cpu_local_var(current);
struct vm_regions *region = &thread->vm->region;
int error;
uintptr_t addr = 0;
size_t len;
int flags = flags0;
size_t pgsize;
dkprintf("sys_mmap(%lx,%lx,%x,%x,%d,%lx)\n",
addr0, len0, prot, flags0, fd, off0);
/* check constants for flags */
if (1) {
int dup_flags;
dup_flags = (supported_flags & ignored_flags);
dup_flags |= (ignored_flags & error_flags);
dup_flags |= (error_flags & supported_flags);
if (dup_flags) {
ekprintf("sys_mmap:duplicate flags: %lx\n", dup_flags);
ekprintf("s-flags: %08x\n", supported_flags);
ekprintf("i-flags: %08x\n", ignored_flags);
ekprintf("e-flags: %08x\n", error_flags);
panic("sys_mmap:duplicate flags\n");
/* no return */
}
}
/* check arguments */
pgsize = PAGE_SIZE;
if (flags & MAP_HUGETLB) {
/* OpenMPI expects -EINVAL when trying to map
* /dev/shm/ file with MAP_SHARED | MAP_HUGETLB
*/
if (!(flags & MAP_ANONYMOUS)) {
error = -EINVAL;
goto out;
}
switch (flags & (0x3F << MAP_HUGE_SHIFT)) {
case 0:
/* default hugepage size */
flags |= ihk_mc_get_linux_default_huge_page_shift() <<
MAP_HUGE_SHIFT;
break;
case MAP_HUGE_2MB:
case MAP_HUGE_1GB:
break;
default:
ekprintf("sys_mmap(%lx,%lx,%x,%x,%x,%lx):"
"not supported page size.\n",
addr0, len0, prot, flags0, fd, off0);
error = -EINVAL;
goto out;
}
pgsize = (size_t)1 << ((flags >> MAP_HUGE_SHIFT) & 0x3F);
/* Round-up map length by pagesize */
len0 = ALIGN(len0, pgsize);
if (rusage_check_overmap(len0,
(flags >> MAP_HUGE_SHIFT) & 0x3F)) {
error = -ENOMEM;
goto out;
}
}
#define VALID_DUMMY_ADDR ((region->user_start + PTL3_SIZE - 1) & ~(PTL3_SIZE - 1))
addr = addr0;
len = (len0 + pgsize - 1) & ~(pgsize - 1);
recheck:
if ((addr & (pgsize - 1))
|| (len == 0)
|| !(flags & (MAP_SHARED | MAP_PRIVATE))
|| ((flags & MAP_SHARED) && (flags & MAP_PRIVATE))
|| (off0 & (pgsize - 1))) {
if (!(flags & MAP_FIXED) && addr != VALID_DUMMY_ADDR) {
addr = VALID_DUMMY_ADDR;
goto recheck;
}
ekprintf("sys_mmap(%lx,%lx,%x,%x,%x,%lx):EINVAL\n",
addr0, len0, prot, flags0, fd, off0);
error = -EINVAL;
goto out;
}
if (addr < region->user_start
|| region->user_end <= addr
|| len > (region->user_end - region->user_start)) {
if (!(flags & MAP_FIXED) && addr != VALID_DUMMY_ADDR) {
addr = VALID_DUMMY_ADDR;
goto recheck;
}
ekprintf("sys_mmap(%lx,%lx,%x,%x,%x,%lx):ENOMEM\n",
addr0, len0, prot, flags0, fd, off0);
error = -ENOMEM;
goto out;
}
/* check not supported requests */
if ((flags & error_flags)
|| (flags & ~(supported_flags | ignored_flags))) {
ekprintf("sys_mmap(%lx,%lx,%x,%x,%x,%lx):unknown flags %x\n",
addr0, len0, prot, flags0, fd, off0,
(flags & ~(supported_flags | ignored_flags)));
error = -EINVAL;
goto out;
}
addr = do_mmap(addr, len, prot, flags, fd, off0, 0, NULL);
error = 0;
out:
dkprintf("sys_mmap(%lx,%lx,%x,%x,%d,%lx): %ld %lx\n",
addr0, len0, prot, flags0, fd, off0, error, addr);
return (!error)? addr: error;
}
SYSCALL_DECLARE(clone)
{
struct process *proc = cpu_local_var(current)->proc;
struct mcs_rwlock_node_irqsave lock_dump;
unsigned long ret;
/* mutex coredump */
mcs_rwlock_reader_lock(&proc->coredump_lock, &lock_dump);
ret = do_fork((int)ihk_mc_syscall_arg0(ctx), ihk_mc_syscall_arg1(ctx),
ihk_mc_syscall_arg2(ctx), ihk_mc_syscall_arg3(ctx),
ihk_mc_syscall_arg4(ctx), ihk_mc_syscall_pc(ctx),
ihk_mc_syscall_sp(ctx));
mcs_rwlock_reader_unlock(&proc->coredump_lock, &lock_dump);
return ret;
}
SYSCALL_DECLARE(fork)
{
return do_fork(SIGCHLD, 0, 0, 0, 0, ihk_mc_syscall_pc(ctx), ihk_mc_syscall_sp(ctx));
}
SYSCALL_DECLARE(vfork)
{
return do_fork(CLONE_VFORK|SIGCHLD, 0, 0, 0, 0, ihk_mc_syscall_pc(ctx), ihk_mc_syscall_sp(ctx));
}
SYSCALL_DECLARE(shmget)
{
const key_t key = ihk_mc_syscall_arg0(ctx);
const size_t size = ihk_mc_syscall_arg1(ctx);
const int shmflg0 = ihk_mc_syscall_arg2(ctx);
int shmid = -EINVAL;
int error;
int shmflg = shmflg0;
dkprintf("shmget(%#lx,%#lx,%#x)\n", key, size, shmflg0);
if (shmflg & SHM_HUGETLB) {
int hugeshift = shmflg & (0x3F << SHM_HUGE_SHIFT);
if (hugeshift == 0) {
/* default hugepage size */
shmflg |= ihk_mc_get_linux_default_huge_page_shift() <<
MAP_HUGE_SHIFT;
} else if (hugeshift == SHM_HUGE_2MB ||
hugeshift == SHM_HUGE_1GB) {
/*nop*/
} else {
error = -EINVAL;
goto out;
}
}
shmid = do_shmget(key, size, shmflg);
error = 0;
out:
dkprintf("shmget(%#lx,%#lx,%#x): %d %d\n", key, size, shmflg0, error, shmid);
return (error)?: shmid;
} /* sys_shmget() */
long do_arch_prctl(unsigned long code, unsigned long address)
{
int err = 0;
enum ihk_asr_type type;
switch (code) {
case ARCH_SET_FS:
case ARCH_GET_FS:
type = IHK_ASR_X86_FS;
break;
case ARCH_GET_GS:
type = IHK_ASR_X86_GS;
break;
case ARCH_SET_GS:
return -ENOTSUPP;
default:
return -EINVAL;
}
switch (code) {
case ARCH_SET_FS:
dkprintf("[%d] arch_prctl: ARCH_SET_FS: 0x%lX\n",
ihk_mc_get_processor_id(), address);
cpu_local_var(current)->tlsblock_base = address;
err = ihk_mc_arch_set_special_register(type, address);
break;
case ARCH_SET_GS:
err = ihk_mc_arch_set_special_register(type, address);
break;
case ARCH_GET_FS:
case ARCH_GET_GS:
err = ihk_mc_arch_get_special_register(type,
(unsigned long*)address);
break;
default:
break;
}
return err;
}
SYSCALL_DECLARE(arch_prctl)
{
return do_arch_prctl(ihk_mc_syscall_arg0(ctx),
ihk_mc_syscall_arg1(ctx));
}
SYSCALL_DECLARE(time)
{
return time();
}
static int vdso_get_vdso_info(void)
{
int error;
struct ikc_scd_packet packet;
struct ihk_ikc_channel_desc *ch = cpu_local_var(ikc2linux);
dkprintf("vdso_get_vdso_info()\n");
memset(&vdso, '\0', sizeof vdso);
vdso.busy = 1;
vdso.vdso_npages = 0;
packet.msg = SCD_MSG_GET_VDSO_INFO;
packet.arg = virt_to_phys(&vdso);
error = ihk_ikc_send(ch, &packet, 0);
if (error) {
ekprintf("vdso_get_vdso_info: ihk_ikc_send failed. %d\n", error);
goto out;
}
while (vdso.busy) {
cpu_pause();
}
error = 0;
out:
if (error) {
vdso.vdso_npages = 0;
}
dkprintf("vdso_get_vdso_info(): %d\n", error);
return error;
} /* vdso_get_vdso_info() */
static int vdso_map_global_pages(void)
{
int error;
enum ihk_mc_pt_attribute attr;
int i;
void *virt;
intptr_t phys;
dkprintf("vdso_map_global_pages()\n");
if (vdso.vvar_virt && vdso.vvar_is_global) {
attr = PTATTR_ACTIVE | PTATTR_USER | PTATTR_NO_EXECUTE;
error = ihk_mc_pt_set_page(NULL, vdso.vvar_virt, vdso.vvar_phys, attr);
if (error) {
ekprintf("vdso_map_global_pages: mapping vvar failed. %d\n", error);
goto out;
}
}
if (vdso.hpet_virt && vdso.hpet_is_global) {
attr = PTATTR_ACTIVE | PTATTR_USER | PTATTR_NO_EXECUTE | PTATTR_UNCACHABLE;
error = ihk_mc_pt_set_page(NULL, vdso.hpet_virt, vdso.hpet_phys, attr);
if (error) {
ekprintf("vdso_map_global_pages: mapping hpet failed. %d\n", error);
goto out;
}
}
if (vdso.pvti_virt && vdso.pvti_is_global) {
error = arch_setup_pvclock();
if (error) {
ekprintf("vdso_map_global_pages: arch_setup_pvclock failed. %d\n", error);
goto out;
}
attr = PTATTR_ACTIVE | PTATTR_USER | PTATTR_NO_EXECUTE;
for (i = 0; i < pvti_npages; ++i) {
virt = vdso.pvti_virt - (i * PAGE_SIZE);
phys = virt_to_phys(pvti + (i * PAGE_SIZE));
error = ihk_mc_pt_set_page(NULL, virt, phys, attr);
if (error) {
ekprintf("vdso_map_global_pages: mapping pvti failed. %d\n", error);
goto out;
}
}
}
error = 0;
out:
dkprintf("vdso_map_global_pages(): %d\n", error);
return error;
} /* vdso_map_global_pages() */
static void vdso_calc_container_size(void)
{
intptr_t start, end;
intptr_t s, e;
dkprintf("vdso_calc_container_size()\n");
start = 0;
end = vdso.vdso_npages * PAGE_SIZE;
if (vdso.vvar_virt && !vdso.vvar_is_global) {
s = (intptr_t)vdso.vvar_virt;
e = s + PAGE_SIZE;
if (s < start) {
start = s;
}
if (end < e) {
end = e;
}
}
if (vdso.hpet_virt && !vdso.hpet_is_global) {
s = (intptr_t)vdso.hpet_virt;
e = s + PAGE_SIZE;
if (s < start) {
start = s;
}
if (end < e) {
end = e;
}
}
if (vdso.pvti_virt && !vdso.pvti_is_global) {
s = (intptr_t)vdso.pvti_virt;
e = s + PAGE_SIZE;
if (s < start) {
start = s;
}
if (end < e) {
end = e;
}
}
vdso_offset = 0;
if (start < 0) {
vdso_offset = -start;
}
container_size = end - start;
dkprintf("vdso_calc_container_size(): %#lx %#lx\n", container_size, vdso_offset);
return;
} /* vdso_calc_container_size() */
int arch_setup_vdso()
{
int error;
dkprintf("arch_setup_vdso()\n");
error = vdso_get_vdso_info();
if (error) {
ekprintf("arch_setup_vdso: vdso_get_vdso_info failed. %d\n", error);
goto out;
}
if (vdso.vdso_npages <= 0) {
error = 0;
goto out;
}
error = vdso_map_global_pages();
if (error) {
ekprintf("arch_setup_vdso: vdso_map_global_pages failed. %d\n", error);
goto out;
}
vdso_calc_container_size();
error = 0;
out:
if (container_size > 0) {
kprintf("vdso is enabled\n");
}
else {
kprintf("vdso is disabled\n");
}
dkprintf("arch_setup_vdso(): %d\n", error);
return error;
} /* arch_setup_vdso() */
int arch_map_vdso(struct process_vm *vm)
{
struct address_space *as = vm->address_space;
page_table_t pt = as->page_table;
void *container;
void *s;
void *e;
unsigned long vrflags;
enum ihk_mc_pt_attribute attr;
int error;
int i;
struct vm_range *range;
dkprintf("arch_map_vdso()\n");
if (container_size <= 0) {
/* vdso pages are not available */
dkprintf("arch_map_vdso(): not available\n");
error = 0;
goto out;
}
container = (void *)vm->region.map_end;
vm->region.map_end += container_size;
s = container + vdso_offset;
e = s + (vdso.vdso_npages * PAGE_SIZE);
vrflags = VR_REMOTE;
vrflags |= VR_PROT_READ | VR_PROT_EXEC;
vrflags |= VRFLAG_PROT_TO_MAXPROT(vrflags);
error = add_process_memory_range(vm, (intptr_t)s, (intptr_t)e,
NOPHYS, vrflags, NULL, 0, PAGE_SHIFT, NULL, &range);
if (error) {
ekprintf("ERROR: adding memory range for vdso. %d\n", error);
goto out;
}
vm->vdso_addr = s;
attr = PTATTR_ACTIVE | PTATTR_USER;
for (i = 0; i < vdso.vdso_npages; ++i) {
s = vm->vdso_addr + (i * PAGE_SIZE);
e = s + PAGE_SIZE;
error = ihk_mc_pt_set_range(pt, vm, s, e,
vdso.vdso_physlist[i], attr, 0, range, 0);
if (error) {
ekprintf("ihk_mc_pt_set_range failed. %d\n", error);
goto out;
}
}
if (container_size > (vdso.vdso_npages * PAGE_SIZE)) {
if (vdso_offset) {
s = container;
e = container + vdso_offset;
}
else {
s = container + (vdso.vdso_npages * PAGE_SIZE);
e = container + container_size;
}
vrflags = VR_REMOTE;
vrflags |= VR_PROT_READ;
vrflags |= VRFLAG_PROT_TO_MAXPROT(vrflags);
error = add_process_memory_range(vm, (intptr_t)s, (intptr_t)e,
NOPHYS, vrflags, NULL, 0,
PAGE_SHIFT, NULL, &range);
if (error) {
ekprintf("ERROR: adding memory range for vvar. %d\n", error);
goto out;
}
vm->vvar_addr = s;
if (vdso.vvar_virt && !vdso.vvar_is_global) {
s = vm->vdso_addr + (intptr_t)vdso.vvar_virt;
e = s + PAGE_SIZE;
attr = PTATTR_ACTIVE | PTATTR_USER | PTATTR_NO_EXECUTE;
error = ihk_mc_pt_set_range(pt, vm, s, e,
vdso.vvar_phys, attr, 0, range, 0);
if (error) {
ekprintf("ihk_mc_pt_set_range failed. %d\n", error);
goto out;
}
}
if (vdso.hpet_virt && !vdso.hpet_is_global) {
s = vm->vdso_addr + (intptr_t)vdso.hpet_virt;
e = s + PAGE_SIZE;
attr = PTATTR_ACTIVE | PTATTR_USER | PTATTR_NO_EXECUTE | PTATTR_UNCACHABLE;
error = ihk_mc_pt_set_range(pt, vm, s, e,
vdso.hpet_phys, attr, 0, range, 0);
if (error) {
ekprintf("ihk_mc_pt_set_range failed. %d\n", error);
goto out;
}
}
if (vdso.pvti_virt && !vdso.pvti_is_global) {
s = vm->vdso_addr + (intptr_t)vdso.pvti_virt;
e = s + PAGE_SIZE;
attr = PTATTR_ACTIVE | PTATTR_USER | PTATTR_NO_EXECUTE;
error = ihk_mc_pt_set_range(pt, vm, s, e,
vdso.pvti_phys, attr, 0, range, 0);
if (error) {
ekprintf("ihk_mc_pt_set_range failed. %d\n", error);
goto out;
}
}
}
error = 0;
out:
dkprintf("arch_map_vdso(): %d %p\n", error, vm->vdso_addr);
return error;
} /* arch_map_vdso() */
void
save_uctx(void *uctx, struct x86_user_context *regs)
{
struct trans_uctx {
volatile int cond;
int fregsize;
unsigned long rax;
unsigned long rbx;
unsigned long rcx;
unsigned long rdx;
unsigned long rsi;
unsigned long rdi;
unsigned long rbp;
unsigned long r8;
unsigned long r9;
unsigned long r10;
unsigned long r11;
unsigned long r12;
unsigned long r13;
unsigned long r14;
unsigned long r15;
unsigned long rflags;
unsigned long rip;
unsigned long rsp;
unsigned long fs;
} *ctx = uctx;
if (!regs) {
asm ("movq %%gs:(%1),%0" : "=r"(regs) :
"r"(offsetof(struct x86_cpu_local_variables, tss.rsp0)));
regs--;
}
ctx->cond = 0;
ctx->rax = regs->gpr.rax;
ctx->rbx = regs->gpr.rbx;
ctx->rcx = regs->gpr.rcx;
ctx->rdx = regs->gpr.rdx;
ctx->rsi = regs->gpr.rsi;
ctx->rdi = regs->gpr.rdi;
ctx->rbp = regs->gpr.rbp;
ctx->r8 = regs->gpr.r8;
ctx->r9 = regs->gpr.r9;
ctx->r10 = regs->gpr.r10;
ctx->r11 = regs->gpr.r11;
ctx->r12 = regs->gpr.r12;
ctx->r13 = regs->gpr.r13;
ctx->r14 = regs->gpr.r14;
ctx->r15 = regs->gpr.r15;
ctx->rflags = regs->gpr.rflags;
ctx->rsp = regs->gpr.rsp;
ctx->rip = regs->gpr.rip;
ihk_mc_arch_get_special_register(IHK_ASR_X86_FS, &ctx->fs);
ctx->fregsize = 0;
}
int do_process_vm_read_writev(int pid,
const struct iovec *local_iov,
unsigned long liovcnt,
const struct iovec *remote_iov,
unsigned long riovcnt,
unsigned long flags,
int op)
{
int ret = -EINVAL;
int li, ri;
int pli, pri;
off_t loff, roff;
size_t llen = 0, rlen = 0;
size_t copied = 0;
size_t to_copy;
struct thread *lthread = cpu_local_var(current);
struct process *rproc;
struct process *lproc = lthread->proc;
struct process_vm *rvm = NULL;
unsigned long rphys;
unsigned long rpage_left;
unsigned long psize;
void *rva;
struct vm_range *range;
struct mcs_rwlock_node_irqsave lock;
struct mcs_rwlock_node update_lock;
/* Sanity checks */
if (flags) {
return -EINVAL;
}
if (liovcnt > IOV_MAX || riovcnt > IOV_MAX) {
return -EINVAL;
}
/* Check if parameters are okay */
ihk_rwspinlock_read_lock_noirq(&lthread->vm->memory_range_lock);
range = lookup_process_memory_range(lthread->vm,
(uintptr_t)local_iov,
(uintptr_t)(local_iov + liovcnt));
if (!range) {
ret = -EFAULT;
goto arg_out;
}
range = lookup_process_memory_range(lthread->vm,
(uintptr_t)remote_iov,
(uintptr_t)(remote_iov + riovcnt));
if (!range) {
ret = -EFAULT;
goto arg_out;
}
ret = 0;
arg_out:
ihk_rwspinlock_read_unlock_noirq(&lthread->vm->memory_range_lock);
if (ret != 0) {
goto out;
}
for (li = 0; li < liovcnt; ++li) {
llen += local_iov[li].iov_len;
dkprintf("local_iov[%d].iov_base: 0x%lx, len: %lu\n",
li, local_iov[li].iov_base, local_iov[li].iov_len);
}
for (ri = 0; ri < riovcnt; ++ri) {
rlen += remote_iov[ri].iov_len;
dkprintf("remote_iov[%d].iov_base: 0x%lx, len: %lu\n",
ri, remote_iov[ri].iov_base, remote_iov[ri].iov_len);
}
if (llen != rlen) {
return -EINVAL;
}
/* Find remote process */
rproc = find_process(pid, &lock);
if (!rproc) {
ret = -ESRCH;
goto out;
}
mcs_rwlock_reader_lock_noirq(&rproc->update_lock, &update_lock);
if(rproc->status == PS_EXITED ||
rproc->status == PS_ZOMBIE){
mcs_rwlock_reader_unlock_noirq(&rproc->update_lock, &update_lock);
process_unlock(rproc, &lock);
ret = -ESRCH;
goto out;
}
rvm = rproc->vm;
hold_process_vm(rvm);
mcs_rwlock_reader_unlock_noirq(&rproc->update_lock, &update_lock);
process_unlock(rproc, &lock);
if (lproc->euid != 0 &&
(lproc->ruid != rproc->ruid ||
lproc->ruid != rproc->euid ||
lproc->ruid != rproc->suid ||
lproc->rgid != rproc->rgid ||
lproc->rgid != rproc->egid ||
lproc->rgid != rproc->sgid)) {
ret = -EPERM;
goto out;
}
dkprintf("pid %d found, doing %s: liovcnt: %d, riovcnt: %d \n", pid,
(op == PROCESS_VM_READ) ? "PROCESS_VM_READ" : "PROCESS_VM_WRITE",
liovcnt, riovcnt);
pli = pri = -1; /* Previous indeces in iovecs */
li = ri = 0; /* Current indeces in iovecs */
loff = roff = 0; /* Offsets in current iovec */
/* Now iterate and do the copy */
while (copied < llen) {
int faulted = 0;
/* New local vector? */
if (pli != li) {
struct vm_range *range;
ihk_rwspinlock_read_lock_noirq(&lthread->vm->memory_range_lock);
/* Is base valid? */
range = lookup_process_memory_range(lthread->vm,
(uintptr_t)local_iov[li].iov_base,
(uintptr_t)(local_iov[li].iov_base + 1));
if (!range) {
ret = -EFAULT;
goto pli_out;
}
/* Is range valid? */
range = lookup_process_memory_range(lthread->vm,
(uintptr_t)local_iov[li].iov_base,
(uintptr_t)(local_iov[li].iov_base + local_iov[li].iov_len));
if (range == NULL) {
ret = -EINVAL;
goto pli_out;
}
if (!(range->flag & ((op == PROCESS_VM_READ) ?
VR_PROT_WRITE : VR_PROT_READ))) {
ret = -EFAULT;
goto pli_out;
}
ret = 0;
pli_out:
ihk_rwspinlock_read_unlock_noirq(&lthread->vm->memory_range_lock);
if (ret != 0) {
goto out;
}
pli = li;
}
/* New remote vector? */
if (pri != ri) {
struct vm_range *range;
ihk_rwspinlock_read_lock_noirq(&rvm->memory_range_lock);
/* Is base valid? */
range = lookup_process_memory_range(rvm,
(uintptr_t)remote_iov[li].iov_base,
(uintptr_t)(remote_iov[li].iov_base + 1));
if (range == NULL) {
ret = -EFAULT;
goto pri_out;
}
/* Is range valid? */
range = lookup_process_memory_range(rvm,
(uintptr_t)remote_iov[li].iov_base,
(uintptr_t)(remote_iov[li].iov_base + remote_iov[li].iov_len));
if (range == NULL) {
ret = -EINVAL;
goto pri_out;
}
if (!(range->flag & ((op == PROCESS_VM_READ) ?
VR_PROT_READ : VR_PROT_WRITE))) {
ret = -EFAULT;
goto pri_out;
}
ret = 0;
pri_out:
ihk_rwspinlock_read_unlock_noirq(&rvm->memory_range_lock);
if (ret != 0) {
goto out;
}
pri = ri;
}
/* Figure out how much we can copy at most in this iteration */
to_copy = (local_iov[li].iov_len - loff);
if ((remote_iov[ri].iov_len - roff) < to_copy) {
to_copy = remote_iov[ri].iov_len - roff;
}
retry_lookup:
/* TODO: remember page and do this only if necessary */
ret = ihk_mc_pt_virt_to_phys_size(rvm->address_space->page_table,
remote_iov[ri].iov_base + roff, &rphys, &psize);
if (ret) {
uint64_t reason = PF_POPULATE | PF_WRITE | PF_USER;
void *addr;
if (faulted) {
ret = -EFAULT;
goto out;
}
/* Fault in pages */
for (addr = (void *)
(((unsigned long)remote_iov[ri].iov_base + roff)
& PAGE_MASK);
addr < (remote_iov[ri].iov_base + roff + to_copy);
addr += PAGE_SIZE) {
ret = page_fault_process_vm(rvm, addr, reason);
if (ret) {
ret = -EFAULT;
goto out;
}
}
faulted = 1;
goto retry_lookup;
}
rpage_left = ((((unsigned long)remote_iov[ri].iov_base + roff +
psize) & ~(psize - 1)) -
((unsigned long)remote_iov[ri].iov_base + roff));
if (rpage_left < to_copy) {
to_copy = rpage_left;
}
rva = phys_to_virt(rphys);
fast_memcpy(
(op == PROCESS_VM_READ) ? local_iov[li].iov_base + loff : rva,
(op == PROCESS_VM_READ) ? rva : local_iov[li].iov_base + loff,
to_copy);
copied += to_copy;
dkprintf("local_iov[%d]: 0x%lx %s remote_iov[%d]: 0x%lx, %lu copied, psize: %lu, rpage_left: %lu\n",
li, local_iov[li].iov_base + loff,
(op == PROCESS_VM_READ) ? "<-" : "->",
ri, remote_iov[ri].iov_base + roff, to_copy,
psize, rpage_left);
loff += to_copy;
roff += to_copy;
if (loff == local_iov[li].iov_len) {
li++;
loff = 0;
}
if (roff == remote_iov[ri].iov_len) {
ri++;
roff = 0;
}
}
release_process_vm(rvm);
return copied;
out:
if(rvm)
release_process_vm(rvm);
return ret;
}
int move_pages_smp_handler(int cpu_index, int nr_cpus, void *arg)
{
int i, i_s, i_e, phase = 1;
struct move_pages_smp_req *mpsr =
(struct move_pages_smp_req *)arg;
struct process_vm *vm = mpsr->proc->vm;
int count = mpsr->count;
struct page_table *save_pt;
extern struct page_table *get_init_page_table(void);
i_s = (count / nr_cpus) * cpu_index;
i_e = i_s + (count / nr_cpus);
if (cpu_index == (nr_cpus - 1)) {
i_e = count;
}
/* Load target process' PT so that we can access user-space */
save_pt = cpu_local_var(current) == &cpu_local_var(idle) ?
get_init_page_table() :
cpu_local_var(current)->vm->address_space->page_table;
if (save_pt != vm->address_space->page_table) {
ihk_mc_load_page_table(vm->address_space->page_table);
}
else {
save_pt = NULL;
}
if (nr_cpus == 1) {
switch (cpu_index) {
case 0:
memcpy(mpsr->virt_addr, mpsr->user_virt_addr,
sizeof(void *) * count);
if (mpsr->user_nodes) {
memcpy(mpsr->nodes, mpsr->user_nodes,
sizeof(int) * count);
}
memset(mpsr->ptep, 0, sizeof(pte_t) * count);
memset(mpsr->status, 0, sizeof(int) * count);
memset(mpsr->nr_pages, 0, sizeof(int) * count);
memset(mpsr->dst_phys, 0,
sizeof(unsigned long) * count);
mpsr->nodes_ready = 1;
break;
default:
break;
}
}
else if (nr_cpus > 1 && nr_cpus < 4) {
switch (cpu_index) {
case 0:
memcpy(mpsr->virt_addr, mpsr->user_virt_addr,
sizeof(void *) * count);
if (mpsr->user_nodes) {
memcpy(mpsr->nodes, mpsr->user_nodes,
sizeof(int) * count);
}
mpsr->nodes_ready = 1;
break;
case 1:
memset(mpsr->ptep, 0, sizeof(pte_t) * count);
memset(mpsr->status, 0, sizeof(int) * count);
memset(mpsr->nr_pages, 0, sizeof(int) * count);
memset(mpsr->dst_phys, 0,
sizeof(unsigned long) * count);
break;
default:
break;
}
}
else if (nr_cpus >= 4 && nr_cpus < 7) {
switch (cpu_index) {
case 0:
memcpy(mpsr->virt_addr, mpsr->user_virt_addr,
sizeof(void *) * count);
break;
case 1:
if (mpsr->user_nodes) {
memcpy(mpsr->nodes, mpsr->user_nodes,
sizeof(int) * count);
}
mpsr->nodes_ready = 1;
break;
case 2:
memset(mpsr->ptep, 0, sizeof(pte_t) * count);
memset(mpsr->status, 0, sizeof(int) * count);
break;
case 3:
memset(mpsr->nr_pages, 0, sizeof(int) * count);
memset(mpsr->dst_phys, 0,
sizeof(unsigned long) * count);
break;
default:
break;
}
}
else {
switch (cpu_index) {
case 0:
memcpy(mpsr->virt_addr, mpsr->user_virt_addr,
sizeof(void *) * (count / 2));
break;
case 1:
memcpy(mpsr->virt_addr + (count / 2),
mpsr->user_virt_addr + (count / 2),
sizeof(void *) * (count / 2));
break;
case 2:
if (mpsr->user_nodes) {
memcpy(mpsr->nodes, mpsr->user_nodes,
sizeof(int) * count);
}
mpsr->nodes_ready = 1;
break;
case 3:
memset(mpsr->ptep, 0, sizeof(pte_t) * count);
break;
case 4:
memset(mpsr->status, 0, sizeof(int) * count);
break;
case 5:
memset(mpsr->nr_pages, 0, sizeof(int) * count);
break;
case 6:
memset(mpsr->dst_phys, 0,
sizeof(unsigned long) * count);
break;
default:
break;
}
}
while (!(volatile int)mpsr->nodes_ready) {
cpu_pause();
}
/* NUMA verification in parallel */
if (mpsr->user_nodes) {
for (i = i_s; i < i_e; i++) {
if (mpsr->nodes[i] < 0 ||
mpsr->nodes[i] >= ihk_mc_get_nr_numa_nodes() ||
!test_bit(mpsr->nodes[i],
mpsr->proc->vm->numa_mask)) {
mpsr->phase_ret = -EINVAL;
break;
}
}
}
/* Barrier */
ihk_atomic_inc(&mpsr->phase_done);
while (ihk_atomic_read(&mpsr->phase_done) <
(phase * nr_cpus)) {
cpu_pause();
}
if (mpsr->phase_ret != 0) {
goto out;
}
dkprintf("%s: phase %d done\n", __FUNCTION__, phase);
++phase;
/* PTE lookup in parallel */
for (i = i_s; i < i_e; i++) {
void *phys;
size_t pgsize;
int p2align;
/*
* XXX: No page structures for anonymous mappings.
* Look up physical addresses by scanning page tables.
*/
mpsr->ptep[i] = ihk_mc_pt_lookup_pte(vm->address_space->page_table,
(void *)mpsr->virt_addr[i], 0, &phys, &pgsize, &p2align);
/* PTE valid? */
if (!mpsr->ptep[i] || !pte_is_present(mpsr->ptep[i])) {
mpsr->status[i] = -ENOENT;
mpsr->ptep[i] = NULL;
continue;
}
/* PTE is file? */
if (pte_is_fileoff(mpsr->ptep[i], PAGE_SIZE)) {
mpsr->status[i] = -EINVAL;
mpsr->ptep[i] = NULL;
continue;
}
dkprintf("%s: virt 0x%lx:%lu requested to be moved to node %d\n",
__FUNCTION__, mpsr->virt_addr[i], pgsize, mpsr->nodes[i]);
/* Large page? */
if (pgsize > PAGE_SIZE) {
int nr_sub_pages = (pgsize / PAGE_SIZE);
int j;
if (i + nr_sub_pages > count) {
kprintf("%s: ERROR: page at index %d exceeds the region\n",
__FUNCTION__, i);
mpsr->status[i] = -EINVAL;
break;
}
/* Is it contiguous across nr_sub_pages and all
* requested to be moved to the same target node? */
for (j = 0; j < nr_sub_pages; ++j) {
if (mpsr->virt_addr[i + j] !=
(mpsr->virt_addr[i] + (j * PAGE_SIZE)) ||
mpsr->nodes[i] != mpsr->nodes[i + j]) {
kprintf("%s: ERROR: virt address or node at index %d"
" is inconsistent\n",
__FUNCTION__, i + j);
mpsr->phase_ret = -EINVAL;
goto pte_out;
}
}
mpsr->nr_pages[i] = nr_sub_pages;
i += (nr_sub_pages - 1);
}
else {
mpsr->nr_pages[i] = 1;
}
}
pte_out:
/* Barrier */
ihk_atomic_inc(&mpsr->phase_done);
while (ihk_atomic_read(&mpsr->phase_done) <
(phase * nr_cpus)) {
cpu_pause();
}
if (mpsr->phase_ret != 0) {
goto out;
}
dkprintf("%s: phase %d done\n", __FUNCTION__, phase);
++phase;
/*
* When nodes array is NULL, move_pages doesn't move any pages,
* instead will return the node where each page
* currently resides by status array.
*/
if (!mpsr->user_nodes) {
/* get nid in parallel */
for (i = i_s; i < i_e; i++) {
if (mpsr->status[i] < 0) {
continue;
}
mpsr->status[i] = phys_to_nid(
pte_get_phys(mpsr->ptep[i]));
}
mpsr->phase_ret = 0;
goto out; // return node information
}
/* Processing of move pages */
if (cpu_index == 0) {
/* Allocate new pages on target NUMA nodes */
for (i = 0; i < count; i++) {
int pgalign = 0;
int j;
void *dst;
if (!mpsr->ptep[i] || mpsr->status[i] < 0 || !mpsr->nr_pages[i])
continue;
/* TODO: store pgalign info in an array as well? */
if (mpsr->nr_pages[i] > 1) {
if (mpsr->nr_pages[i] * PAGE_SIZE == PTL2_SIZE)
pgalign = PTL2_SHIFT - PTL1_SHIFT;
}
dst = ihk_mc_alloc_aligned_pages_node(mpsr->nr_pages[i],
pgalign, IHK_MC_AP_USER, mpsr->nodes[i]);
if (!dst) {
mpsr->status[i] = -ENOMEM;
continue;
}
for (j = i; j < (i + mpsr->nr_pages[i]); ++j) {
mpsr->status[j] = mpsr->nodes[i];
}
mpsr->dst_phys[i] = virt_to_phys(dst);
dkprintf("%s: virt 0x%lx:%lu to node %d, pgalign: %d,"
" allocated phys: 0x%lx\n",
__FUNCTION__, mpsr->virt_addr[i],
mpsr->nr_pages[i] * PAGE_SIZE,
mpsr->nodes[i], pgalign, mpsr->dst_phys[i]);
}
}
/* Barrier */
ihk_atomic_inc(&mpsr->phase_done);
while (ihk_atomic_read(&mpsr->phase_done) <
(phase * nr_cpus)) {
cpu_pause();
}
if (mpsr->phase_ret != 0) {
goto out;
}
dkprintf("%s: phase %d done\n", __FUNCTION__, phase);
++phase;
/* Copy, PTE update, memfree in parallel */
for (i = i_s; i < i_e; ++i) {
if (!mpsr->dst_phys[i])
continue;
fast_memcpy(phys_to_virt(mpsr->dst_phys[i]),
phys_to_virt(pte_get_phys(mpsr->ptep[i])),
mpsr->nr_pages[i] * PAGE_SIZE);
ihk_mc_free_pages(
phys_to_virt(pte_get_phys(mpsr->ptep[i])),
mpsr->nr_pages[i]);
pte_update_phys(mpsr->ptep[i], mpsr->dst_phys[i]);
dkprintf("%s: virt 0x%lx:%lu copied and remapped to phys: 0x%lu\n",
__FUNCTION__, mpsr->virt_addr[i],
mpsr->nr_pages[i] * PAGE_SIZE,
mpsr->dst_phys[i]);
}
/* XXX: do a separate SMP call with only CPUs running threads
* of this process? */
if (cpu_local_var(current)->proc == mpsr->proc) {
/* Invalidate all TLBs */
for (i = 0; i < mpsr->count; i++) {
if (!mpsr->dst_phys[i])
continue;
flush_tlb_single((unsigned long)mpsr->virt_addr[i]);
}
}
out:
if (save_pt) {
ihk_mc_load_page_table(save_pt);
}
return mpsr->phase_ret;
}
time_t time(void) {
struct syscall_request sreq IHK_DMA_ALIGN;
struct timespec ats;
time_t ret = 0;
if (gettime_local_support) {
calculate_time_from_tsc(&ats);
ret = ats.tv_sec;
}
else {
sreq.number = __NR_time;
sreq.args[0] = (uintptr_t)NULL;
ret = (time_t)do_syscall(&sreq, ihk_mc_get_processor_id());
}
return ret;
}
void calculate_time_from_tsc(struct timespec *ts)
{
unsigned long seq;
unsigned long seq2;
unsigned long ns;
unsigned long delta;
struct vsyscall_gtod_data *gtod = vdso.vgtod_virt;
do {
for (;;) {
seq = ACCESS_ONCE(gtod->seq);
if (unlikely(seq & 1)) {
cpu_pause();
continue;
}
break;
}
rmb(); /* fetch sequence before time */
ts->tv_sec = gtod->wall_time_sec;
ns = gtod->wall_time_snsec;
delta = rdtsc() - gtod->clock.cycle_last;
ns += delta * gtod->clock.mult;
ns >>= gtod->clock.shift;
seq2 = ACCESS_ONCE(gtod->seq);
rmb(); /* fetch time before checking sequence */
} while (seq != seq2);
ts->tv_nsec = ns;
if (ts->tv_nsec >= NS_PER_SEC) {
ts->tv_nsec -= NS_PER_SEC;
++ts->tv_sec;
}
}
extern void ptrace_syscall_event(struct thread *thread);
long arch_ptrace_syscall_event(struct thread *thread,
ihk_mc_user_context_t *ctx, long setret)
{
ihk_mc_syscall_ret(ctx) = setret;
ptrace_syscall_event(thread);
return ihk_mc_syscall_ret(ctx);
}
/*** End of File ***/