Files
mckernel/executer/kernel/mcctrl/futex.c
2025-08-23 11:02:25 +08:00

1207 lines
32 KiB
C

#include <linux/sched.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/wait.h>
#include <linux/mm.h>
#include <linux/gfp.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/version.h>
#include <linux/semaphore.h>
#include <linux/interrupt.h>
#include <linux/cpumask.h>
#include <linux/rbtree.h>
#include <asm/uaccess.h>
#include <asm/delay.h>
#include <asm/io.h>
#include <linux/syscalls.h>
#include <trace/events/sched.h>
#include <config.h>
#include "mcctrl.h"
#include <ihk/ihk_host_user.h>
#include <rusage.h>
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 11, 0)
#include <uapi/linux/sched/types.h>
#endif
#include <archdeps.h>
#include <arch-lock.h>
#include <uti.h>
#include <futex.h>
#include <mc_jhash.h>
#include <arch-futex.h>
#ifdef DEBUG
#define dprintk printk
#else
#define dprintk(...)
#endif
#define NS_PER_SEC 1000000000UL
static long uti_wait_event(void *_resp, unsigned long nsec_timeout)
{
struct uti_futex_resp *resp = _resp;
if (nsec_timeout) {
return wait_event_interruptible_timeout(resp->wq, resp->done,
nsecs_to_jiffies(nsec_timeout));
} else {
return wait_event_interruptible(resp->wq, resp->done);
}
}
static int uti_clock_gettime(clockid_t clk_id, struct timespec64 *tp)
{
int ret = 0;
struct timespec64 ts64;
dprintk("%s: clk_id=%x,REALTIME=%x,MONOTONIC=%x\n", __func__,
clk_id, CLOCK_REALTIME, CLOCK_MONOTONIC);
switch (clk_id) {
case CLOCK_REALTIME:
ktime_get_real_ts64(&ts64);
tp->tv_sec = ts64.tv_sec;
tp->tv_nsec = ts64.tv_nsec;
dprintk("%s: CLOCK_REALTIME,%ld.%09ld\n", __func__,
tp->tv_sec, tp->tv_nsec);
break;
case CLOCK_MONOTONIC:
/* Do not use getrawmonotonic() because it returns different value than clock_gettime() */
ktime_get_ts64(&ts64);
tp->tv_sec = ts64.tv_sec;
tp->tv_nsec = ts64.tv_nsec;
dprintk("%s: CLOCK_MONOTONIC,%ld.%09ld\n", __func__,
tp->tv_sec, tp->tv_nsec);
break;
default:
ret = -EINVAL;
}
return ret;
}
/*
* Hash buckets are shared by all the futex_keys that hash to the same
* location. Each key may have multiple futex_q structures, one for each task
* waiting on a futex.
*/
struct futex_hash_bucket {
_ihk_spinlock_t lock;
struct mc_plist_head chain;
};
/*
* Take a reference to the resource addressed by a key.
* Can be called while holding spinlocks.
*
*/
static void get_futex_key_refs(union futex_key *key)
{
/* RIKEN: no swapping in McKernel */
return;
}
/*
* Drop a reference to the resource addressed by a key.
* The hash bucket spinlock must not be held.
*/
static void drop_futex_key_refs(union futex_key *key)
{
/* RIKEN: no swapping in McKernel */
return;
}
static inline
void put_futex_key(int fshared, union futex_key *key)
{
drop_futex_key_refs(key);
}
/*
* We hash on the keys returned from get_futex_key (see below).
*/
static struct futex_hash_bucket *hash_futex(
union futex_key *key,
struct futex_hash_bucket *futex_queue)
{
uint32_t hash = mc_jhash2((uint32_t *)&key->both.word,
(sizeof(key->both.word)+sizeof(key->both.ptr))/4,
key->both.offset);
return &futex_queue[hash & ((1 << FUTEX_HASHBITS)-1)];
}
/* The key must be already stored in q->key. */
static inline struct futex_hash_bucket *queue_lock(
struct futex_q *q,
struct futex_hash_bucket *futex_queue)
{
struct futex_hash_bucket *hb;
get_futex_key_refs(&q->key);
hb = hash_futex(&q->key, futex_queue);
q->lock_ptr = &hb->lock;
ihk_mc_spinlock_lock_noirq(&hb->lock);
return hb;
}
static inline void
queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
{
ihk_mc_spinlock_unlock_noirq(&hb->lock);
drop_futex_key_refs(&q->key);
}
/*
* Express the locking dependencies for lockdep:
*/
static inline void
double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
if (hb1 <= hb2) {
ihk_mc_spinlock_lock_noirq(&hb1->lock);
if (hb1 < hb2)
ihk_mc_spinlock_lock_noirq(&hb2->lock);
} else { /* hb1 > hb2 */
ihk_mc_spinlock_lock_noirq(&hb2->lock);
ihk_mc_spinlock_lock_noirq(&hb1->lock);
}
}
static inline void
double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
ihk_mc_spinlock_unlock_noirq(&hb1->lock);
if (hb1 != hb2)
ihk_mc_spinlock_unlock_noirq(&hb2->lock);
}
/* remote_page_fault for uti-futex */
static int uti_remote_page_fault(struct mcctrl_usrdata *usrdata,
void *fault_addr, uint64_t reason,
struct mcctrl_per_proc_data *ppd, int tid, int cpu)
{
int error;
struct ikc_scd_packet packet;
/* Request page fault */
packet.msg = SCD_MSG_REMOTE_PAGE_FAULT;
packet.fault_address = (unsigned long)fault_addr;
packet.fault_reason = reason;
packet.fault_tid = tid;
/* packet->target_cpu was set in rus_vm_fault if a thread was found */
error = mcctrl_ikc_send_wait(usrdata->os, cpu, &packet,
0, NULL, NULL, 0);
if (error < 0) {
pr_warn("%s: WARNING: failed to request uti remote page fault :%d\n",
__func__, error);
}
return error;
}
struct rva_to_rpa_cache_node {
struct rb_node node;
unsigned long rva;
unsigned long rpa;
};
void futex_remove_process(struct mcctrl_per_proc_data *ppd)
{
struct rb_node *node;
while ((node = rb_first(&ppd->rva_to_rpa_cache))) {
struct rva_to_rpa_cache_node *cache_node;
cache_node = container_of(node, struct rva_to_rpa_cache_node,
node);
rb_erase(node, &ppd->rva_to_rpa_cache);
kfree(cache_node);
}
}
struct rva_to_rpa_cache_node *rva_to_rpa_cache_search(struct rb_root *root,
unsigned long rva)
{
struct rb_node **iter = &root->rb_node, *parent = NULL;
while (*iter) {
struct rva_to_rpa_cache_node *inode =
container_of(*iter, struct rva_to_rpa_cache_node, node);
parent = *iter;
if (rva == inode->rva) {
return inode;
}
if (rva < inode->rva)
iter = &((*iter)->rb_left);
else
iter = &((*iter)->rb_right);
}
return NULL;
}
int rva_to_rpa_cache_insert(struct rb_root *root,
struct rva_to_rpa_cache_node *cache_node)
{
struct rb_node **iter = &root->rb_node, *parent = NULL;
while (*iter) {
struct rva_to_rpa_cache_node *inode =
container_of(*iter, struct rva_to_rpa_cache_node, node);
parent = *iter;
if (cache_node->rva == inode->rva)
return -EINVAL;
if (cache_node->rva < inode->rva)
iter = &((*iter)->rb_left);
else
iter = &((*iter)->rb_right);
}
rb_link_node(&cache_node->node, parent, iter);
rb_insert_color(&cache_node->node, root);
return 0;
}
/**
* get_futex_key() - Get parameters which are the keys for a futex
* @uaddr: virtual address of the futex
* @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
* @key: address where result is stored.
*
* Returns a negative error code or 0
* The key words are stored in *key on success.
*
* For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
* offset_within_page). For private mappings, it's (uaddr, current->mm).
* We can usually work out the index without swapping in the page.
*
* lock_page() might sleep, the caller should not hold a spinlock.
*/
static int
get_futex_key(uint32_t *uaddr, int fshared, union futex_key *key,
struct uti_info *uti_info)
{
unsigned long address = (unsigned long)uaddr;
unsigned long phys, pgsize;
void *mm = uti_info->vm;
struct mcctrl_usrdata *usrdata;
struct mcctrl_per_proc_data *ppd;
int ret = 0, error = 0;
struct rva_to_rpa_cache_node *cache_node;
/*
* The futex address must be "naturally" aligned.
*/
key->both.offset = address % PAGE_SIZE;
if (((address % sizeof(uint32_t)) != 0)) {
ret = -EINVAL;
goto out;
}
address -= key->both.offset;
/*
* PROCESS_PRIVATE futexes are fast.
* As the mm cannot disappear under us and the 'key' only needs
* virtual address, we dont even have to find the underlying vma.
* Note : We do have to check 'uaddr' is a valid user address,
* but access_ok() should be faster than find_vma()
*/
if (!fshared) {
key->private.mm = mm;
key->private.address = address;
get_futex_key_refs(key);
ret = 0;
goto out;
}
key->both.offset |= FUT_OFF_MMSHARED;
usrdata = ihk_host_os_get_usrdata((ihk_os_t)uti_info->os);
if (!usrdata) {
pr_err("%s: ERROR: mcctrl_usrdata not found\n", __func__);
ret = -EINVAL;
goto out;
}
ppd = mcctrl_get_per_proc_data(usrdata, task_tgid_vnr(current));
if (!ppd) {
pr_err("%s: ERROR: no per-process structure for PID %d\n",
__func__, task_tgid_vnr(current));
ret = -EINVAL;
goto out;
}
/* cache because translate_rva_to_rpa calls smp_ihk_arch_dcache_flush
* via ihk_device_unmap_virtual
*/
cache_node = rva_to_rpa_cache_search(&ppd->rva_to_rpa_cache,
(unsigned long)uaddr);
if (cache_node) {
phys = cache_node->rpa;
dprintk("%s: cache hit, rva: %lx, rpa: %lx\n",
__func__, (unsigned long)uaddr, phys);
goto found;
}
retry_v2p:
error = translate_rva_to_rpa((ihk_os_t)uti_info->os, ppd->rpgtable,
(unsigned long)uaddr, &phys, &pgsize);
if (error) {
/* Check if we can fault in page */
error = uti_remote_page_fault(usrdata, (void *)address,
PF_POPULATE | PF_WRITE | PF_USER,
ppd, uti_info->tid, uti_info->cpu);
if (error) {
pr_err("%s: ERROR: virt to phys translation failed\n",
__func__);
ret = -EFAULT;
goto put_out;
}
goto retry_v2p;
}
cache_node = kmalloc(sizeof(struct rva_to_rpa_cache_node), GFP_KERNEL);
if (!cache_node) {
ret = -ENOMEM;
goto put_out;
}
cache_node->rva = (unsigned long)uaddr;
cache_node->rpa = phys;
dprintk("%s: cache insert, rva: %lx, rpa: %lx\n",
__func__, (unsigned long)uaddr, phys);
ret = rva_to_rpa_cache_insert(&ppd->rva_to_rpa_cache, cache_node);
if (ret) {
pr_err("%s: error: cache entry found, rva: %lx, rpa: %lx\n",
__func__, (unsigned long)uaddr, phys);
goto put_out;
}
found:
key->shared.phys = (void *)phys;
key->shared.pgoff = 0;
put_out:
mcctrl_put_per_proc_data(ppd);
out:
return ret;
}
/**
* queue_me() - Enqueue the futex_q on the futex_hash_bucket
* @q: The futex_q to enqueue
* @hb: The destination hash bucket
*
* The hb->lock must be held by the caller, and is released here. A call to
* queue_me() is typically paired with exactly one call to unqueue_me(). The
* exceptions involve the PI related operations, which may use unqueue_me_pi()
* or nothing if the unqueue is done as part of the wake process and the unqueue
* state is implicit in the state of woken task (see futex_wait_requeue_pi() for
* an example).
*/
static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb,
struct uti_info *uti_info)
{
int prio;
/*
* The priority used to register this element is
* - either the real thread-priority for the real-time threads
* (i.e. threads with a priority lower than MAX_RT_PRIO)
* - or MAX_RT_PRIO for non-RT threads.
* Thus, all RT-threads are woken first in priority order, and
* the others are woken last, in FIFO order.
*
* RIKEN: no priorities at the moment, everyone is 10.
*/
prio = 10;
mc_plist_node_init(&q->list, prio);
#ifdef CONFIG_DEBUG_PI_LIST
q->list.plist.spinlock = &hb->lock;
#endif
mc_plist_add(&q->list, &hb->chain);
q->task = (void *)uti_info->thread_va;
ihk_mc_spinlock_unlock_noirq(&hb->lock);
}
/**
* unqueue_me() - Remove the futex_q from its futex_hash_bucket
* @q: The futex_q to unqueue
*
* The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
* be paired with exactly one earlier call to queue_me().
*
* Returns:
* 1 - if the futex_q was still queued (and we removed unqueued it)
* 0 - if the futex_q was already removed by the waking thread
*/
static int unqueue_me(struct futex_q *q)
{
_ihk_spinlock_t *lock_ptr;
int ret = 0;
/* In the common case we don't take the spinlock, which is nice. */
retry:
lock_ptr = q->lock_ptr;
barrier();
if (lock_ptr != NULL) {
ihk_mc_spinlock_lock_noirq(lock_ptr);
/*
* q->lock_ptr can change between reading it and
* spin_lock(), causing us to take the wrong lock. This
* corrects the race condition.
*
* Reasoning goes like this: if we have the wrong lock,
* q->lock_ptr must have changed (maybe several times)
* between reading it and the spin_lock(). It can
* change again after the spin_lock() but only if it was
* already changed before the spin_lock(). It cannot,
* however, change back to the original value. Therefore
* we can detect whether we acquired the correct lock.
*/
if (lock_ptr != q->lock_ptr) {
ihk_mc_spinlock_unlock_noirq(lock_ptr);
goto retry;
}
mc_plist_del(&q->list, &q->list.plist);
ihk_mc_spinlock_unlock_noirq(lock_ptr);
ret = 1;
}
drop_futex_key_refs(&q->key);
return ret;
}
/*
* Return 1 if two futex_keys are equal, 0 otherwise.
*/
static inline int match_futex(union futex_key *key1, union futex_key *key2)
{
return (key1 && key2
&& key1->both.word == key2->both.word
&& key1->both.ptr == key2->both.ptr
&& key1->both.offset == key2->both.offset);
}
/* Convert phys_addr to virt_addr on Linux */
static void futex_q_p2v(struct futex_q *q)
{
q->th_spin_sleep = (void *)phys_to_virt(q->th_spin_sleep_pa);
q->th_status = (void *)phys_to_virt(q->th_status_pa);
q->th_spin_sleep_lock = (void *)phys_to_virt(q->th_spin_sleep_lock_pa);
q->proc_status = (void *)phys_to_virt(q->proc_status_pa);
q->proc_update_lock = (void *)phys_to_virt(q->proc_update_lock_pa);
q->runq_lock = (void *)phys_to_virt(q->runq_lock_pa);
q->clv_flags = (void *)phys_to_virt(q->clv_flags_pa);
}
#define CPU_FLAG_NEED_RESCHED 0x1U
#define CPU_FLAG_NEED_MIGRATE 0x2U
#define PS_RUNNING 0x1
#define PS_INTERRUPTIBLE 0x2
#define PS_UNINTERRUPTIBLE 0x4
#define PS_ZOMBIE 0x8
#define PS_EXITED 0x10
#define PS_STOPPED 0x20
#define PS_TRACED 0x40 /* Set to "not running" by a ptrace related event */
#define PS_STOPPING 0x80
#define PS_TRACING 0x100
#define PS_DELAY_STOPPED 0x200
#define PS_DELAY_TRACED 0x400
#define PS_NORMAL (PS_INTERRUPTIBLE | PS_UNINTERRUPTIBLE)
static int uti_sched_wakeup_thread(struct futex_q *q, int valid_states,
struct uti_info *uti_info)
{
int status;
unsigned long irqstate;
futex_q_p2v(q);
irqstate = ihk_mc_spinlock_lock(
(_ihk_spinlock_t *)q->th_spin_sleep_lock);
if (*(int *)q->th_spin_sleep == 1) {
dprintk("%s: spin wakeup: cpu_id: %d\n", __func__, uti_info->cpu);
status = 0;
}
*(int *)q->th_spin_sleep = 0;
ihk_mc_spinlock_unlock(
(_ihk_spinlock_t *)q->th_spin_sleep_lock, irqstate);
irqstate = ihk_mc_spinlock_lock((_ihk_spinlock_t *)q->runq_lock);
if (*(int *)q->th_status & valid_states) {
mcs_rwlock_writer_lock_noirq(
(mcs_rwlock_lock_t *)q->proc_update_lock);
if (*(int *)q->proc_status != PS_EXITED) {
*(int *)q->proc_status = PS_RUNNING;
}
mcs_rwlock_writer_unlock_noirq((mcs_rwlock_lock_t *)q->proc_update_lock);
xchg4((int *)q->th_status, PS_RUNNING);
status = 0;
/* Make interrupt_exit() call schedule() */
*(unsigned int *)q->clv_flags |= CPU_FLAG_NEED_RESCHED;
}
else {
status = -EINVAL;
}
ihk_mc_spinlock_unlock((_ihk_spinlock_t *)q->runq_lock, irqstate);
if (!status) {
dprintk("%s: issuing IPI, thread->cpu_id=%d, intr_id: %d\n",
__func__, uti_info->cpu, q->intr_id);
ihk_os_issue_interrupt(uti_info->os, q->intr_id,
q->intr_vector);
}
return status;
}
/*
* The hash bucket lock must be held when this is called.
* Afterwards, the futex_q must not be accessed.
*/
static void wake_futex(struct futex_q *q, struct uti_info *uti_info)
{
/*
* We set q->lock_ptr = NULL _before_ we wake up the task. If
* a non futex wake up happens on another CPU then the task
* might exit and p would dereference a non existing task
* struct. Prevent this by holding a reference on p across the
* wake up.
*/
mc_plist_del(&q->list, &q->list.plist);
if (q->uti_futex_resp) {
/* TODO: Add the case when a Linux thread waking up another Linux thread */
pr_err("%s: ERROR: A Linux thread is waking up migrated-to-Linux thread\n", __func__);
} else {
dprintk("%s: waking up McKernel thread (tid %d)\n",
__func__, uti_info->tid);
uti_sched_wakeup_thread(q, PS_NORMAL, uti_info);
}
/*
* The waiting task can free the futex_q as soon as
* q->lock_ptr = NULL is written, without taking any locks. A
* memory barrier is required here to prevent the following
* store to lock_ptr from getting ahead of the plist_del.
*/
barrier();
q->lock_ptr = NULL;
}
/*
* Wake up waiters matching bitset queued on this futex (uaddr).
*/
static int futex_wake(uint32_t *uaddr, int fshared, int nr_wake,
uint32_t bitset, struct uti_info *uti_info)
{
struct futex_hash_bucket *hb;
struct futex_q *this, *next;
struct mc_plist_head *head;
union futex_key key = FUTEX_KEY_INIT;
int ret;
unsigned long irqstate;
if (!bitset) {
return -EINVAL;
}
ret = get_futex_key(uaddr, fshared, &key, uti_info);
if ((ret != 0)) {
goto out;
}
hb = hash_futex(&key, uti_info->futex_queue);
irqstate = ihk_mc_spinlock_lock(&hb->lock);
head = &hb->chain;
mc_plist_for_each_entry_safe(this, next, head, list) {
if (match_futex(&this->key, &key)) {
/* RIKEN: no pi state... */
/* Check if one of the bits is set in both bitsets */
if (!(this->bitset & bitset))
continue;
wake_futex(this, uti_info);
if (++ret >= nr_wake)
break;
}
}
ihk_mc_spinlock_unlock(&hb->lock, irqstate);
put_futex_key(fshared, &key);
out:
return ret;
}
/**
* futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
* @hb: the futex hash bucket, must be locked by the caller
* @q: the futex_q to queue up on
* @timeout: the prepared hrtimer_sleeper, or null for no timeout
*/
/* RIKEN: this function has been rewritten so that it returns the remaining
* time in case we are waken.
*/
static int64_t futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
uint64_t timeout, struct uti_info *uti_info)
{
int64_t time_remain = 0;
unsigned long irqstate;
/*
* The task state is guaranteed to be set before another task can
* wake it.
* queue_me() calls spin_unlock() upon completion, serializing
* access to the hash list and forcing a memory barrier.
*/
xchg4((int *)uti_info->status, PS_INTERRUPTIBLE);
/* Indicate spin sleep. Note that schedule_timeout() with
* idle_halt should use spin sleep because sleep with timeout
* is not implemented.
*/
if (!uti_info->mc_idle_halt || timeout) {
irqstate = ihk_mc_spinlock_lock(
(_ihk_spinlock_t *)uti_info->spin_sleep_lock);
*(int *)uti_info->spin_sleep = 1;
ihk_mc_spinlock_unlock(
(_ihk_spinlock_t *)uti_info->spin_sleep_lock,
irqstate);
}
queue_me(q, hb, uti_info);
if (!mc_plist_node_empty(&q->list)) {
dprintk("%s: tid: %d is trying to sleep, cpu: %d\n",
__func__, uti_info->tid, ihk_ikc_get_processor_id());
/* Note that the unit of timeout is nsec */
time_remain = uti_wait_event(q->uti_futex_resp, timeout);
/* Note that time_remain == 0 indicates contidion evaluated to false after the timeout elapsed */
if (time_remain < 0) {
if (time_remain == -ERESTARTSYS) { /* Interrupted by signal */
dprintk("%s: DEBUG: wait_event returned -ERESTARTSYS\n", __func__);
} else {
pr_err("%s: ERROR: wait_event returned %lld\n", __func__, time_remain);
}
}
dprintk("%s: tid: %d woken up, cpu: %d\n",
__func__, uti_info->tid, ihk_ikc_get_processor_id());
}
/* This does not need to be serialized */
*(int *)uti_info->status = PS_RUNNING;
*(int *)uti_info->spin_sleep = 0;
return time_remain;
}
/**
* futex_wait_setup() - Prepare to wait on a futex
* @uaddr: the futex userspace address
* @val: the expected value
* @fshared: whether the futex is shared (1) or not (0)
* @q: the associated futex_q
* @hb: storage for hash_bucket pointer to be returned to caller
*
* Setup the futex_q and locate the hash_bucket. Get the futex value and
* compare it with the expected value. Handle atomic faults internally.
* Return with the hb lock held and a q.key reference on success, and unlocked
* with no q.key reference on failure.
*
* Returns:
* 0 - uaddr contains val and hb has been locked
* <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
*/
static int futex_wait_setup(uint32_t __user *uaddr, uint32_t val, int fshared,
struct futex_q *q, struct futex_hash_bucket **hb,
struct uti_info *uti_info)
{
uint32_t uval;
int ret;
/*
* Access the page AFTER the hash-bucket is locked.
* Order is important:
*
* Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
* Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
*
* The basic logical guarantee of a futex is that it blocks ONLY
* if cond(var) is known to be true at the time of blocking, for
* any cond. If we queued after testing *uaddr, that would open
* a race condition where we could block indefinitely with
* cond(var) false, which would violate the guarantee.
*
* A consequence is that futex_wait() can return zero and absorb
* a wakeup when *uaddr != val on entry to the syscall. This is
* rare, but normal.
*/
q->key = FUTEX_KEY_INIT;
ret = get_futex_key(uaddr, fshared, &q->key, uti_info);
if (ret != 0)
return ret;
*hb = queue_lock(q, (struct futex_hash_bucket *)uti_info->futex_queue);
ret = get_futex_value_locked(&uval, uaddr);
if (ret) {
queue_unlock(q, *hb);
put_futex_key(fshared, &q->key);
return ret;
}
if (uval != val) {
queue_unlock(q, *hb);
ret = -EWOULDBLOCK;
}
if (ret)
put_futex_key(fshared, &q->key);
return ret;
}
static int futex_wait(uint32_t __user *uaddr, int fshared,
uint32_t val, uint64_t timeout, uint32_t bitset,
int clockrt, struct uti_info *uti_info)
{
struct futex_hash_bucket *hb;
int64_t time_remain;
struct futex_q *q = NULL;
int ret;
if (!bitset)
return -EINVAL;
q = (struct futex_q *)uti_info->futex_q;
q->bitset = bitset;
q->requeue_pi_key = NULL;
q->uti_futex_resp = uti_info->uti_futex_resp;
q->linux_cpu = ihk_ikc_get_processor_id();
retry:
/* Prepare to wait on uaddr. */
ret = futex_wait_setup(uaddr, val, fshared, q, &hb, uti_info);
if (ret) {
goto out;
}
/* queue_me and wait for wakeup, timeout, or a signal. */
time_remain = futex_wait_queue_me(hb, q, timeout, uti_info);
/* If we were woken (and unqueued), we succeeded, whatever. */
ret = 0;
if (!unqueue_me(q)) {
dprintk("%s: tid=%d unqueued\n", __func__, uti_info->tid);
goto out_put_key;
}
ret = -ETIMEDOUT;
/* RIKEN: timer expired case (indicated by !time_remain) */
if (timeout && !time_remain) {
dprintk("%s: tid=%d timer expired\n", __func__, uti_info->tid);
goto out_put_key;
}
/* RIKEN: futex_wait_queue_me() returns -ERESTARTSYS when waiting on Linux CPU and woken up by signal */
if (time_remain == -ERESTARTSYS) {
ret = -EINTR;
dprintk("%s: tid=%d woken up by signal\n", __func__,
uti_info->tid);
goto out_put_key;
}
/* RIKEN: no signals */
put_futex_key(fshared, &q->key);
goto retry;
out_put_key:
put_futex_key(fshared, &q->key);
out:
return ret;
}
/**
* requeue_futex() - Requeue a futex_q from one hb to another
* @q: the futex_q to requeue
* @hb1: the source hash_bucket
* @hb2: the target hash_bucket
* @key2: the new key for the requeued futex_q
*/
static inline
void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
struct futex_hash_bucket *hb2, union futex_key *key2)
{
/*
* If key1 and key2 hash to the same bucket, no need to
* requeue.
*/
if (&hb1->chain != &hb2->chain) {
mc_plist_del(&q->list, &hb1->chain);
mc_plist_add(&q->list, &hb2->chain);
q->lock_ptr = &hb2->lock;
#ifdef CONFIG_DEBUG_PI_LIST
q->list.plist.spinlock = &hb2->lock;
#endif
}
get_futex_key_refs(key2);
q->key = *key2;
}
/**
* futex_requeue() - Requeue waiters from uaddr1 to uaddr2
* uaddr1: source futex user address
* uaddr2: target futex user address
* nr_wake: number of waiters to wake (must be 1 for requeue_pi)
* nr_requeue: number of waiters to requeue (0-INT_MAX)
* requeue_pi: if we are attempting to requeue from a non-pi futex to a
* pi futex (pi to pi requeue is not supported)
*
* Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
* uaddr2 atomically on behalf of the top waiter.
*
* Returns:
* >=0 - on success, the number of tasks requeued or woken
* <0 - on error
*/
static int futex_requeue(uint32_t *uaddr1, int fshared, uint32_t *uaddr2,
int nr_wake, int nr_requeue, uint32_t *cmpval,
int requeue_pi, struct uti_info *uti_info)
{
union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
int drop_count = 0, task_count = 0, ret;
struct futex_hash_bucket *hb1, *hb2;
struct mc_plist_head *head1;
struct futex_q *this, *next;
ret = get_futex_key(uaddr1, fshared, &key1, uti_info);
if ((ret != 0))
goto out;
ret = get_futex_key(uaddr2, fshared, &key2, uti_info);
if ((ret != 0))
goto out_put_key1;
hb1 = hash_futex(&key1, uti_info->futex_queue);
hb2 = hash_futex(&key2, uti_info->futex_queue);
double_lock_hb(hb1, hb2);
if (cmpval != NULL) {
uint32_t curval;
ret = get_futex_value_locked(&curval, uaddr1);
if (curval != *cmpval) {
ret = -EAGAIN;
goto out_unlock;
}
}
head1 = &hb1->chain;
mc_plist_for_each_entry_safe(this, next, head1, list) {
if (task_count - nr_wake >= nr_requeue)
break;
if (!match_futex(&this->key, &key1))
continue;
/*
* Wake nr_wake waiters. For requeue_pi, if we acquired the
* lock, we already woke the top_waiter. If not, it will be
* woken by futex_unlock_pi().
*/
/* RIKEN: no requeue_pi at this moment */
if (++task_count <= nr_wake) {
wake_futex(this, uti_info);
continue;
}
requeue_futex(this, hb1, hb2, &key2);
drop_count++;
}
out_unlock:
double_unlock_hb(hb1, hb2);
/*
* drop_futex_key_refs() must be called outside the spinlocks. During
* the requeue we moved futex_q's from the hash bucket at key1 to the
* one at key2 and updated their key pointer. We no longer need to
* hold the references to key1.
*/
while (--drop_count >= 0)
drop_futex_key_refs(&key1);
put_futex_key(fshared, &key2);
out_put_key1:
put_futex_key(fshared, &key1);
out:
return ret ? ret : task_count;
}
/*
* Wake up all waiters hashed on the physical page that is mapped
* to this virtual address:
*/
static int
futex_wake_op(uint32_t *uaddr1, int fshared, uint32_t *uaddr2,
int nr_wake, int nr_wake2, int op,
struct uti_info *uti_info)
{
union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
struct futex_hash_bucket *hb1, *hb2;
struct mc_plist_head *head;
struct futex_q *this, *next;
int ret, op_ret;
retry:
ret = get_futex_key(uaddr1, fshared, &key1, uti_info);
if ((ret != 0))
goto out;
ret = get_futex_key(uaddr2, fshared, &key2, uti_info);
if ((ret != 0))
goto out_put_key1;
hb1 = hash_futex(&key1, uti_info->futex_queue);
hb2 = hash_futex(&key2, uti_info->futex_queue);
retry_private:
double_lock_hb(hb1, hb2);
op_ret = futex_atomic_op_inuser(op, (int *)uaddr2);
if ((op_ret < 0)) {
double_unlock_hb(hb1, hb2);
if ((op_ret != -EFAULT)) {
ret = op_ret;
goto out_put_keys;
}
/* RIKEN: set ret to 0 as if fault_in_user_writeable() returned it */
ret = 0;
if (!fshared)
goto retry_private;
put_futex_key(fshared, &key2);
put_futex_key(fshared, &key1);
goto retry;
}
head = &hb1->chain;
mc_plist_for_each_entry_safe(this, next, head, list) {
if (match_futex(&this->key, &key1)) {
wake_futex(this, uti_info);
if (++ret >= nr_wake)
break;
}
}
if (op_ret > 0) {
head = &hb2->chain;
op_ret = 0;
mc_plist_for_each_entry_safe(this, next, head, list) {
if (match_futex(&this->key, &key2)) {
wake_futex(this, uti_info);
if (++op_ret >= nr_wake2)
break;
}
}
ret += op_ret;
}
double_unlock_hb(hb1, hb2);
out_put_keys:
put_futex_key(fshared, &key2);
out_put_key1:
put_futex_key(fshared, &key1);
out:
return ret;
}
static int futex(uint32_t *uaddr, int op, uint32_t val, uint64_t timeout,
uint32_t *uaddr2, uint32_t val2, uint32_t val3, int fshared,
struct uti_info *uti_info)
{
int clockrt, ret = -ENOSYS;
int cmd = op & FUTEX_CMD_MASK;
clockrt = op & FUTEX_CLOCK_REALTIME;
if (clockrt && cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
return -ENOSYS;
switch (cmd) {
case FUTEX_WAIT:
val3 = FUTEX_BITSET_MATCH_ANY;
/* fallthrough */
case FUTEX_WAIT_BITSET:
ret = futex_wait(uaddr, fshared, val, timeout,
val3, clockrt, uti_info);
break;
case FUTEX_WAKE:
val3 = FUTEX_BITSET_MATCH_ANY;
/* fallthrough */
case FUTEX_WAKE_BITSET:
ret = futex_wake(uaddr, fshared, val, val3, uti_info);
break;
case FUTEX_REQUEUE:
ret = futex_requeue(uaddr, fshared, uaddr2, val,
val2, NULL, 0, uti_info);
break;
case FUTEX_CMP_REQUEUE:
ret = futex_requeue(uaddr, fshared, uaddr2, val,
val2, NULL, 0, uti_info);
break;
case FUTEX_WAKE_OP:
ret = futex_wake_op(uaddr, fshared, uaddr2, val,
val2, val3, uti_info);
break;
/* RIKEN: these calls are not supported for now.
case FUTEX_LOCK_PI:
if (futex_cmpxchg_enabled)
ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
break;
case FUTEX_UNLOCK_PI:
if (futex_cmpxchg_enabled)
ret = futex_unlock_pi(uaddr, fshared);
break;
case FUTEX_TRYLOCK_PI:
if (futex_cmpxchg_enabled)
ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
break;
case FUTEX_WAIT_REQUEUE_PI:
val3 = FUTEX_BITSET_MATCH_ANY;
ret = futex_wait_requeue_pi(uaddr, fshared, val, timeout, val3,
clockrt, uaddr2);
break;
case FUTEX_CMP_REQUEUE_PI:
ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
1);
break;
*/
default:
pr_warn("%s: invalid cmd: %d\n", __func__, cmd);
ret = -ENOSYS;
}
return ret;
}
long do_futex(int n, unsigned long arg0, unsigned long arg1,
unsigned long arg2, unsigned long arg3,
unsigned long arg4, unsigned long arg5,
struct uti_info *uti_info,
void *uti_futex_resp)
{
uint64_t timeout = 0; // No timeout
uint32_t val2 = 0;
int fshared = 1;
int ret = 0;
uint32_t *uaddr = (uint32_t *)arg0;
int op = (int)arg1;
uint32_t val = (uint32_t)arg2;
struct timespec *utime = (struct timespec *)arg3;
struct timespec64 ts;
uint32_t *uaddr2 = (uint32_t *)arg4;
uint32_t val3 = (uint32_t)arg5;
int flags = op;
/* Fill in uti_futex_resp */
uti_info->uti_futex_resp = uti_futex_resp;
/* Cross-address space futex? */
if (op & FUTEX_PRIVATE_FLAG) {
fshared = 0;
}
op = (op & FUTEX_CMD_MASK);
dprintk("futex op=[%x, %s],uaddr=%lx, val=%x, utime=%p, uaddr2=%p, val3=%x, shared: %d\n",
flags,
(op == FUTEX_WAIT) ? "FUTEX_WAIT" :
(op == FUTEX_WAIT_BITSET) ? "FUTEX_WAIT_BITSET" :
(op == FUTEX_WAKE) ? "FUTEX_WAKE" :
(op == FUTEX_WAKE_OP) ? "FUTEX_WAKE_OP" :
(op == FUTEX_WAKE_BITSET) ? "FUTEX_WAKE_BITSET" :
(op == FUTEX_CMP_REQUEUE) ? "FUTEX_CMP_REQUEUE" :
(op == FUTEX_REQUEUE) ? "FUTEX_REQUEUE (NOT IMPL!)" : "unknown",
(unsigned long)uaddr, val, utime, uaddr2, val3, fshared);
if (utime && (op == FUTEX_WAIT_BITSET || op == FUTEX_WAIT)) {
if (copy_from_user(&ts, utime, sizeof(ts)) != 0) {
return -EFAULT;
}
dprintk("%s: utime=%ld.%09ld\n", __func__, ts.tv_sec, ts.tv_nsec);
if (!timespec64_valid(&ts)) {
return -EINVAL;
}
if (op == FUTEX_WAIT_BITSET) { /* User passed absolute time */
struct timespec64 ats;
ret = uti_clock_gettime((flags & FUTEX_CLOCK_REALTIME) ?
CLOCK_REALTIME : CLOCK_MONOTONIC, &ats);
if (ret) {
return ret;
}
dprintk("%s: ats=%ld.%09ld\n", __func__, ats.tv_sec, ats.tv_nsec);
/* Use nsec for UTI case */
timeout = (ts.tv_sec * NS_PER_SEC + ts.tv_nsec) -
(ats.tv_sec * NS_PER_SEC + ats.tv_nsec);
} else { /* User passed relative time */
/* Use nsec for UTI case */
timeout = (ts.tv_sec * NS_PER_SEC + ts.tv_nsec);
}
}
/* Requeue parameter in 'utime' if op == FUTEX_CMP_REQUEUE.
* number of waiters to wake in 'utime' if op == FUTEX_WAKE_OP. */
if (op == FUTEX_CMP_REQUEUE || op == FUTEX_WAKE_OP) {
val2 = (uint32_t) (unsigned long) arg3;
}
ret = futex(uaddr, op, val, timeout, uaddr2,
val2, val3, fshared, uti_info);
dprintk("futex op=[%x, %s],uaddr=%lx, val=%x, utime=%p, uaddr2=%p, val3=%x, shared: %d, ret: %d\n",
op,
(op == FUTEX_WAIT) ? "FUTEX_WAIT" :
(op == FUTEX_WAIT_BITSET) ? "FUTEX_WAIT_BITSET" :
(op == FUTEX_WAKE) ? "FUTEX_WAKE" :
(op == FUTEX_WAKE_OP) ? "FUTEX_WAKE_OP" :
(op == FUTEX_WAKE_BITSET) ? "FUTEX_WAKE_BITSET" :
(op == FUTEX_CMP_REQUEUE) ? "FUTEX_CMP_REQUEUE" :
(op == FUTEX_REQUEUE) ? "FUTEX_REQUEUE (NOT IMPL!)" : "unknown",
(unsigned long)uaddr, val, utime, uaddr2, val3, fshared, ret);
return ret;
}