Files
mckernel/kernel/profile.c
2018-06-13 00:31:33 +09:00

601 lines
14 KiB
C

/**
* \file profile.c
* License details are found in the file LICENSE.
*
* \brief
* Profiler code for various process statistics
* \author Balazs Gerofi <bgerofi@riken.jp>
* Copyright (C) 2017 RIKEN AICS
*/
/*
* HISTORY:
*/
#include <types.h>
#include <kmsg.h>
#include <ihk/cpu.h>
#include <cpulocal.h>
#include <ihk/mm.h>
#include <ihk/debug.h>
#include <ihk/ikc.h>
#include <errno.h>
#include <cls.h>
#include <syscall.h>
#include <page.h>
#include <ihk/lock.h>
#include <ctype.h>
#include <waitq.h>
#include <rlimit.h>
#include <affinity.h>
#include <time.h>
#include <ihk/perfctr.h>
#include <mman.h>
#include <kmalloc.h>
#include <memobj.h>
#include <shm.h>
#include <prio.h>
#include <arch/cpu.h>
#include <limits.h>
#include <march.h>
#include <process.h>
extern char *syscall_name[];
#ifdef PROFILE_ENABLE
//#define DEBUG_PRINT_PROFILE
#ifdef DEBUG_PRINT_PROFILE
#define dkprintf(...) kprintf(__VA_ARGS__)
#define ekprintf(...) kprintf(__VA_ARGS__)
#else
#define dkprintf(...) do { if (0) kprintf(__VA_ARGS__); } while (0)
#define ekprintf(...) kprintf(__VA_ARGS__)
#endif
char *profile_event_names[] =
{
"remote_tlb_invalidate",
"page_fault",
"page_fault_anon_clr_mem",
"page_fault_file",
"page_fault_dev_file",
"page_fault_file_clr_mem",
"remote_page_fault",
"mpol_alloc_missed",
"mmap_anon_contig_phys",
"mmap_anon_no_contig_phys",
"mmap_regular_file",
"mmap_device_file",
"sdma_0",
"sdma_1",
"sdma_2",
"sdma_3",
"sdma_4",
"sdma_5",
""
};
mcs_lock_node_t job_profile_lock = {0, NULL};
struct profile_event *job_profile_events = NULL;
int job_nr_processes = -1;
int job_nr_processes_left = -1;
unsigned long job_elapsed_ts;
enum profile_event_type profile_syscall2offload(enum profile_event_type sc)
{
return (PROFILE_SYSCALL_MAX + sc);
}
void profile_event_add(enum profile_event_type type, uint64_t tsc)
{
struct profile_event *event = NULL;
if (!cpu_local_var(current)->profile)
return;
if (!cpu_local_var(current)->profile_events) {
if (profile_alloc_events(cpu_local_var(current)) < 0)
return;
}
if (type < PROFILE_EVENT_MAX) {
event = &cpu_local_var(current)->profile_events[type];
}
else {
kprintf("%s: WARNING: unknown event type %d\n",
__FUNCTION__, type);
return;
}
++event->cnt;
event->tsc += tsc;
}
void profile_print_thread_stats(struct thread *thread)
{
int i;
unsigned long flags;
if (!thread->profile_events)
return;
/* Not yet accumulated period? */
if (thread->profile_start_ts) {
thread->profile_elapsed_ts += (rdtsc() - thread->profile_start_ts);
}
flags = kprintf_lock();
__kprintf("TID: %4d elapsed cycles (excluding idle): %luk\n",
thread->tid,
thread->profile_elapsed_ts / 1000);
for (i = 0; i < PROFILE_SYSCALL_MAX; ++i) {
if (!thread->profile_events[i].cnt &&
!thread->profile_events[i + PROFILE_SYSCALL_MAX].cnt)
continue;
__kprintf("TID: %4d (%3d,%20s): %6u %6luk offl: %6u %6luk (%2d.%2d%%)\n",
thread->tid,
i,
syscall_name[i],
thread->profile_events[i].cnt,
(thread->profile_events[i].tsc /
(thread->profile_events[i].cnt ?
thread->profile_events[i].cnt : 1))
/ 1000,
thread->profile_events[i + PROFILE_SYSCALL_MAX].cnt,
(thread->profile_events[i + PROFILE_SYSCALL_MAX].tsc /
(thread->profile_events[i + PROFILE_SYSCALL_MAX].cnt ?
thread->profile_events[i + PROFILE_SYSCALL_MAX].cnt : 1))
/ 1000,
(thread->profile_events[i].tsc ?
thread->profile_events[i].tsc * 100
/ thread->profile_elapsed_ts : 0),
(thread->profile_events[i].tsc ?
(thread->profile_events[i].tsc * 10000
/ thread->profile_elapsed_ts) % 100 : 0)
);
}
for (i = PROFILE_EVENT_MIN; i < PROFILE_EVENT_MAX; ++i) {
if (!thread->profile_events[i].cnt)
continue;
__kprintf("TID: %4d (%24s): %6u %6luk \n",
thread->tid,
profile_event_names[i - PROFILE_EVENT_MIN],
thread->profile_events[i].cnt,
(thread->profile_events[i].tsc /
(thread->profile_events[i].cnt ?
thread->profile_events[i].cnt : 1))
/ 1000,
(thread->profile_events[i].tsc ?
thread->profile_events[i].tsc * 100
/ thread->profile_elapsed_ts : 0),
(thread->profile_events[i].tsc ?
(thread->profile_events[i].tsc * 10000
/ thread->profile_elapsed_ts) % 100 : 0)
);
}
kprintf_unlock(flags);
}
void profile_print_proc_stats(struct process *proc)
{
int i;
unsigned long flags;
if (!proc->profile_events || !proc->profile_elapsed_ts)
return;
flags = kprintf_lock();
__kprintf("PID: %4d elapsed cycles for all threads (excluding idle): %luk\n",
proc->pid,
proc->profile_elapsed_ts / 1000);
for (i = 0; i < PROFILE_SYSCALL_MAX; ++i) {
if (!proc->profile_events[i].cnt &&
!proc->profile_events[i + PROFILE_SYSCALL_MAX].cnt)
continue;
__kprintf("PID: %4d (%3d,%20s): %6u %6luk offl: %6u %6luk (%2d.%2d%%)\n",
proc->pid,
i,
syscall_name[i],
proc->profile_events[i].cnt,
(proc->profile_events[i].tsc /
(proc->profile_events[i].cnt ?
proc->profile_events[i].cnt : 1))
/ 1000,
proc->profile_events[i + PROFILE_SYSCALL_MAX].cnt,
(proc->profile_events[i + PROFILE_SYSCALL_MAX].tsc /
(proc->profile_events[i + PROFILE_SYSCALL_MAX].cnt ?
proc->profile_events[i + PROFILE_SYSCALL_MAX].cnt : 1))
/ 1000,
(proc->profile_events[i].tsc ?
proc->profile_events[i].tsc * 100
/ proc->profile_elapsed_ts : 0),
(proc->profile_events[i].tsc ?
(proc->profile_events[i].tsc * 10000
/ proc->profile_elapsed_ts) % 100 : 0)
);
}
for (i = PROFILE_EVENT_MIN; i < PROFILE_EVENT_MAX; ++i) {
if (!proc->profile_events[i].cnt)
continue;
// __kprintf("PID: %4d (%24s): %6u %6luk \n",
__kprintf("PID: %4d (%24s): %6u %6lu \n",
proc->pid,
profile_event_names[i - PROFILE_EVENT_MIN],
proc->profile_events[i].cnt,
(proc->profile_events[i].tsc /
(proc->profile_events[i].cnt ?
proc->profile_events[i].cnt : 1))
// / 1000
,
(proc->profile_events[i].tsc &&
proc->profile_elapsed_ts ?
proc->profile_events[i].tsc * 100
/ proc->profile_elapsed_ts : 0),
(proc->profile_events[i].tsc &&
proc->profile_elapsed_ts ?
(proc->profile_events[i].tsc * 10000
/ proc->profile_elapsed_ts) % 100 : 0)
);
}
kprintf_unlock(flags);
}
int profile_accumulate_and_print_job_events(struct process *proc)
{
int i;
unsigned long flags;
struct mcs_lock_node mcs_node;
mcs_lock_lock(&job_profile_lock, &mcs_node);
/* First process? */
if (job_nr_processes == -1) {
job_nr_processes = proc->nr_processes;
job_nr_processes_left = proc->nr_processes;
job_elapsed_ts = 0;
}
--job_nr_processes_left;
/* Allocate event counters */
if (!job_profile_events) {
job_profile_events = kmalloc(sizeof(*job_profile_events) *
PROFILE_EVENT_MAX, IHK_MC_AP_NOWAIT);
if (!job_profile_events) {
kprintf("%s: ERROR: allocating job profile counters\n",
__FUNCTION__);
return -ENOMEM;
}
memset(job_profile_events, 0,
sizeof(*job_profile_events) * PROFILE_EVENT_MAX);
}
/* Accumulate process */
for (i = 0; i < PROFILE_EVENT_MAX; ++i) {
if (!proc->profile_events[i].tsc)
continue;
job_profile_events[i].tsc += proc->profile_events[i].tsc;
job_profile_events[i].cnt += proc->profile_events[i].cnt;
proc->profile_events[i].tsc = 0;
proc->profile_events[i].cnt = 0;
}
job_elapsed_ts += proc->profile_elapsed_ts;
/* Last process? */
if (job_nr_processes_left == 0) {
flags = kprintf_lock();
__kprintf("JOB: (%2d) elapsed cycles for all threads (excluding idle): %luk\n",
job_nr_processes,
job_elapsed_ts / 1000);
for (i = 0; i < PROFILE_SYSCALL_MAX; ++i) {
if (!job_profile_events[i].cnt &&
!job_profile_events[i + PROFILE_SYSCALL_MAX].cnt)
continue;
__kprintf("JOB: (%2d) (%3d,%20s): %6u %6luk offl: %6u %6luk (%2d.%2d%%)\n",
job_nr_processes,
i,
syscall_name[i],
job_profile_events[i].cnt,
(job_profile_events[i].tsc /
(job_profile_events[i].cnt ?
job_profile_events[i].cnt : 1))
/ 1000,
job_profile_events[i + PROFILE_SYSCALL_MAX].cnt,
(job_profile_events[i + PROFILE_SYSCALL_MAX].tsc /
(job_profile_events[i + PROFILE_SYSCALL_MAX].cnt ?
job_profile_events[i + PROFILE_SYSCALL_MAX].cnt : 1))
/ 1000,
(job_profile_events[i].tsc ?
job_profile_events[i].tsc * 100
/ job_elapsed_ts : 0),
(job_profile_events[i].tsc ?
(job_profile_events[i].tsc * 10000
/ job_elapsed_ts) % 100 : 0)
);
job_profile_events[i].tsc = 0;
job_profile_events[i].cnt = 0;
job_profile_events[i + PROFILE_SYSCALL_MAX].tsc = 0;
job_profile_events[i + PROFILE_SYSCALL_MAX].cnt = 0;
}
for (i = PROFILE_EVENT_MIN; i < PROFILE_EVENT_MAX; ++i) {
if (!job_profile_events[i].cnt)
continue;
__kprintf("JOB: (%2d) (%24s): %6u %6luk \n",
job_nr_processes,
profile_event_names[i - PROFILE_EVENT_MIN],
job_profile_events[i].cnt,
(job_profile_events[i].tsc /
(job_profile_events[i].cnt ?
job_profile_events[i].cnt : 1))
/ 1000);
job_profile_events[i].tsc = 0;
job_profile_events[i].cnt = 0;
}
kprintf_unlock(flags);
/* Reset job process indicators */
job_nr_processes = -1;
job_nr_processes_left = -1;
job_elapsed_ts = 0;
}
mcs_lock_unlock(&job_profile_lock, &mcs_node);
return 0;
}
void profile_accumulate_events(struct thread *thread,
struct process *proc)
{
int i;
struct mcs_lock_node mcs_node;
if (!thread->profile_events || !proc->profile_events) return;
mcs_lock_lock(&proc->profile_lock, &mcs_node);
for (i = 0; i < PROFILE_EVENT_MAX; ++i) {
proc->profile_events[i].tsc += thread->profile_events[i].tsc;
proc->profile_events[i].cnt += thread->profile_events[i].cnt;
thread->profile_events[i].tsc = 0;
thread->profile_events[i].cnt = 0;
}
proc->profile_elapsed_ts += thread->profile_elapsed_ts;
if (thread->profile_start_ts) {
proc->profile_elapsed_ts +=
(rdtsc() - thread->profile_start_ts);
}
mcs_lock_unlock(&proc->profile_lock, &mcs_node);
}
int profile_alloc_events(struct thread *thread)
{
struct process *proc = thread->proc;
struct mcs_lock_node mcs_node;
if (!thread->profile_events) {
thread->profile_events = kmalloc(sizeof(*thread->profile_events) *
PROFILE_EVENT_MAX, IHK_MC_AP_NOWAIT);
if (!thread->profile_events) {
kprintf("%s: ERROR: allocating thread private profile counters\n",
__FUNCTION__);
return -ENOMEM;
}
memset(thread->profile_events, 0,
sizeof(*thread->profile_events) * PROFILE_EVENT_MAX);
}
mcs_lock_lock(&proc->profile_lock, &mcs_node);
if (!proc->profile_events) {
proc->profile_events = kmalloc(sizeof(*proc->profile_events) *
PROFILE_EVENT_MAX, IHK_MC_AP_NOWAIT);
if (!proc->profile_events) {
kprintf("%s: ERROR: allocating proc private profile counters\n",
__FUNCTION__);
mcs_lock_unlock(&proc->profile_lock, &mcs_node);
return -ENOMEM;
}
memset(proc->profile_events, 0,
sizeof(*thread->profile_events) * PROFILE_EVENT_MAX);
}
mcs_lock_unlock(&proc->profile_lock, &mcs_node);
return 0;
}
void profile_dealloc_thread_events(struct thread *thread)
{
kfree(thread->profile_events);
}
void profile_dealloc_proc_events(struct process *proc)
{
kfree(proc->profile_events);
}
void static profile_clear_process(struct process *proc)
{
proc->profile_elapsed_ts = 0;
if (!proc->profile_events) return;
memset(proc->profile_events, 0,
sizeof(*proc->profile_events) * PROFILE_EVENT_MAX);
}
void static profile_clear_thread(struct thread *thread)
{
thread->profile_start_ts = 0;
thread->profile_elapsed_ts = 0;
if (!thread->profile_events) return;
memset(thread->profile_events, 0,
sizeof(*thread->profile_events) * PROFILE_EVENT_MAX);
}
int do_profile(int flag)
{
struct thread *thread = cpu_local_var(current);
struct process *proc = thread->proc;
unsigned long now_ts = rdtsc();
/* Job level? */
if (flag & PROF_JOB) {
dkprintf("%s: JOB %d, flag: 0x%lx\n",
__FUNCTION__, proc->nr_processes, flag);
if (flag & PROF_PRINT) {
struct mcs_rwlock_node lock;
struct thread *_thread;
/* Accumulate events from all threads to process level */
mcs_rwlock_reader_lock_noirq(&proc->threads_lock, &lock);
list_for_each_entry(_thread, &proc->threads_list,
siblings_list) {
profile_accumulate_events(_thread, proc);
}
mcs_rwlock_reader_unlock_noirq(&proc->threads_lock, &lock);
/* Accumulate events to job level */
return profile_accumulate_and_print_job_events(proc);
}
}
/* Process level? */
else if (flag & PROF_PROC) {
struct mcs_rwlock_node lock;
struct thread *_thread;
dkprintf("%s: PID %d, flag: 0x%lx\n",
__FUNCTION__, proc->pid, flag);
/* Accumulate events from all threads */
mcs_rwlock_reader_lock_noirq(&proc->threads_lock, &lock);
list_for_each_entry(_thread, &proc->threads_list,
siblings_list) {
if (flag & PROF_PRINT) {
profile_accumulate_events(_thread, proc);
}
if (flag & PROF_CLEAR) {
profile_clear_thread(_thread);
}
if (flag & PROF_ON) {
_thread->profile = 1;
if (!_thread->profile_start_ts)
_thread->profile_start_ts = now_ts;
}
else if (flag & PROF_OFF) {
if (_thread->profile) {
_thread->profile = 0;
if (_thread->profile_start_ts) {
_thread->profile_elapsed_ts +=
(now_ts - _thread->profile_start_ts);
}
_thread->profile_start_ts = 0;
}
}
}
mcs_rwlock_reader_unlock_noirq(&proc->threads_lock, &lock);
if (flag & PROF_PRINT) {
profile_print_proc_stats(proc);
}
if (flag & PROF_CLEAR) {
profile_clear_process(proc);
}
/* Make sure future threads profile as well */
if (flag & PROF_ON) {
if (!proc->profile) {
proc->profile = 1;
}
}
else if (flag & PROF_OFF) {
proc->profile = 0;
}
}
/* Thread level */
else {
dkprintf("%s: TID %d, flag: 0x%lx\n",
__FUNCTION__, thread->tid, flag);
if (flag & PROF_PRINT) {
profile_print_thread_stats(thread);
}
if (flag & PROF_CLEAR) {
profile_clear_thread(thread);
/* If profiling, reset start and elapsed */
if (thread->profile) {
thread->profile_start_ts = 0;
thread->profile_elapsed_ts = 0;
}
}
if (flag & PROF_ON) {
if (!thread->profile) {
thread->profile = 1;
thread->profile_start_ts = 0;
}
}
else if (flag & PROF_OFF) {
if (thread->profile) {
thread->profile = 0;
if (thread->profile_start_ts) {
thread->profile_elapsed_ts +=
(now_ts - thread->profile_start_ts);
}
thread->profile_start_ts = 0;
}
}
}
return 0;
}
SYSCALL_DECLARE(profile)
{
int flag = (int)ihk_mc_syscall_arg0(ctx);
return do_profile(flag);
}
#endif // PROFILE_ENABLE