Files
mckernel/kernel/gencore.c
Shiratori, Takehiro 07aa96ef95 arm64: Scalable Vector Extension (SVE) support.
Change-Id: I3568687913f583edfaa297d5cf5ac91d319d97e9
2019-02-22 04:07:29 +00:00

523 lines
13 KiB
C

/* gencore.c COPYRIGHT FUJITSU LIMITED 2015-2019 */
#include <ihk/debug.h>
#include <kmalloc.h>
#include <cls.h>
#include <list.h>
#include <process.h>
#include <string.h>
#include <elfcore.h>
#define align32(x) ((((x) + 3) / 4) * 4)
#define alignpage(x) ((((x) + (PAGE_SIZE) - 1) / (PAGE_SIZE)) * (PAGE_SIZE))
//#define DEBUG_PRINT_GENCORE
#ifdef DEBUG_PRINT_GENCORE
#undef DDEBUG_DEFAULT
#define DDEBUG_DEFAULT DDEBUG_PRINT
#endif
/* Exclude reserved (mckernel's internal use), device file,
* hole created by mprotect
*/
#define GENCORE_RANGE_IS_INACCESSIBLE(range) \
((range->flag & (VR_RESERVED | VR_MEMTYPE_UC | VR_DONTDUMP)))
/* Generate a core file image, which consists of many chunks.
* Returns an allocated table, an etnry of which is a pair of the address
* of a chunk and its length.
*/
/**
* \brief Fill the elf header.
*
* \param eh An Elf64_Ehdr structure.
* \param segs Number of segments of the core file.
*/
void fill_elf_header(Elf64_Ehdr *eh, int segs)
{
eh->e_ident[EI_MAG0] = 0x7f;
eh->e_ident[EI_MAG1] = 'E';
eh->e_ident[EI_MAG2] = 'L';
eh->e_ident[EI_MAG3] = 'F';
eh->e_ident[EI_CLASS] = ELF_CLASS;
eh->e_ident[EI_DATA] = ELF_DATA;
eh->e_ident[EI_VERSION] = El_VERSION;
eh->e_ident[EI_OSABI] = ELF_OSABI;
eh->e_ident[EI_ABIVERSION] = ELF_ABIVERSION;
eh->e_type = ET_CORE;
eh->e_machine = ELF_ARCH;
eh->e_version = EV_CURRENT;
eh->e_entry = 0; /* Do we really need this? */
eh->e_phoff = 64; /* fixed */
eh->e_shoff = 0; /* no section header */
eh->e_flags = 0;
eh->e_ehsize = 64; /* fixed */
eh->e_phentsize = 56; /* fixed */
eh->e_phnum = segs;
eh->e_shentsize = 0;
eh->e_shnum = 0;
eh->e_shstrndx = 0;
}
/**
* \brief Return the size of the prstatus entry of the NOTE segment.
*
*/
int get_prstatus_size(void)
{
return sizeof(struct note) + align32(sizeof("CORE"))
+ align32(sizeof(struct elf_prstatus64));
}
/**
* \brief Return the size of the prpsinfo entry of the NOTE segment.
*
*/
int get_prpsinfo_size(void)
{
return sizeof(struct note) + align32(sizeof("CORE"))
+ align32(sizeof(struct elf_prpsinfo64));
}
/**
* \brief Fill a prstatus structure.
*
* \param head A pointer to a note structure.
* \param proc A pointer to the current process structure.
* \param regs0 A pointer to a ihk_mc_user_context_t structure.
*/
void fill_prstatus(struct note *head, struct thread *thread, void *regs0)
{
void *name;
struct elf_prstatus64 *prstatus;
head->namesz = sizeof("CORE");
head->descsz = sizeof(struct elf_prstatus64);
head->type = NT_PRSTATUS;
name = (void *) (head + 1);
memcpy(name, "CORE", sizeof("CORE"));
prstatus = (struct elf_prstatus64 *)(name + align32(sizeof("CORE")));
arch_fill_prstatus(prstatus, thread, regs0);
}
/**
* \brief Fill a prpsinfo structure.
*
* \param head A pointer to a note structure.
* \param proc A pointer to the current process structure.
* \param regs A pointer to a ihk_mc_user_context_t structure.
*/
void fill_prpsinfo(struct note *head, struct thread *thread, void *regs)
{
void *name;
struct elf_prpsinfo64 *prpsinfo;
head->namesz = sizeof("CORE");
head->descsz = sizeof(struct elf_prpsinfo64);
head->type = NT_PRPSINFO;
name = (void *) (head + 1);
memcpy(name, "CORE", sizeof("CORE"));
prpsinfo = (struct elf_prpsinfo64 *)(name + align32(sizeof("CORE")));
prpsinfo->pr_state = thread->status;
prpsinfo->pr_pid = thread->proc->pid;
/* TODO: Fill the following fields:
* char pr_sname;
* char pr_zomb;
* char pr_nice;
* a8_uint64_t pr_flag;
* unsigned int pr_uid;
* unsigned int pr_gid;
* int pr_ppid, pr_pgrp, pr_sid;
* char pr_fname[16];
* char pr_psargs[ELF_PRARGSZ];
*/
}
/**
* \brief Return the size of the AUXV entry of the NOTE segment.
*
*/
int get_auxv_size(void)
{
return sizeof(struct note) + align32(sizeof("CORE"))
+ sizeof(unsigned long) * AUXV_LEN;
}
/**
* \brief Fill an AUXV structure.
*
* \param head A pointer to a note structure.
* \param proc A pointer to the current process structure.
* \param regs A pointer to a ihk_mc_user_context_t structure.
*/
void fill_auxv(struct note *head, struct thread *thread, void *regs)
{
void *name;
void *auxv;
head->namesz = sizeof("CORE");
head->descsz = sizeof(unsigned long) * AUXV_LEN;
head->type = NT_AUXV;
name = (void *) (head + 1);
memcpy(name, "CORE", sizeof("CORE"));
auxv = name + align32(sizeof("CORE"));
memcpy(auxv, thread->proc->saved_auxv,
sizeof(unsigned long) * AUXV_LEN);
}
/**
* \brief Return the size of the whole NOTE segment.
*
*/
int get_note_size(void)
{
return get_prstatus_size() + arch_get_thread_core_info_size()
+ get_prpsinfo_size() + get_auxv_size();
}
/**
* \brief Fill the NOTE segment.
*
* \param head A pointer to a note structure.
* \param proc A pointer to the current process structure.
* \param regs A pointer to a ihk_mc_user_context_t structure.
*/
void fill_note(void *note, struct thread *thread, void *regs)
{
fill_prstatus(note, thread, regs);
note += get_prstatus_size();
arch_fill_thread_core_info(note, thread, regs);
note += arch_get_thread_core_info_size();
fill_prpsinfo(note, thread, regs);
note += get_prpsinfo_size();
fill_auxv(note, thread, regs);
}
/**
* \brief Generate an image of the core file.
*
* \param proc A pointer to the current process structure.
* \param regs A pointer to a ihk_mc_user_context_t structure.
* \param coretable(out) An array of core chunks.
* \param chunks(out) Number of the entires of coretable.
*
* A core chunk is represented by a pair of a physical
* address of memory region and its size. If there are
* no corresponding physical address for a VM area
* (an unallocated demand-paging page, e.g.), the address
* should be zero.
*/
int gencore(struct thread *thread, void *regs,
struct coretable **coretable, int *chunks)
{
struct coretable *ct = NULL;
#ifdef POSTK_DEBUG_TEMP_FIX_39
Elf64_Ehdr *eh = NULL;
#else
Elf64_Ehdr eh;
#endif /*POSTK_DEBUG_TEMP_FIX_39*/
Elf64_Phdr *ph = NULL;
void *note = NULL;
struct vm_range *range, *next;
struct process_vm *vm = thread->vm;
int segs = 1; /* the first one is for NOTE */
int notesize, phsize, alignednotesize;
unsigned int offset = 0;
int i;
*chunks = 3; /* Elf header , header table and NOTE segment */
if (vm == NULL) {
dkprintf("no vm found.\n");
return -1;
}
next = lookup_process_memory_range(vm, 0, -1);
while ((range = next)) {
next = next_process_memory_range(vm, range);
dkprintf("start:%lx end:%lx flag:%lx objoff:%lx\n",
range->start, range->end, range->flag, range->objoff);
if (GENCORE_RANGE_IS_INACCESSIBLE(range)) {
continue;
}
/* We need a chunk for each page for a demand paging area.
* This can be optimized for spacial complexity but we would
* lose simplicity instead.
*/
if (range->flag & VR_DEMAND_PAGING) {
unsigned long p, phys;
int prevzero = 0;
for (p = range->start; p < range->end; p += PAGE_SIZE) {
if (ihk_mc_pt_virt_to_phys(thread->vm->address_space->page_table,
(void *)p, &phys) != 0) {
prevzero = 1;
} else {
if (prevzero == 1)
(*chunks)++;
(*chunks)++;
prevzero = 0;
}
}
if (prevzero == 1)
(*chunks)++;
} else {
(*chunks)++;
}
segs++;
}
dkprintf("we have %d segs and %d chunks.\n\n", segs, *chunks);
{
struct vm_regions region = thread->vm->region;
dkprintf("text: %lx-%lx\n", region.text_start,
region.text_end);
dkprintf("data: %lx-%lx\n", region.data_start,
region.data_end);
dkprintf("brk: %lx-%lx\n", region.brk_start, region.brk_end);
dkprintf("map: %lx-%lx\n", region.map_start, region.map_end);
dkprintf("stack: %lx-%lx\n", region.stack_start,
region.stack_end);
dkprintf("user: %lx-%lx\n\n", region.user_start,
region.user_end);
}
dkprintf("now generate a core file image\n");
#ifdef POSTK_DEBUG_TEMP_FIX_39
eh = kmalloc(sizeof(*eh), IHK_MC_AP_NOWAIT);
if (eh == NULL) {
dkprintf("could not alloc a elf header table.\n");
goto fail;
}
#ifdef POSTK_DEBUG_TEMP_FIX_63 /* Add core table and elf header initialization */
memset(eh, 0, sizeof(*eh));
#endif /* POSTK_DEBUG_TEMP_FIX_63 */
offset += sizeof(*eh);
fill_elf_header(eh, segs);
#else
offset += sizeof(eh);
fill_elf_header(&eh, segs);
#endif /* POSTK_DEBUG_TEMP_FIX_39 */
/* program header table */
phsize = sizeof(Elf64_Phdr) * segs;
ph = kmalloc(phsize, IHK_MC_AP_NOWAIT);
if (ph == NULL) {
dkprintf("could not alloc a program header table.\n");
goto fail;
}
memset(ph, 0, phsize);
offset += phsize;
/* NOTE segment
* To align the next segment page-sized, we prepare a padded
* region for our NOTE segment.
*/
notesize = get_note_size();
alignednotesize = alignpage(notesize + offset) - offset;
note = kmalloc(alignednotesize, IHK_MC_AP_NOWAIT);
if (note == NULL) {
dkprintf("could not alloc NOTE for core.\n");
goto fail;
}
memset(note, 0, alignednotesize);
fill_note(note, thread, regs);
/* prgram header for NOTE segment is exceptional */
ph[0].p_type = PT_NOTE;
ph[0].p_flags = 0;
ph[0].p_offset = offset;
ph[0].p_vaddr = 0;
ph[0].p_paddr = 0;
ph[0].p_filesz = notesize;
ph[0].p_memsz = notesize;
ph[0].p_align = 0;
offset += alignednotesize;
/* program header for each memory chunk */
i = 1;
next = lookup_process_memory_range(vm, 0, -1);
while ((range = next)) {
next = next_process_memory_range(vm, range);
unsigned long flag = range->flag;
unsigned long size = range->end - range->start;
if (GENCORE_RANGE_IS_INACCESSIBLE(range)) {
continue;
}
ph[i].p_type = PT_LOAD;
ph[i].p_flags = ((flag & VR_PROT_READ) ? PF_R : 0)
| ((flag & VR_PROT_WRITE) ? PF_W : 0)
| ((flag & VR_PROT_EXEC) ? PF_X : 0);
ph[i].p_offset = offset;
ph[i].p_vaddr = range->start;
ph[i].p_paddr = 0;
ph[i].p_filesz = size;
ph[i].p_memsz = size;
ph[i].p_align = PAGE_SIZE;
i++;
offset += size;
}
/* coretable to send to host */
ct = kmalloc(sizeof(struct coretable) * (*chunks), IHK_MC_AP_NOWAIT);
if (!ct) {
dkprintf("could not alloc a coretable.\n");
goto fail;
}
#ifdef POSTK_DEBUG_TEMP_FIX_63 /* Add core table and elf header initialization */
memset(ct, 0, sizeof(*ct));
#endif /* POSTK_DEBUG_TEMP_FIX_63 */
#ifdef POSTK_DEBUG_TEMP_FIX_39
ct[0].addr = virt_to_phys(eh); /* ELF header */
ct[0].len = 64;
dkprintf("coretable[0]: %lx@%lx(%lx)\n", ct[0].len, ct[0].addr, eh);
#else
ct[0].addr = virt_to_phys(&eh); /* ELF header */
ct[0].len = 64;
dkprintf("coretable[0]: %lx@%lx(%lx)\n", ct[0].len, ct[0].addr, &eh);
#endif /* POSTK_DEBUG_TEMP_FIX_39 */
ct[1].addr = virt_to_phys(ph); /* program header table */
ct[1].len = phsize;
dkprintf("coretable[1]: %lx@%lx(%lx)\n", ct[1].len, ct[1].addr, ph);
ct[2].addr = virt_to_phys(note); /* NOTE segment */
ct[2].len = alignednotesize;
dkprintf("coretable[2]: %lx@%lx(%lx)\n", ct[2].len, ct[2].addr, note);
i = 3; /* memory segments */
next = lookup_process_memory_range(vm, 0, -1);
while ((range = next)) {
next = next_process_memory_range(vm, range);
unsigned long phys;
if (GENCORE_RANGE_IS_INACCESSIBLE(range)) {
continue;
}
if (range->flag & VR_DEMAND_PAGING) {
/* Just an ad hoc kluge. */
unsigned long p, start, phys;
int prevzero = 0;
unsigned long size = 0;
for (start = p = range->start;
p < range->end; p += PAGE_SIZE) {
if (ihk_mc_pt_virt_to_phys(thread->vm->address_space->page_table,
(void *)p, &phys) != 0) {
if (prevzero == 0) {
/* Start a new chunk */
size = PAGE_SIZE;
start = p;
} else {
/* Extend the previous chunk */
size += PAGE_SIZE;
}
prevzero = 1;
} else {
if (prevzero == 1) {
/* Flush out an empty chunk */
ct[i].addr = 0;
ct[i].len = size;
dkprintf("coretable[%d]: %lx@%lx(%lx)\n",
i, ct[i].len,
ct[i].addr, start);
i++;
}
ct[i].addr = phys;
ct[i].len = PAGE_SIZE;
dkprintf("coretable[%d]: %lx@%lx(%lx)\n",
i, ct[i].len, ct[i].addr, p);
i++;
prevzero = 0;
}
}
if (prevzero == 1) {
/* An empty chunk */
ct[i].addr = 0;
ct[i].len = size;
dkprintf("coretable[%d]: %lx@%lx(%lx)\n",
i, ct[i].len, ct[i].addr, start);
i++;
}
} else {
if ((thread->vm->region.user_start <= range->start) &&
(range->end <= thread->vm->region.user_end)) {
if (ihk_mc_pt_virt_to_phys(thread->vm->address_space->page_table,
(void *)range->start,
&phys) != 0) {
dkprintf("could not convert user "
"virtual address %lx "
"to physical address\n",
range->start);
goto fail;
}
} else {
phys = virt_to_phys((void *)range->start);
}
ct[i].addr = phys;
ct[i].len = range->end - range->start;
dkprintf("coretable[%d]: %lx@%lx(%lx)\n", i,
ct[i].len, ct[i].addr, range->start);
i++;
}
}
*coretable = ct;
return 0;
fail:
kfree(ct);
kfree(ph);
kfree(note);
return -1;
}
/**
* \brief Free all the allocated spaces for an image of the core file.
*
* \param coretable An array of core chunks.
*/
void freecore(struct coretable **coretable)
{
struct coretable *ct = *coretable;
kfree(phys_to_virt(ct[2].addr)); /* NOTE segment */
kfree(phys_to_virt(ct[1].addr)); /* ph */
#ifdef POSTK_DEBUG_TEMP_FIX_39
kfree(phys_to_virt(ct[0].addr)); /* eh */
#endif /*POSTK_DEBUG_TEMP_FIX_39*/
kfree(*coretable);
}