Heavily inspired off linux kernel's dynamic debug: * add a /sys/kernel/debug/dynamic_debug/control file (accessible from linux side in /sys/class/mcos/mcos0/sys/kernel/debug/dynamic_debug/control) * read from file to list debug statements (currently limited to 4k in size) * write to file with '[file foo ][func bar ][line [x][-[y]]] [+-]p' to change values Side effects: * reindented all linker scripts, there is a new __verbose section * added string function strpbrk Change-Id: I36d7707274dcc3ecaf200075a31a2f0f76021059
471 lines
12 KiB
C
471 lines
12 KiB
C
/* gencore.c COPYRIGHT FUJITSU LIMITED 2015-2016 */
|
|
#ifndef POSTK_DEBUG_ARCH_DEP_18 /* coredump arch separation. */
|
|
#include <ihk/debug.h>
|
|
#include <kmalloc.h>
|
|
#include <cls.h>
|
|
#include <list.h>
|
|
#include <process.h>
|
|
#include <string.h>
|
|
#include <elfcore.h>
|
|
#include <debug.h>
|
|
|
|
#define align32(x) ((((x) + 3) / 4) * 4)
|
|
#define alignpage(x) ((((x) + (PAGE_SIZE) - 1) / (PAGE_SIZE)) * (PAGE_SIZE))
|
|
|
|
//#define DEBUG_PRINT_GENCORE
|
|
|
|
#ifdef DEBUG_PRINT_GENCORE
|
|
#undef DDEBUG_DEFAULT
|
|
#define DDEBUG_DEFAULT DDEBUG_PRINT
|
|
#endif
|
|
|
|
/*
|
|
* Generate a core file image, which consists of many chunks.
|
|
* Returns an allocated table, an etnry of which is a pair of the address
|
|
* of a chunk and its length.
|
|
*/
|
|
|
|
/**
|
|
* \brief Fill the elf header.
|
|
*
|
|
* \param eh An Elf64_Ehdr structure.
|
|
* \param segs Number of segments of the core file.
|
|
*/
|
|
|
|
void fill_elf_header(Elf64_Ehdr *eh, int segs)
|
|
{
|
|
eh->e_ident[EI_MAG0] = 0x7f;
|
|
eh->e_ident[EI_MAG1] = 'E';
|
|
eh->e_ident[EI_MAG2] = 'L';
|
|
eh->e_ident[EI_MAG3] = 'F';
|
|
eh->e_ident[EI_CLASS] = ELFCLASS64;
|
|
eh->e_ident[EI_DATA] = ELFDATA2LSB;
|
|
eh->e_ident[EI_VERSION] = El_VERSION;
|
|
eh->e_ident[EI_OSABI] = ELFOSABI_NONE;
|
|
eh->e_ident[EI_ABIVERSION] = El_ABIVERSION_NONE;
|
|
|
|
eh->e_type = ET_CORE;
|
|
#ifdef CONFIG_MIC
|
|
eh->e_machine = EM_K10M;
|
|
#else
|
|
eh->e_machine = EM_X86_64;
|
|
#endif
|
|
eh->e_version = EV_CURRENT;
|
|
eh->e_entry = 0; /* Do we really need this? */
|
|
eh->e_phoff = 64; /* fixed */
|
|
eh->e_shoff = 0; /* no section header */
|
|
eh->e_flags = 0;
|
|
eh->e_ehsize = 64; /* fixed */
|
|
eh->e_phentsize = 56; /* fixed */
|
|
eh->e_phnum = segs;
|
|
eh->e_shentsize = 0;
|
|
eh->e_shnum = 0;
|
|
eh->e_shstrndx = 0;
|
|
}
|
|
|
|
/**
|
|
* \brief Return the size of the prstatus entry of the NOTE segment.
|
|
*
|
|
*/
|
|
|
|
int get_prstatus_size(void)
|
|
{
|
|
return sizeof(struct note) + align32(sizeof("CORE"))
|
|
+ align32(sizeof(struct elf_prstatus64));
|
|
}
|
|
|
|
/**
|
|
* \brief Fill a prstatus structure.
|
|
*
|
|
* \param head A pointer to a note structure.
|
|
* \param thread A pointer to the current thread structure.
|
|
* \param regs0 A pointer to a x86_regs structure.
|
|
*/
|
|
|
|
void fill_prstatus(struct note *head, struct thread *thread, void *regs0)
|
|
{
|
|
/* TODO(pka_idle) */
|
|
}
|
|
|
|
/**
|
|
* \brief Return the size of the prpsinfo entry of the NOTE segment.
|
|
*
|
|
*/
|
|
|
|
int get_prpsinfo_size(void)
|
|
{
|
|
return sizeof(struct note) + align32(sizeof("CORE"))
|
|
+ align32(sizeof(struct elf_prpsinfo64));
|
|
}
|
|
|
|
/**
|
|
* \brief Fill a prpsinfo structure.
|
|
*
|
|
* \param head A pointer to a note structure.
|
|
* \param thread A pointer to the current thread structure.
|
|
* \param regs A pointer to a x86_regs structure.
|
|
*/
|
|
|
|
void fill_prpsinfo(struct note *head, struct thread *thread, void *regs)
|
|
{
|
|
void *name;
|
|
struct elf_prpsinfo64 *prpsinfo;
|
|
|
|
head->namesz = sizeof("CORE");
|
|
head->descsz = sizeof(struct elf_prpsinfo64);
|
|
head->type = NT_PRPSINFO;
|
|
name = (void *) (head + 1);
|
|
memcpy(name, "CORE", sizeof("CORE"));
|
|
prpsinfo = (struct elf_prpsinfo64 *)(name + align32(sizeof("CORE")));
|
|
|
|
prpsinfo->pr_state = thread->status;
|
|
prpsinfo->pr_pid = thread->proc->pid;
|
|
|
|
/*
|
|
We leave most of the fields unfilled.
|
|
|
|
char pr_sname;
|
|
char pr_zomb;
|
|
char pr_nice;
|
|
a8_uint64_t pr_flag;
|
|
unsigned int pr_uid;
|
|
unsigned int pr_gid;
|
|
int pr_ppid, pr_pgrp, pr_sid;
|
|
char pr_fname[16];
|
|
char pr_psargs[ELF_PRARGSZ];
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* \brief Return the size of the AUXV entry of the NOTE segment.
|
|
*
|
|
*/
|
|
|
|
int get_auxv_size(void)
|
|
{
|
|
return sizeof(struct note) + align32(sizeof("CORE"))
|
|
+ sizeof(unsigned long) * AUXV_LEN;
|
|
}
|
|
|
|
/**
|
|
* \brief Fill an AUXV structure.
|
|
*
|
|
* \param head A pointer to a note structure.
|
|
* \param thread A pointer to the current thread structure.
|
|
* \param regs A pointer to a x86_regs structure.
|
|
*/
|
|
|
|
void fill_auxv(struct note *head, struct thread *thread, void *regs)
|
|
{
|
|
void *name;
|
|
void *auxv;
|
|
|
|
head->namesz = sizeof("CORE");
|
|
head->descsz = sizeof(unsigned long) * AUXV_LEN;
|
|
head->type = NT_AUXV;
|
|
name = (void *) (head + 1);
|
|
memcpy(name, "CORE", sizeof("CORE"));
|
|
auxv = name + align32(sizeof("CORE"));
|
|
memcpy(auxv, thread->proc->saved_auxv, sizeof(unsigned long) * AUXV_LEN);
|
|
}
|
|
|
|
/**
|
|
* \brief Return the size of the whole NOTE segment.
|
|
*
|
|
*/
|
|
|
|
int get_note_size(void)
|
|
{
|
|
return get_prstatus_size() + get_prpsinfo_size()
|
|
+ get_auxv_size();
|
|
}
|
|
|
|
/**
|
|
* \brief Fill the NOTE segment.
|
|
*
|
|
* \param head A pointer to a note structure.
|
|
* \param thread A pointer to the current thread structure.
|
|
* \param regs A pointer to a x86_regs structure.
|
|
*/
|
|
|
|
void fill_note(void *note, struct thread *thread, void *regs)
|
|
{
|
|
fill_prstatus(note, thread, regs);
|
|
note += get_prstatus_size();
|
|
fill_prpsinfo(note, thread, regs);
|
|
note += get_prpsinfo_size();
|
|
fill_auxv(note, thread, regs);
|
|
}
|
|
|
|
/**
|
|
* \brief Generate an image of the core file.
|
|
*
|
|
* \param thread A pointer to the current thread structure.
|
|
* \param regs A pointer to a x86_regs structure.
|
|
* \param coretable(out) An array of core chunks.
|
|
* \param chunks(out) Number of the entires of coretable.
|
|
*
|
|
* A core chunk is represented by a pair of a physical
|
|
* address of memory region and its size. If there are
|
|
* no corresponding physical address for a VM area
|
|
* (an unallocated demand-paging page, e.g.), the address
|
|
* should be zero.
|
|
*/
|
|
|
|
int gencore(struct thread *thread, void *regs,
|
|
struct coretable **coretable, int *chunks)
|
|
{
|
|
struct coretable *ct = NULL;
|
|
Elf64_Ehdr eh;
|
|
Elf64_Phdr *ph = NULL;
|
|
void *note = NULL;
|
|
struct vm_range *range, *next;
|
|
struct process_vm *vm = thread->vm;
|
|
int segs = 1; /* the first one is for NOTE */
|
|
int notesize, phsize, alignednotesize;
|
|
unsigned int offset = 0;
|
|
int i;
|
|
|
|
*chunks = 3; /* Elf header , header table and NOTE segment */
|
|
|
|
if (vm == NULL) {
|
|
dkprintf("no vm found.\n");
|
|
return -1;
|
|
}
|
|
|
|
next = lookup_process_memory_range(vm, 0, -1);
|
|
while ((range = next)) {
|
|
next = next_process_memory_range(vm, range);
|
|
|
|
dkprintf("start:%lx end:%lx flag:%lx objoff:%lx\n",
|
|
range->start, range->end, range->flag, range->objoff);
|
|
/* We omit reserved areas because they are only for
|
|
mckernel's internal use. */
|
|
if (range->flag & VR_RESERVED)
|
|
continue;
|
|
/* We need a chunk for each page for a demand paging area.
|
|
This can be optimized for spacial complexity but we would
|
|
lose simplicity instead. */
|
|
if (range->flag & VR_DEMAND_PAGING) {
|
|
unsigned long p, phys;
|
|
int prevzero = 0;
|
|
for (p = range->start; p < range->end; p += PAGE_SIZE) {
|
|
if (ihk_mc_pt_virt_to_phys(thread->vm->address_space->page_table,
|
|
(void *)p, &phys) != 0) {
|
|
prevzero = 1;
|
|
} else {
|
|
if (prevzero == 1)
|
|
(*chunks)++;
|
|
(*chunks)++;
|
|
prevzero = 0;
|
|
}
|
|
}
|
|
if (prevzero == 1)
|
|
(*chunks)++;
|
|
} else {
|
|
(*chunks)++;
|
|
}
|
|
segs++;
|
|
}
|
|
dkprintf("we have %d segs and %d chunks.\n\n", segs, *chunks);
|
|
|
|
{
|
|
struct vm_regions region = thread->vm->region;
|
|
|
|
dkprintf("text: %lx-%lx\n", region.text_start, region.text_end);
|
|
dkprintf("data: %lx-%lx\n", region.data_start, region.data_end);
|
|
dkprintf("brk: %lx-%lx\n", region.brk_start, region.brk_end);
|
|
dkprintf("map: %lx-%lx\n", region.map_start, region.map_end);
|
|
dkprintf("stack: %lx-%lx\n", region.stack_start, region.stack_end);
|
|
dkprintf("user: %lx-%lx\n\n", region.user_start, region.user_end);
|
|
}
|
|
|
|
dkprintf("now generate a core file image\n");
|
|
|
|
offset += sizeof(eh);
|
|
fill_elf_header(&eh, segs);
|
|
|
|
/* program header table */
|
|
phsize = sizeof(Elf64_Phdr) * segs;
|
|
ph = kmalloc(phsize, IHK_MC_AP_NOWAIT);
|
|
if (ph == NULL) {
|
|
dkprintf("could not alloc a program header table.\n");
|
|
goto fail;
|
|
}
|
|
memset(ph, 0, phsize);
|
|
|
|
offset += phsize;
|
|
|
|
/* NOTE segment
|
|
* To align the next segment page-sized, we prepare a padded
|
|
* region for our NOTE segment.
|
|
*/
|
|
notesize = get_note_size();
|
|
alignednotesize = alignpage(notesize + offset) - offset;
|
|
note = kmalloc(alignednotesize, IHK_MC_AP_NOWAIT);
|
|
if (note == NULL) {
|
|
dkprintf("could not alloc NOTE for core.\n");
|
|
goto fail;
|
|
}
|
|
memset(note, 0, alignednotesize);
|
|
fill_note(note, thread, regs);
|
|
|
|
/* prgram header for NOTE segment is exceptional */
|
|
ph[0].p_type = PT_NOTE;
|
|
ph[0].p_flags = 0;
|
|
ph[0].p_offset = offset;
|
|
ph[0].p_vaddr = 0;
|
|
ph[0].p_paddr = 0;
|
|
ph[0].p_filesz = notesize;
|
|
ph[0].p_memsz = notesize;
|
|
ph[0].p_align = 0;
|
|
|
|
offset += alignednotesize;
|
|
|
|
/* program header for each memory chunk */
|
|
i = 1;
|
|
next = lookup_process_memory_range(vm, 0, -1);
|
|
while ((range = next)) {
|
|
next = next_process_memory_range(vm, range);
|
|
|
|
unsigned long flag = range->flag;
|
|
unsigned long size = range->end - range->start;
|
|
|
|
if (range->flag & VR_RESERVED)
|
|
continue;
|
|
|
|
ph[i].p_type = PT_LOAD;
|
|
ph[i].p_flags = ((flag & VR_PROT_READ) ? PF_R : 0)
|
|
| ((flag & VR_PROT_WRITE) ? PF_W : 0)
|
|
| ((flag & VR_PROT_EXEC) ? PF_X : 0);
|
|
ph[i].p_offset = offset;
|
|
ph[i].p_vaddr = range->start;
|
|
ph[i].p_paddr = 0;
|
|
ph[i].p_filesz = size;
|
|
ph[i].p_memsz = size;
|
|
ph[i].p_align = PAGE_SIZE;
|
|
i++;
|
|
offset += size;
|
|
}
|
|
|
|
/* coretable to send to host */
|
|
ct = kmalloc(sizeof(struct coretable) * (*chunks), IHK_MC_AP_NOWAIT);
|
|
if (!ct) {
|
|
dkprintf("could not alloc a coretable.\n");
|
|
goto fail;
|
|
}
|
|
|
|
ct[0].addr = virt_to_phys(&eh); /* ELF header */
|
|
ct[0].len = 64;
|
|
dkprintf("coretable[0]: %lx@%lx(%lx)\n", ct[0].len, ct[0].addr, &eh);
|
|
|
|
ct[1].addr = virt_to_phys(ph); /* program header table */
|
|
ct[1].len = phsize;
|
|
dkprintf("coretable[1]: %lx@%lx(%lx)\n", ct[1].len, ct[1].addr, ph);
|
|
|
|
ct[2].addr = virt_to_phys(note); /* NOTE segment */
|
|
ct[2].len = alignednotesize;
|
|
dkprintf("coretable[2]: %lx@%lx(%lx)\n", ct[2].len, ct[2].addr, note);
|
|
|
|
i = 3; /* memory segments */
|
|
next = lookup_process_memory_range(vm, 0, -1);
|
|
while ((range = next)) {
|
|
next = next_process_memory_range(vm, range);
|
|
|
|
unsigned long phys;
|
|
|
|
if (range->flag & VR_RESERVED)
|
|
continue;
|
|
if (range->flag & VR_DEMAND_PAGING) {
|
|
/* Just an ad hoc kluge. */
|
|
unsigned long p, start, phys;
|
|
int prevzero = 0;
|
|
unsigned long size = 0;
|
|
|
|
for (start = p = range->start;
|
|
p < range->end; p += PAGE_SIZE) {
|
|
if (ihk_mc_pt_virt_to_phys(thread->vm->address_space->page_table,
|
|
(void *)p, &phys) != 0) {
|
|
if (prevzero == 0) {
|
|
/* We begin a new chunk */
|
|
size = PAGE_SIZE;
|
|
start = p;
|
|
} else {
|
|
/* We extend the previous chunk */
|
|
size += PAGE_SIZE;
|
|
}
|
|
prevzero = 1;
|
|
} else {
|
|
if (prevzero == 1) {
|
|
/* Flush out an empty chunk */
|
|
ct[i].addr = 0;
|
|
ct[i].len = size;
|
|
dkprintf("coretable[%d]: %lx@%lx(%lx)\n", i,
|
|
ct[i].len, ct[i].addr, start);
|
|
i++;
|
|
|
|
}
|
|
ct[i].addr = phys;
|
|
ct[i].len = PAGE_SIZE;
|
|
dkprintf("coretable[%d]: %lx@%lx(%lx)\n", i,
|
|
ct[i].len, ct[i].addr, p);
|
|
i++;
|
|
prevzero = 0;
|
|
}
|
|
}
|
|
if (prevzero == 1) {
|
|
/* An empty chunk */
|
|
ct[i].addr = 0;
|
|
ct[i].len = size;
|
|
dkprintf("coretable[%d]: %lx@%lx(%lx)\n", i,
|
|
ct[i].len, ct[i].addr, start);
|
|
i++;
|
|
}
|
|
} else {
|
|
if ((thread->vm->region.user_start <= range->start) &&
|
|
(range->end <= thread->vm->region.user_end)) {
|
|
if (ihk_mc_pt_virt_to_phys(thread->vm->address_space->page_table,
|
|
(void *)range->start, &phys) != 0) {
|
|
dkprintf("could not convert user virtual address %lx"
|
|
"to physical address", range->start);
|
|
goto fail;
|
|
}
|
|
} else {
|
|
phys = virt_to_phys((void *)range->start);
|
|
}
|
|
ct[i].addr = phys;
|
|
ct[i].len = range->end - range->start;
|
|
dkprintf("coretable[%d]: %lx@%lx(%lx)\n", i,
|
|
ct[i].len, ct[i].addr, range->start);
|
|
i++;
|
|
}
|
|
}
|
|
*coretable = ct;
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
if (ct)
|
|
kfree(ct);
|
|
if (ph)
|
|
kfree(ph);
|
|
if (note)
|
|
kfree(note);
|
|
return -1;
|
|
}
|
|
|
|
/**
|
|
* \brief Free all the allocated spaces for an image of the core file.
|
|
*
|
|
* \param coretable An array of core chunks.
|
|
*/
|
|
|
|
void freecore(struct coretable **coretable)
|
|
{
|
|
struct coretable *ct = *coretable;
|
|
kfree(phys_to_virt(ct[2].addr)); /* NOTE segment */
|
|
kfree(phys_to_virt(ct[1].addr)); /* ph */
|
|
kfree(*coretable);
|
|
}
|
|
#endif /* !POSTK_DEBUG_ARCH_DEP_18 */
|