Files
mckernel/arch/arm64/kernel/gencore.c
Dominique Martinet 4d4279121b process/vm; replace vm_range list by a rbtree
This replaces the chained list used to keep track of all memory ranges
of a process by a standard rbtree (no need of interval tree here
because there is no overlap)

Accesses that were done directly through vm_range_list before were
replaced by lookup_process_memory_range, even full list scan (e.g.
coredump).
The full scans will thus be less efficient because calls to rb_next()
will not be inlined, but these are rarer calls that can probably afford
this compared to code simplicity.

The only reference to the actual backing structure left outside of
process.c is a call to rb_erase in xpmem_free_process_memory_range.

v2: fix lookup_process_memory_range with small start address

v3: make vm_range_insert error out properly

Panic does not lead to easy debug, all error paths
are handled to just return someting on error

v4: fix lookup_process_memory_range (again)

That optimistically going left was a more serious bug than just
last iteration, we could just pass by a match and continue down
the tree if the match was not a leaf.

v5: some users actually needed leftmost match, so restore behavior
without the breakage (hopefully)
2017-10-13 10:00:27 +09:00

473 lines
12 KiB
C

/* gencore.c COPYRIGHT FUJITSU LIMITED 2015-2016 */
#ifndef POSTK_DEBUG_ARCH_DEP_18 /* coredump arch separation. */
#include <ihk/debug.h>
#include <kmalloc.h>
#include <cls.h>
#include <list.h>
#include <process.h>
#include <string.h>
#include <elfcore.h>
#define align32(x) ((((x) + 3) / 4) * 4)
#define alignpage(x) ((((x) + (PAGE_SIZE) - 1) / (PAGE_SIZE)) * (PAGE_SIZE))
//#define DEBUG_PRINT_GENCORE
#ifdef DEBUG_PRINT_GENCORE
#define dkprintf(...) kprintf(__VA_ARGS__)
#define ekprintf(...) kprintf(__VA_ARGS__)
#else
#define dkprintf(...) do { if (0) kprintf(__VA_ARGS__); } while (0)
#define ekprintf(...) kprintf(__VA_ARGS__)
#endif
/*
* Generate a core file image, which consists of many chunks.
* Returns an allocated table, an etnry of which is a pair of the address
* of a chunk and its length.
*/
/**
* \brief Fill the elf header.
*
* \param eh An Elf64_Ehdr structure.
* \param segs Number of segments of the core file.
*/
void fill_elf_header(Elf64_Ehdr *eh, int segs)
{
eh->e_ident[EI_MAG0] = 0x7f;
eh->e_ident[EI_MAG1] = 'E';
eh->e_ident[EI_MAG2] = 'L';
eh->e_ident[EI_MAG3] = 'F';
eh->e_ident[EI_CLASS] = ELFCLASS64;
eh->e_ident[EI_DATA] = ELFDATA2LSB;
eh->e_ident[EI_VERSION] = El_VERSION;
eh->e_ident[EI_OSABI] = ELFOSABI_NONE;
eh->e_ident[EI_ABIVERSION] = El_ABIVERSION_NONE;
eh->e_type = ET_CORE;
#ifdef CONFIG_MIC
eh->e_machine = EM_K10M;
#else
eh->e_machine = EM_X86_64;
#endif
eh->e_version = EV_CURRENT;
eh->e_entry = 0; /* Do we really need this? */
eh->e_phoff = 64; /* fixed */
eh->e_shoff = 0; /* no section header */
eh->e_flags = 0;
eh->e_ehsize = 64; /* fixed */
eh->e_phentsize = 56; /* fixed */
eh->e_phnum = segs;
eh->e_shentsize = 0;
eh->e_shnum = 0;
eh->e_shstrndx = 0;
}
/**
* \brief Return the size of the prstatus entry of the NOTE segment.
*
*/
int get_prstatus_size(void)
{
return sizeof(struct note) + align32(sizeof("CORE"))
+ align32(sizeof(struct elf_prstatus64));
}
/**
* \brief Fill a prstatus structure.
*
* \param head A pointer to a note structure.
* \param thread A pointer to the current thread structure.
* \param regs0 A pointer to a x86_regs structure.
*/
void fill_prstatus(struct note *head, struct thread *thread, void *regs0)
{
/* TODO(pka_idle) */
}
/**
* \brief Return the size of the prpsinfo entry of the NOTE segment.
*
*/
int get_prpsinfo_size(void)
{
return sizeof(struct note) + align32(sizeof("CORE"))
+ align32(sizeof(struct elf_prpsinfo64));
}
/**
* \brief Fill a prpsinfo structure.
*
* \param head A pointer to a note structure.
* \param thread A pointer to the current thread structure.
* \param regs A pointer to a x86_regs structure.
*/
void fill_prpsinfo(struct note *head, struct thread *thread, void *regs)
{
void *name;
struct elf_prpsinfo64 *prpsinfo;
head->namesz = sizeof("CORE");
head->descsz = sizeof(struct elf_prpsinfo64);
head->type = NT_PRPSINFO;
name = (void *) (head + 1);
memcpy(name, "CORE", sizeof("CORE"));
prpsinfo = (struct elf_prpsinfo64 *)(name + align32(sizeof("CORE")));
prpsinfo->pr_state = thread->status;
prpsinfo->pr_pid = thread->proc->pid;
/*
We leave most of the fields unfilled.
char pr_sname;
char pr_zomb;
char pr_nice;
a8_uint64_t pr_flag;
unsigned int pr_uid;
unsigned int pr_gid;
int pr_ppid, pr_pgrp, pr_sid;
char pr_fname[16];
char pr_psargs[ELF_PRARGSZ];
*/
}
/**
* \brief Return the size of the AUXV entry of the NOTE segment.
*
*/
int get_auxv_size(void)
{
return sizeof(struct note) + align32(sizeof("CORE"))
+ sizeof(unsigned long) * AUXV_LEN;
}
/**
* \brief Fill an AUXV structure.
*
* \param head A pointer to a note structure.
* \param thread A pointer to the current thread structure.
* \param regs A pointer to a x86_regs structure.
*/
void fill_auxv(struct note *head, struct thread *thread, void *regs)
{
void *name;
void *auxv;
head->namesz = sizeof("CORE");
head->descsz = sizeof(unsigned long) * AUXV_LEN;
head->type = NT_AUXV;
name = (void *) (head + 1);
memcpy(name, "CORE", sizeof("CORE"));
auxv = name + align32(sizeof("CORE"));
memcpy(auxv, thread->proc->saved_auxv, sizeof(unsigned long) * AUXV_LEN);
}
/**
* \brief Return the size of the whole NOTE segment.
*
*/
int get_note_size(void)
{
return get_prstatus_size() + get_prpsinfo_size()
+ get_auxv_size();
}
/**
* \brief Fill the NOTE segment.
*
* \param head A pointer to a note structure.
* \param thread A pointer to the current thread structure.
* \param regs A pointer to a x86_regs structure.
*/
void fill_note(void *note, struct thread *thread, void *regs)
{
fill_prstatus(note, thread, regs);
note += get_prstatus_size();
fill_prpsinfo(note, thread, regs);
note += get_prpsinfo_size();
fill_auxv(note, thread, regs);
}
/**
* \brief Generate an image of the core file.
*
* \param thread A pointer to the current thread structure.
* \param regs A pointer to a x86_regs structure.
* \param coretable(out) An array of core chunks.
* \param chunks(out) Number of the entires of coretable.
*
* A core chunk is represented by a pair of a physical
* address of memory region and its size. If there are
* no corresponding physical address for a VM area
* (an unallocated demand-paging page, e.g.), the address
* should be zero.
*/
int gencore(struct thread *thread, void *regs,
struct coretable **coretable, int *chunks)
{
struct coretable *ct = NULL;
Elf64_Ehdr eh;
Elf64_Phdr *ph = NULL;
void *note = NULL;
struct vm_range *range, *next;
struct process_vm *vm = thread->vm;
int segs = 1; /* the first one is for NOTE */
int notesize, phsize, alignednotesize;
unsigned int offset = 0;
int i;
*chunks = 3; /* Elf header , header table and NOTE segment */
if (vm == NULL) {
dkprintf("no vm found.\n");
return -1;
}
next = lookup_process_memory_range(vm, 0, -1);
while ((range = next)) {
next = next_process_memory_range(vm, range);
dkprintf("start:%lx end:%lx flag:%lx objoff:%lx\n",
range->start, range->end, range->flag, range->objoff);
/* We omit reserved areas because they are only for
mckernel's internal use. */
if (range->flag & VR_RESERVED)
continue;
/* We need a chunk for each page for a demand paging area.
This can be optimized for spacial complexity but we would
lose simplicity instead. */
if (range->flag & VR_DEMAND_PAGING) {
unsigned long p, phys;
int prevzero = 0;
for (p = range->start; p < range->end; p += PAGE_SIZE) {
if (ihk_mc_pt_virt_to_phys(thread->vm->address_space->page_table,
(void *)p, &phys) != 0) {
prevzero = 1;
} else {
if (prevzero == 1)
(*chunks)++;
(*chunks)++;
prevzero = 0;
}
}
if (prevzero == 1)
(*chunks)++;
} else {
(*chunks)++;
}
segs++;
}
dkprintf("we have %d segs and %d chunks.\n\n", segs, *chunks);
{
struct vm_regions region = thread->vm->region;
dkprintf("text: %lx-%lx\n", region.text_start, region.text_end);
dkprintf("data: %lx-%lx\n", region.data_start, region.data_end);
dkprintf("brk: %lx-%lx\n", region.brk_start, region.brk_end);
dkprintf("map: %lx-%lx\n", region.map_start, region.map_end);
dkprintf("stack: %lx-%lx\n", region.stack_start, region.stack_end);
dkprintf("user: %lx-%lx\n\n", region.user_start, region.user_end);
}
dkprintf("now generate a core file image\n");
offset += sizeof(eh);
fill_elf_header(&eh, segs);
/* program header table */
phsize = sizeof(Elf64_Phdr) * segs;
ph = kmalloc(phsize, IHK_MC_AP_NOWAIT);
if (ph == NULL) {
dkprintf("could not alloc a program header table.\n");
goto fail;
}
memset(ph, 0, phsize);
offset += phsize;
/* NOTE segment
* To align the next segment page-sized, we prepare a padded
* region for our NOTE segment.
*/
notesize = get_note_size();
alignednotesize = alignpage(notesize + offset) - offset;
note = kmalloc(alignednotesize, IHK_MC_AP_NOWAIT);
if (note == NULL) {
dkprintf("could not alloc NOTE for core.\n");
goto fail;
}
memset(note, 0, alignednotesize);
fill_note(note, thread, regs);
/* prgram header for NOTE segment is exceptional */
ph[0].p_type = PT_NOTE;
ph[0].p_flags = 0;
ph[0].p_offset = offset;
ph[0].p_vaddr = 0;
ph[0].p_paddr = 0;
ph[0].p_filesz = notesize;
ph[0].p_memsz = notesize;
ph[0].p_align = 0;
offset += alignednotesize;
/* program header for each memory chunk */
i = 1;
next = lookup_process_memory_range(vm, 0, -1);
while ((range = next)) {
next = next_process_memory_range(vm, range);
unsigned long flag = range->flag;
unsigned long size = range->end - range->start;
if (range->flag & VR_RESERVED)
continue;
ph[i].p_type = PT_LOAD;
ph[i].p_flags = ((flag & VR_PROT_READ) ? PF_R : 0)
| ((flag & VR_PROT_WRITE) ? PF_W : 0)
| ((flag & VR_PROT_EXEC) ? PF_X : 0);
ph[i].p_offset = offset;
ph[i].p_vaddr = range->start;
ph[i].p_paddr = 0;
ph[i].p_filesz = size;
ph[i].p_memsz = size;
ph[i].p_align = PAGE_SIZE;
i++;
offset += size;
}
/* coretable to send to host */
ct = kmalloc(sizeof(struct coretable) * (*chunks), IHK_MC_AP_NOWAIT);
if (!ct) {
dkprintf("could not alloc a coretable.\n");
goto fail;
}
ct[0].addr = virt_to_phys(&eh); /* ELF header */
ct[0].len = 64;
dkprintf("coretable[0]: %lx@%lx(%lx)\n", ct[0].len, ct[0].addr, &eh);
ct[1].addr = virt_to_phys(ph); /* program header table */
ct[1].len = phsize;
dkprintf("coretable[1]: %lx@%lx(%lx)\n", ct[1].len, ct[1].addr, ph);
ct[2].addr = virt_to_phys(note); /* NOTE segment */
ct[2].len = alignednotesize;
dkprintf("coretable[2]: %lx@%lx(%lx)\n", ct[2].len, ct[2].addr, note);
i = 3; /* memory segments */
next = lookup_process_memory_range(vm, 0, -1);
while ((range = next)) {
next = next_process_memory_range(vm, range);
unsigned long phys;
if (range->flag & VR_RESERVED)
continue;
if (range->flag & VR_DEMAND_PAGING) {
/* Just an ad hoc kluge. */
unsigned long p, start, phys;
int prevzero = 0;
unsigned long size = 0;
for (start = p = range->start;
p < range->end; p += PAGE_SIZE) {
if (ihk_mc_pt_virt_to_phys(thread->vm->address_space->page_table,
(void *)p, &phys) != 0) {
if (prevzero == 0) {
/* We begin a new chunk */
size = PAGE_SIZE;
start = p;
} else {
/* We extend the previous chunk */
size += PAGE_SIZE;
}
prevzero = 1;
} else {
if (prevzero == 1) {
/* Flush out an empty chunk */
ct[i].addr = 0;
ct[i].len = size;
dkprintf("coretable[%d]: %lx@%lx(%lx)\n", i,
ct[i].len, ct[i].addr, start);
i++;
}
ct[i].addr = phys;
ct[i].len = PAGE_SIZE;
dkprintf("coretable[%d]: %lx@%lx(%lx)\n", i,
ct[i].len, ct[i].addr, p);
i++;
prevzero = 0;
}
}
if (prevzero == 1) {
/* An empty chunk */
ct[i].addr = 0;
ct[i].len = size;
dkprintf("coretable[%d]: %lx@%lx(%lx)\n", i,
ct[i].len, ct[i].addr, start);
i++;
}
} else {
if ((thread->vm->region.user_start <= range->start) &&
(range->end <= thread->vm->region.user_end)) {
if (ihk_mc_pt_virt_to_phys(thread->vm->address_space->page_table,
(void *)range->start, &phys) != 0) {
dkprintf("could not convert user virtual address %lx"
"to physical address", range->start);
goto fail;
}
} else {
phys = virt_to_phys((void *)range->start);
}
ct[i].addr = phys;
ct[i].len = range->end - range->start;
dkprintf("coretable[%d]: %lx@%lx(%lx)\n", i,
ct[i].len, ct[i].addr, range->start);
i++;
}
}
*coretable = ct;
return 0;
fail:
if (ct)
kfree(ct);
if (ph)
kfree(ph);
if (note)
kfree(note);
return -1;
}
/**
* \brief Free all the allocated spaces for an image of the core file.
*
* \param coretable An array of core chunks.
*/
void freecore(struct coretable **coretable)
{
struct coretable *ct = *coretable;
kfree(phys_to_virt(ct[2].addr)); /* NOTE segment */
kfree(phys_to_virt(ct[1].addr)); /* ph */
kfree(*coretable);
}
#endif /* !POSTK_DEBUG_ARCH_DEP_18 */