Files
mckernel/kernel/gencore.c
Masamichi Takagi 62772c8a24 gencore: Allocate ELF header to heap instead of stack
coredump() proceeds as follows:

1. coredump() calls gencore()
2. gencore() allocates ELF header to stack
3. gencore() prepares the core table and record the address of the ELF
   header to the table and return to coredump()
4. coredump() offloads __NR_coredump with the address of the core
   table

This fix prevents the ELF header from getting destroyed in the 3rd
step.

Change-Id: I770418c1658a6fdb640bb491fc076a31dfd41c22
Fujitsu: POSTK_TEMP_FIX_39
2019-03-01 04:38:28 +00:00

502 lines
12 KiB
C

/* gencore.c COPYRIGHT FUJITSU LIMITED 2015-2019 */
#include <ihk/debug.h>
#include <kmalloc.h>
#include <cls.h>
#include <list.h>
#include <process.h>
#include <string.h>
#include <elfcore.h>
#define align32(x) ((((x) + 3) / 4) * 4)
#define alignpage(x) ((((x) + (PAGE_SIZE) - 1) / (PAGE_SIZE)) * (PAGE_SIZE))
//#define DEBUG_PRINT_GENCORE
#ifdef DEBUG_PRINT_GENCORE
#undef DDEBUG_DEFAULT
#define DDEBUG_DEFAULT DDEBUG_PRINT
#endif
/* Exclude reserved (mckernel's internal use), device file,
* hole created by mprotect
*/
#define GENCORE_RANGE_IS_INACCESSIBLE(range) \
((range->flag & (VR_RESERVED | VR_MEMTYPE_UC | VR_DONTDUMP)))
/* Generate a core file image, which consists of many chunks.
* Returns an allocated table, an etnry of which is a pair of the address
* of a chunk and its length.
*/
/**
* \brief Fill the elf header.
*
* \param eh An Elf64_Ehdr structure.
* \param segs Number of segments of the core file.
*/
void fill_elf_header(Elf64_Ehdr *eh, int segs)
{
eh->e_ident[EI_MAG0] = 0x7f;
eh->e_ident[EI_MAG1] = 'E';
eh->e_ident[EI_MAG2] = 'L';
eh->e_ident[EI_MAG3] = 'F';
eh->e_ident[EI_CLASS] = ELF_CLASS;
eh->e_ident[EI_DATA] = ELF_DATA;
eh->e_ident[EI_VERSION] = El_VERSION;
eh->e_ident[EI_OSABI] = ELF_OSABI;
eh->e_ident[EI_ABIVERSION] = ELF_ABIVERSION;
eh->e_type = ET_CORE;
eh->e_machine = ELF_ARCH;
eh->e_version = EV_CURRENT;
eh->e_entry = 0; /* Do we really need this? */
eh->e_phoff = 64; /* fixed */
eh->e_shoff = 0; /* no section header */
eh->e_flags = 0;
eh->e_ehsize = 64; /* fixed */
eh->e_phentsize = 56; /* fixed */
eh->e_phnum = segs;
eh->e_shentsize = 0;
eh->e_shnum = 0;
eh->e_shstrndx = 0;
}
/**
* \brief Return the size of the prstatus entry of the NOTE segment.
*
*/
int get_prstatus_size(void)
{
return sizeof(struct note) + align32(sizeof("CORE"))
+ align32(sizeof(struct elf_prstatus64));
}
/**
* \brief Return the size of the prpsinfo entry of the NOTE segment.
*
*/
int get_prpsinfo_size(void)
{
return sizeof(struct note) + align32(sizeof("CORE"))
+ align32(sizeof(struct elf_prpsinfo64));
}
/**
* \brief Fill a prstatus structure.
*
* \param head A pointer to a note structure.
* \param proc A pointer to the current process structure.
* \param regs0 A pointer to a ihk_mc_user_context_t structure.
*/
void fill_prstatus(struct note *head, struct thread *thread, void *regs0)
{
void *name;
struct elf_prstatus64 *prstatus;
head->namesz = sizeof("CORE");
head->descsz = sizeof(struct elf_prstatus64);
head->type = NT_PRSTATUS;
name = (void *) (head + 1);
memcpy(name, "CORE", sizeof("CORE"));
prstatus = (struct elf_prstatus64 *)(name + align32(sizeof("CORE")));
arch_fill_prstatus(prstatus, thread, regs0);
}
/**
* \brief Fill a prpsinfo structure.
*
* \param head A pointer to a note structure.
* \param proc A pointer to the current process structure.
* \param regs A pointer to a ihk_mc_user_context_t structure.
*/
void fill_prpsinfo(struct note *head, struct thread *thread, void *regs)
{
void *name;
struct elf_prpsinfo64 *prpsinfo;
head->namesz = sizeof("CORE");
head->descsz = sizeof(struct elf_prpsinfo64);
head->type = NT_PRPSINFO;
name = (void *) (head + 1);
memcpy(name, "CORE", sizeof("CORE"));
prpsinfo = (struct elf_prpsinfo64 *)(name + align32(sizeof("CORE")));
prpsinfo->pr_state = thread->status;
prpsinfo->pr_pid = thread->proc->pid;
/* TODO: Fill the following fields:
* char pr_sname;
* char pr_zomb;
* char pr_nice;
* a8_uint64_t pr_flag;
* unsigned int pr_uid;
* unsigned int pr_gid;
* int pr_ppid, pr_pgrp, pr_sid;
* char pr_fname[16];
* char pr_psargs[ELF_PRARGSZ];
*/
}
/**
* \brief Return the size of the AUXV entry of the NOTE segment.
*
*/
int get_auxv_size(void)
{
return sizeof(struct note) + align32(sizeof("CORE"))
+ sizeof(unsigned long) * AUXV_LEN;
}
/**
* \brief Fill an AUXV structure.
*
* \param head A pointer to a note structure.
* \param proc A pointer to the current process structure.
* \param regs A pointer to a ihk_mc_user_context_t structure.
*/
void fill_auxv(struct note *head, struct thread *thread, void *regs)
{
void *name;
void *auxv;
head->namesz = sizeof("CORE");
head->descsz = sizeof(unsigned long) * AUXV_LEN;
head->type = NT_AUXV;
name = (void *) (head + 1);
memcpy(name, "CORE", sizeof("CORE"));
auxv = name + align32(sizeof("CORE"));
memcpy(auxv, thread->proc->saved_auxv,
sizeof(unsigned long) * AUXV_LEN);
}
/**
* \brief Return the size of the whole NOTE segment.
*
*/
int get_note_size(void)
{
return get_prstatus_size() + arch_get_thread_core_info_size()
+ get_prpsinfo_size() + get_auxv_size();
}
/**
* \brief Fill the NOTE segment.
*
* \param head A pointer to a note structure.
* \param proc A pointer to the current process structure.
* \param regs A pointer to a ihk_mc_user_context_t structure.
*/
void fill_note(void *note, struct thread *thread, void *regs)
{
fill_prstatus(note, thread, regs);
note += get_prstatus_size();
arch_fill_thread_core_info(note, thread, regs);
note += arch_get_thread_core_info_size();
fill_prpsinfo(note, thread, regs);
note += get_prpsinfo_size();
fill_auxv(note, thread, regs);
}
/**
* \brief Generate an image of the core file.
*
* \param proc A pointer to the current process structure.
* \param regs A pointer to a ihk_mc_user_context_t structure.
* \param coretable(out) An array of core chunks.
* \param chunks(out) Number of the entires of coretable.
*
* A core chunk is represented by a pair of a physical
* address of memory region and its size. If there are
* no corresponding physical address for a VM area
* (an unallocated demand-paging page, e.g.), the address
* should be zero.
*/
int gencore(struct thread *thread, void *regs,
struct coretable **coretable, int *chunks)
{
struct coretable *ct = NULL;
Elf64_Ehdr *eh = NULL;
Elf64_Phdr *ph = NULL;
void *note = NULL;
struct vm_range *range, *next;
struct process_vm *vm = thread->vm;
int segs = 1; /* the first one is for NOTE */
int notesize, phsize, alignednotesize;
unsigned int offset = 0;
int i;
*chunks = 3; /* Elf header , header table and NOTE segment */
if (vm == NULL) {
dkprintf("no vm found.\n");
return -1;
}
next = lookup_process_memory_range(vm, 0, -1);
while ((range = next)) {
next = next_process_memory_range(vm, range);
dkprintf("start:%lx end:%lx flag:%lx objoff:%lx\n",
range->start, range->end, range->flag, range->objoff);
if (GENCORE_RANGE_IS_INACCESSIBLE(range)) {
continue;
}
/* We need a chunk for each page for a demand paging area.
* This can be optimized for spacial complexity but we would
* lose simplicity instead.
*/
if (range->flag & VR_DEMAND_PAGING) {
unsigned long p, phys;
int prevzero = 0;
for (p = range->start; p < range->end; p += PAGE_SIZE) {
if (ihk_mc_pt_virt_to_phys(thread->vm->address_space->page_table,
(void *)p, &phys) != 0) {
prevzero = 1;
} else {
if (prevzero == 1)
(*chunks)++;
(*chunks)++;
prevzero = 0;
}
}
if (prevzero == 1)
(*chunks)++;
} else {
(*chunks)++;
}
segs++;
}
dkprintf("we have %d segs and %d chunks.\n\n", segs, *chunks);
{
struct vm_regions region = thread->vm->region;
dkprintf("text: %lx-%lx\n", region.text_start,
region.text_end);
dkprintf("data: %lx-%lx\n", region.data_start,
region.data_end);
dkprintf("brk: %lx-%lx\n", region.brk_start, region.brk_end);
dkprintf("map: %lx-%lx\n", region.map_start, region.map_end);
dkprintf("stack: %lx-%lx\n", region.stack_start,
region.stack_end);
dkprintf("user: %lx-%lx\n\n", region.user_start,
region.user_end);
}
dkprintf("now generate a core file image\n");
eh = kmalloc(sizeof(*eh), IHK_MC_AP_NOWAIT);
if (eh == NULL) {
dkprintf("could not alloc a elf header table.\n");
goto fail;
}
memset(eh, 0, sizeof(*eh));
offset += sizeof(*eh);
fill_elf_header(eh, segs);
/* program header table */
phsize = sizeof(Elf64_Phdr) * segs;
ph = kmalloc(phsize, IHK_MC_AP_NOWAIT);
if (ph == NULL) {
dkprintf("could not alloc a program header table.\n");
goto fail;
}
memset(ph, 0, phsize);
offset += phsize;
/* NOTE segment
* To align the next segment page-sized, we prepare a padded
* region for our NOTE segment.
*/
notesize = get_note_size();
alignednotesize = alignpage(notesize + offset) - offset;
note = kmalloc(alignednotesize, IHK_MC_AP_NOWAIT);
if (note == NULL) {
dkprintf("could not alloc NOTE for core.\n");
goto fail;
}
memset(note, 0, alignednotesize);
fill_note(note, thread, regs);
/* prgram header for NOTE segment is exceptional */
ph[0].p_type = PT_NOTE;
ph[0].p_flags = 0;
ph[0].p_offset = offset;
ph[0].p_vaddr = 0;
ph[0].p_paddr = 0;
ph[0].p_filesz = notesize;
ph[0].p_memsz = notesize;
ph[0].p_align = 0;
offset += alignednotesize;
/* program header for each memory chunk */
i = 1;
next = lookup_process_memory_range(vm, 0, -1);
while ((range = next)) {
next = next_process_memory_range(vm, range);
unsigned long flag = range->flag;
unsigned long size = range->end - range->start;
if (GENCORE_RANGE_IS_INACCESSIBLE(range)) {
continue;
}
ph[i].p_type = PT_LOAD;
ph[i].p_flags = ((flag & VR_PROT_READ) ? PF_R : 0)
| ((flag & VR_PROT_WRITE) ? PF_W : 0)
| ((flag & VR_PROT_EXEC) ? PF_X : 0);
ph[i].p_offset = offset;
ph[i].p_vaddr = range->start;
ph[i].p_paddr = 0;
ph[i].p_filesz = size;
ph[i].p_memsz = size;
ph[i].p_align = PAGE_SIZE;
i++;
offset += size;
}
/* coretable to send to host */
ct = kmalloc(sizeof(struct coretable) * (*chunks), IHK_MC_AP_NOWAIT);
if (!ct) {
dkprintf("could not alloc a coretable.\n");
goto fail;
}
memset(ct, 0, sizeof(*ct));
ct[0].addr = virt_to_phys(eh); /* ELF header */
ct[0].len = 64;
dkprintf("coretable[0]: %lx@%lx(%lx)\n", ct[0].len, ct[0].addr, eh);
ct[1].addr = virt_to_phys(ph); /* program header table */
ct[1].len = phsize;
dkprintf("coretable[1]: %lx@%lx(%lx)\n", ct[1].len, ct[1].addr, ph);
ct[2].addr = virt_to_phys(note); /* NOTE segment */
ct[2].len = alignednotesize;
dkprintf("coretable[2]: %lx@%lx(%lx)\n", ct[2].len, ct[2].addr, note);
i = 3; /* memory segments */
next = lookup_process_memory_range(vm, 0, -1);
while ((range = next)) {
next = next_process_memory_range(vm, range);
unsigned long phys;
if (GENCORE_RANGE_IS_INACCESSIBLE(range)) {
continue;
}
if (range->flag & VR_DEMAND_PAGING) {
/* Just an ad hoc kluge. */
unsigned long p, start, phys;
int prevzero = 0;
unsigned long size = 0;
for (start = p = range->start;
p < range->end; p += PAGE_SIZE) {
if (ihk_mc_pt_virt_to_phys(thread->vm->address_space->page_table,
(void *)p, &phys) != 0) {
if (prevzero == 0) {
/* Start a new chunk */
size = PAGE_SIZE;
start = p;
} else {
/* Extend the previous chunk */
size += PAGE_SIZE;
}
prevzero = 1;
} else {
if (prevzero == 1) {
/* Flush out an empty chunk */
ct[i].addr = 0;
ct[i].len = size;
dkprintf("coretable[%d]: %lx@%lx(%lx)\n",
i, ct[i].len,
ct[i].addr, start);
i++;
}
ct[i].addr = phys;
ct[i].len = PAGE_SIZE;
dkprintf("coretable[%d]: %lx@%lx(%lx)\n",
i, ct[i].len, ct[i].addr, p);
i++;
prevzero = 0;
}
}
if (prevzero == 1) {
/* An empty chunk */
ct[i].addr = 0;
ct[i].len = size;
dkprintf("coretable[%d]: %lx@%lx(%lx)\n",
i, ct[i].len, ct[i].addr, start);
i++;
}
} else {
if ((thread->vm->region.user_start <= range->start) &&
(range->end <= thread->vm->region.user_end)) {
if (ihk_mc_pt_virt_to_phys(thread->vm->address_space->page_table,
(void *)range->start,
&phys) != 0) {
dkprintf("could not convert user "
"virtual address %lx "
"to physical address\n",
range->start);
goto fail;
}
} else {
phys = virt_to_phys((void *)range->start);
}
ct[i].addr = phys;
ct[i].len = range->end - range->start;
dkprintf("coretable[%d]: %lx@%lx(%lx)\n", i,
ct[i].len, ct[i].addr, range->start);
i++;
}
}
*coretable = ct;
return 0;
fail:
kfree(ct);
kfree(ph);
kfree(note);
return -1;
}
/**
* \brief Free all the allocated spaces for an image of the core file.
*
* \param coretable An array of core chunks.
*/
void freecore(struct coretable **coretable)
{
struct coretable *ct = *coretable;
kfree(phys_to_virt(ct[2].addr)); /* NOTE segment */
kfree(phys_to_virt(ct[1].addr)); /* ph */
kfree(phys_to_virt(ct[0].addr)); /* eh */
kfree(*coretable);
}