Files
mckernel/kernel/process.c
2016-12-05 18:10:20 +09:00

3080 lines
80 KiB
C

/**
* \file process.c
* License details are found in the file LICENSE.
* \brief
* process, thread, and, virtual memory management
* \author Taku Shimosawa <shimosawa@is.s.u-tokyo.ac.jp> \par
* Copyright (C) 2011 - 2012 Taku Shimosawa
* \author Balazs Gerofi <bgerofi@riken.jp> \par
* Copyright (C) 2012 RIKEN AICS
* \author Masamichi Takagi <m-takagi@ab.jp.nec.com> \par
* Copyright (C) 2012 - 2013 NEC Corporation
* \author Balazs Gerofi <bgerofi@is.s.u-tokyo.ac.jp> \par
* Copyright (C) 2013 The University of Tokyo
* \author Gou Nakamura <go.nakamura.yw@hitachi-solutions.com> \par
* Copyright (C) 2013 Hitachi, Ltd.
* \author Tomoki Shirasawa <tomoki.shirasawa.kk@hitachi-solutions.com> \par
* Copyright (C) 2013 Hitachi, Ltd.
*/
/*
* HISTORY:
*/
#include <process.h>
#include <string.h>
#include <errno.h>
#include <kmalloc.h>
#include <cls.h>
#include <ihk/debug.h>
#include <page.h>
#include <cpulocal.h>
#include <auxvec.h>
#include <timer.h>
#include <mman.h>
//#define DEBUG_PRINT_PROCESS
#ifdef DEBUG_PRINT_PROCESS
#define dkprintf(...) kprintf(__VA_ARGS__)
#define ekprintf(...) kprintf(__VA_ARGS__)
#else
#define dkprintf(...) do { if (0) kprintf(__VA_ARGS__); } while (0)
#define ekprintf(...) kprintf(__VA_ARGS__)
#endif
extern long alloc_debugreg(struct thread *proc);
extern void save_debugreg(unsigned long *debugreg);
extern void restore_debugreg(unsigned long *debugreg);
extern void clear_debugreg(void);
extern void clear_single_step(struct thread *proc);
static void insert_vm_range_list(struct process_vm *vm,
struct vm_range *newrange);
static int copy_user_ranges(struct process_vm *vm, struct process_vm *orgvm);
extern void release_fp_regs(struct thread *proc);
extern void save_fp_regs(struct thread *proc);
extern void restore_fp_regs(struct thread *proc);
extern void __runq_add_proc(struct thread *proc, int cpu_id);
extern void terminate_host(int pid);
extern void lapic_timer_enable(unsigned int clocks);
extern void lapic_timer_disable();
extern int num_processors;
extern ihk_spinlock_t cpuid_head_lock;
int ptrace_detach(int pid, int data);
extern unsigned long do_kill(struct thread *, int pid, int tid, int sig, struct siginfo *info, int ptracecont);
extern void procfs_create_thread(struct thread *);
extern void procfs_delete_thread(struct thread *);
extern void perf_start(struct mc_perf_event *event);
extern void perf_reset(struct mc_perf_event *event);
struct list_head resource_set_list;
mcs_rwlock_lock_t resource_set_lock;
void
init_process(struct process *proc, struct process *parent)
{
/* These will be filled out when changing status */
proc->pid = -1;
proc->status = PS_RUNNING;
if(parent){
proc->parent = parent;
proc->ppid_parent = parent;
proc->pgid = parent->pgid;
proc->ruid = parent->ruid;
proc->euid = parent->euid;
proc->suid = parent->suid;
proc->fsuid = parent->fsuid;
proc->rgid = parent->rgid;
proc->egid = parent->egid;
proc->sgid = parent->sgid;
proc->fsgid = parent->fsgid;
memcpy(proc->rlimit, parent->rlimit,
sizeof(struct rlimit) * MCK_RLIM_MAX);
}
INIT_LIST_HEAD(&proc->threads_list);
INIT_LIST_HEAD(&proc->children_list);
INIT_LIST_HEAD(&proc->ptraced_children_list);
mcs_rwlock_init(&proc->threads_lock);
mcs_rwlock_init(&proc->children_lock);
ihk_mc_spinlock_init(&proc->mckfd_lock);
waitq_init(&proc->waitpid_q);
ihk_atomic_set(&proc->refcount, 2);
proc->monitoring_event = NULL;
}
void
chain_process(struct process *proc)
{
struct mcs_rwlock_node_irqsave lock;
struct process *parent = proc->parent;
int hash;
struct process_hash *phash;
mcs_rwlock_writer_lock(&parent->children_lock, &lock);
list_add_tail(&proc->siblings_list, &parent->children_list);
mcs_rwlock_writer_unlock(&parent->children_lock, &lock);
hash = process_hash(proc->pid);
phash = cpu_local_var(resource_set)->process_hash;
mcs_rwlock_writer_lock(&phash->lock[hash], &lock);
list_add_tail(&proc->hash_list, &phash->list[hash]);
mcs_rwlock_writer_unlock(&phash->lock[hash], &lock);
}
void
chain_thread(struct thread *thread)
{
struct mcs_rwlock_node_irqsave lock;
struct process *proc = thread->proc;
struct process_vm *vm = thread->vm;
int hash;
struct thread_hash *thash;
mcs_rwlock_writer_lock(&proc->threads_lock, &lock);
list_add_tail(&thread->siblings_list, &proc->threads_list);
mcs_rwlock_writer_unlock(&proc->threads_lock, &lock);
hash = thread_hash(thread->tid);
thash = cpu_local_var(resource_set)->thread_hash;
mcs_rwlock_writer_lock(&thash->lock[hash], &lock);
list_add_tail(&thread->hash_list, &thash->list[hash]);
mcs_rwlock_writer_unlock(&thash->lock[hash], &lock);
ihk_atomic_inc(&vm->refcount);
}
struct address_space *
create_address_space(struct resource_set *res, int n)
{
struct address_space *asp;
void *pt;
asp = kmalloc(sizeof(struct address_space) + sizeof(int) * n, IHK_MC_AP_NOWAIT);
if(!asp)
return NULL;
pt = ihk_mc_pt_create(IHK_MC_AP_NOWAIT);
if(!pt){
kfree(asp);
return NULL;
}
memset(asp, '\0', sizeof(struct address_space) + sizeof(int) * n);
asp->nslots = n;
asp->page_table = pt;
ihk_atomic_set(&asp->refcount, 1);
memset(&asp->cpu_set, 0, sizeof(cpu_set_t));
ihk_mc_spinlock_init(&asp->cpu_set_lock);
return asp;
}
void
hold_address_space(struct address_space *asp)
{
ihk_atomic_inc(&asp->refcount);
}
void
release_address_space(struct address_space *asp)
{
if (!ihk_atomic_dec_and_test(&asp->refcount)) {
return;
}
if(asp->free_cb)
asp->free_cb(asp, asp->opt);
ihk_mc_pt_destroy(asp->page_table);
kfree(asp);
}
void
detach_address_space(struct address_space *asp, int pid)
{
int i;
for(i = 0; i < asp->nslots; i++){
if(asp->pids[i] == pid){
asp->pids[i] = 0;
break;
}
}
release_address_space(asp);
}
static int
init_process_vm(struct process *owner, struct address_space *asp, struct process_vm *vm)
{
int i;
ihk_mc_spinlock_init(&vm->memory_range_lock);
ihk_mc_spinlock_init(&vm->page_table_lock);
ihk_atomic_set(&vm->refcount, 1);
INIT_LIST_HEAD(&vm->vm_range_list);
INIT_LIST_HEAD(&vm->vm_range_numa_policy_list);
vm->address_space = asp;
vm->proc = owner;
vm->exiting = 0;
memset(&vm->numa_mask, 0, sizeof(vm->numa_mask));
for (i = 0; i < ihk_mc_get_nr_numa_nodes(); ++i) {
if (i >= PROCESS_NUMA_MASK_BITS) {
kprintf("%s: error: NUMA id is larger than mask size!\n",
__FUNCTION__);
break;
}
set_bit(i, &vm->numa_mask[0]);
}
vm->numa_mem_policy = MPOL_DEFAULT;
for (i = 0; i < VM_RANGE_CACHE_SIZE; ++i) {
vm->range_cache[i] = NULL;
}
vm->range_cache_ind = 0;
return 0;
}
struct thread *
create_thread(unsigned long user_pc)
{
struct thread *thread;
struct process *proc;
struct process_vm *vm = NULL;
struct address_space *asp = NULL;
thread = ihk_mc_alloc_pages(KERNEL_STACK_NR_PAGES, IHK_MC_AP_NOWAIT);
if (!thread)
return NULL;
memset(thread, 0, sizeof(struct thread));
ihk_atomic_set(&thread->refcount, 2);
proc = kmalloc(sizeof(struct process), IHK_MC_AP_NOWAIT);
vm = kmalloc(sizeof(struct process_vm), IHK_MC_AP_NOWAIT);
asp = create_address_space(cpu_local_var(resource_set), 1);
if (!proc || !vm || !asp)
goto err;
memset(proc, 0, sizeof(struct process));
memset(vm, 0, sizeof(struct process_vm));
init_process(proc, cpu_local_var(resource_set)->pid1);
if (1) {
struct ihk_mc_cpu_info *infop;
int i;
infop = ihk_mc_get_cpu_info();
for (i = 0; i < infop->ncpus; ++i) {
CPU_SET(i, &thread->cpu_set);
}
}
thread->sched_policy = SCHED_NORMAL;
thread->sigcommon = kmalloc(sizeof(struct sig_common),
IHK_MC_AP_NOWAIT);
if (!thread->sigcommon) {
goto err;
}
memset(thread->sigcommon, '\0', sizeof(struct sig_common));
dkprintf("fork(): sigshared\n");
ihk_atomic_set(&thread->sigcommon->use, 1);
mcs_rwlock_init(&thread->sigcommon->lock);
INIT_LIST_HEAD(&thread->sigcommon->sigpending);
mcs_rwlock_init(&thread->sigpendinglock);
INIT_LIST_HEAD(&thread->sigpending);
thread->sigstack.ss_sp = NULL;
thread->sigstack.ss_flags = SS_DISABLE;
thread->sigstack.ss_size = 0;
ihk_mc_init_user_process(&thread->ctx, &thread->uctx, ((char *)thread) +
KERNEL_STACK_NR_PAGES * PAGE_SIZE, user_pc, 0);
thread->vm = vm;
thread->proc = proc;
proc->vm = vm;
if(init_process_vm(proc, asp, vm) != 0){
goto err;
}
thread->exit_status = -1;
cpu_set(ihk_mc_get_processor_id(), &thread->vm->address_space->cpu_set,
&thread->vm->address_space->cpu_set_lock);
ihk_mc_spinlock_init(&thread->spin_sleep_lock);
thread->spin_sleep = 0;
return thread;
err:
if(proc)
kfree(proc);
if(vm)
kfree(vm);
if(asp)
release_address_space(asp);
if(thread->sigcommon)
kfree(thread->sigcommon);
ihk_mc_free_pages(thread, KERNEL_STACK_NR_PAGES);
return NULL;
}
struct thread *
clone_thread(struct thread *org, unsigned long pc, unsigned long sp,
int clone_flags)
{
struct thread *thread;
int termsig = clone_flags & 0xff;
struct process *proc = NULL;
struct address_space *asp = NULL;
if ((thread = ihk_mc_alloc_pages(KERNEL_STACK_NR_PAGES,
IHK_MC_AP_NOWAIT)) == NULL) {
return NULL;
}
memset(thread, 0, sizeof(struct thread));
ihk_atomic_set(&thread->refcount, 2);
memcpy(&thread->cpu_set, &org->cpu_set, sizeof(thread->cpu_set));
/* NOTE: sp is the user mode stack! */
ihk_mc_init_user_process(&thread->ctx, &thread->uctx, ((char *)thread) +
KERNEL_STACK_NR_PAGES * PAGE_SIZE, pc, sp);
memcpy(thread->uctx, org->uctx, sizeof(*org->uctx));
ihk_mc_modify_user_context(thread->uctx, IHK_UCR_STACK_POINTER, sp);
ihk_mc_modify_user_context(thread->uctx, IHK_UCR_PROGRAM_COUNTER, pc);
thread->sched_policy = org->sched_policy;
thread->sched_param.sched_priority = org->sched_param.sched_priority;
/* clone VM */
if (clone_flags & CLONE_VM) {
proc = org->proc;
thread->vm = org->vm;
thread->proc = proc;
thread->sigstack.ss_sp = NULL;
thread->sigstack.ss_flags = SS_DISABLE;
thread->sigstack.ss_size = 0;
}
/* fork() */
else {
proc = kmalloc(sizeof(struct process), IHK_MC_AP_NOWAIT);
if(!proc)
goto err_free_proc;
memset(proc, '\0', sizeof(struct process));
init_process(proc, org->proc);
proc->termsig = termsig;
asp = create_address_space(cpu_local_var(resource_set), 1);
if(!asp){
kfree(proc);
goto err_free_proc;
}
proc->vm = kmalloc(sizeof(struct process_vm), IHK_MC_AP_NOWAIT);
if(!proc->vm){
release_address_space(asp);
kfree(proc);
goto err_free_proc;
}
memset(proc->vm, '\0', sizeof(struct process_vm));
dkprintf("fork(): init_process_vm()\n");
if (init_process_vm(proc, asp, proc->vm) != 0) {
release_address_space(asp);
kfree(proc->vm);
kfree(proc);
goto err_free_proc;
}
memcpy(&proc->vm->numa_mask, &org->vm->numa_mask,
sizeof(proc->vm->numa_mask));
proc->vm->numa_mem_policy =
org->vm->numa_mem_policy;
thread->proc = proc;
thread->vm = proc->vm;
memcpy(&proc->vm->region, &org->vm->region, sizeof(struct vm_regions));
dkprintf("fork(): copy_user_ranges()\n");
/* Copy user-space mappings.
* TODO: do this with COW later? */
if (copy_user_ranges(proc->vm, org->vm) != 0) {
release_address_space(asp);
kfree(proc->vm);
kfree(proc);
goto err_free_proc;
}
thread->vm->vdso_addr = org->vm->vdso_addr;
thread->vm->vvar_addr = org->vm->vvar_addr;
thread->proc->maxrss = org->proc->maxrss;
thread->vm->currss = org->vm->currss;
thread->sigstack.ss_sp = org->sigstack.ss_sp;
thread->sigstack.ss_flags = org->sigstack.ss_flags;
thread->sigstack.ss_size = org->sigstack.ss_size;
dkprintf("fork(): copy_user_ranges() OK\n");
}
/* clone signal handlers */
if (clone_flags & CLONE_SIGHAND) {
thread->sigcommon = org->sigcommon;
ihk_atomic_inc(&org->sigcommon->use);
}
/* copy signal handlers (i.e., fork()) */
else {
dkprintf("fork(): sigcommon\n");
thread->sigcommon = kmalloc(sizeof(struct sig_common),
IHK_MC_AP_NOWAIT);
if (!thread->sigcommon) {
goto err_free_proc;
}
memset(thread->sigcommon, '\0', sizeof(struct sig_common));
dkprintf("fork(): sigshared\n");
memcpy(thread->sigcommon->action, org->sigcommon->action,
sizeof(struct k_sigaction) * _NSIG);
ihk_atomic_set(&thread->sigcommon->use, 1);
mcs_rwlock_init(&thread->sigcommon->lock);
INIT_LIST_HEAD(&thread->sigcommon->sigpending);
// TODO: copy signalfd
}
mcs_rwlock_init(&thread->sigpendinglock);
INIT_LIST_HEAD(&thread->sigpending);
thread->sigmask = org->sigmask;
ihk_mc_spinlock_init(&thread->spin_sleep_lock);
thread->spin_sleep = 0;
return thread;
err_free_proc:
ihk_mc_free_pages(thread, KERNEL_STACK_NR_PAGES);
return NULL;
}
int
ptrace_traceme(void)
{
int error = 0;
struct thread *thread = cpu_local_var(current);
struct process *proc = thread->proc;
struct process *parent = proc->parent;
struct mcs_rwlock_node_irqsave lock;
struct mcs_rwlock_node child_lock;
dkprintf("ptrace_traceme,pid=%d,proc->parent=%p\n", proc->pid, proc->parent);
if (proc->ptrace & PT_TRACED) {
return -EPERM;
}
dkprintf("ptrace_traceme,parent->pid=%d\n", proc->parent->pid);
mcs_rwlock_writer_lock(&proc->update_lock, &lock);
mcs_rwlock_writer_lock_noirq(&parent->children_lock, &child_lock);
list_add_tail(&proc->ptraced_siblings_list, &parent->ptraced_children_list);
mcs_rwlock_writer_unlock_noirq(&parent->children_lock, &child_lock);
proc->ptrace = PT_TRACED | PT_TRACE_EXEC;
mcs_rwlock_writer_unlock(&proc->update_lock, &lock);
if (thread->ptrace_debugreg == NULL) {
error = alloc_debugreg(thread);
}
clear_single_step(thread);
dkprintf("ptrace_traceme,returning,error=%d\n", error);
return error;
}
struct copy_args {
struct process_vm *new_vm;
unsigned long new_vrflag;
/* out */
intptr_t fault_addr;
};
static int copy_user_pte(void *arg0, page_table_t src_pt, pte_t *src_ptep, void *pgaddr, int pgshift)
{
struct copy_args * const args = arg0;
int error;
intptr_t src_phys;
struct page *src_page;
void *src_kvirt;
const size_t pgsize = (size_t)1 << pgshift;
int npages;
void *virt = NULL;
intptr_t phys;
const int pgalign = pgshift - PAGE_SHIFT;
enum ihk_mc_pt_attribute attr;
if (!pte_is_present(src_ptep)) {
error = 0;
goto out;
}
src_phys = pte_get_phys(src_ptep);
src_page = phys_to_page(src_phys);
src_kvirt = phys_to_virt(src_phys);
if (src_page && page_is_in_memobj(src_page)) {
error = 0;
goto out;
}
if (args->new_vrflag & VR_REMOTE) {
phys = src_phys;
attr = pte_get_attr(src_ptep, pgsize);
}
else {
dkprintf("copy_user_pte(): 0x%lx PTE found\n", pgaddr);
dkprintf("copy_user_pte(): page size: %d\n", pgsize);
npages = pgsize / PAGE_SIZE;
virt = ihk_mc_alloc_aligned_pages(npages, pgalign, IHK_MC_AP_NOWAIT);
if (!virt) {
kprintf("ERROR: copy_user_pte() allocating new page\n");
error = -ENOMEM;
goto out;
}
phys = virt_to_phys(virt);
dkprintf("copy_user_pte(): phys page allocated\n");
memcpy(virt, src_kvirt, pgsize);
dkprintf("copy_user_pte(): memcpy OK\n");
attr = arch_vrflag_to_ptattr(args->new_vrflag, PF_POPULATE, NULL);
}
error = ihk_mc_pt_set_range(args->new_vm->address_space->page_table,
args->new_vm, pgaddr, pgaddr+pgsize, phys, attr,
pgshift);
if (error) {
args->fault_addr = (intptr_t)pgaddr;
goto out;
}
dkprintf("copy_user_pte(): new PTE set\n");
error = 0;
virt = NULL;
out:
if (virt) {
ihk_mc_free_pages(virt, npages);
}
return error;
}
static int copy_user_ranges(struct process_vm *vm, struct process_vm *orgvm)
{
int error;
struct vm_range *src_range;
struct vm_range *range;
struct copy_args args;
ihk_mc_spinlock_lock_noirq(&orgvm->memory_range_lock);
/* Iterate original process' vm_range list and take a copy one-by-one */
src_range = NULL;
for (;;) {
if (!src_range) {
src_range = lookup_process_memory_range(orgvm, 0, -1);
}
else {
src_range = next_process_memory_range(orgvm, src_range);
}
if (!src_range) {
break;
}
if(src_range->flag & VR_DONTFORK)
continue;
range = kmalloc(sizeof(struct vm_range), IHK_MC_AP_NOWAIT);
if (!range) {
goto err_rollback;
}
INIT_LIST_HEAD(&range->list);
range->start = src_range->start;
range->end = src_range->end;
range->flag = src_range->flag;
range->memobj = src_range->memobj;
range->objoff = src_range->objoff;
range->pgshift = src_range->pgshift;
if (range->memobj) {
memobj_ref(range->memobj);
}
/* Copy actual mappings */
args.new_vrflag = range->flag;
args.new_vm = vm;
args.fault_addr = -1;
error = visit_pte_range(orgvm->address_space->page_table,
(void *)range->start, (void *)range->end,
range->pgshift, VPTEF_SKIP_NULL,
&copy_user_pte, &args);
if (error) {
if (args.fault_addr != -1) {
kprintf("ERROR: copy_user_ranges() "
"(%p,%lx-%lx %lx,%lx):"
"get pgsize failed\n", orgvm,
range->start, range->end,
range->flag, args.fault_addr);
}
goto err_free_range_rollback;
}
insert_vm_range_list(vm, range);
}
ihk_mc_spinlock_unlock_noirq(&orgvm->memory_range_lock);
return 0;
err_free_range_rollback:
kfree(range);
err_rollback:
/* TODO: implement rollback */
ihk_mc_spinlock_unlock_noirq(&orgvm->memory_range_lock);
return -1;
}
int update_process_page_table(struct process_vm *vm,
struct vm_range *range, uint64_t phys,
enum ihk_mc_pt_attribute flag)
{
int error;
unsigned long flags;
enum ihk_mc_pt_attribute attr;
attr = arch_vrflag_to_ptattr(range->flag, PF_POPULATE, NULL);
flags = ihk_mc_spinlock_lock(&vm->page_table_lock);
error = ihk_mc_pt_set_range(vm->address_space->page_table, vm,
(void *)range->start, (void *)range->end, phys, attr,
range->pgshift);
if (error) {
kprintf("update_process_page_table:ihk_mc_pt_set_range failed. %d\n", error);
goto out;
}
error = 0;
out:
ihk_mc_spinlock_unlock(&vm->page_table_lock, flags);
return error;
}
int split_process_memory_range(struct process_vm *vm, struct vm_range *range,
uintptr_t addr, struct vm_range **splitp)
{
int error;
struct vm_range *newrange = NULL;
dkprintf("split_process_memory_range(%p,%lx-%lx,%lx,%p)\n",
vm, range->start, range->end, addr, splitp);
error = ihk_mc_pt_split(vm->address_space->page_table, vm, (void *)addr);
if (error) {
ekprintf("split_process_memory_range:"
"ihk_mc_pt_split failed. %d\n", error);
goto out;
}
newrange = kmalloc(sizeof(struct vm_range), IHK_MC_AP_NOWAIT);
if (!newrange) {
ekprintf("split_process_memory_range(%p,%lx-%lx,%lx,%p):"
"kmalloc failed\n",
vm, range->start, range->end, addr, splitp);
error = -ENOMEM;
goto out;
}
newrange->start = addr;
newrange->end = range->end;
newrange->flag = range->flag;
newrange->pgshift = range->pgshift;
if (range->memobj) {
memobj_ref(range->memobj);
newrange->memobj = range->memobj;
newrange->objoff = range->objoff + (addr - range->start);
}
else {
newrange->memobj = NULL;
newrange->objoff = 0;
}
range->end = addr;
list_add(&newrange->list, &range->list);
error = 0;
if (splitp != NULL) {
*splitp = newrange;
}
out:
dkprintf("split_process_memory_range(%p,%lx-%lx,%lx,%p): %d %p %lx-%lx\n",
vm, range->start, range->end, addr, splitp,
error, newrange,
newrange? newrange->start: 0, newrange? newrange->end: 0);
return error;
}
int join_process_memory_range(struct process_vm *vm,
struct vm_range *surviving, struct vm_range *merging)
{
int error;
int i;
dkprintf("join_process_memory_range(%p,%lx-%lx,%lx-%lx)\n",
vm, surviving->start, surviving->end,
merging->start, merging->end);
if ((surviving->end != merging->start)
|| (surviving->flag != merging->flag)
|| (surviving->memobj != merging->memobj)) {
error = -EINVAL;
goto out;
}
if (surviving->memobj != NULL) {
size_t len;
off_t endoff;
len = surviving->end - surviving->start;
endoff = surviving->objoff + len;
if (endoff != merging->objoff) {
return -EINVAL;
}
}
surviving->end = merging->end;
if (merging->memobj) {
memobj_release(merging->memobj);
}
list_del(&merging->list);
for (i = 0; i < VM_RANGE_CACHE_SIZE; ++i) {
if (vm->range_cache[i] == merging)
vm->range_cache[i] = surviving;
}
kfree(merging);
error = 0;
out:
dkprintf("join_process_memory_range(%p,%lx-%lx,%p): %d\n",
vm, surviving->start, surviving->end, merging, error);
return error;
}
int free_process_memory_range(struct process_vm *vm, struct vm_range *range)
{
const intptr_t start0 = range->start;
const intptr_t end0 = range->end;
int error, i;
intptr_t start;
intptr_t end;
struct vm_range *neighbor;
intptr_t lpstart;
intptr_t lpend;
size_t pgsize;
dkprintf("free_process_memory_range(%p, 0x%lx - 0x%lx)\n",
vm, range->start, range->end);
start = range->start;
end = range->end;
if (!(range->flag & (VR_REMOTE | VR_IO_NOCACHE | VR_RESERVED))) {
neighbor = previous_process_memory_range(vm, range);
pgsize = -1;
for (;;) {
error = arch_get_smaller_page_size(
NULL, pgsize, &pgsize, NULL);
if (error) {
kprintf("free_process_memory_range:"
"arch_get_smaller_page_size failed."
" %d\n", error);
break;
}
lpstart = start & ~(pgsize - 1);
if (!neighbor || (neighbor->end <= lpstart)) {
start = lpstart;
break;
}
}
neighbor = next_process_memory_range(vm, range);
pgsize = -1;
for (;;) {
error = arch_get_smaller_page_size(
NULL, pgsize, &pgsize, NULL);
if (error) {
kprintf("free_process_memory_range:"
"arch_get_smaller_page_size failed."
" %d\n", error);
break;
}
lpend = (end + pgsize - 1) & ~(pgsize - 1);
if (!neighbor || (lpend <= neighbor->start)) {
end = lpend;
break;
}
}
ihk_mc_spinlock_lock_noirq(&vm->page_table_lock);
if (range->memobj) {
memobj_lock(range->memobj);
}
error = ihk_mc_pt_free_range(vm->address_space->page_table, vm,
(void *)start, (void *)end,
(range->flag & VR_PRIVATE)? NULL: range->memobj);
if (range->memobj) {
memobj_unlock(range->memobj);
}
ihk_mc_spinlock_unlock_noirq(&vm->page_table_lock);
if (error && (error != -ENOENT)) {
ekprintf("free_process_memory_range(%p,%lx-%lx):"
"ihk_mc_pt_free_range(%lx-%lx,%p) failed. %d\n",
vm, start0, end0, start, end, range->memobj, error);
/* through */
}
}
else {
ihk_mc_spinlock_lock_noirq(&vm->page_table_lock);
error = ihk_mc_pt_clear_range(vm->address_space->page_table, vm,
(void *)start, (void *)end);
ihk_mc_spinlock_unlock_noirq(&vm->page_table_lock);
if (error && (error != -ENOENT)) {
ekprintf("free_process_memory_range(%p,%lx-%lx):"
"ihk_mc_pt_clear_range(%lx-%lx) failed. %d\n",
vm, start0, end0, start, end, error);
/* through */
}
}
if (range->memobj) {
memobj_release(range->memobj);
}
list_del(&range->list);
for (i = 0; i < VM_RANGE_CACHE_SIZE; ++i) {
if (vm->range_cache[i] == range)
vm->range_cache[i] = NULL;
}
kfree(range);
dkprintf("free_process_memory_range(%p,%lx-%lx): 0\n",
vm, start0, end0);
return 0;
}
int remove_process_memory_range(struct process_vm *vm,
unsigned long start, unsigned long end, int *ro_freedp)
{
struct vm_range *range;
struct vm_range *next;
int error;
struct vm_range *freerange;
int ro_freed = 0;
dkprintf("remove_process_memory_range(%p,%lx,%lx)\n",
vm, start, end);
list_for_each_entry_safe(range, next, &vm->vm_range_list, list) {
if ((range->end <= start) || (end <= range->start)) {
/* no overlap */
continue;
}
freerange = range;
if (freerange->start < start) {
error = split_process_memory_range(vm,
freerange, start, &freerange);
if (error) {
ekprintf("remove_process_memory_range(%p,%lx,%lx):"
"split failed %d\n",
vm, start, end, error);
return error;
}
}
if (end < freerange->end) {
error = split_process_memory_range(vm,
freerange, end, NULL);
if (error) {
ekprintf("remove_process_memory_range(%p,%lx,%lx):"
"split failed %d\n",
vm, start, end, error);
return error;
}
}
if (!(freerange->flag & VR_PROT_WRITE)) {
ro_freed = 1;
}
error = free_process_memory_range(vm, freerange);
if (error) {
ekprintf("remove_process_memory_range(%p,%lx,%lx):"
"free failed %d\n",
vm, start, end, error);
return error;
}
}
if (ro_freedp) {
*ro_freedp = ro_freed;
}
dkprintf("remove_process_memory_range(%p,%lx,%lx): 0 %d\n",
vm, start, end, ro_freed);
return 0;
}
static void insert_vm_range_list(struct process_vm *vm, struct vm_range *newrange)
{
struct list_head *next;
struct vm_range *range;
next = &vm->vm_range_list;
list_for_each_entry(range, &vm->vm_range_list, list) {
if ((newrange->start < range->end) && (range->start < newrange->end)) {
ekprintf("insert_vm_range_list(%p,%lx-%lx %lx):overlap %lx-%lx %lx\n",
vm, newrange->start, newrange->end, newrange->flag,
range->start, range->end, range->flag);
panic("insert_vm_range_list\n");
}
if (newrange->end <= range->start) {
next = &range->list;
break;
}
}
list_add_tail(&newrange->list, next);
return;
}
enum ihk_mc_pt_attribute common_vrflag_to_ptattr(unsigned long flag, uint64_t fault, pte_t *ptep)
{
enum ihk_mc_pt_attribute attr;
attr = PTATTR_USER | PTATTR_FOR_USER;
if (flag & VR_REMOTE) {
attr |= IHK_PTA_REMOTE;
}
else if (flag & VR_IO_NOCACHE) {
attr |= PTATTR_UNCACHABLE;
}
if ((flag & VR_PROT_MASK) != VR_PROT_NONE) {
attr |= PTATTR_ACTIVE;
}
if (flag & VR_PROT_WRITE) {
attr |= PTATTR_WRITABLE;
}
if (!(flag & VR_PROT_EXEC)) {
attr |= PTATTR_NO_EXECUTE;
}
if (flag & VR_WRITE_COMBINED) {
attr |= PTATTR_WRITE_COMBINED;
}
return attr;
}
int add_process_memory_range(struct process_vm *vm,
unsigned long start, unsigned long end,
unsigned long phys, unsigned long flag,
struct memobj *memobj, off_t offset,
int pgshift)
{
struct vm_range *range;
int rc;
#if 0
extern void __host_update_process_range(struct thread *process,
struct vm_range *range);
#endif
if ((start < vm->region.user_start)
|| (vm->region.user_end < end)) {
kprintf("range(%#lx - %#lx) is not in user avail(%#lx - %#lx)\n",
start, end, vm->region.user_start,
vm->region.user_end);
return -EINVAL;
}
range = kmalloc(sizeof(struct vm_range), IHK_MC_AP_NOWAIT);
if (!range) {
kprintf("ERROR: allocating pages for range\n");
return -ENOMEM;
}
INIT_LIST_HEAD(&range->list);
range->start = start;
range->end = end;
range->flag = flag;
range->memobj = memobj;
range->objoff = offset;
range->pgshift = pgshift;
if(range->flag & VR_DEMAND_PAGING) {
dkprintf("range: 0x%lX - 0x%lX => physicall memory area is allocated on demand (%ld) [%lx]\n",
range->start, range->end, range->end - range->start,
range->flag);
} else {
dkprintf("range: 0x%lX - 0x%lX (%ld) [%lx]\n",
range->start, range->end, range->end - range->start,
range->flag);
}
rc = 0;
if (0) {
/* dummy */
}
else if (phys == NOPHYS) {
/* nothing to map */
}
else if (flag & VR_REMOTE) {
rc = update_process_page_table(vm, range, phys, IHK_PTA_REMOTE);
} else if (flag & VR_IO_NOCACHE) {
rc = update_process_page_table(vm, range, phys, PTATTR_UNCACHABLE);
} else if(flag & VR_DEMAND_PAGING){
//demand paging no need to update process table now
dkprintf("demand paging do not update process page table\n");
rc = 0;
} else if ((range->flag & VR_PROT_MASK) == VR_PROT_NONE) {
rc = 0;
} else {
rc = update_process_page_table(vm, range, phys, 0);
}
if(rc != 0){
kprintf("ERROR: preparing page tables\n");
kfree(range);
return rc;
}
#if 0 // disable __host_update_process_range() in add_process_memory_range(), because it has no effect on the actual mapping on the MICs side.
if (!(flag & VR_REMOTE)) {
__host_update_process_range(process, range);
}
#endif
insert_vm_range_list(vm, range);
/* Clear content! */
if (!(flag & (VR_REMOTE | VR_DEMAND_PAGING))
&& ((flag & VR_PROT_MASK) != VR_PROT_NONE)) {
memset((void*)phys_to_virt(phys), 0, end - start);
}
return 0;
}
struct vm_range *lookup_process_memory_range(
struct process_vm *vm, uintptr_t start, uintptr_t end)
{
int i;
struct vm_range *range = NULL;
dkprintf("lookup_process_memory_range(%p,%lx,%lx)\n", vm, start, end);
if (end <= start) {
goto out;
}
for (i = 0; i < VM_RANGE_CACHE_SIZE; ++i) {
int c_i = (i + vm->range_cache_ind) % VM_RANGE_CACHE_SIZE;
if (!vm->range_cache[c_i])
continue;
if (vm->range_cache[c_i]->start <= start &&
vm->range_cache[c_i]->end >= end)
return vm->range_cache[c_i];
}
list_for_each_entry(range, &vm->vm_range_list, list) {
if (end <= range->start) {
break;
}
if ((start < range->end) && (range->start < end)) {
goto out;
}
}
range = NULL;
out:
if (range) {
vm->range_cache_ind = (vm->range_cache_ind - 1 + VM_RANGE_CACHE_SIZE)
% VM_RANGE_CACHE_SIZE;
vm->range_cache[vm->range_cache_ind] = range;
}
dkprintf("lookup_process_memory_range(%p,%lx,%lx): %p %lx-%lx\n",
vm, start, end, range,
range? range->start: 0, range? range->end: 0);
return range;
}
struct vm_range *next_process_memory_range(
struct process_vm *vm, struct vm_range *range)
{
struct vm_range *next;
dkprintf("next_process_memory_range(%p,%lx-%lx)\n",
vm, range->start, range->end);
if (list_is_last(&range->list, &vm->vm_range_list)) {
next = NULL;
}
else {
next = list_entry(range->list.next, struct vm_range, list);
}
dkprintf("next_process_memory_range(%p,%lx-%lx): %p %lx-%lx\n",
vm, range->start, range->end, next,
next? next->start: 0, next? next->end: 0);
return next;
}
struct vm_range *previous_process_memory_range(
struct process_vm *vm, struct vm_range *range)
{
struct vm_range *prev;
dkprintf("previous_process_memory_range(%p,%lx-%lx)\n",
vm, range->start, range->end);
if (list_first_entry(&vm->vm_range_list, struct vm_range, list) == range) {
prev = NULL;
}
else {
prev = list_entry(range->list.prev, struct vm_range, list);
}
dkprintf("previous_process_memory_range(%p,%lx-%lx): %p %lx-%lx\n",
vm, range->start, range->end, prev,
prev? prev->start: 0, prev? prev->end: 0);
return prev;
}
int extend_up_process_memory_range(struct process_vm *vm,
struct vm_range *range, uintptr_t newend)
{
int error;
struct vm_range *next;
dkprintf("exntend_up_process_memory_range(%p,%p %#lx-%#lx,%#lx)\n",
vm, range, range->start, range->end, newend);
if (newend <= range->end) {
error = -EINVAL;
goto out;
}
if (vm->region.user_end < newend) {
error = -EPERM;
goto out;
}
next = next_process_memory_range(vm ,range);
if (next && (next->start < newend)) {
error = -ENOMEM;
goto out;
}
error = 0;
range->end = newend;
out:
dkprintf("exntend_up_process_memory_range(%p,%p %#lx-%#lx,%#lx):%d\n",
vm, range, range->start, range->end, newend, error);
return error;
}
int change_prot_process_memory_range(struct process_vm *vm,
struct vm_range *range, unsigned long protflag)
{
unsigned long newflag;
int error;
enum ihk_mc_pt_attribute oldattr;
enum ihk_mc_pt_attribute newattr;
enum ihk_mc_pt_attribute clrattr;
enum ihk_mc_pt_attribute setattr;
dkprintf("change_prot_process_memory_range(%p,%lx-%lx,%lx)\n",
vm, range->start, range->end, protflag);
newflag = (range->flag & ~VR_PROT_MASK) | (protflag & VR_PROT_MASK);
if (range->flag == newflag) {
/* nothing to do */
error = 0;
goto out;
}
oldattr = arch_vrflag_to_ptattr(range->flag, PF_POPULATE, NULL);
newattr = arch_vrflag_to_ptattr(newflag, PF_POPULATE, NULL);
clrattr = oldattr & ~newattr;
setattr = newattr & ~oldattr;
ihk_mc_spinlock_lock_noirq(&vm->page_table_lock);
error = ihk_mc_pt_change_attr_range(vm->address_space->page_table,
(void *)range->start, (void *)range->end,
clrattr, setattr);
ihk_mc_spinlock_unlock_noirq(&vm->page_table_lock);
if (error && (error != -ENOENT)) {
ekprintf("change_prot_process_memory_range(%p,%lx-%lx,%lx):"
"ihk_mc_pt_change_attr_range failed: %d\n",
vm, range->start, range->end, protflag, error);
goto out;
}
range->flag = newflag;
error = 0;
out:
dkprintf("change_prot_process_memory_range(%p,%lx-%lx,%lx): %d\n",
vm, range->start, range->end, protflag, error);
return error;
}
struct rfp_args {
off_t off;
uintptr_t start;
struct memobj *memobj;
};
static int remap_one_page(void *arg0, page_table_t pt, pte_t *ptep,
void *pgaddr, int pgshift)
{
struct rfp_args * const args = arg0;
const size_t pgsize = (size_t)1 << pgshift;
int error;
off_t off;
pte_t apte;
uintptr_t phys;
struct page *page;
dkprintf("remap_one_page(%p,%p,%p %#lx,%p,%d)\n",
arg0, pt, ptep, *ptep, pgaddr, pgshift);
/* XXX: NYI: large pages */
if (pgsize != PAGE_SIZE) {
error = -E2BIG;
ekprintf("remap_one_page(%p,%p,%p %#lx,%p,%d):%d\n",
arg0, pt, ptep, *ptep, pgaddr, pgshift, error);
goto out;
}
off = args->off + ((uintptr_t)pgaddr - args->start);
pte_make_fileoff(off, 0, pgsize, &apte);
pte_xchg(ptep, &apte);
flush_tlb_single((uintptr_t)pgaddr); /* XXX: TLB flush */
if (pte_is_null(&apte) || pte_is_fileoff(&apte, pgsize)) {
error = 0;
goto out;
}
phys = pte_get_phys(&apte);
if (pte_is_dirty(&apte, pgsize)) {
memobj_flush_page(args->memobj, phys, pgsize); /* XXX: in lock period */
}
page = phys_to_page(phys);
if (page && page_unmap(page)) {
ihk_mc_free_pages(phys_to_virt(phys), pgsize/PAGE_SIZE);
}
error = 0;
out:
dkprintf("remap_one_page(%p,%p,%p %#lx,%p,%d): %d\n",
arg0, pt, ptep, *ptep, pgaddr, pgshift, error);
return error;
}
int remap_process_memory_range(struct process_vm *vm, struct vm_range *range,
uintptr_t start, uintptr_t end, off_t off)
{
struct rfp_args args;
int error;
dkprintf("remap_process_memory_range(%p,%p,%#lx,%#lx,%#lx)\n",
vm, range, start, end, off);
ihk_mc_spinlock_lock_noirq(&vm->page_table_lock);
memobj_lock(range->memobj);
args.start = start;
args.off = off;
args.memobj = range->memobj;
error = visit_pte_range(vm->address_space->page_table, (void *)start,
(void *)end, range->pgshift, VPTEF_DEFAULT,
&remap_one_page, &args);
if (error) {
ekprintf("remap_process_memory_range(%p,%p,%#lx,%#lx,%#lx):"
"visit pte failed %d\n",
vm, range, start, end, off, error);
goto out;
}
error = 0;
out:
memobj_unlock(range->memobj);
ihk_mc_spinlock_unlock_noirq(&vm->page_table_lock);
dkprintf("remap_process_memory_range(%p,%p,%#lx,%#lx,%#lx):%d\n",
vm, range, start, end, off, error);
return error;
}
struct sync_args {
struct memobj *memobj;
};
static int sync_one_page(void *arg0, page_table_t pt, pte_t *ptep,
void *pgaddr, int pgshift)
{
struct sync_args *args = arg0;
const size_t pgsize = (size_t)1 << pgshift;
int error;
uintptr_t phys;
dkprintf("sync_one_page(%p,%p,%p %#lx,%p,%d)\n",
arg0, pt, ptep, *ptep, pgaddr, pgshift);
if (pte_is_null(ptep) || pte_is_fileoff(ptep, pgsize)
|| !pte_is_dirty(ptep, pgsize)) {
error = 0;
goto out;
}
pte_clear_dirty(ptep, pgsize);
flush_tlb_single((uintptr_t)pgaddr); /* XXX: TLB flush */
phys = pte_get_phys(ptep);
error = memobj_flush_page(args->memobj, phys, pgsize);
if (error) {
ekprintf("sync_one_page(%p,%p,%p %#lx,%p,%d):"
"flush failed. %d\n",
arg0, pt, ptep, *ptep, pgaddr, pgshift, error);
pte_set_dirty(ptep, pgsize);
goto out;
}
error = 0;
out:
dkprintf("sync_one_page(%p,%p,%p %#lx,%p,%d):%d\n",
arg0, pt, ptep, *ptep, pgaddr, pgshift, error);
return error;
}
int sync_process_memory_range(struct process_vm *vm, struct vm_range *range,
uintptr_t start, uintptr_t end)
{
int error;
struct sync_args args;
dkprintf("sync_process_memory_range(%p,%p,%#lx,%#lx)\n",
vm, range, start, end);
args.memobj = range->memobj;
ihk_mc_spinlock_lock_noirq(&vm->page_table_lock);
memobj_lock(range->memobj);
error = visit_pte_range(vm->address_space->page_table, (void *)start,
(void *)end, range->pgshift, VPTEF_SKIP_NULL,
&sync_one_page, &args);
memobj_unlock(range->memobj);
ihk_mc_spinlock_unlock_noirq(&vm->page_table_lock);
if (error) {
ekprintf("sync_process_memory_range(%p,%p,%#lx,%#lx):"
"visit failed%d\n",
vm, range, start, end, error);
goto out;
}
out:
dkprintf("sync_process_memory_range(%p,%p,%#lx,%#lx):%d\n",
vm, range, start, end, error);
return error;
}
struct invalidate_args {
struct vm_range *range;
};
static int invalidate_one_page(void *arg0, page_table_t pt, pte_t *ptep,
void *pgaddr, int pgshift)
{
struct invalidate_args *args = arg0;
struct vm_range *range = args->range;
const size_t pgsize = (size_t)1 << pgshift;
int error;
uintptr_t phys;
struct page *page;
off_t linear_off;
pte_t apte;
dkprintf("invalidate_one_page(%p,%p,%p %#lx,%p,%d)\n",
arg0, pt, ptep, *ptep, pgaddr, pgshift);
if (pte_is_null(ptep) || pte_is_fileoff(ptep, pgsize)) {
error = 0;
goto out;
}
phys = pte_get_phys(ptep);
page = phys_to_page(phys);
linear_off = range->objoff + ((uintptr_t)pgaddr - range->start);
if (page && (page->offset == linear_off)) {
pte_make_null(&apte, pgsize);
}
else {
pte_make_fileoff(page->offset, 0, pgsize, &apte);
}
pte_xchg(ptep, &apte);
flush_tlb_single((uintptr_t)pgaddr); /* XXX: TLB flush */
if (page && page_unmap(page)) {
panic("invalidate_one_page");
}
error = memobj_invalidate_page(range->memobj, phys, pgsize);
if (error) {
ekprintf("invalidate_one_page(%p,%p,%p %#lx,%p,%d):"
"invalidate failed. %d\n",
arg0, pt, ptep, *ptep, pgaddr, pgshift, error);
goto out;
}
error = 0;
out:
dkprintf("invalidate_one_page(%p,%p,%p %#lx,%p,%d):%d\n",
arg0, pt, ptep, *ptep, pgaddr, pgshift, error);
return error;
}
int invalidate_process_memory_range(struct process_vm *vm,
struct vm_range *range, uintptr_t start, uintptr_t end)
{
int error;
struct invalidate_args args;
dkprintf("invalidate_process_memory_range(%p,%p,%#lx,%#lx)\n",
vm, range, start, end);
args.range = range;
ihk_mc_spinlock_lock_noirq(&vm->page_table_lock);
memobj_lock(range->memobj);
error = visit_pte_range(vm->address_space->page_table, (void *)start,
(void *)end, range->pgshift, VPTEF_SKIP_NULL,
&invalidate_one_page, &args);
memobj_unlock(range->memobj);
ihk_mc_spinlock_unlock_noirq(&vm->page_table_lock);
if (error) {
ekprintf("invalidate_process_memory_range(%p,%p,%#lx,%#lx):"
"visit failed%d\n",
vm, range, start, end, error);
goto out;
}
out:
dkprintf("invalidate_process_memory_range(%p,%p,%#lx,%#lx):%d\n",
vm, range, start, end, error);
return error;
}
static int page_fault_process_memory_range(struct process_vm *vm, struct vm_range *range, uintptr_t fault_addr, uint64_t reason)
{
int error;
pte_t *ptep;
void *pgaddr;
size_t pgsize;
int p2align;
enum ihk_mc_pt_attribute attr;
uintptr_t phys;
struct page *page = NULL;
unsigned long memobj_flag = 0;
dkprintf("page_fault_process_memory_range(%p,%lx-%lx %lx,%lx,%lx)\n", vm, range->start, range->end, range->flag, fault_addr, reason);
ihk_mc_spinlock_lock_noirq(&vm->page_table_lock);
/*****/
ptep = ihk_mc_pt_lookup_pte(vm->address_space->page_table,
(void *)fault_addr, range->pgshift, &pgaddr, &pgsize,
&p2align);
if (!(reason & (PF_PROT | PF_PATCH)) && ptep && !pte_is_null(ptep)
&& !pte_is_fileoff(ptep, pgsize)) {
if (!pte_is_present(ptep)) {
error = -EFAULT;
kprintf("page_fault_process_memory_range(%p,%lx-%lx %lx,%lx,%lx):PROT_NONE. %d\n", vm, range->start, range->end, range->flag, fault_addr, reason, error);
goto out;
}
error = 0;
goto out;
}
if ((reason & PF_PROT) && (!ptep || !pte_is_present(ptep))) {
flush_tlb_single(fault_addr);
error = 0;
goto out;
}
/*****/
while (((uintptr_t)pgaddr < range->start)
|| (range->end < ((uintptr_t)pgaddr + pgsize))) {
ptep = NULL;
error = arch_get_smaller_page_size(NULL, pgsize, &pgsize, &p2align);
if (error) {
kprintf("page_fault_process_memory_range(%p,%lx-%lx %lx,%lx,%lx):arch_get_smaller_page_size(pte) failed. %d\n", vm, range->start, range->end, range->flag, fault_addr, reason, error);
goto out;
}
pgaddr = (void *)(fault_addr & ~(pgsize - 1));
}
/*****/
if (!ptep || pte_is_null(ptep) || pte_is_fileoff(ptep, pgsize)) {
phys = NOPHYS;
if (range->memobj) {
off_t off;
if (!ptep || !pte_is_fileoff(ptep, pgsize)) {
off = range->objoff + ((uintptr_t)pgaddr - range->start);
}
else {
off = pte_get_off(ptep, pgsize);
}
error = memobj_get_page(range->memobj, off, p2align,
&phys, &memobj_flag);
if (error) {
struct memobj *obj;
if (zeroobj_create(&obj)) {
panic("PFPMR: zeroobj_crate");
}
if (range->memobj != obj) {
goto out;
}
}
}
if (phys == NOPHYS) {
void *virt = NULL;
size_t npages;
retry:
npages = pgsize / PAGE_SIZE;
virt = ihk_mc_alloc_aligned_pages(npages, p2align, IHK_MC_AP_NOWAIT);
if (!virt && !range->pgshift && (pgsize != PAGE_SIZE)) {
error = arch_get_smaller_page_size(NULL, pgsize, &pgsize, &p2align);
if (error) {
kprintf("page_fault_process_memory_range(%p,%lx-%lx %lx,%lx,%lx):arch_get_smaller_page_size(anon) failed. %d\n", vm, range->start, range->end, range->flag, fault_addr, reason, error);
goto out;
}
ptep = NULL;
pgaddr = (void *)(fault_addr & ~(pgsize - 1));
goto retry;
}
if (!virt) {
error = -ENOMEM;
kprintf("page_fault_process_memory_range(%p,%lx-%lx %lx,%lx,%lx):cannot allocate new page. %d\n", vm, range->start, range->end, range->flag, fault_addr, reason, error);
goto out;
}
dkprintf("%s: clearing 0x%lx:%lu\n",
__FUNCTION__, pgaddr, pgsize);
memset(virt, 0, pgsize);
phys = virt_to_phys(virt);
if (phys_to_page(phys)) {
page_map(phys_to_page(phys));
}
}
}
else {
phys = pte_get_phys(ptep);
}
page = phys_to_page(phys);
attr = arch_vrflag_to_ptattr(range->flag | memobj_flag, reason, ptep);
/*****/
if (((range->flag & VR_PRIVATE) ||
((reason & PF_PATCH) && !(range->flag & VR_PROT_WRITE)))
&& ((!page && phys == NOPHYS) || (page &&
(page_is_in_memobj(page) ||
page_is_multi_mapped(page))))) {
if (!(attr & PTATTR_DIRTY)) {
attr &= ~PTATTR_WRITABLE;
}
else {
void *virt;
size_t npages;
npages = pgsize / PAGE_SIZE;
virt = ihk_mc_alloc_aligned_pages(npages, p2align, IHK_MC_AP_NOWAIT);
if (!virt) {
error = -ENOMEM;
kprintf("page_fault_process_memory_range(%p,%lx-%lx %lx,%lx,%lx):cannot allocate copy page. %d\n", vm, range->start, range->end, range->flag, fault_addr, reason, error);
goto out;
}
dkprintf("%s: copying 0x%lx:%lu\n",
__FUNCTION__, pgaddr, pgsize);
memcpy(virt, phys_to_virt(phys), pgsize);
phys = virt_to_phys(virt);
if (page) {
page_unmap(page);
}
page = phys_to_page(phys);
}
}
/*****/
if (ptep) {
error = ihk_mc_pt_set_pte(vm->address_space->page_table, ptep,
pgsize, phys, attr);
if (error) {
kprintf("page_fault_process_memory_range(%p,%lx-%lx %lx,%lx,%lx):set_pte failed. %d\n", vm, range->start, range->end, range->flag, fault_addr, reason, error);
goto out;
}
}
else {
error = ihk_mc_pt_set_range(vm->address_space->page_table, vm,
pgaddr, pgaddr + pgsize, phys,
attr, range->pgshift);
if (error) {
kprintf("page_fault_process_memory_range(%p,%lx-%lx %lx,%lx,%lx):set_range failed. %d\n", vm, range->start, range->end, range->flag, fault_addr, reason, error);
goto out;
}
}
flush_tlb_single(fault_addr);
vm->currss += pgsize;
if(vm->currss > vm->proc->maxrss)
vm->proc->maxrss = vm->currss;
error = 0;
page = NULL;
out:
ihk_mc_spinlock_unlock_noirq(&vm->page_table_lock);
if (page) {
page_unmap(page);
}
dkprintf("page_fault_process_memory_range(%p,%lx-%lx %lx,%lx,%lx): %d\n", vm, range->start, range->end, range->flag, fault_addr, reason, error);
return error;
}
static int do_page_fault_process_vm(struct process_vm *vm, void *fault_addr0, uint64_t reason)
{
int error;
const uintptr_t fault_addr = (uintptr_t)fault_addr0;
struct vm_range *range;
dkprintf("[%d]do_page_fault_process_vm(%p,%lx,%lx)\n",
ihk_mc_get_processor_id(), vm, fault_addr0, reason);
ihk_mc_spinlock_lock_noirq(&vm->memory_range_lock);
if (vm->exiting) {
error = -ECANCELED;
goto out;
}
range = lookup_process_memory_range(vm, fault_addr, fault_addr+1);
if (range == NULL) {
error = -EFAULT;
dkprintf("do_page_fault_process_vm(): vm: %p, addr: %p, reason: %lx):"
"out of range: %d\n",
vm, fault_addr0, reason, error);
goto out;
}
if (((range->flag & VR_PROT_MASK) == VR_PROT_NONE)
|| (((reason & PF_WRITE) && !(reason & PF_PATCH))
&& !(range->flag & VR_PROT_WRITE))
|| ((reason & PF_INSTR)
&& !(range->flag & VR_PROT_EXEC))) {
error = -EFAULT;
dkprintf("[%d]do_page_fault_process_vm(%p,%lx,%lx):"
"access denied. %d\n",
ihk_mc_get_processor_id(), vm,
fault_addr0, reason, error);
kprintf("%s: reason: %s%s%s%s%s%s%s\n", __FUNCTION__,
(reason & PF_PROT) ? "PF_PROT " : "",
(reason & PF_WRITE) ? "PF_WRITE " : "",
(reason & PF_USER) ? "PF_USER " : "",
(reason & PF_RSVD) ? "PF_RSVD " : "",
(reason & PF_INSTR) ? "PF_INSTR " : "",
(reason & PF_PATCH) ? "PF_PATCH " : "",
(reason & PF_POPULATE) ? "PF_POPULATE " : "");
kprintf("%s: range->flag & (%s%s%s)\n", __FUNCTION__,
(range->flag & VR_PROT_READ) ? "VR_PROT_READ " : "",
(range->flag & VR_PROT_WRITE) ? "VR_PROT_WRITE " : "",
(range->flag & VR_PROT_EXEC) ? "VR_PROT_EXEC " : "");
if (((range->flag & VR_PROT_MASK) == VR_PROT_NONE))
kprintf("if (((range->flag & VR_PROT_MASK) == VR_PROT_NONE))\n");
if (((reason & PF_WRITE) && !(reason & PF_PATCH)))
kprintf("if (((reason & PF_WRITE) && !(reason & PF_PATCH)))\n");
if (!(range->flag & VR_PROT_WRITE)) {
kprintf("if (!(range->flag & VR_PROT_WRITE))\n");
//kprintf("setting VR_PROT_WRITE\n");
//range->flag |= VR_PROT_WRITE;
//goto cont;
}
if ((reason & PF_INSTR) && !(range->flag & VR_PROT_EXEC)) {
kprintf("if ((reason & PF_INSTR) && !(range->flag & VR_PROT_EXEC))\n");
//kprintf("setting VR_PROT_EXEC\n");
//range->flag |= VR_PROT_EXEC;
//goto cont;
}
goto out;
}
/*
* XXX: quick fix
* Corrupt data was read by the following sequence.
* 1) a process did mmap(MAP_PRIVATE|MAP_ANONYMOUS)
* 2) the process fetched the contents of a page of (1)'s mapping.
* 3) the process wrote the contents of the page of (1)'s mapping.
* 4) the process changed the contents of the page of (1)'s mapping.
* 5) the process read something in the page of (1)'s mapping.
*
* In the case of the above sequence,
* copy-on-write pages was mapped at (2). And their physical pages
* were informed to mcctrl/mcexec at (3). However, page remapping
* at (4) was not informed to mcctrl/mcexec, and the data read at (5)
* was transferred to old pages which had been mapped at (2).
*/
if ((range->flag & VR_PRIVATE) && range->memobj) {
struct memobj *obj;
if (zeroobj_create(&obj)) {
panic("DPFP: zeroobj_crate");
}
if (range->memobj == obj) {
reason |= PF_POPULATE;
}
}
error = page_fault_process_memory_range(vm, range, fault_addr, reason);
if (error == -ERESTART) {
goto out;
}
if (error) {
dkprintf("[%d]do_page_fault_process_vm(%p,%lx,%lx):"
"fault range failed. %d\n",
ihk_mc_get_processor_id(), vm,
fault_addr0, reason, error);
goto out;
}
error = 0;
out:
ihk_mc_spinlock_unlock_noirq(&vm->memory_range_lock);
dkprintf("[%d]do_page_fault_process_vm(%p,%lx,%lx): %d\n",
ihk_mc_get_processor_id(), vm, fault_addr0,
reason, error);
return error;
}
int page_fault_process_vm(struct process_vm *fault_vm, void *fault_addr, uint64_t reason)
{
int error;
struct thread *thread = cpu_local_var(current);
for (;;) {
error = do_page_fault_process_vm(fault_vm, fault_addr, reason);
if (error != -ERESTART) {
break;
}
if (thread->pgio_fp) {
(*thread->pgio_fp)(thread->pgio_arg);
thread->pgio_fp = NULL;
}
}
return error;
}
int init_process_stack(struct thread *thread, struct program_load_desc *pn,
int argc, char **argv,
int envc, char **env)
{
int s_ind = 0;
int arg_ind;
unsigned long size;
unsigned long end;
unsigned long start;
int rc;
unsigned long vrflag;
char *stack;
int error;
unsigned long *p;
unsigned long minsz;
unsigned long at_rand;
struct process *proc = thread->proc;
/* create stack range */
end = STACK_TOP(&thread->vm->region);
minsz = PAGE_SIZE;
size = proc->rlimit[MCK_RLIMIT_STACK].rlim_cur & PAGE_MASK;
if (size > (USER_END / 2)) {
size = USER_END / 2;
}
else if (size < minsz) {
size = minsz;
}
start = end - size;
vrflag = VR_STACK | VR_DEMAND_PAGING;
vrflag |= PROT_TO_VR_FLAG(pn->stack_prot);
vrflag |= VR_MAXPROT_READ | VR_MAXPROT_WRITE | VR_MAXPROT_EXEC;
#define NOPHYS ((uintptr_t)-1)
if ((rc = add_process_memory_range(thread->vm, start, end, NOPHYS,
vrflag, NULL, 0, PAGE_SHIFT)) != 0) {
return rc;
}
/* map physical pages for initial stack frame */
stack = ihk_mc_alloc_pages(minsz >> PAGE_SHIFT, IHK_MC_AP_NOWAIT);
if (!stack) {
return -ENOMEM;
}
memset(stack, 0, minsz);
error = ihk_mc_pt_set_range(thread->vm->address_space->page_table,
thread->vm, (void *)(end-minsz),
(void *)end, virt_to_phys(stack),
arch_vrflag_to_ptattr(vrflag, PF_POPULATE,
NULL), 0);
if (error) {
kprintf("init_process_stack:"
"set range %lx-%lx %lx failed. %d\n",
(end-minsz), end, stack, error);
ihk_mc_free_pages(stack, minsz >> PAGE_SHIFT);
return error;
}
/* set up initial stack frame */
p = (unsigned long *)(stack + minsz);
s_ind = -1;
/* "random" 16 bytes on the very top */
p[s_ind--] = 0x010101011;
p[s_ind--] = 0x010101011;
at_rand = end + sizeof(unsigned long) * s_ind;
/* auxiliary vector */
/* If you add/delete entires, please increase/decrease
AUXV_LEN in include/process.h. */
p[s_ind--] = 0; /* AT_NULL */
p[s_ind--] = 0;
p[s_ind--] = pn->at_entry; /* AT_ENTRY */
p[s_ind--] = AT_ENTRY;
p[s_ind--] = pn->at_phnum; /* AT_PHNUM */
p[s_ind--] = AT_PHNUM;
p[s_ind--] = pn->at_phent; /* AT_PHENT */
p[s_ind--] = AT_PHENT;
p[s_ind--] = pn->at_phdr; /* AT_PHDR */
p[s_ind--] = AT_PHDR;
p[s_ind--] = 4096; /* AT_PAGESZ */
p[s_ind--] = AT_PAGESZ;
p[s_ind--] = pn->at_clktck; /* AT_CLKTCK */
p[s_ind--] = AT_CLKTCK;
p[s_ind--] = at_rand; /* AT_RANDOM */
p[s_ind--] = AT_RANDOM;
#ifndef AT_SYSINFO_EHDR
#define AT_SYSINFO_EHDR AT_IGNORE
#endif
p[s_ind--] = (long)(thread->vm->vdso_addr);
p[s_ind--] = (thread->vm->vdso_addr)? AT_SYSINFO_EHDR: AT_IGNORE;
/* Save auxiliary vector for later use. */
memcpy(proc->saved_auxv, &p[s_ind + 1], sizeof(proc->saved_auxv));
p[s_ind--] = 0; /* envp terminating NULL */
/* envp */
for (arg_ind = envc - 1; arg_ind > -1; --arg_ind) {
p[s_ind--] = (unsigned long)env[arg_ind];
}
p[s_ind--] = 0; /* argv terminating NULL */
/* argv */
for (arg_ind = argc - 1; arg_ind > -1; --arg_ind) {
p[s_ind--] = (unsigned long)argv[arg_ind];
}
/* argc */
p[s_ind] = argc;
ihk_mc_modify_user_context(thread->uctx, IHK_UCR_STACK_POINTER,
end + sizeof(unsigned long) * s_ind);
thread->vm->region.stack_end = end;
thread->vm->region.stack_start = start;
return 0;
}
unsigned long extend_process_region(struct process_vm *vm,
unsigned long start, unsigned long end,
unsigned long address, unsigned long flag)
{
unsigned long aligned_end, aligned_new_end;
void *p;
int rc;
if (!address || address < start || address >= USER_END) {
return end;
}
aligned_end = ((end + PAGE_SIZE - 1) & PAGE_MASK);
if (aligned_end >= address) {
return address;
}
aligned_new_end = (address + PAGE_SIZE - 1) & PAGE_MASK;
#ifdef USE_LARGE_PAGES
if (aligned_new_end - aligned_end >= LARGE_PAGE_SIZE) {
if(flag & VR_DEMAND_PAGING){panic("demand paging for large page is not available!");}
unsigned long p_aligned;
unsigned long old_aligned_end = aligned_end;
if ((aligned_end & (LARGE_PAGE_SIZE - 1)) != 0) {
aligned_end = (aligned_end + (LARGE_PAGE_SIZE - 1)) & LARGE_PAGE_MASK;
/* Fill in the gap between old_aligned_end and aligned_end
* with regular pages */
if((p = ihk_mc_alloc_pages((aligned_end - old_aligned_end) >> PAGE_SHIFT,
IHK_MC_AP_NOWAIT)) == NULL){
return end;
}
if((rc = add_process_memory_range(vm, old_aligned_end,
aligned_end, virt_to_phys(p), flag,
LARGE_PAGE_SHIFT)) != 0){
ihk_mc_free_pages(p, (aligned_end - old_aligned_end) >> PAGE_SHIFT);
return end;
}
dkprintf("filled in gap for LARGE_PAGE_SIZE aligned start: 0x%lX -> 0x%lX\n",
old_aligned_end, aligned_end);
}
/* Add large region for the actual mapping */
aligned_new_end = (aligned_new_end + (aligned_end - old_aligned_end) +
(LARGE_PAGE_SIZE - 1)) & LARGE_PAGE_MASK;
address = aligned_new_end;
if((p = ihk_mc_alloc_pages((aligned_new_end - aligned_end + LARGE_PAGE_SIZE) >> PAGE_SHIFT,
IHK_MC_AP_NOWAIT)) == NULL){
return end;
}
p_aligned = ((unsigned long)p + (LARGE_PAGE_SIZE - 1)) & LARGE_PAGE_MASK;
if (p_aligned > (unsigned long)p) {
ihk_mc_free_pages(p, (p_aligned - (unsigned long)p) >> PAGE_SHIFT);
}
ihk_mc_free_pages(
(void *)(p_aligned + aligned_new_end - aligned_end),
(LARGE_PAGE_SIZE - (p_aligned - (unsigned long)p)) >> PAGE_SHIFT);
if((rc = add_process_memory_range(vm, aligned_end,
aligned_new_end, virt_to_phys((void *)p_aligned),
flag, LARGE_PAGE_SHIFT)) != 0){
ihk_mc_free_pages(p, (aligned_new_end - aligned_end + LARGE_PAGE_SIZE) >> PAGE_SHIFT);
return end;
}
dkprintf("largePTE area: 0x%lX - 0x%lX (s: %lu) -> 0x%lX - \n",
aligned_end, aligned_new_end,
(aligned_new_end - aligned_end),
virt_to_phys((void *)p_aligned));
return address;
}
#endif
if(flag & VR_DEMAND_PAGING){
// demand paging no need to allocate page now
kprintf("demand page do not allocate page\n");
p=0;
}else{
p = ihk_mc_alloc_pages((aligned_new_end - aligned_end) >> PAGE_SHIFT, IHK_MC_AP_NOWAIT);
if (!p) {
return end;
}
}
if((rc = add_process_memory_range(vm, aligned_end, aligned_new_end,
(p==0?0:virt_to_phys(p)), flag, NULL, 0,
PAGE_SHIFT)) != 0){
ihk_mc_free_pages(p, (aligned_new_end - aligned_end) >> PAGE_SHIFT);
return end;
}
return address;
}
// Original version retained because dcfa (src/mccmd/client/ibmic/main.c) calls this
int remove_process_region(struct process_vm *vm,
unsigned long start, unsigned long end)
{
if ((start & (PAGE_SIZE - 1)) || (end & (PAGE_SIZE - 1))) {
return -EINVAL;
}
ihk_mc_spinlock_lock_noirq(&vm->page_table_lock);
/* We defer freeing to the time of exit */
// XXX: check error
ihk_mc_pt_clear_range(vm->address_space->page_table, vm,
(void *)start, (void *)end);
ihk_mc_spinlock_unlock_noirq(&vm->page_table_lock);
return 0;
}
void flush_process_memory(struct process_vm *vm)
{
struct vm_range *range;
struct vm_range *next;
int error;
dkprintf("flush_process_memory(%p)\n", vm);
ihk_mc_spinlock_lock_noirq(&vm->memory_range_lock);
/* Let concurrent page faults know the VM will be gone */
vm->exiting = 1;
list_for_each_entry_safe(range, next, &vm->vm_range_list, list) {
if (range->memobj) {
// XXX: temporary of temporary
error = free_process_memory_range(vm, range);
if (error) {
ekprintf("flush_process_memory(%p):"
"free range failed. %lx-%lx %d\n",
vm, range->start, range->end, error);
/* through */
}
}
}
ihk_mc_spinlock_unlock_noirq(&vm->memory_range_lock);
dkprintf("flush_process_memory(%p):\n", vm);
return;
}
void free_process_memory_ranges(struct process_vm *vm)
{
int error;
struct vm_range *range, *next;
if (vm == NULL) {
return;
}
ihk_mc_spinlock_lock_noirq(&vm->memory_range_lock);
list_for_each_entry_safe(range, next, &vm->vm_range_list, list) {
error = free_process_memory_range(vm, range);
if (error) {
ekprintf("free_process_memory(%p):"
"free range failed. %lx-%lx %d\n",
vm, range->start, range->end, error);
/* through */
}
}
ihk_mc_spinlock_unlock_noirq(&vm->memory_range_lock);
}
void
hold_process(struct process *proc)
{
ihk_atomic_inc(&proc->refcount);
}
void
release_process(struct process *proc)
{
struct process *parent;
struct mcs_rwlock_node_irqsave lock;
struct process_hash *phash;
struct resource_set *rset;
int hash;
if (!ihk_atomic_dec_and_test(&proc->refcount)) {
return;
}
rset = cpu_local_var(resource_set);
phash = rset->process_hash;
hash = process_hash(proc->pid);
mcs_rwlock_writer_lock(&phash->lock[hash], &lock);
list_del(&proc->hash_list);
mcs_rwlock_writer_unlock(&phash->lock[hash], &lock);
parent = proc->parent;
mcs_rwlock_writer_lock(&parent->children_lock, &lock);
list_del(&proc->siblings_list);
mcs_rwlock_writer_unlock(&parent->children_lock, &lock);
if(proc->ptrace & PT_TRACED){
parent = proc->ppid_parent;
mcs_rwlock_writer_lock(&parent->children_lock, &lock);
list_del(&proc->ptraced_siblings_list);
mcs_rwlock_writer_unlock(&parent->children_lock, &lock);
}
if (proc->tids) kfree(proc->tids);
kfree(proc);
}
void
hold_process_vm(struct process_vm *vm)
{
ihk_atomic_inc(&vm->refcount);
}
void
free_all_process_memory_range(struct process_vm *vm)
{
struct vm_range *range, *next;
int error;
ihk_mc_spinlock_lock_noirq(&vm->memory_range_lock);
list_for_each_entry_safe(range, next, &vm->vm_range_list, list) {
error = free_process_memory_range(vm, range);
if (error) {
ekprintf("free_process_memory(%p):"
"free range failed. %lx-%lx %d\n",
vm, range->start, range->end, error);
/* through */
}
}
ihk_mc_spinlock_unlock_noirq(&vm->memory_range_lock);
}
void
release_process_vm(struct process_vm *vm)
{
struct process *proc = vm->proc;
if (!ihk_atomic_dec_and_test(&vm->refcount)) {
return;
}
if(vm->free_cb)
vm->free_cb(vm, vm->opt);
flush_nfo_tlb_mm(vm);
free_all_process_memory_range(vm);
detach_address_space(vm->address_space, vm->proc->pid);
proc->vm = NULL;
release_process(proc);
kfree(vm);
}
int populate_process_memory(struct process_vm *vm, void *start, size_t len)
{
int error;
const int reason = PF_USER | PF_POPULATE;
uintptr_t end;
uintptr_t addr;
end = (uintptr_t)start + len;
for (addr = (uintptr_t)start; addr < end; addr += PAGE_SIZE) {
error = page_fault_process_vm(vm, (void *)addr, reason);
if (error) {
ekprintf("populate_process_range:page_fault_process_vm"
"(%p,%lx,%lx) failed %d\n",
vm, addr, reason, error);
goto out;
}
}
error = 0;
out:
return error;
}
void hold_thread(struct thread *thread)
{
if (thread->status == PS_EXITED) {
panic("hold_thread: already exited process");
}
ihk_atomic_inc(&thread->refcount);
return;
}
void
hold_sigcommon(struct sig_common *sigcommon)
{
ihk_atomic_inc(&sigcommon->use);
}
void
release_sigcommon(struct sig_common *sigcommon)
{
struct sig_pending *pending;
struct sig_pending *next;
if (!ihk_atomic_dec_and_test(&sigcommon->use)) {
return;
}
list_for_each_entry_safe(pending, next, &sigcommon->sigpending, list){
list_del(&pending->list);
kfree(pending);
}
kfree(sigcommon);
}
/*
* Release the TID from the process' TID set corresponding to this thread.
* NOTE: threads_lock must be held.
*/
void __release_tid(struct process *proc, struct thread *thread) {
int i;
for (i = 0; i < proc->nr_tids; ++i) {
if (proc->tids[i].thread != thread) continue;
proc->tids[i].thread = NULL;
dkprintf("%s: tid %d has been released by %p\n",
__FUNCTION__, thread->tid, thread);
break;
}
}
void destroy_thread(struct thread *thread)
{
struct sig_pending *pending;
struct sig_pending *signext;
struct mcs_rwlock_node_irqsave lock;
struct process *proc = thread->proc;
struct resource_set *resource_set = cpu_local_var(resource_set);
int hash;
hash = thread_hash(thread->tid);
mcs_rwlock_writer_lock(&resource_set->thread_hash->lock[hash], &lock);
list_del(&thread->hash_list);
mcs_rwlock_writer_unlock(&resource_set->thread_hash->lock[hash], &lock);
mcs_rwlock_writer_lock(&proc->threads_lock, &lock);
list_del(&thread->siblings_list);
__release_tid(proc, thread);
mcs_rwlock_writer_unlock(&proc->threads_lock, &lock);
cpu_clear(thread->cpu_id, &thread->vm->address_space->cpu_set,
&thread->vm->address_space->cpu_set_lock);
list_for_each_entry_safe(pending, signext, &thread->sigpending, list){
list_del(&pending->list);
kfree(pending);
}
if (thread->ptrace_debugreg) {
kfree(thread->ptrace_debugreg);
}
if (thread->ptrace_recvsig) {
kfree(thread->ptrace_recvsig);
}
if (thread->ptrace_sendsig) {
kfree(thread->ptrace_sendsig);
}
if (thread->fp_regs) {
release_fp_regs(thread);
}
release_sigcommon(thread->sigcommon);
ihk_mc_free_pages(thread, KERNEL_STACK_NR_PAGES);
}
void release_thread(struct thread *thread)
{
struct process_vm *vm;
struct mcs_rwlock_node lock;
if (!ihk_atomic_dec_and_test(&thread->refcount)) {
return;
}
mcs_rwlock_writer_lock_noirq(&thread->proc->update_lock, &lock);
ts_add(&thread->proc->stime, &thread->stime);
ts_add(&thread->proc->utime, &thread->utime);
mcs_rwlock_writer_unlock_noirq(&thread->proc->update_lock, &lock);
vm = thread->vm;
procfs_delete_thread(thread);
destroy_thread(thread);
release_process_vm(vm);
}
void cpu_set(int cpu, cpu_set_t *cpu_set, ihk_spinlock_t *lock)
{
unsigned int flags;
flags = ihk_mc_spinlock_lock(lock);
CPU_SET(cpu, cpu_set);
ihk_mc_spinlock_unlock(lock, flags);
}
void cpu_clear(int cpu, cpu_set_t *cpu_set, ihk_spinlock_t *lock)
{
unsigned int flags;
flags = ihk_mc_spinlock_lock(lock);
CPU_CLR(cpu, cpu_set);
ihk_mc_spinlock_unlock(lock, flags);
}
void cpu_clear_and_set(int c_cpu, int s_cpu,
cpu_set_t *cpu_set, ihk_spinlock_t *lock)
{
unsigned int flags;
flags = ihk_mc_spinlock_lock(lock);
CPU_CLR(c_cpu, cpu_set);
CPU_SET(s_cpu, cpu_set);
ihk_mc_spinlock_unlock(lock, flags);
}
static void do_migrate(void);
static void idle(void)
{
struct cpu_local_var *v = get_this_cpu_local_var();
/* Release runq_lock before starting the idle loop.
* See comments at release_runq_lock().
*/
ihk_mc_spinlock_unlock(&(cpu_local_var(runq_lock)),
cpu_local_var(runq_irqstate));
if(v->status == CPU_STATUS_RUNNING)
v->status = CPU_STATUS_IDLE;
cpu_enable_interrupt();
while (1) {
schedule();
cpu_disable_interrupt();
/* See if we need to migrate a process somewhere */
if (v->flags & CPU_FLAG_NEED_MIGRATE) {
do_migrate();
v->flags &= ~CPU_FLAG_NEED_MIGRATE;
}
/*
* XXX: KLUDGE: It is desirable to be resolved in schedule().
*
* There is a problem which causes wait4(2) hang when
* wait4(2) called by a process races with its child process
* termination. This is a quick fix for this problem.
*
* The problem occurrd in the following sequence.
* 1) The parent process called schedule() from sys_wait4() to
* wait for an event generated by the child process.
* 2) schedule() resumed the idle process because there was no
* runnable process in run queue.
* 3) At the moment, the child process began to end. It set
* the parent process runnable, and sent an interrupt to
* the parent process's cpu. But this interrupt had no
* effect because the parent process's cpu had not halted.
* 4) The idle process was resumed, and halted for waiting for
* the interrupt that had already been handled.
*/
if (v->status == CPU_STATUS_IDLE ||
v->status == CPU_STATUS_RESERVED) {
long s;
struct thread *t;
s = ihk_mc_spinlock_lock(&v->runq_lock);
list_for_each_entry(t, &v->runq, sched_list) {
if (t->status == PS_RUNNING) {
v->status = CPU_STATUS_RUNNING;
break;
}
}
ihk_mc_spinlock_unlock(&v->runq_lock, s);
}
if (v->status == CPU_STATUS_IDLE ||
v->status == CPU_STATUS_RESERVED) {
/* No work to do? Consolidate the kmalloc free list */
kmalloc_consolidate_free_list();
cpu_safe_halt();
}
else {
cpu_enable_interrupt();
}
}
}
struct resource_set *
new_resource_set()
{
struct resource_set *res;
struct process_hash *phash;
struct thread_hash *thash;
struct process *pid1;
int i;
int hash;
res = kmalloc(sizeof(struct resource_set), IHK_MC_AP_NOWAIT);
phash = kmalloc(sizeof(struct process_hash), IHK_MC_AP_NOWAIT);
thash = kmalloc(sizeof(struct thread_hash), IHK_MC_AP_NOWAIT);
pid1 = kmalloc(sizeof(struct process), IHK_MC_AP_NOWAIT);
if(!res || !phash || !thash || !pid1){
if(res)
kfree(res);
if(phash)
kfree(phash);
if(thash)
kfree(thash);
if(pid1)
kfree(pid1);
return NULL;
}
memset(res, '\0', sizeof(struct resource_set));
memset(phash, '\0', sizeof(struct process_hash));
memset(thash, '\0', sizeof(struct thread_hash));
memset(pid1, '\0', sizeof(struct process));
INIT_LIST_HEAD(&res->phys_mem_list);
mcs_rwlock_init(&res->phys_mem_lock);
mcs_rwlock_init(&res->cpu_set_lock);
for(i = 0; i < HASH_SIZE; i++){
INIT_LIST_HEAD(&phash->list[i]);
mcs_rwlock_init(&phash->lock[i]);
}
res->process_hash = phash;
for(i = 0; i < HASH_SIZE; i++){
INIT_LIST_HEAD(&thash->list[i]);
mcs_rwlock_init(&thash->lock[i]);
}
res->thread_hash = thash;
init_process(pid1, pid1);
pid1->pid = 1;
hash = process_hash(1);
list_add_tail(&pid1->hash_list, &phash->list[hash]);
res->pid1 = pid1;
return res;
}
void
proc_init()
{
struct resource_set *res = new_resource_set();
int i;
if(!res){
panic("no mem for resource_set");
}
INIT_LIST_HEAD(&resource_set_list);
mcs_rwlock_init(&resource_set_lock);
for(i = 0; i < num_processors; i++){
CPU_SET(i, &res->cpu_set);
}
// TODO: setup for phys mem
res->path = kmalloc(2, IHK_MC_AP_NOWAIT);
if(!res->path){
panic("no mem for resource_set");
}
res->path[0] = '/';
res->path[0] = '\0';
list_add_tail(&res->list, &resource_set_list);
}
void sched_init(void)
{
struct thread *idle_thread = &cpu_local_var(idle);
struct resource_set *res;
res = list_first_entry(&resource_set_list, struct resource_set, list);
cpu_local_var(resource_set) = res;
memset(idle_thread, 0, sizeof(struct thread));
memset(&cpu_local_var(idle_vm), 0, sizeof(struct process_vm));
memset(&cpu_local_var(idle_proc), 0, sizeof(struct process));
idle_thread->vm = &cpu_local_var(idle_vm);
idle_thread->vm->address_space = &cpu_local_var(idle_asp);
idle_thread->proc = &cpu_local_var(idle_proc);
init_process(idle_thread->proc, NULL);
cpu_local_var(idle_proc).nohost = 1;
idle_thread->proc->vm = &cpu_local_var(idle_vm);
list_add_tail(&idle_thread->siblings_list,
&idle_thread->proc->children_list);
ihk_mc_init_context(&idle_thread->ctx, NULL, idle);
ihk_mc_spinlock_init(&idle_thread->vm->memory_range_lock);
INIT_LIST_HEAD(&idle_thread->vm->vm_range_list);
INIT_LIST_HEAD(&idle_thread->vm->vm_range_numa_policy_list);
idle_thread->proc->pid = 0;
idle_thread->tid = ihk_mc_get_processor_id();
INIT_LIST_HEAD(&cpu_local_var(runq));
cpu_local_var(runq_len) = 0;
ihk_mc_spinlock_init(&cpu_local_var(runq_lock));
INIT_LIST_HEAD(&cpu_local_var(migq));
ihk_mc_spinlock_init(&cpu_local_var(migq_lock));
#ifdef TIMER_CPU_ID
if (ihk_mc_get_processor_id() == TIMER_CPU_ID) {
init_timers();
wake_timers_loop();
}
#endif
}
static void double_rq_lock(struct cpu_local_var *v1, struct cpu_local_var *v2, unsigned long *irqstate)
{
if (v1 < v2) {
*irqstate = ihk_mc_spinlock_lock(&v1->runq_lock);
ihk_mc_spinlock_lock_noirq(&v2->runq_lock);
} else {
*irqstate = ihk_mc_spinlock_lock(&v2->runq_lock);
ihk_mc_spinlock_lock_noirq(&v1->runq_lock);
}
}
static void double_rq_unlock(struct cpu_local_var *v1, struct cpu_local_var *v2, unsigned long irqstate)
{
ihk_mc_spinlock_unlock_noirq(&v1->runq_lock);
ihk_mc_spinlock_unlock(&v2->runq_lock, irqstate);
}
struct migrate_request {
struct list_head list;
struct thread *thread;
struct waitq wq;
};
static void do_migrate(void)
{
int cur_cpu_id = ihk_mc_get_processor_id();
struct cpu_local_var *cur_v = get_cpu_local_var(cur_cpu_id);
struct migrate_request *req, *tmp;
unsigned long irqstate = 0;
irqstate = ihk_mc_spinlock_lock(&cur_v->migq_lock);
list_for_each_entry_safe(req, tmp, &cur_v->migq, list) {
int cpu_id;
int old_cpu_id;
struct cpu_local_var *v;
/* 0. check if migration is necessary */
list_del(&req->list);
if (req->thread->cpu_id != cur_cpu_id) /* already not here */
goto ack;
if (CPU_ISSET(cur_cpu_id, &req->thread->cpu_set)) /* good affinity */
goto ack;
/* 1. select CPU */
for (cpu_id = 0; cpu_id < CPU_SETSIZE; cpu_id++)
if (CPU_ISSET(cpu_id, &req->thread->cpu_set))
break;
if (CPU_SETSIZE == cpu_id) /* empty affinity (bug?) */
goto ack;
/* 2. migrate thread */
v = get_cpu_local_var(cpu_id);
double_rq_lock(cur_v, v, &irqstate);
list_del(&req->thread->sched_list);
cur_v->runq_len -= 1;
old_cpu_id = req->thread->cpu_id;
req->thread->cpu_id = cpu_id;
list_add_tail(&req->thread->sched_list, &v->runq);
v->runq_len += 1;
/* update cpu_set of the VM for remote TLB invalidation */
cpu_clear_and_set(old_cpu_id, cpu_id,
&req->thread->vm->address_space->cpu_set,
&req->thread->vm->address_space->cpu_set_lock);
dkprintf("do_migrate(): migrated TID %d from CPU %d to CPU %d\n",
req->thread->tid, old_cpu_id, cpu_id);
v->flags |= CPU_FLAG_NEED_RESCHED;
ihk_mc_interrupt_cpu(get_x86_cpu_local_variable(cpu_id)->apic_id, 0xd1);
double_rq_unlock(cur_v, v, irqstate);
ack:
waitq_wakeup(&req->wq);
}
ihk_mc_spinlock_unlock(&cur_v->migq_lock, irqstate);
}
void
set_timer()
{
struct cpu_local_var *v = get_this_cpu_local_var();
/* Toggle timesharing if CPU core is oversubscribed */
if (v->runq_len > 1 || v->current->itimer_enabled) {
if (!cpu_local_var(timer_enabled)) {
lapic_timer_enable(10000000);
cpu_local_var(timer_enabled) = 1;
}
}
else {
if (cpu_local_var(timer_enabled)) {
lapic_timer_disable();
cpu_local_var(timer_enabled) = 0;
}
}
}
void schedule(void)
{
struct cpu_local_var *v;
struct thread *next, *prev, *thread, *tmp = NULL;
int switch_ctx = 0;
struct thread *last;
if (cpu_local_var(no_preempt)) {
kprintf("%s: WARNING can't schedule() while no preemption, cnt: %d\n",
__FUNCTION__, cpu_local_var(no_preempt));
return;
}
redo:
cpu_local_var(runq_irqstate) =
ihk_mc_spinlock_lock(&(get_this_cpu_local_var()->runq_lock));
v = get_this_cpu_local_var();
next = NULL;
prev = v->current;
v->flags &= ~CPU_FLAG_NEED_RESCHED;
/* All runnable processes are on the runqueue */
if (prev && prev != &cpu_local_var(idle)) {
list_del(&prev->sched_list);
--v->runq_len;
/* Round-robin if not exited yet */
if (prev->status != PS_EXITED) {
list_add_tail(&prev->sched_list, &(v->runq));
++v->runq_len;
}
}
if (v->flags & CPU_FLAG_NEED_MIGRATE) {
next = &cpu_local_var(idle);
} else {
/* Pick a new running process or one that has a pending signal */
list_for_each_entry_safe(thread, tmp, &(v->runq), sched_list) {
if (thread->status == PS_RUNNING ||
(thread->status == PS_INTERRUPTIBLE && hassigpending(thread))) {
next = thread;
break;
}
}
/* No process? Run idle.. */
if (!next) {
next = &cpu_local_var(idle);
v->status = v->runq_len? CPU_STATUS_RESERVED: CPU_STATUS_IDLE;
}
}
if (prev != next) {
switch_ctx = 1;
v->current = next;
reset_cputime();
}
set_timer();
if (switch_ctx) {
dkprintf("schedule: %d => %d \n",
prev ? prev->tid : 0, next ? next->tid : 0);
if (prev && prev->ptrace_debugreg) {
save_debugreg(prev->ptrace_debugreg);
if (next->ptrace_debugreg == NULL) {
clear_debugreg();
}
}
if (next->ptrace_debugreg) {
restore_debugreg(next->ptrace_debugreg);
}
/* Take care of floating point registers except for idle process */
if (prev && prev != &cpu_local_var(idle)) {
save_fp_regs(prev);
}
if (next != &cpu_local_var(idle)) {
restore_fp_regs(next);
}
if (prev && prev->vm->address_space->page_table !=
next->vm->address_space->page_table)
ihk_mc_load_page_table(next->vm->address_space->page_table);
dkprintf("[%d] schedule: tlsblock_base: 0x%lX\n",
ihk_mc_get_processor_id(), next->tlsblock_base);
/* Set up new TLS.. */
ihk_mc_init_user_tlsbase(next->uctx, next->tlsblock_base);
/* Performance monitoring inherit */
if(next->proc->monitoring_event) {
if(next->proc->perf_status == PP_RESET)
perf_reset(next->proc->monitoring_event);
if(next->proc->perf_status != PP_COUNT) {
perf_reset(next->proc->monitoring_event);
perf_start(next->proc->monitoring_event);
}
}
if (prev) {
last = ihk_mc_switch_context(&prev->ctx, &next->ctx, prev);
}
else {
last = ihk_mc_switch_context(NULL, &next->ctx, prev);
}
/*
* We must hold the lock throughout the context switch, otherwise
* an IRQ could deschedule this process between page table loading and
* context switching and leave the execution in an inconsistent state.
* Since we may be migrated to another core meanwhile, we refer
* directly to cpu_local_var.
*/
ihk_mc_spinlock_unlock(&(cpu_local_var(runq_lock)),
cpu_local_var(runq_irqstate));
if ((last != NULL) && (last->status == PS_EXITED)) {
release_thread(last);
}
/* Have we migrated to another core meanwhile? */
if (v != get_this_cpu_local_var()) {
goto redo;
}
}
else {
ihk_mc_spinlock_unlock(&(cpu_local_var(runq_lock)),
cpu_local_var(runq_irqstate));
}
}
void
release_cpuid(int cpuid)
{
if (!get_cpu_local_var(cpuid)->runq_len)
get_cpu_local_var(cpuid)->status = CPU_STATUS_IDLE;
}
void check_need_resched(void)
{
unsigned long irqstate;
struct cpu_local_var *v = get_this_cpu_local_var();
irqstate = ihk_mc_spinlock_lock(&v->runq_lock);
if (v->flags & CPU_FLAG_NEED_RESCHED) {
if (v->in_interrupt && (v->flags & CPU_FLAG_NEED_MIGRATE)) {
kprintf("no migration in IRQ context\n");
ihk_mc_spinlock_unlock(&v->runq_lock, irqstate);
return;
}
ihk_mc_spinlock_unlock(&v->runq_lock, irqstate);
schedule();
}
else {
ihk_mc_spinlock_unlock(&v->runq_lock, irqstate);
}
}
int
sched_wakeup_thread(struct thread *thread, int valid_states)
{
int status;
int spin_slept = 0;
unsigned long irqstate;
struct cpu_local_var *v = get_cpu_local_var(thread->cpu_id);
struct process *proc = thread->proc;
struct mcs_rwlock_node updatelock;
dkprintf("sched_wakeup_process,proc->pid=%d,valid_states=%08x,proc->status=%08x,proc->cpu_id=%d,my cpu_id=%d\n",
proc->pid, valid_states, thread->status, thread->cpu_id, ihk_mc_get_processor_id());
irqstate = ihk_mc_spinlock_lock(&(thread->spin_sleep_lock));
if (thread->spin_sleep > 0) {
dkprintf("sched_wakeup_process() spin wakeup: cpu_id: %d\n",
thread->cpu_id);
spin_slept = 1;
status = 0;
}
--thread->spin_sleep;
ihk_mc_spinlock_unlock(&(thread->spin_sleep_lock), irqstate);
if (spin_slept) {
return status;
}
irqstate = ihk_mc_spinlock_lock(&(v->runq_lock));
if (thread->status & valid_states) {
mcs_rwlock_writer_lock_noirq(&proc->update_lock, &updatelock);
if(proc->status != PS_EXITED)
proc->status = PS_RUNNING;
mcs_rwlock_writer_unlock_noirq(&proc->update_lock, &updatelock);
xchg4((int *)(&thread->status), PS_RUNNING);
status = 0;
}
else {
status = -EINVAL;
}
ihk_mc_spinlock_unlock(&(v->runq_lock), irqstate);
if (!status && (thread->cpu_id != ihk_mc_get_processor_id())) {
dkprintf("sched_wakeup_process,issuing IPI,thread->cpu_id=%d\n",
thread->cpu_id);
ihk_mc_interrupt_cpu(get_x86_cpu_local_variable(thread->cpu_id)->apic_id,
0xd1);
}
return status;
}
/*
* 1. Add current process to waitq
* 2. Queue migration request into the target CPU's queue
* 3. Kick migration on the CPU
* 4. Wait for completion of the migration
*
* struct migrate_request {
* list //migq,
* wq,
* proc
* }
*
* [expected processing of the target CPU]
* 1. Interrupted by IPI
* 2. call schedule() via check_resched()
* 3. Do migration
* 4. Wake up this thread
*/
void sched_request_migrate(int cpu_id, struct thread *thread)
{
struct cpu_local_var *v = get_cpu_local_var(cpu_id);
struct migrate_request req = { .thread = thread };
unsigned long irqstate;
DECLARE_WAITQ_ENTRY(entry, cpu_local_var(current));
waitq_init(&req.wq);
waitq_prepare_to_wait(&req.wq, &entry, PS_UNINTERRUPTIBLE);
irqstate = ihk_mc_spinlock_lock(&v->migq_lock);
list_add_tail(&req.list, &v->migq);
ihk_mc_spinlock_unlock(&v->migq_lock, irqstate);
irqstate = ihk_mc_spinlock_lock(&v->runq_lock);
v->flags |= CPU_FLAG_NEED_RESCHED | CPU_FLAG_NEED_MIGRATE;
v->status = CPU_STATUS_RUNNING;
ihk_mc_spinlock_unlock(&v->runq_lock, irqstate);
if (cpu_id != ihk_mc_get_processor_id())
ihk_mc_interrupt_cpu(/* Kick scheduler */
get_x86_cpu_local_variable(cpu_id)->apic_id, 0xd1);
schedule();
waitq_finish_wait(&req.wq, &entry);
}
/* Runq lock must be held here */
void __runq_add_thread(struct thread *thread, int cpu_id)
{
struct cpu_local_var *v = get_cpu_local_var(cpu_id);
list_add_tail(&thread->sched_list, &v->runq);
++v->runq_len;
v->flags |= CPU_FLAG_NEED_RESCHED;
thread->cpu_id = cpu_id;
//thread->proc->status = PS_RUNNING; /* not set here */
get_cpu_local_var(cpu_id)->status = CPU_STATUS_RUNNING;
dkprintf("runq_add_proc(): tid %d added to CPU[%d]'s runq\n",
thread->tid, cpu_id);
}
void runq_add_thread(struct thread *thread, int cpu_id)
{
struct cpu_local_var *v = get_cpu_local_var(cpu_id);
unsigned long irqstate;
irqstate = ihk_mc_spinlock_lock(&(v->runq_lock));
__runq_add_thread(thread, cpu_id);
ihk_mc_spinlock_unlock(&(v->runq_lock), irqstate);
procfs_create_thread(thread);
/* Kick scheduler */
if (cpu_id != ihk_mc_get_processor_id())
ihk_mc_interrupt_cpu(
get_x86_cpu_local_variable(cpu_id)->apic_id, 0xd1);
}
/* NOTE: shouldn't remove a running process! */
void runq_del_thread(struct thread *thread, int cpu_id)
{
struct cpu_local_var *v = get_cpu_local_var(cpu_id);
unsigned long irqstate;
irqstate = ihk_mc_spinlock_lock(&(v->runq_lock));
list_del(&thread->sched_list);
--v->runq_len;
if (!v->runq_len)
get_cpu_local_var(cpu_id)->status = CPU_STATUS_IDLE;
ihk_mc_spinlock_unlock(&(v->runq_lock), irqstate);
}
struct thread *
find_thread(int pid, int tid, struct mcs_rwlock_node_irqsave *lock)
{
struct thread *thread;
struct thread_hash *thash = cpu_local_var(resource_set)->thread_hash;
int hash = thread_hash(tid);
if(tid <= 0)
return NULL;
mcs_rwlock_reader_lock(&thash->lock[hash], lock);
retry:
list_for_each_entry(thread, &thash->list[hash], hash_list){
if(thread->tid == tid){
if(pid <= 0)
return thread;
if(thread->proc->pid == pid)
return thread;
}
}
/* If no thread with pid == tid was found, then we may be looking for a
* specific thread (not the main thread of the process), try to find it
* based on tid only */
if (pid > 0 && pid == tid) {
pid = 0;
goto retry;
}
mcs_rwlock_reader_unlock(&thash->lock[hash], lock);
return NULL;
}
void
thread_unlock(struct thread *thread, struct mcs_rwlock_node_irqsave *lock)
{
struct thread_hash *thash = cpu_local_var(resource_set)->thread_hash;
int hash;
if(!thread)
return;
hash = thread_hash(thread->tid);
mcs_rwlock_reader_unlock(&thash->lock[hash], lock);
}
struct process *
find_process(int pid, struct mcs_rwlock_node_irqsave *lock)
{
struct process *proc;
struct process_hash *phash = cpu_local_var(resource_set)->process_hash;
int hash = process_hash(pid);
if(pid <= 0)
return NULL;
mcs_rwlock_reader_lock(&phash->lock[hash], lock);
list_for_each_entry(proc, &phash->list[hash], hash_list){
if(proc->pid == pid){
return proc;
}
}
mcs_rwlock_reader_unlock(&phash->lock[hash], lock);
return NULL;
}
void
process_unlock(struct process *proc, struct mcs_rwlock_node_irqsave *lock)
{
struct process_hash *phash = cpu_local_var(resource_set)->process_hash;
int hash;
if(!proc)
return;
hash = process_hash(proc->pid);
mcs_rwlock_reader_unlock(&phash->lock[hash], lock);
}
void
debug_log(unsigned long arg)
{
struct process *p;
struct thread *t;
int i;
struct mcs_rwlock_node_irqsave lock;
struct resource_set *rset = cpu_local_var(resource_set);
struct process_hash *phash = rset->process_hash;
struct thread_hash *thash = rset->thread_hash;
switch(arg){
case 1:
for(i = 0; i < HASH_SIZE; i++){
__mcs_rwlock_reader_lock(&phash->lock[i], &lock);
list_for_each_entry(p, &phash->list[i], hash_list){
kprintf("pid=%d ppid=%d status=%d\n",
p->pid, p->ppid_parent->pid, p->status);
}
__mcs_rwlock_reader_unlock(&phash->lock[i], &lock);
}
break;
case 2:
for(i = 0; i < HASH_SIZE; i++){
__mcs_rwlock_reader_lock(&thash->lock[i], &lock);
list_for_each_entry(t, &thash->list[i], hash_list){
kprintf("cpu=%d pid=%d tid=%d status=%d offload=%d\n",
t->cpu_id, t->proc->pid, t->tid,
t->status, t->in_syscall_offload);
}
__mcs_rwlock_reader_unlock(&thash->lock[i], &lock);
}
break;
case 3:
for(i = 0; i < HASH_SIZE; i++){
if(phash->lock[i].node)
kprintf("phash[i] is locked\n");
list_for_each_entry(p, &phash->list[i], hash_list){
kprintf("pid=%d ppid=%d status=%d\n",
p->pid, p->ppid_parent->pid, p->status);
}
}
break;
case 4:
for(i = 0; i < HASH_SIZE; i++){
if(thash->lock[i].node)
kprintf("thash[i] is locked\n");
list_for_each_entry(t, &thash->list[i], hash_list){
kprintf("cpu=%d pid=%d tid=%d status=%d\n",
t->cpu_id, t->proc->pid, t->tid,
t->status);
}
}
break;
}
}