Files
mckernel/kernel/user_exp_rcv.c
2018-06-13 00:31:43 +09:00

779 lines
21 KiB
C

/*
* Copyright(c) 2015, 2016 Intel Corporation.
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <hfi1/ihk_hfi1_common.h>
#include <hfi1/common.h>
#include <hfi1/hfi.h>
#include <hfi1/chip.h>
#include <hfi1/user_exp_rcv.h>
#include <hfi1/user_sdma.h> // for hfi1_map_device_addresses
//#define DEBUG_PRINT_USER_EXP_RCV
#ifdef DEBUG_PRINT_USER_EXP_RCV
#define dkprintf(...) kprintf(__VA_ARGS__)
#else
#define dkprintf(...) do { if(0) kprintf(__VA_ARGS__); } while (0)
#endif
static int program_rcvarray(struct hfi1_filedata *, unsigned long, uintptr_t,
size_t, u32 *);
static int set_rcvarray_entry(struct hfi1_filedata *, unsigned long, uintptr_t,
u32, struct tid_group *, int, u32);
static int unprogram_rcvarray(struct hfi1_filedata *, u32, struct tid_group **);
static void clear_tid_node(struct hfi1_filedata *, struct tid_rb_node *);
static int tid_rb_invalidate(struct hfi1_filedata *fdata,
struct tid_rb_node *node);
static int hfi1_rb_tree_insert(struct rb_root *root,
struct tid_rb_node *new_node);
static void __hfi1_rb_tree_remove(struct tid_rb_node *tid_node);
static struct tid_rb_node *__hfi1_search_rb_overlapping_node(
struct rb_root *root,
unsigned long start,
unsigned long end);
/*
* RcvArray entry allocation for Expected Receives is done by the
* following algorithm:
*/
int hfi1_user_exp_rcv_setup(struct hfi1_filedata *fd, struct hfi1_tid_info *tinfo)
{
int ret = -EFAULT;
struct hfi1_ctxtdata *uctxt = fd->uctxt;
uintptr_t vaddr, vaddr_end, base_vaddr = 0;
u32 *tidlist;
u16 tididx = 0;
struct process_vm *vm = cpu_local_var(current)->vm;
size_t base_pgsize, len = 0;
pte_t *ptep;
u64 phys;
if (!tinfo->length)
return -EINVAL;
if (tinfo->length / PAGE_SIZE > uctxt->expected_count) {
kprintf("Expected buffer too big\n");
return -EINVAL;
}
/* TODO: sizeof(*tidlist) * uctxt->expected_count); */
tidlist = kmalloc_cache_alloc(&cpu_local_var(tidlist_cache),
sizeof(*tidlist) * 2048);
if (!tidlist)
return -ENOMEM;
#if 0
/* Verify that access is OK for the user buffer */
if (access_ok(vm, VERIFY_WRITE, tinfo->vaddr, tinfo->length)) {
kprintf("%s: access_ok() failed for 0x%lx:%lu\n",
__FUNCTION__, tinfo->vaddr, tinfo->length);
return -EFAULT;
}
#endif
vaddr_end = tinfo->vaddr + tinfo->length;
dkprintf("%s: vaddr: 0x%llx, length: %zu (end: 0x%lx)\n",
__FUNCTION__, tinfo->vaddr, tinfo->length,
tinfo->vaddr + tinfo->length);
vaddr = tinfo->vaddr;
ptep = ihk_mc_pt_lookup_fault_pte(vm,
(void*)vaddr, 0,
(void**)&base_vaddr,
&base_pgsize, 0);
if (unlikely(!ptep || !pte_is_present(ptep))) {
kprintf("%s: ERROR: no valid PTE for 0x%lx\n",
__FUNCTION__, vaddr);
return -EFAULT;
}
while (vaddr < vaddr_end) {
phys = pte_get_phys(ptep) + (vaddr - base_vaddr);
len = (base_vaddr + base_pgsize - vaddr);
ret = 0;
/* Are we right at a page border? */
if (len == 0) {
ptep = ihk_mc_pt_lookup_fault_pte(vm,
(void*)vaddr, 0,
(void**)&base_vaddr,
&base_pgsize, 0);
if (unlikely(!ptep || !pte_is_present(ptep))) {
kprintf("%s: ERROR: no valid PTE for 0x%lx\n",
__FUNCTION__, vaddr);
return -EFAULT;
}
phys = pte_get_phys(ptep) + (vaddr - base_vaddr);
len = (base_vaddr + base_pgsize - vaddr);
}
/* Collect max physically contiguous chunk */
while (len < MAX_EXPECTED_BUFFER &&
vaddr + len < vaddr_end) {
uintptr_t __base_vaddr;
size_t __base_pgsize;
pte_t *__ptep;
int contiguous = 0;
/* Look up next page */
__ptep = ihk_mc_pt_lookup_fault_pte(vm,
(void*)vaddr + len, 0,
(void**)&__base_vaddr,
&__base_pgsize, 0);
if (unlikely(!__ptep || !pte_is_present(__ptep))) {
kprintf("%s: ERRROR: no valid PTE for 0x%lx\n",
__FUNCTION__, vaddr + len);
ret = -EFAULT;
break;
}
/* Contiguous? */
if (pte_get_phys(__ptep) == pte_get_phys(ptep) + base_pgsize) {
len += __base_pgsize;
contiguous = 1;
}
base_pgsize = __base_pgsize;
base_vaddr = __base_vaddr;
ptep = __ptep;
if (!contiguous)
break;
}
if (ret == -EFAULT)
break;
if (len > vaddr_end - vaddr) {
len = vaddr_end - vaddr;
}
if (len > MAX_EXPECTED_BUFFER) {
len = MAX_EXPECTED_BUFFER;
}
ret = program_rcvarray(fd, vaddr, phys, len, tidlist + tididx);
if (ret <= 0) {
kprintf("%s: failed to program RcvArray entries for len: %lu"
", vaddr: 0x%lx, vaddr_end: 0x%lx, ret: %d\n",
__FUNCTION__, len, vaddr, vaddr_end, ret);
panic("program_rcvarray() failed");
ret = -EFAULT;
}
dkprintf("%s: vaddr: 0x%lx -> phys: 0x%llx:%lu programmed\n",
__FUNCTION__, vaddr, phys, len);
tididx += ret;
vaddr += len;
}
if (ret > 0) {
linux_spin_lock(&fd->tid_lock);
fd->tid_used += tididx;
linux_spin_unlock(&fd->tid_lock);
tinfo->tidcnt = tididx;
if (copy_to_user((void __user *)(unsigned long)tinfo->tidlist,
tidlist, sizeof(*tidlist)*tididx)) {
/*
* On failure to copy to the user level, we need to undo
* everything done so far so we don't leak resources.
*/
tinfo->tidlist = (unsigned long)&tidlist;
hfi1_user_exp_rcv_clear(fd, tinfo);
tinfo->tidlist = 0;
ret = -EFAULT;
}
dkprintf("%s: range: 0x%llx:%lu -> %d TIDs programmed\n",
__FUNCTION__, tinfo->vaddr, tinfo->length, tinfo->tidcnt);
}
kmalloc_cache_free(tidlist);
return ret > 0 ? 0 : ret;
}
int hfi1_user_exp_rcv_clear(struct hfi1_filedata *fd, struct hfi1_tid_info *tinfo)
{
int ret = 0;
u32 *tidinfo;
unsigned tididx;
tidinfo = kcalloc(tinfo->tidcnt, sizeof(*tidinfo), GFP_KERNEL);
if (!tidinfo)
return -ENOMEM;
if (copy_from_user(tidinfo, (void __user *)(unsigned long)
tinfo->tidlist, sizeof(tidinfo[0]) *
tinfo->tidcnt)) {
ret = -EFAULT;
goto done;
}
/* Technically should never be needed (because mapped previously
* on update), but this call is no-op if addresses have been set
* previously
if (hfi1_map_device_addresses(fd) < 0) {
kprintf("%s: Could not map hfi1 device addresses\n",
__FUNCTION__);
return -EINVAL;
}
*/
for (tididx = 0; tididx < tinfo->tidcnt; tididx++) {
ret = unprogram_rcvarray(fd, tidinfo[tididx], NULL);
if (ret) {
kprintf("Failed to unprogram rcv array %d\n",
ret);
break;
}
}
dkprintf("%s: 0x%llx:%lu -> %d TIDs unprogrammed\n",
__FUNCTION__, tinfo->vaddr, tinfo->length, tinfo->tidcnt);
linux_spin_lock(&fd->tid_lock);
fd->tid_used -= tididx;
linux_spin_unlock(&fd->tid_lock);
tinfo->tidcnt = tididx;
done:
kfree(tidinfo);
return ret;
}
/**
* program_rcvarray() - program an RcvArray group with receive buffers
*/
static int program_rcvarray(struct hfi1_filedata *fd,
unsigned long vaddr,
uintptr_t phys,
size_t len, u32 *ptid)
{
struct hfi1_ctxtdata *uctxt = fd->uctxt;
struct hfi1_devdata *dd = uctxt->dd;
u16 idx = 0;
u32 tidinfo = 0, rcventry;
int ret = -ENOMEM, count = 0;
struct tid_group *grp = NULL;
/* lock is taken at loop edges */
linux_spin_lock(&fd->tid_lock);
while (len > 0) {
size_t tid_len;
size_t tid_npages;
if (!grp) {
if (!uctxt->tid_used_list.count) {
if (!uctxt->tid_group_list.count) {
linux_spin_unlock(&fd->tid_lock);
/* return what we have so far */
kprintf("%s: ERROR: no grp?\n", __FUNCTION__);
return count ? count : -ENOMEM;
}
grp = tid_group_pop(&uctxt->tid_group_list);
} else {
grp = tid_group_pop(&uctxt->tid_used_list);
}
}
/* Find the first unused entry in the group */
for (; idx < grp->size; idx++) {
if (!(grp->map & (1 << idx))) {
break;
}
}
linux_spin_unlock(&fd->tid_lock);
tid_len = (len > MAX_EXPECTED_BUFFER) ? MAX_EXPECTED_BUFFER :
(1 << (fls(len) - 1));
tid_npages = (tid_len > PAGE_SIZE) ? tid_len >> PAGE_SHIFT : 1;
rcventry = grp->base + idx;
rcv_array_wc_fill(dd, rcventry);
tidinfo = rcventry2tidinfo(rcventry - uctxt->expected_base) |
EXP_TID_SET(LEN, tid_npages);
ret = set_rcvarray_entry(fd, vaddr, phys, rcventry,
grp, tid_npages, tidinfo);
if (ret) {
kprintf("%s: set_rcvarray_entry() failed: %d\n",
__FUNCTION__, ret);
return ret;
}
ptid[count++] = tidinfo;
len -= tid_len;
vaddr += tid_len;
phys += tid_len;
linux_spin_lock(&fd->tid_lock);
grp->used++;
grp->map |= 1 << idx++;
/* optimization: keep same group if possible. */
if (grp->used < grp->size && len > 0)
continue;
if (grp->used == grp->size)
tid_group_add_tail(grp, &uctxt->tid_full_list);
else
tid_group_add_tail(grp, &uctxt->tid_used_list);
idx = 0;
grp = NULL;
}
linux_spin_unlock(&fd->tid_lock);
return count;
}
static int set_rcvarray_entry(struct hfi1_filedata *fd,
unsigned long vaddr, uintptr_t phys,
u32 rcventry, struct tid_group *grp,
int npages, u32 tidinfo)
{
struct hfi1_ctxtdata *uctxt = fd->uctxt;
struct hfi1_devdata *dd = uctxt->dd;
struct tid_rb_node *node;
/*
* Allocate the node first so we can handle a potential
* failure before we've programmed anything.
*/
node = kmalloc_cache_alloc(&cpu_local_var(tid_node_cache),
sizeof(*node));
if (!node) {
kprintf("%s: ERROR: allocating node\n", __FUNCTION__);
return -ENOMEM;
}
dkprintf("Registering rcventry %d, phys 0x%p, len %u\n", rcventry,
phys, npages << PAGE_SHIFT);
node->phys = phys;
node->len = npages << PAGE_SHIFT;
node->rcventry = rcventry;
node->grp = grp;
node->freed = false;
node->fd = fd;
node->start = vaddr;
node->end = vaddr + node->len;
node->range = NULL;
// TODO: check node->rcventry - uctxt->expected_base is within
// [0; uctxt->expected_count[ ?
fd->entry_to_rb[node->rcventry - uctxt->expected_base] = node;
hfi1_rb_tree_insert(
&cpu_local_var(current)->proc->hfi1_reg_tree,
node);
dkprintf("%s: node (0x%lx:%lu) programmed, tidinfo: %d\n",
__FUNCTION__, vaddr, node->len, tidinfo);
hfi1_put_tid(dd, rcventry, PT_EXPECTED, phys, fls(npages));
#if 0
trace_hfi1_exp_tid_reg(uctxt->ctxt, fd->subctxt, rcventry, npages,
node->mmu.addr, node->phys, phys);
#endif
return 0;
}
int hfi1_user_exp_rcv_invalid(struct hfi1_filedata *fd, struct hfi1_tid_info *tinfo)
{
struct hfi1_ctxtdata *uctxt = fd->uctxt;
unsigned long *ev = uctxt->dd->events +
(((uctxt->ctxt - uctxt->dd->first_dyn_alloc_ctxt) *
HFI1_MAX_SHARED_CTXTS) + fd->subctxt);
int ret = 0;
if (!fd->invalid_tids)
return -EINVAL;
/*
* copy_to_user() can sleep, which will leave the invalid_lock
* locked and cause the MMU notifier to be blocked on the lock
* for a long time.
* Copy the data to a local buffer so we can release the lock.
*
* McKernel: copy to userspace directly.
*/
linux_spin_lock(&fd->invalid_lock);
if (fd->invalid_tid_idx) {
dkprintf("%s: fd->invalid_tid_idx: %d to be notified\n",
__FUNCTION__, fd->invalid_tid_idx);
if (copy_to_user((void __user *)tinfo->tidlist,
fd->invalid_tids,
sizeof(*(fd->invalid_tids)) *
fd->invalid_tid_idx)) {
ret = -EFAULT;
}
else {
tinfo->tidcnt = fd->invalid_tid_idx;
memset(fd->invalid_tids, 0, sizeof(*fd->invalid_tids) *
fd->invalid_tid_idx);
/*
* Reset the user flag while still holding the lock.
* Otherwise, PSM can miss events.
*/
clear_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev);
dkprintf("%s: fd->invalid_tid_idx: %d notified\n",
__FUNCTION__, fd->invalid_tid_idx);
fd->invalid_tid_idx = 0;
}
}
else {
tinfo->tidcnt = 0;
}
linux_spin_unlock(&fd->invalid_lock);
return ret;
}
static int unprogram_rcvarray(struct hfi1_filedata *fd, u32 tidinfo,
struct tid_group **grp)
{
struct hfi1_ctxtdata *uctxt = fd->uctxt;
struct tid_rb_node *node;
u8 tidctrl = EXP_TID_GET(tidinfo, CTRL);
u32 tididx = EXP_TID_GET(tidinfo, IDX) << 1, rcventry;
if (tididx >= uctxt->expected_count) {
kprintf("Invalid RcvArray entry (%u) index for ctxt %u\n",
tididx, uctxt->ctxt);
return -EINVAL;
}
if (tidctrl == 0x3) {
kprintf("tidctrl = 3 for rcventry %d\n",
tididx + 2 + uctxt->expected_base);
return -EINVAL;
}
rcventry = tididx + (tidctrl - 1);
node = fd->entry_to_rb[rcventry];
dkprintf("%s: node (0x%lx:%lu), tidinfo: %d\n",
__FUNCTION__, node->start, node->end - node->start, tidinfo);
if (!node || node->rcventry != (uctxt->expected_base + rcventry)) {
kprintf("bad entry %d\n", rcventry);
return -EBADF;
}
if (node->range) {
struct process_vm *vm = cpu_local_var(current)->vm;
struct deferred_unmap_range *range = node->range;
//ihk_mc_spinlock_lock_noirq(&vm->vm_deferred_unmap_lock);
if (--range->refcnt == 0) {
list_del(&range->list);
}
else {
range = NULL;
}
//ihk_mc_spinlock_unlock_noirq(&vm->vm_deferred_unmap_lock);
if (range) {
dkprintf("%s: executing deferred unmap: 0x%lx:%lu-0x%lx\n",
__FUNCTION__, range->addr, range->len,
range->addr + range->len);
ihk_mc_spinlock_lock_noirq(&vm->memory_range_lock);
do_munmap(range->addr, range->len);
ihk_mc_spinlock_unlock_noirq(&vm->memory_range_lock);
kfree(range);
}
}
if (grp)
*grp = node->grp;
dkprintf("Clearing rcventry %d, phys 0x%p, len %u\n", node->rcventry,
node->phys, node->len);
fd->entry_to_rb[rcventry] = NULL;
clear_tid_node(fd, node);
return 0;
}
static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node)
{
struct hfi1_ctxtdata *uctxt = fd->uctxt;
struct hfi1_devdata *dd = uctxt->dd;
hfi1_put_tid(dd, node->rcventry, PT_INVALID, 0, 0);
/*
* Make sure device has seen the write before we unpin the
* pages.
*/
flush_wc();
barrier();
__hfi1_rb_tree_remove(node);
linux_spin_lock(&fd->tid_lock);
node->grp->used--;
node->grp->map &= ~(1 << (node->rcventry - node->grp->base));
if (node->grp->used == node->grp->size - 1)
tid_group_move(node->grp, &uctxt->tid_full_list,
&uctxt->tid_used_list);
else if (!node->grp->used)
tid_group_move(node->grp, &uctxt->tid_used_list,
&uctxt->tid_group_list);
linux_spin_unlock(&fd->tid_lock);
kmalloc_cache_free(node);
}
int hfi1_user_exp_rcv_overlapping(unsigned long start, unsigned long end)
{
int ret = 0;
struct process_vm *vm = cpu_local_var(current)->vm;
struct tid_rb_node *node;
struct deferred_unmap_range *range;
dkprintf("%s: 0x%lx:%lu\n", __FUNCTION__, start, end - start);
//ihk_mc_spinlock_lock_noirq(&vm->vm_deferred_unmap_lock);
node = __hfi1_search_rb_overlapping_node(
&cpu_local_var(current)->proc->hfi1_reg_tree,
start, end);
if (!node || node->freed) {
return 0;
}
range = kmalloc(sizeof(*range), IHK_MC_AP_NOWAIT);
if (!range) {
kprintf("%s: ERROR: allocating memory\n", __FUNCTION__);
return -ENOMEM;
}
init_deferred_unmap_range(range, vm, (void *)start, end - start);
while (node) {
struct hfi1_filedata *fd = node->fd;
struct hfi1_ctxtdata *uctxt = fd ? fd->uctxt : NULL;
/* Sanity check */
if (!uctxt ||
fd->entry_to_rb[node->rcventry - uctxt->expected_base] != node) {
kprintf("%s: ERROR: inconsistent TID node\n", __FUNCTION__);
ret = -EINVAL;
break;
}
dkprintf("%s: node (0x%lx:%lu) deferred and invalidated"
" in munmap for 0x%lx:%lu-0x%lx\n",
__FUNCTION__, node->start, node->len, start, end - start, end);
tid_rb_invalidate(fd, node);
if (node->range) {
kprintf("%s: WARNING: node->range is already set for 0x%lx:%lu\n",
__FUNCTION__, start, end);
}
else {
node->range = range;
}
++range->refcnt;
node = __hfi1_search_rb_overlapping_node(
&cpu_local_var(current)->proc->hfi1_reg_tree,
start, end);
}
if (range->refcnt == 0) {
kfree(range);
}
else {
list_add_tail(&range->list, &vm->vm_deferred_unmap_range_list);
ret = range->refcnt;
}
//ihk_mc_spinlock_unlock_noirq(&vm->vm_deferred_unmap_lock);
return ret;
}
static int hfi1_rb_tree_insert(struct rb_root *root,
struct tid_rb_node *new_node)
{
struct rb_node **new = &(root->rb_node), *parent = NULL;
struct tid_rb_node *tid_node;
while (*new) {
tid_node = rb_entry(*new, struct tid_rb_node, rb_node);
parent = *new;
if (new_node->end <= tid_node->start) {
new = &((*new)->rb_left);
}
else if (new_node->start >= tid_node->end) {
new = &((*new)->rb_right);
}
else {
kprintf("%s: ERROR: overlapping TID nodes, "
"node (0x%lx:%lu) <=> new (0x%lx:%lu)\n",
__FUNCTION__,
tid_node->start, tid_node->len,
new_node->start, new_node->len);
return -EINVAL;
}
}
rb_link_node(&new_node->rb_node, parent, new);
rb_insert_color(&new_node->rb_node, root);
new_node->rb_root = root;
return 0;
}
static void __hfi1_rb_tree_remove(struct tid_rb_node *tid_node)
{
if (!tid_node->rb_root) {
kprintf("%s: ERROR: node without rb_root??\n",
__FUNCTION__);
return;
}
rb_erase(&tid_node->rb_node, tid_node->rb_root);
tid_node->rb_root = NULL;
}
static struct tid_rb_node *__hfi1_search_rb_overlapping_node(
struct rb_root *root,
unsigned long start,
unsigned long end)
{
struct rb_node *node = root->rb_node;
struct tid_rb_node *tid_node = NULL;
while (node) {
tid_node = rb_entry(node, struct tid_rb_node, rb_node);
if (end <= tid_node->start) {
node = node->rb_left;
}
else if (start >= tid_node->end) {
node = node->rb_right;
}
else if (tid_node->freed) {
node = rb_next(node);
}
else {
break;
}
}
return node ? tid_node : NULL;
}
/*
* Always return 0 from this function. A non-zero return indicates that the
* remove operation will be called and that memory should be unpinned.
* However, the driver cannot unpin out from under PSM. Instead, retain the
* memory (by returning 0) and inform PSM that the memory is going away. PSM
* will call back later when it has removed the memory from its list.
*
* XXX: in McKernel we attach tid nodes to memory ranges that are
* about to be unmapped. Once we got all of them cleared, the actual
* unmap is performed.
*/
static int tid_rb_invalidate(struct hfi1_filedata *fdata,
struct tid_rb_node *node)
{
struct hfi1_ctxtdata *uctxt = fdata->uctxt;
if (node->freed)
return 0;
node->freed = true;
__hfi1_rb_tree_remove(node);
hfi1_rb_tree_insert(
&cpu_local_var(current)->proc->hfi1_inv_tree,
node);
linux_spin_lock(&fdata->invalid_lock);
if (fdata->invalid_tid_idx < uctxt->expected_count) {
fdata->invalid_tids[fdata->invalid_tid_idx] =
rcventry2tidinfo(node->rcventry - uctxt->expected_base);
fdata->invalid_tids[fdata->invalid_tid_idx] |=
EXP_TID_SET(LEN, node->len >> PAGE_SHIFT);
if (!fdata->invalid_tid_idx) {
unsigned long *ev;
/*
* hfi1_set_uevent_bits() sets a user event flag
* for all processes. Because calling into the
* driver to process TID cache invalidations is
* expensive and TID cache invalidations are
* handled on a per-process basis, we can
* optimize this to set the flag only for the
* process in question.
*/
ev = uctxt->dd->events +
(((uctxt->ctxt - uctxt->dd->first_dyn_alloc_ctxt) *
HFI1_MAX_SHARED_CTXTS) + fdata->subctxt);
set_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev);
}
fdata->invalid_tid_idx++;
}
linux_spin_unlock(&fdata->invalid_lock);
return 0;
}