Files
mckernel/kernel/user_sdma.c

1651 lines
45 KiB
C

#include <hfi1/hfi.h>
#include <hfi1/sdma.h>
#include <hfi1/user_sdma.h>
#include <hfi1/user_exp_rcv.h>
#include <hfi1/common.h>
//#define DEBUG_PRINT_HFI1_SDMA
#ifdef DEBUG_PRINT_HFI1_SDMA
#define dkprintf(...) kprintf(__VA_ARGS__)
#else
#define dkprintf(...) do { if(0) kprintf(__VA_ARGS__); } while (0)
#endif
static uint hfi1_sdma_comp_ring_size = 128;
/* The maximum number of Data io vectors per message/request */
#define MAX_VECTORS_PER_REQ 8
/*
* Maximum number of packet to send from each message/request
* before moving to the next one.
*/
#define MAX_PKTS_PER_QUEUE 16
#define num_pages(x) (1 + ((((x) - 1) & PAGE_MASK) >> PAGE_SHIFT))
#define req_opcode(x) \
(((x) >> HFI1_SDMA_REQ_OPCODE_SHIFT) & HFI1_SDMA_REQ_OPCODE_MASK)
#define req_version(x) \
(((x) >> HFI1_SDMA_REQ_VERSION_SHIFT) & HFI1_SDMA_REQ_OPCODE_MASK)
#define req_iovcnt(x) \
(((x) >> HFI1_SDMA_REQ_IOVCNT_SHIFT) & HFI1_SDMA_REQ_IOVCNT_MASK)
#define PBC2LRH(x) ((((x) & 0xfff) << 2) - 4)
#define LRH2PBC(x) ((((x) >> 2) + 1) & 0xfff)
#define AHG_HEADER_SET(arr, idx, dw, bit, width, value) \
do { \
if ((idx) < ARRAY_SIZE((arr))) \
(arr)[(idx++)] = sdma_build_ahg_descriptor( \
(__force u16)(value), (dw), (bit), \
(width)); \
else \
return -ERANGE; \
} while (0)
/* KDETH OM multipliers and switch over point */
#define KDETH_OM_SMALL 4
#define KDETH_OM_LARGE 64
#define KDETH_OM_MAX_SIZE (1 << ((KDETH_OM_LARGE / KDETH_OM_SMALL) + 1))
/* Tx request flag bits */
#define TXREQ_FLAGS_REQ_ACK BIT(0) /* Set the ACK bit in the header */
#define TXREQ_FLAGS_REQ_DISABLE_SH BIT(1) /* Disable header suppression */
/* SDMA request flag bits */
#define SDMA_REQ_FOR_THREAD 1
#define SDMA_REQ_SEND_DONE 2
#define SDMA_REQ_HAVE_AHG 3
#define SDMA_REQ_HAS_ERROR 4
#define SDMA_REQ_DONE_ERROR 5
#define SDMA_PKT_Q_INACTIVE BIT(0)
#define SDMA_PKT_Q_ACTIVE BIT(1)
#define SDMA_PKT_Q_DEFERRED BIT(2)
/*
* Maximum retry attempts to submit a TX request
* before putting the process to sleep.
*/
#define MAX_DEFER_RETRY_COUNT 1
static unsigned initial_pkt_count = 8;
#define SDMA_IOWAIT_TIMEOUT 1000 /* in milliseconds */
struct user_sdma_iovec {
struct list_head list;
struct iovec iov;
#ifdef __HFI1_ORIG__
/* number of pages in this vector */
unsigned npages;
/* array of pinned pages for this vector */
struct page **pages;
#else
/*
* Physical address corresponding to the page that contains
* iov.iov_base and the corresponding page size.
*/
unsigned int base_pgsize;
unsigned long base_phys;
#endif
/*
* offset into the virtual address space of the vector at
* which we last left off.
*/
u64 offset;
#ifdef __HFI1_ORIG__
struct sdma_mmu_node *node;
#else
/*
* Virtual address corresponding to base_phys
* (i.e., the beginning of the underlying page).
*/
void *base_virt;
#endif
};
#include <hfi1/hfi1_generated_user_sdma_request.h>
/*
* A single txreq could span up to 3 physical pages when the MTU
* is sufficiently large (> 4K). Each of the IOV pointers also
* needs it's own set of flags so the vector has been handled
* independently of each other.
*/
#include <hfi1/hfi1_generated_user_sdma_txreq.h>
static int user_sdma_send_pkts(struct user_sdma_request *req,
unsigned maxpkts,
struct kmalloc_cache_header *txreq_cache);
static inline void pq_update(struct hfi1_user_sdma_pkt_q *);
static int check_header_template(struct user_sdma_request *,
struct hfi1_pkt_header *, u32, u32);
static int set_txreq_header(struct user_sdma_request *,
struct user_sdma_txreq *, u32);
static int set_txreq_header_ahg(struct user_sdma_request *,
struct user_sdma_txreq *, u32);
static void user_sdma_free_request(struct user_sdma_request *, bool);
static inline void set_comp_state(struct hfi1_user_sdma_pkt_q *,
struct hfi1_user_sdma_comp_q *,
u16, enum hfi1_sdma_comp_state, int);
static void user_sdma_txreq_cb(struct sdma_txreq *, int);
static u8 dlid_to_selector(u16 dlid)
{
static u8 mapping[256];
static int initialized;
static u8 next;
int hash;
if (!initialized) {
memset(mapping, 0xFF, 256);
initialized = 1;
}
hash = ((dlid >> 8) ^ dlid) & 0xFF;
if (mapping[hash] == 0xFF) {
mapping[hash] = next;
next = (next + 1) & 0x7F;
}
return mapping[hash];
}
/* hfi1/chip_registers.h */
#define CORE 0x000000000000
#define TXE (CORE + 0x000001800000)
#define RXE (CORE + 0x000001000000)
#define RCV_ARRAY (RXE + 0x000000200000)
/* hfi1/chip.h */
#define TXE_PIO_SEND (TXE + TXE_PIO_SEND_OFFSET)
#define TXE_PIO_SEND_OFFSET 0x0800000
#define TXE_PIO_SIZE (32 * 0x100000) /* 32 MB */
int hfi1_map_device_addresses(struct hfi1_filedata *fd)
{
pte_t *lptep;
pte_t *ptep;
enum ihk_mc_pt_attribute attr;
void *virt;
unsigned long phys;
unsigned long len;
unsigned long irqstate;
int ret = 0;
struct process *proc = cpu_local_var(current)->proc;
struct process_vm *vm = cpu_local_var(current)->vm;
struct hfi1_user_sdma_comp_q *cq = fd->cq;
struct hfi1_devdata *dd = fd->dd;
irqstate = ihk_mc_spinlock_lock(&proc->hfi1_lock);
/*
* Map device addresses if not mapped or mapping changed.
*/
if (proc->hfi1_kregbase != dd->kregbase1) {
void *hfi1_kregbase = dd->kregbase1;
phys = dd->physaddr;
attr = PTATTR_UNCACHABLE | PTATTR_WRITABLE;
/*
* No race condition here as ihk_mc_pt_set_page() holds
* the lock to kernel space mapping manipulation
*
* XXX: use large pages?
* XXX: where are we going to unmap this?
*/
for (virt = hfi1_kregbase; virt < (hfi1_kregbase + TXE_PIO_SEND);
virt += PAGE_SIZE, phys += PAGE_SIZE) {
if (ihk_mc_pt_set_page(vm->address_space->page_table,
virt, phys, attr) < 0) {
kprintf("%s: ERROR: failed to map kregbase: 0x%lx -> 0x%lx\n",
__FUNCTION__, virt, phys);
ret = -1;
goto unlock_out;
}
ptep = ihk_mc_pt_lookup_pte(vm->address_space->page_table,
virt, 0, 0, 0, 0);
if (!ptep && !pte_is_present(ptep)) {
kprintf("%s: ERROR: no mapping in McKernel for kregbase: 0x%lx?\n",
__FUNCTION__, virt);
ret = -1;
goto unlock_out;
}
lptep = ihk_mc_pt_lookup_pte(ihk_mc_get_linux_kernel_pgt(),
virt, 0, 0, 0, 0);
if (!lptep && !pte_is_present(lptep)) {
kprintf("%s: ERROR: no mapping in Linux for kregbase: 0x%lx?\n",
__FUNCTION__, virt);
ret = -1;
goto unlock_out;
}
*ptep = *lptep;
}
dkprintf("%s: hfi1_kregbase: 0x%lx - 0x%lx -> 0x%lx:%lu\n",
__FUNCTION__,
hfi1_kregbase,
hfi1_kregbase + TXE_PIO_SEND,
(phys - TXE_PIO_SEND), TXE_PIO_SEND);
//ihk_mc_pt_print_pte(vm->address_space->page_table, hfi1_kregbase);
proc->hfi1_kregbase = hfi1_kregbase;
/* Initialize registration tree */
proc->hfi1_reg_tree = RB_ROOT;
proc->hfi1_inv_tree = RB_ROOT;
}
if (proc->hfi1_piobase != dd->piobase) {
void *hfi1_piobase = dd->piobase;
phys = dd->physaddr + TXE_PIO_SEND;
attr = PTATTR_WRITE_COMBINED | PTATTR_WRITABLE;
for (virt = hfi1_piobase; virt < (hfi1_piobase + TXE_PIO_SIZE);
virt += PAGE_SIZE, phys += PAGE_SIZE) {
if (ihk_mc_pt_set_page(vm->address_space->page_table,
virt, phys, attr) < 0) {
kprintf("%s: ERROR: failed to map piobase: 0x%lx -> 0x%lx\n",
__FUNCTION__, virt, phys);
ret = -1;
goto unlock_out;
}
ptep = ihk_mc_pt_lookup_pte(vm->address_space->page_table,
virt, 0, 0, 0, 0);
if (!ptep && !pte_is_present(ptep)) {
kprintf("%s: ERROR: no mapping in McKernel for piobase: 0x%lx?\n",
__FUNCTION__, virt);
ret = -1;
goto unlock_out;
}
lptep = ihk_mc_pt_lookup_pte(ihk_mc_get_linux_kernel_pgt(),
virt, 0, 0, 0, 0);
if (!lptep && !pte_is_present(lptep)) {
kprintf("%s: ERROR: no mapping in Linux for piobase: 0x%lx?\n",
__FUNCTION__, virt);
ret = -1;
goto unlock_out;
}
*ptep = *lptep;
}
dkprintf("%s: hfi1_piobase: 0x%lx - 0x%lx -> 0x%lx:%lu\n",
__FUNCTION__,
hfi1_piobase,
hfi1_piobase + TXE_PIO_SIZE,
(phys - TXE_PIO_SIZE), TXE_PIO_SIZE);
proc->hfi1_piobase = hfi1_piobase;
}
if (proc->hfi1_rcvarray_wc != dd->rcvarray_wc) {
void *hfi1_rcvarray_wc = dd->rcvarray_wc;
phys = dd->physaddr + RCV_ARRAY;
attr = PTATTR_WRITE_COMBINED | PTATTR_WRITABLE;
for (virt = hfi1_rcvarray_wc;
virt < (hfi1_rcvarray_wc + dd->chip_rcv_array_count * 8);
virt += PAGE_SIZE, phys += PAGE_SIZE) {
if (ihk_mc_pt_set_page(vm->address_space->page_table,
virt, phys, attr) < 0) {
kprintf("%s: ERROR: failed to map rcvarray_wc: 0x%lx -> 0x%lx\n",
__FUNCTION__, virt, phys);
ret = -1;
goto unlock_out;
}
ptep = ihk_mc_pt_lookup_pte(vm->address_space->page_table,
virt, 0, 0, 0, 0);
if (!ptep && !pte_is_present(ptep)) {
kprintf("%s: ERROR: no mapping in McKernel for rcvarray: 0x%lx?\n",
__FUNCTION__, virt);
ret = -1;
goto unlock_out;
}
lptep = ihk_mc_pt_lookup_pte(ihk_mc_get_linux_kernel_pgt(),
virt, 0, 0, 0, 0);
if (!lptep && !pte_is_present(lptep)) {
kprintf("%s: ERROR: no mapping in Linux for rcvarray: 0x%lx?\n",
__FUNCTION__, virt);
ret = -1;
goto unlock_out;
}
*ptep = *lptep;
}
dkprintf("%s: hfi1_rcvarray_wc: 0x%lx - 0x%lx -> 0x%lx:%lu\n",
__FUNCTION__,
hfi1_rcvarray_wc,
hfi1_rcvarray_wc + dd->chip_rcv_array_count * 8,
(phys - dd->chip_rcv_array_count * 8),
dd->chip_rcv_array_count * 8);
proc->hfi1_rcvarray_wc = hfi1_rcvarray_wc;
proc->hfi1_rcvarray_wc_len = dd->chip_rcv_array_count * 8;
}
/*
* Map in cq->comps, allocated by vmalloc_user() in Linux.
*/
if (proc->hfi1_cq_comps != cq->comps) {
len = ((sizeof(*cq->comps) * cq->nentries)
+ PAGE_SIZE - 1) & PAGE_MASK;
attr = PTATTR_WRITABLE;
for (virt = (void *)cq->comps; virt < (((void *)cq->comps) + len);
virt += PAGE_SIZE) {
lptep = ihk_mc_pt_lookup_pte(ihk_mc_get_linux_kernel_pgt(),
virt, 0, 0, 0, 0);
if (!lptep && !pte_is_present(lptep)) {
kprintf("%s: ERROR: no mapping in Linux for cq: 0x%lx?\n",
__FUNCTION__, virt);
ret = -1;
goto unlock_out;
}
phys = pte_get_phys(lptep);
ptep = ihk_mc_pt_lookup_pte(vm->address_space->page_table,
virt, 0, 0, 0, 0);
if (ptep && pte_is_present(ptep) && pte_get_phys(ptep) == phys) {
continue;
}
if (ihk_mc_pt_set_page(vm->address_space->page_table,
virt, phys, attr) < 0) {
/* Not necessarily an error.. */
kprintf("%s: WARNING: mapping cq: 0x%lx -> 0x%lx\n",
__FUNCTION__, virt, phys);
}
ptep = ihk_mc_pt_lookup_pte(vm->address_space->page_table,
virt, 0, 0, 0, 0);
if (!ptep) {
kprintf("%s: ERROR: no PTE in McKernel for cq: 0x%lx?\n",
__FUNCTION__, virt);
ret = -1;
goto unlock_out;
}
*ptep = *lptep;
}
dkprintf("%s: hfi1_cq_comps: 0x%lx - 0x%lx mapped\n",
__FUNCTION__,
cq->comps, len);
proc->hfi1_cq_comps = cq->comps;
proc->hfi1_cq_comps_len = len;
}
if (proc->hfi1_events != dd->events) {
void *hfi1_events = dd->events;
len = (dd->chip_rcv_contexts * HFI1_MAX_SHARED_CTXTS *
sizeof(*dd->events) + PAGE_SIZE - 1) & PAGE_MASK;
/*
* Events are in Linux vmalloc area, we need to
* resolve physical addresses by looking at Linux
* page tables.
*/
for (virt = hfi1_events; virt < hfi1_events + len;
virt += PAGE_SIZE) {
lptep = ihk_mc_pt_lookup_pte(ihk_mc_get_linux_kernel_pgt(),
virt, 0, 0, 0, 0);
if (!lptep && !pte_is_present(lptep)) {
kprintf("%s: ERROR: no mapping in Linux for events: 0x%lx?\n",
__FUNCTION__, virt);
ret = -1;
goto unlock_out;
}
phys = pte_get_phys(lptep);
if (ihk_mc_pt_set_page(vm->address_space->page_table,
virt, phys, attr) < 0) {
kprintf("%s: ERROR: failed to map events: 0x%lx -> 0x%lx\n",
__FUNCTION__, virt, phys);
ret = -1;
goto unlock_out;
}
ptep = ihk_mc_pt_lookup_pte(vm->address_space->page_table,
virt, 0, 0, 0, 0);
if (!ptep && !pte_is_present(ptep)) {
kprintf("%s: ERROR: no mapping in McKernel for events: 0x%lx?\n",
__FUNCTION__, virt);
ret = -1;
goto unlock_out;
}
*ptep = *lptep;
}
dkprintf("%s: hfi1_events: 0x%lx - 0x%lx\n",
__FUNCTION__,
hfi1_events,
hfi1_events + len);
//ihk_mc_pt_print_pte(vm->address_space->page_table, hfi1_events);
proc->hfi1_events = hfi1_events;
}
flush_tlb();
unlock_out:
ihk_mc_spinlock_unlock(&proc->hfi1_lock, irqstate);
return ret;
}
int hfi1_unmap_device_addresses(struct process *proc)
{
unsigned long irqstate;
int ret = 0;
struct process_vm *vm = proc->vm;
extern void ihk_mc_pt_destroy_pgd_subtree(struct page_table *pt,
void *virt);
irqstate = ihk_mc_spinlock_lock(&proc->hfi1_lock);
/*
* Unmap device addresses if mapped.
*/
if (proc->hfi1_kregbase) {
ihk_mc_pt_destroy_pgd_subtree(vm->address_space->page_table,
proc->hfi1_kregbase);
/*
ihk_mc_pt_clear_kernel_range(vm->address_space->page_table, vm,
proc->hfi1_kregbase, proc->hfi1_kregbase + TXE_PIO_SEND);
kprintf("%s: hfi1_kregbase unmapped\n",
__FUNCTION__);
*/
proc->hfi1_kregbase = 0;
}
if (proc->hfi1_piobase) {
ihk_mc_pt_destroy_pgd_subtree(vm->address_space->page_table,
proc->hfi1_piobase);
/*
ihk_mc_pt_clear_kernel_range(vm->address_space->page_table, vm,
proc->hfi1_piobase, proc->hfi1_piobase + TXE_PIO_SIZE);
kprintf("%s: hfi1_piobase unmapped\n",
__FUNCTION__);
*/
proc->hfi1_piobase = 0;
}
if (proc->hfi1_rcvarray_wc) {
ihk_mc_pt_destroy_pgd_subtree(vm->address_space->page_table,
proc->hfi1_rcvarray_wc);
/*
ihk_mc_pt_clear_kernel_range(vm->address_space->page_table, vm,
proc->hfi1_rcvarray_wc,
proc->hfi1_rcvarray_wc + proc->hfi1_rcvarray_wc_len);
kprintf("%s: hfi1_rcvarray_wc unmapped\n",
__FUNCTION__);
*/
proc->hfi1_rcvarray_wc = 0;
}
if (proc->hfi1_cq_comps) {
ihk_mc_pt_destroy_pgd_subtree(vm->address_space->page_table,
proc->hfi1_cq_comps);
/*
ihk_mc_pt_clear_kernel_range(vm->address_space->page_table, vm,
proc->hfi1_cq_comps,
proc->hfi1_cq_comps + proc->hfi1_cq_comps_len);
kprintf("%s: hfi1_cq_comps unmapped\n",
__FUNCTION__);
*/
proc->hfi1_cq_comps = 0;
}
ihk_mc_spinlock_unlock(&proc->hfi1_lock, irqstate);
return ret;
}
#undef PROFILE_ENABLE
int hfi1_user_sdma_process_request(void *private_data, struct iovec *iovec,
unsigned long dim, unsigned long *count)
{
int ret = 0, i;
struct hfi1_filedata *fd = private_data;
struct hfi1_ctxtdata *uctxt = fd->uctxt;
struct hfi1_user_sdma_pkt_q *pq = fd->pq;
struct hfi1_user_sdma_comp_q *cq = fd->cq;
struct hfi1_devdata *dd = pq->dd;
unsigned long idx = 0;
u8 pcount = initial_pkt_count;
struct sdma_req_info info;
struct user_sdma_request *req;
u8 opcode, sc, vl;
int req_queued = 0;
u16 dlid;
u32 selector;
unsigned long size_info = sizeof(info);
struct kmalloc_cache_header *txreq_cache =
&cpu_local_var(txreq_cache);
hfi1_cdbg(AIOWRITE, "+");
if (iovec[idx].iov_len < sizeof(info) + sizeof(req->hdr)) {
hfi1_cdbg(
SDMA,
"[%u:%u:%u] First vector not big enough for header %lu/%lu",
dd->unit, uctxt->ctxt, fd->subctxt,
iovec[idx].iov_len, size_info + sizeof(req->hdr));
return -EINVAL;
}
ret = copy_from_user(&info, iovec[idx].iov_base, size_info);
if (ret) {
hfi1_cdbg(SDMA, "[%u:%u:%u] Failed to copy info QW (%d)",
dd->unit, uctxt->ctxt, fd->subctxt, ret);
return -EFAULT;
}
// trace_hfi1_sdma_user_reqinfo(dd, uctxt->ctxt, fd->subctxt,
// (u16 *)&info);
if (info.comp_idx >= hfi1_sdma_comp_ring_size) {
hfi1_cdbg(SDMA,
"[%u:%u:%u:%u] Invalid comp index",
dd->unit, uctxt->ctxt, fd->subctxt, info.comp_idx);
return -EINVAL;
}
/*
* Sanity check the header io vector count. Need at least 1 vector
* (header) and cannot be larger than the actual io vector count.
*/
if (req_iovcnt(info.ctrl) < 1 || req_iovcnt(info.ctrl) > dim) {
hfi1_cdbg(SDMA,
"[%u:%u:%u:%u] Invalid iov count %d, dim %ld",
dd->unit, uctxt->ctxt, fd->subctxt, info.comp_idx,
req_iovcnt(info.ctrl), dim);
return -EINVAL;
}
if (!info.fragsize) {
hfi1_cdbg(SDMA,
"[%u:%u:%u:%u] Request does not specify fragsize",
dd->unit, uctxt->ctxt, fd->subctxt, info.comp_idx);
return -EINVAL;
}
/* Try to claim the request. */
if (test_and_set_bit(info.comp_idx, pq->req_in_use)) {
hfi1_cdbg(SDMA, "[%u:%u:%u] Entry %u is in use",
dd->unit, uctxt->ctxt, fd->subctxt,
info.comp_idx);
return -EBADSLT;
}
/*
* All safety checks have been done and this request has been claimed.
*/
//trace_hfi1_sdma_user_process_request(dd, uctxt->ctxt, fd->subctxt,
// info.comp_idx);
req = pq->reqs + info.comp_idx;
req->data_iovs = req_iovcnt(info.ctrl) - 1; /* subtract header vector */
req->data_len = 0;
req->pq = pq;
req->cq = cq;
req->status = -1;
req->ahg_idx = -1;
req->iov_idx = 0;
req->sent = 0;
req->seqnum = 0;
req->seqcomp = 0;
req->seqsubmitted = 0;
req->tids = NULL;
req->done = 0;
req->has_error = 0;
INIT_LIST_HEAD(&req->txps);
fast_memcpy(&req->info, &info, size_info);
if (req_opcode(info.ctrl) == EXPECTED) {
/* expected must have a TID info and at least one data vector */
if (req->data_iovs < 2) {
SDMA_DBG(req,
"Not enough vectors for expected request");
ret = -EINVAL;
goto free_req;
}
req->data_iovs--;
}
if (!info.npkts || req->data_iovs > MAX_VECTORS_PER_REQ) {
SDMA_DBG(req, "Too many vectors (%u/%u)", req->data_iovs,
MAX_VECTORS_PER_REQ);
ret = -EINVAL;
goto free_req;
}
/* Copy the header from the user buffer */
ret = copy_from_user(&req->hdr, iovec[idx].iov_base + size_info,
sizeof(req->hdr));
if (ret) {
SDMA_DBG(req, "Failed to copy header template (%d)", ret);
ret = -EFAULT;
goto free_req;
}
/* If Static rate control is not enabled, sanitize the header. */
if (!HFI1_CAP_IS_USET(STATIC_RATE_CTRL))
req->hdr.pbc[2] = 0;
/* Validate the opcode. Do not trust packets from user space blindly. */
opcode = (be32_to_cpu(req->hdr.bth[0]) >> 24) & 0xff;
if ((opcode & USER_OPCODE_CHECK_MASK) !=
USER_OPCODE_CHECK_VAL) {
SDMA_DBG(req, "Invalid opcode (%d)", opcode);
ret = -EINVAL;
goto free_req;
}
/*
* Validate the vl. Do not trust packets from user space blindly.
* VL comes from PBC, SC comes from LRH, and the VL needs to
* match the SC look up.
*/
vl = (le16_to_cpu(req->hdr.pbc[0]) >> 12) & 0xF;
sc = (((be16_to_cpu(req->hdr.lrh[0]) >> 12) & 0xF) |
(((le16_to_cpu(req->hdr.pbc[1]) >> 14) & 0x1) << 4));
if (vl >= dd->pport->vls_operational ||
vl != sc_to_vlt(dd, sc)) {
SDMA_DBG(req, "Invalid SC(%u)/VL(%u)", sc, vl);
ret = -EINVAL;
goto free_req;
}
// TODO: Enable this validation and checking
#ifdef __HFI1_ORIG__
/* Checking P_KEY for requests from user-space */
if (egress_pkey_check(dd->pport, req->hdr.lrh, req->hdr.bth, sc,
PKEY_CHECK_INVALID)) {
ret = -EINVAL;
goto free_req;
}
#endif /* __HFI1_ORIG__ */
/*
* Also should check the BTH.lnh. If it says the next header is GRH then
* the RXE parsing will be off and will land in the middle of the KDETH
* or miss it entirely.
*/
if ((be16_to_cpu(req->hdr.lrh[0]) & 0x3) == HFI1_LRH_GRH) {
SDMA_DBG(req, "User tried to pass in a GRH");
ret = -EINVAL;
goto free_req;
}
req->koffset = le32_to_cpu(req->hdr.kdeth.swdata[6]);
/*
* Calculate the initial TID offset based on the values of
* KDETH.OFFSET and KDETH.OM that are passed in.
*/
req->tidoffset = KDETH_GET(req->hdr.kdeth.ver_tid_offset, OFFSET) *
(KDETH_GET(req->hdr.kdeth.ver_tid_offset, OM) ?
KDETH_OM_LARGE : KDETH_OM_SMALL);
//trace_hfi1_sdma_user_initial_tidoffset(dd, uctxt->ctxt, fd->subctxt,
// info.comp_idx, req->tidoffset);
idx++;
/* Save all the IO vector structures */
for (i = 0; i < req->data_iovs; i++) {
pte_t *ptep;
size_t base_pgsize;
struct user_sdma_iovec *usi;
void *virt;
req->iovs[i].offset = 0;
INIT_LIST_HEAD(&req->iovs[i].list);
/*
* req->iovs[] contain only the data.
*/
fast_memcpy(&req->iovs[i].iov, iovec + idx++, sizeof(struct iovec));
usi = &req->iovs[i];
virt = usi->iov.iov_base;
/*
* Look up the PTE for the start of this iovec.
* Store the physical address of the first page and
* the page size in iovec.
*/
ptep = ihk_mc_pt_lookup_fault_pte(
cpu_local_var(current)->vm,
virt,
0,
0,
&base_pgsize,
0);
if (unlikely(!ptep || !pte_is_present(ptep))) {
kprintf("%s: ERROR: no valid PTE for 0x%lx\n",
__FUNCTION__, virt);
return -EFAULT;
}
usi->base_pgsize = (unsigned)base_pgsize;
usi->base_phys = pte_get_phys(ptep);
usi->base_virt = (void *)((unsigned long)virt &
~((unsigned long)usi->base_pgsize - 1));
SDMA_DBG("%s: iovec: %d, base_virt: 0x%lx, base_phys: 0x%lx, "
"base_pgsize: %lu\n",
__FUNCTION__,
i,
usi->base_virt,
usi->base_phys,
usi->base_pgsize);
req->data_len += req->iovs[i].iov.iov_len;
}
//trace_hfi1_sdma_user_data_length(dd, uctxt->ctxt, fd->subctxt,
// info.comp_idx, req->data_len);
if (pcount > req->info.npkts)
pcount = req->info.npkts;
/*
* Copy any TID info
* User space will provide the TID info only when the
* request type is EXPECTED. This is true even if there is
* only one packet in the request and the header is already
* setup. The reason for the singular TID case is that the
* driver needs to perform safety checks.
*/
if (req_opcode(req->info.ctrl) == EXPECTED) {
u16 ntids = iovec[idx].iov_len / sizeof(*req->tids);
if (!ntids || ntids > MAX_TID_PAIR_ENTRIES) {
ret = -EINVAL;
goto free_req;
}
req->tids = kmalloc_cache_alloc(
&cpu_local_var(tids_cache),
sizeof(*req->tids) * MAX_TID_PAIR_ENTRIES);
if (!req->tids) {
ret = -ENOMEM;
goto free_req;
}
/*
* We have to copy all of the tids because they may vary
* in size and, therefore, the TID count might not be
* equal to the pkt count. However, there is no way to
* tell at this point.
*/
ret = copy_from_user(req->tids, iovec[idx].iov_base,
ntids * sizeof(*req->tids));
if (ret) {
SDMA_DBG(req, "Failed to copy %d TIDs (%d)",
ntids, ret);
ret = -EFAULT;
goto free_req;
}
req->n_tids = ntids;
req->tididx = 0;
idx++;
}
dlid = be16_to_cpu(req->hdr.lrh[1]);
selector = dlid_to_selector(dlid);
selector += uctxt->ctxt + fd->subctxt;
req->sde = sdma_select_user_engine(dd, selector, vl);
if (!req->sde) {
kprintf("%s: !req->sde", __FUNCTION__);
ret = -ECOMM;
goto free_req;
}
if (!sdma_running(req->sde)) {
kprintf("%s: !sdma_running(req->sde)", __FUNCTION__);
ret = -ECOMM;
goto free_req;
}
/* We don't need an AHG entry if the request contains only one packet */
if (req->info.npkts > 1 && HFI1_CAP_IS_USET(SDMA_AHG)) {
int ahg = sdma_ahg_alloc(req->sde);
if (likely(ahg >= 0)) {
req->ahg_idx = (u8)ahg;
}
}
set_comp_state(pq, cq, info.comp_idx, QUEUED, 0);
atomic_inc(&pq->n_reqs);
req_queued = 1;
/* Send the first N packets in the request to buy us some time */
ret = user_sdma_send_pkts(req, pcount, txreq_cache);
if (unlikely(ret < 0 && ret != -EBUSY)) {
req->status = ret;
goto free_req;
}
/*
* It is possible that the SDMA engine would have processed all the
* submitted packets by the time we get here. Therefore, only set
* packet queue state to ACTIVE if there are still uncompleted
* requests.
*/
if (atomic_read(&pq->n_reqs))
xchg(&pq->state, SDMA_PKT_Q_ACTIVE);
/*
* This is a somewhat blocking send implementation.
* The driver will block the caller until all packets of the
* request have been submitted to the SDMA engine. However, it
* will not wait for send completions.
*/
while (req->seqsubmitted != req->info.npkts) {
ret = user_sdma_send_pkts(req, pcount, txreq_cache);
if (ret < 0) {
if (ret != -EBUSY) {
req->status = ret;
WRITE_ONCE(req->has_error, 1);
if (ACCESS_ONCE(req->seqcomp) ==
req->seqsubmitted - 1)
goto free_req;
return ret;
}
{
unsigned long ts = rdtsc();
while (pq->state != SDMA_PKT_Q_ACTIVE) {
cpu_pause();
}
kprintf("%s: waited %lu cycles for SDMA_PKT_Q_ACTIVE\n",
__FUNCTION__, rdtsc() - ts);
}
}
}
*count += idx;
return 0;
free_req:
user_sdma_free_request(req, true);
if (req_queued)
pq_update(pq);
set_comp_state(pq, cq, info.comp_idx, ERROR, req->status);
return ret;
}
static inline u32 compute_data_length(struct user_sdma_request *req,
struct user_sdma_txreq *tx)
{
/*
* Determine the proper size of the packet data.
* The size of the data of the first packet is in the header
* template. However, it includes the header and ICRC, which need
* to be subtracted.
* The minimum representable packet data length in a header is 4 bytes,
* therefore, when the data length request is less than 4 bytes, there's
* only one packet, and the packet data length is equal to that of the
* request data length.
* The size of the remaining packets is the minimum of the frag
* size (MTU) or remaining data in the request.
*/
u32 len;
if (!req->seqnum) {
if (req->data_len < sizeof(u32))
len = req->data_len;
else
len = ((be16_to_cpu(req->hdr.lrh[2]) << 2) -
(sizeof(tx->hdr) - 4));
} else if (req_opcode(req->info.ctrl) == EXPECTED) {
u32 tidlen = EXP_TID_GET(req->tids[req->tididx], LEN) *
PAGE_SIZE;
/*
* Get the data length based on the remaining space in the
* TID pair.
*/
len = min(tidlen - req->tidoffset, (u32)req->info.fragsize);
/* If we've filled up the TID pair, move to the next one. */
if (unlikely(!len) && ++req->tididx < req->n_tids &&
req->tids[req->tididx]) {
tidlen = EXP_TID_GET(req->tids[req->tididx],
LEN) * PAGE_SIZE;
req->tidoffset = 0;
len = min_t(u32, tidlen, req->info.fragsize);
}
/*
* Since the TID pairs map entire pages, make sure that we
* are not going to try to send more data that we have
* remaining.
*/
len = min(len, req->data_len - req->sent);
} else {
len = min(req->data_len - req->sent, (u32)req->info.fragsize);
}
return len;
}
static inline u32 pad_len(u32 len)
{
if (len & (sizeof(u32) - 1))
len += sizeof(u32) - (len & (sizeof(u32) - 1));
return len;
}
static inline u32 get_lrh_len(struct hfi1_pkt_header hdr, u32 len)
{
/* (Size of complete header - size of PBC) + 4B ICRC + data length */
return ((sizeof(hdr) - sizeof(hdr.pbc)) + 4 + len);
}
void hfi1_kmalloc_cache_prealloc(void)
{
/*
* TODO: nr_elems have been determined based on profiling
* HACC and UMT2013, would be interesting to do some clever
* dynamic releasing/expanding.
*/
kmalloc_cache_prealloc(&cpu_local_var(txreq_cache),
sizeof(struct user_sdma_txreq), 2048);
kmalloc_cache_prealloc(&cpu_local_var(tids_cache),
sizeof(*(((struct user_sdma_request *)0)->tids)) *
MAX_TID_PAIR_ENTRIES, 256);
kmalloc_cache_prealloc(&cpu_local_var(tidlist_cache),
sizeof(u32) * 2048, 128);
kmalloc_cache_prealloc(&cpu_local_var(tid_node_cache),
sizeof(struct tid_rb_node), 512);
}
static int user_sdma_send_pkts(struct user_sdma_request *req,
unsigned maxpkts,
struct kmalloc_cache_header *txreq_cache)
{
int ret = 0;
u32 count;
unsigned npkts = 0;
struct user_sdma_txreq *tx = NULL;
struct hfi1_user_sdma_pkt_q *pq = NULL;
struct user_sdma_iovec *iovec = NULL;
if (!req->pq)
return -EINVAL;
pq = req->pq;
/* If tx completion has reported an error, we are done. */
if (READ_ONCE(req->has_error))
return -EFAULT;
/*
* Check if we might have sent the entire request already
*/
if (unlikely(req->seqnum == req->info.npkts)) {
if (!list_empty(&req->txps))
goto dosend;
return ret;
}
if (!maxpkts || maxpkts > req->info.npkts - req->seqnum)
maxpkts = req->info.npkts - req->seqnum;
while (npkts < maxpkts) {
u32 datalen = 0, queued = 0, data_sent = 0;
u64 iov_offset = 0;
#ifdef PROFILE_ENABLE
unsigned long prof_ts = rdtsc();
#endif
//TODO: enable test_bit
#ifdef __HFI1_ORIG__
/*
* Check whether any of the completions have come back
* with errors. If so, we are not going to process any
* more packets from this request.
*/
if (READ_ONCE(req->has_error))
return -EFAULT;
#endif /* __HFI1_ORIG__ */
tx = kmalloc_cache_alloc(txreq_cache, sizeof(*tx));
if (!tx)
return -ENOMEM;
tx->flags = 0;
tx->req = req;
tx->busycount = 0;
INIT_LIST_HEAD(&tx->list);
/*
* For the last packet set the ACK request
* and disable header suppression.
*/
if (req->seqnum == req->info.npkts - 1)
tx->flags |= (TXREQ_FLAGS_REQ_ACK |
TXREQ_FLAGS_REQ_DISABLE_SH);
#ifdef PROFILE_ENABLE
profile_event_add(PROFILE_sdma_0,
(rdtsc() - prof_ts));
prof_ts = rdtsc();
#endif // PROFILE_ENABLE
/*
* Calculate the payload size - this is min of the fragment
* (MTU) size or the remaining bytes in the request but only
* if we have payload data.
*/
if (req->data_len) {
iovec = &req->iovs[req->iov_idx];
if (ACCESS_ONCE(iovec->offset) == iovec->iov.iov_len) {
if (++req->iov_idx == req->data_iovs) {
ret = -EFAULT;
goto free_txreq;
}
iovec = &req->iovs[req->iov_idx];
WARN_ON(iovec->offset);
}
datalen = compute_data_length(req, tx);
/*
* Disable header suppression for the payload <= 8DWS.
* If there is an uncorrectable error in the receive
* data FIFO when the received payload size is less than
* or equal to 8DWS then the RxDmaDataFifoRdUncErr is
* not reported.There is set RHF.EccErr if the header
* is not suppressed.
*/
if (!datalen) {
SDMA_DBG(req,
"Request has data but pkt len is 0");
ret = -EFAULT;
goto free_tx;
} else if (datalen <= 32) {
tx->flags |= TXREQ_FLAGS_REQ_DISABLE_SH;
}
}
#ifdef PROFILE_ENABLE
profile_event_add(PROFILE_sdma_1,
(rdtsc() - prof_ts));
prof_ts = rdtsc();
#endif // PROFILE_ENABLE
if (req->ahg_idx >= 0) {
if (!req->seqnum) {
TP("+ if !req->seqnum");
u16 pbclen = le16_to_cpu(req->hdr.pbc[0]);
u32 lrhlen = get_lrh_len(req->hdr,
pad_len(datalen));
/*
* Copy the request header into the tx header
* because the HW needs a cacheline-aligned
* address.
* This copy can be optimized out if the hdr
* member of user_sdma_request were also
* cacheline aligned.
*/
fast_memcpy(&tx->hdr, &req->hdr, sizeof(tx->hdr));
if (PBC2LRH(pbclen) != lrhlen) {
pbclen = (pbclen & 0xf000) |
LRH2PBC(lrhlen);
tx->hdr.pbc[0] = cpu_to_le16(pbclen);
}
ret = check_header_template(req, &tx->hdr,
lrhlen, datalen);
if (ret)
goto free_tx;
ret = sdma_txinit_ahg(&tx->txreq,
SDMA_TXREQ_F_AHG_COPY,
sizeof(tx->hdr) + datalen,
req->ahg_idx, 0, NULL, 0,
user_sdma_txreq_cb);
if (ret)
goto free_tx;
ret = sdma_txadd_kvaddr(pq->dd, &tx->txreq,
&tx->hdr,
sizeof(tx->hdr));
if (ret)
goto free_txreq;
} else {
int changes;
changes = set_txreq_header_ahg(req, tx,
datalen);
if (changes < 0)
goto free_tx;
}
} else {
ret = sdma_txinit(&tx->txreq, 0, sizeof(req->hdr) +
datalen, user_sdma_txreq_cb);
if (ret)
goto free_tx;
/*
* Modify the header for this packet. This only needs
* to be done if we are not going to use AHG. Otherwise,
* the HW will do it based on the changes we gave it
* during sdma_txinit_ahg().
*/
ret = set_txreq_header(req, tx, datalen);
if (ret)
goto free_txreq;
}
#ifdef PROFILE_ENABLE
profile_event_add(PROFILE_sdma_2,
(rdtsc() - prof_ts));
prof_ts = rdtsc();
#endif // PROFILE_ENABLE
/*
* If the request contains any data vectors, add up to
* fragsize bytes to the descriptor.
*/
TP("+ If the request contains any data vectors, add up to fragsize bytes to the descriptor.");
while (queued < datalen &&
(req->sent + data_sent) < req->data_len) {
unsigned len;
uintptr_t base;
void *virt;
base = (uintptr_t)iovec->iov.iov_base;
virt = (void*)(base + iovec->offset + iov_offset);
/*
* Resolve iovec->base_phys if virt is out of last page.
*/
if (unlikely(virt >= (iovec->base_virt + iovec->base_pgsize))) {
pte_t *ptep;
size_t base_pgsize;
ptep = ihk_mc_pt_lookup_fault_pte(
cpu_local_var(current)->vm,
virt, 0, 0, &base_pgsize, 0);
if (unlikely(!ptep || !pte_is_present(ptep))) {
kprintf("%s: ERROR: no valid PTE for 0x%lx\n",
__FUNCTION__, virt);
return -EFAULT;
}
iovec->base_pgsize = (unsigned)base_pgsize;
iovec->base_phys = pte_get_phys(ptep);
iovec->base_virt = (void *)((unsigned long)virt &
~((unsigned long)iovec->base_pgsize - 1));
SDMA_DBG("%s: base_virt: 0x%lx, base_phys: 0x%lx, "
"base_pgsize: %lu\n",
__FUNCTION__,
iovec->base_virt,
iovec->base_phys,
iovec->base_pgsize);
}
len = (iovec->base_virt + iovec->base_pgsize - virt) >
req->info.fragsize ? req->info.fragsize :
(iovec->base_virt + iovec->base_pgsize - virt);
len = min((datalen - queued), len);
SDMA_DBG("%s: dl: %d, qd: %d, len: %d\n",
__FUNCTION__, datalen, queued, len);
ret = sdma_txadd_page(pq->dd, &tx->txreq,
iovec->base_phys + (virt - iovec->base_virt),
len);
if (ret) {
SDMA_DBG(req, "SDMA txreq add page failed %d\n",
ret);
goto free_txreq;
}
iov_offset += len;
queued += len;
data_sent += len;
if (unlikely(queued < datalen &&
iov_offset == iovec->iov.iov_len &&
req->iov_idx < req->data_iovs - 1)) {
iovec->offset += iov_offset;
iovec = &req->iovs[++req->iov_idx];
iov_offset = 0;
}
}
#ifdef PROFILE_ENABLE
profile_event_add(PROFILE_sdma_3,
(rdtsc() - prof_ts));
prof_ts = rdtsc();
#endif // PROFILE_ENABLE
TP("- If the request contains any data vectors, add up to fragsize bytes to the descriptor.");
/*
* The txreq was submitted successfully so we can update
* the counters.
*/
req->koffset += datalen;
if (req_opcode(req->info.ctrl) == EXPECTED)
req->tidoffset += datalen;
req->sent += data_sent;
if (req->data_len)
iovec->offset += iov_offset;
list_add_tail(&tx->txreq.list, &req->txps);
/*
* It is important to increment this here as it is used to
* generate the BTH.PSN and, therefore, can't be bulk-updated
* outside of the loop.
*/
tx->seqnum = req->seqnum++;
npkts++;
#ifdef PROFILE_ENABLE
profile_event_add(PROFILE_sdma_4,
(rdtsc() - prof_ts));
prof_ts = rdtsc();
#endif // PROFILE_ENABLE
}
dosend:
ret = sdma_send_txlist(req->sde,
NULL,
&req->txps, &count);
req->seqsubmitted += count;
if (req->seqsubmitted == req->info.npkts) {
WRITE_ONCE(req->done, 1);
/*
* The txreq has already been submitted to the HW queue
* so we can free the AHG entry now. Corruption will not
* happen due to the sequential manner in which
* descriptors are processed.
*/
if (req->ahg_idx >= 0)
sdma_ahg_free(req->sde, req->ahg_idx);
}
return ret;
free_txreq:
sdma_txclean(pq->dd, &tx->txreq);
free_tx:
kmalloc_cache_free(tx);
return ret;
}
static int check_header_template(struct user_sdma_request *req,
struct hfi1_pkt_header *hdr, u32 lrhlen,
u32 datalen)
{
/*
* Perform safety checks for any type of packet:
* - transfer size is multiple of 64bytes
* - packet length is multiple of 4 bytes
* - packet length is not larger than MTU size
*
* These checks are only done for the first packet of the
* transfer since the header is "given" to us by user space.
* For the remainder of the packets we compute the values.
*/
if (req->info.fragsize % PIO_BLOCK_SIZE || lrhlen & 0x3 ||
lrhlen > get_lrh_len(*hdr, req->info.fragsize))
return -EINVAL;
if (req_opcode(req->info.ctrl) == EXPECTED) {
/*
* The header is checked only on the first packet. Furthermore,
* we ensure that at least one TID entry is copied when the
* request is submitted. Therefore, we don't have to verify that
* tididx points to something sane.
*/
u32 tidval = req->tids[req->tididx],
tidlen = EXP_TID_GET(tidval, LEN) * PAGE_SIZE,
tididx = EXP_TID_GET(tidval, IDX),
tidctrl = EXP_TID_GET(tidval, CTRL),
tidoff;
__le32 kval = hdr->kdeth.ver_tid_offset;
tidoff = KDETH_GET(kval, OFFSET) *
(KDETH_GET(req->hdr.kdeth.ver_tid_offset, OM) ?
KDETH_OM_LARGE : KDETH_OM_SMALL);
/*
* Expected receive packets have the following
* additional checks:
* - offset is not larger than the TID size
* - TIDCtrl values match between header and TID array
* - TID indexes match between header and TID array
*/
if ((tidoff + datalen > tidlen) ||
KDETH_GET(kval, TIDCTRL) != tidctrl ||
KDETH_GET(kval, TID) != tididx)
return -EINVAL;
}
return 0;
}
/*
* Correctly set the BTH.PSN field based on type of
* transfer - eager packets can just increment the PSN but
* expected packets encode generation and sequence in the
* BTH.PSN field so just incrementing will result in errors.
*/
static inline u32 set_pkt_bth_psn(__be32 bthpsn, u8 expct, u32 frags)
{
u32 val = be32_to_cpu(bthpsn),
mask = (HFI1_CAP_IS_KSET(EXTENDED_PSN) ? 0x7fffffffull :
0xffffffull),
psn = val & mask;
if (expct)
psn = (psn & ~HFI1_KDETH_BTH_SEQ_MASK) |
((psn + frags) & HFI1_KDETH_BTH_SEQ_MASK);
else
psn = psn + frags;
return psn & mask;
}
static int set_txreq_header(struct user_sdma_request *req,
struct user_sdma_txreq *tx, u32 datalen)
{
struct hfi1_user_sdma_pkt_q *pq = req->pq;
struct hfi1_pkt_header *hdr = &tx->hdr;
u8 omfactor; /* KDETH.OM */
u16 pbclen;
int ret;
u32 tidval = 0, lrhlen = get_lrh_len(*hdr, pad_len(datalen));
/* Copy the header template to the request before modification */
fast_memcpy(hdr, &req->hdr, sizeof(*hdr));
/*
* Check if the PBC and LRH length are mismatched. If so
* adjust both in the header.
*/
pbclen = le16_to_cpu(hdr->pbc[0]);
if (PBC2LRH(pbclen) != lrhlen) {
pbclen = (pbclen & 0xf000) | LRH2PBC(lrhlen);
hdr->pbc[0] = cpu_to_le16(pbclen);
hdr->lrh[2] = cpu_to_be16(lrhlen >> 2);
/*
* Third packet
* This is the first packet in the sequence that has
* a "static" size that can be used for the rest of
* the packets (besides the last one).
*/
if (unlikely(req->seqnum == 2)) {
/*
* From this point on the lengths in both the
* PBC and LRH are the same until the last
* packet.
* Adjust the template so we don't have to update
* every packet
*/
req->hdr.pbc[0] = hdr->pbc[0];
req->hdr.lrh[2] = hdr->lrh[2];
}
}
/*
* We only have to modify the header if this is not the
* first packet in the request. Otherwise, we use the
* header given to us.
*/
if (unlikely(!req->seqnum)) {
ret = check_header_template(req, hdr, lrhlen, datalen);
if (ret)
return ret;
goto done;
}
hdr->bth[2] = cpu_to_be32(
set_pkt_bth_psn(hdr->bth[2],
(req_opcode(req->info.ctrl) == EXPECTED),
req->seqnum));
/* Set ACK request on last packet */
if (unlikely(tx->flags & TXREQ_FLAGS_REQ_ACK))
hdr->bth[2] |= cpu_to_be32(1UL << 31);
/* Set the new offset */
hdr->kdeth.swdata[6] = cpu_to_le32(req->koffset);
/* Expected packets have to fill in the new TID information */
if (req_opcode(req->info.ctrl) == EXPECTED) {
tidval = req->tids[req->tididx];
/*
* If the offset puts us at the end of the current TID,
* advance everything.
*/
if ((req->tidoffset) == (EXP_TID_GET(tidval, LEN) *
PAGE_SIZE)) {
req->tidoffset = 0;
/*
* Since we don't copy all the TIDs, all at once,
* we have to check again.
*/
if (++req->tididx > req->n_tids - 1 ||
!req->tids[req->tididx]) {
return -EINVAL;
}
tidval = req->tids[req->tididx];
}
omfactor = EXP_TID_GET(tidval, LEN) * PAGE_SIZE >=
KDETH_OM_MAX_SIZE ? KDETH_OM_LARGE_SHIFT :
KDETH_OM_SMALL_SHIFT;
/* Set KDETH.TIDCtrl based on value for this TID. */
KDETH_SET(hdr->kdeth.ver_tid_offset, TIDCTRL,
EXP_TID_GET(tidval, CTRL));
/* Set KDETH.TID based on value for this TID */
KDETH_SET(hdr->kdeth.ver_tid_offset, TID,
EXP_TID_GET(tidval, IDX));
/* Clear KDETH.SH when DISABLE_SH flag is set */
if (unlikely(tx->flags & TXREQ_FLAGS_REQ_DISABLE_SH))
KDETH_SET(hdr->kdeth.ver_tid_offset, SH, 0);
/*
* Set the KDETH.OFFSET and KDETH.OM based on size of
* transfer.
*/
//trace_hfi1_sdma_user_tid_info(
// pq->dd, pq->ctxt, pq->subctxt, req->info.comp_idx,
// req->tidoffset, req->tidoffset >> omfactor,
// omfactor != KDETH_OM_SMALL_SHIFT);
KDETH_SET(hdr->kdeth.ver_tid_offset, OFFSET,
req->tidoffset >> omfactor);
KDETH_SET(hdr->kdeth.ver_tid_offset, OM,
omfactor != KDETH_OM_SMALL_SHIFT);
}
done:
// trace_hfi1_sdma_user_header(pq->dd, pq->ctxt, pq->subctxt,
// req->info.comp_idx, hdr, tidval);
return sdma_txadd_kvaddr(pq->dd, &tx->txreq, hdr, sizeof(*hdr));
}
static int set_txreq_header_ahg(struct user_sdma_request *req,
struct user_sdma_txreq *tx, u32 datalen)
{
u32 ahg[AHG_KDETH_ARRAY_SIZE];
int diff = 0;
u8 omfactor; /* KDETH.OM */
struct hfi1_pkt_header *hdr = &req->hdr;
u16 pbclen = le16_to_cpu(hdr->pbc[0]);
u32 val32, tidval = 0, lrhlen = get_lrh_len(*hdr, pad_len(datalen));
if (PBC2LRH(pbclen) != lrhlen) {
/* PBC.PbcLengthDWs */
AHG_HEADER_SET(ahg, diff, 0, 0, 12,
cpu_to_le16(LRH2PBC(lrhlen)));
/* LRH.PktLen (we need the full 16 bits due to byte swap) */
AHG_HEADER_SET(ahg, diff, 3, 0, 16,
cpu_to_be16(lrhlen >> 2));
}
/*
* Do the common updates
*/
/* BTH.PSN and BTH.A */
val32 = (be32_to_cpu(hdr->bth[2]) + req->seqnum) &
(HFI1_CAP_IS_KSET(EXTENDED_PSN) ? 0x7fffffff : 0xffffff);
if (unlikely(tx->flags & TXREQ_FLAGS_REQ_ACK))
val32 |= 1UL << 31;
AHG_HEADER_SET(ahg, diff, 6, 0, 16, cpu_to_be16(val32 >> 16));
AHG_HEADER_SET(ahg, diff, 6, 16, 16, cpu_to_be16(val32 & 0xffff));
/* KDETH.Offset */
AHG_HEADER_SET(ahg, diff, 15, 0, 16,
cpu_to_le16(req->koffset & 0xffff));
AHG_HEADER_SET(ahg, diff, 15, 16, 16, cpu_to_le16(req->koffset >> 16));
if (req_opcode(req->info.ctrl) == EXPECTED) {
__le16 val;
tidval = req->tids[req->tididx];
/*
* If the offset puts us at the end of the current TID,
* advance everything.
*/
if ((req->tidoffset) == (EXP_TID_GET(tidval, LEN) *
PAGE_SIZE)) {
req->tidoffset = 0;
/*
* Since we don't copy all the TIDs, all at once,
* we have to check again.
*/
if (++req->tididx > req->n_tids - 1 ||
!req->tids[req->tididx])
return -EINVAL;
tidval = req->tids[req->tididx];
}
omfactor = ((EXP_TID_GET(tidval, LEN) *
PAGE_SIZE) >=
KDETH_OM_MAX_SIZE) ? KDETH_OM_LARGE_SHIFT :
KDETH_OM_SMALL_SHIFT;
/* KDETH.OM and KDETH.OFFSET (TID) */
AHG_HEADER_SET(ahg, diff, 7, 0, 16,
((!!(omfactor - KDETH_OM_SMALL_SHIFT)) << 15 |
((req->tidoffset >> omfactor)
& 0x7fff)));
/* KDETH.TIDCtrl, KDETH.TID, KDETH.Intr, KDETH.SH */
val = cpu_to_le16(((EXP_TID_GET(tidval, CTRL) & 0x3) << 10) |
(EXP_TID_GET(tidval, IDX) & 0x3ff));
if (unlikely(tx->flags & TXREQ_FLAGS_REQ_DISABLE_SH)) {
val |= cpu_to_le16((KDETH_GET(hdr->kdeth.ver_tid_offset,
INTR) <<
AHG_KDETH_INTR_SHIFT));
} else {
val |= KDETH_GET(hdr->kdeth.ver_tid_offset, SH) ?
cpu_to_le16(0x1 << AHG_KDETH_SH_SHIFT) :
cpu_to_le16((KDETH_GET(hdr->kdeth.ver_tid_offset,
INTR) <<
AHG_KDETH_INTR_SHIFT));
}
AHG_HEADER_SET(ahg, diff, 7, 16, 14, val);
}
if (diff < 0)
return diff;
sdma_txinit_ahg(&tx->txreq,
SDMA_TXREQ_F_USE_AHG,
datalen, req->ahg_idx, diff,
ahg, sizeof(req->hdr),
user_sdma_txreq_cb);
return diff;
}
/*
* SDMA tx request completion callback. Called when the SDMA progress
* state machine gets notification that the SDMA descriptors for this
* tx request have been processed by the DMA engine. Called in
* interrupt context.
*/
static void user_sdma_txreq_cb(struct sdma_txreq *txreq, int status)
{
struct user_sdma_txreq *tx =
container_of(txreq, struct user_sdma_txreq, txreq);
struct user_sdma_request *req;
struct hfi1_user_sdma_pkt_q *pq;
struct hfi1_user_sdma_comp_q *cq;
u16 idx;
if (!tx->req)
return;
req = tx->req;
pq = req->pq;
cq = req->cq;
if (status != SDMA_TXREQ_S_OK) {
SDMA_DBG(req, "SDMA completion with error %d",
status);
WRITE_ONCE(req->has_error, 1);
}
req->seqcomp = tx->seqnum;
kmalloc_cache_free(tx);
tx = NULL;
idx = req->info.comp_idx;
if (req->status == -1 && status == SDMA_TXREQ_S_OK) {
if (req->seqcomp == req->info.npkts - 1) {
req->status = 0;
user_sdma_free_request(req, false);
pq_update(pq);
set_comp_state(pq, cq, idx, COMPLETE, 0);
}
} else {
if (status != SDMA_TXREQ_S_OK)
req->status = status;
if (req->seqcomp == (ACCESS_ONCE(req->seqsubmitted) - 1) &&
(READ_ONCE(req->done) ||
READ_ONCE(req->has_error))) {
user_sdma_free_request(req, false);
pq_update(pq);
set_comp_state(pq, cq, idx, ERROR, req->status);
}
}
}
static inline void pq_update(struct hfi1_user_sdma_pkt_q *pq)
{
if (atomic_dec_and_test(&pq->n_reqs)) {
xchg(&pq->state, SDMA_PKT_Q_INACTIVE);
//TODO: pq_update wake_up
//wake_up(&pq->wait);
}
}
static void user_sdma_free_request(struct user_sdma_request *req, bool unpin)
{
if (!list_empty(&req->txps)) {
struct sdma_txreq *t, *p;
list_for_each_entry_safe(t, p, &req->txps, list) {
struct user_sdma_txreq *tx =
container_of(t, struct user_sdma_txreq, txreq);
list_del_init(&t->list);
sdma_txclean(req->pq->dd, t);
kmalloc_cache_free(tx);
}
}
kmalloc_cache_free(req->tids);
clear_bit(req->info.comp_idx, req->pq->req_in_use);
}
static inline void set_comp_state(struct hfi1_user_sdma_pkt_q *pq,
struct hfi1_user_sdma_comp_q *cq,
u16 idx, enum hfi1_sdma_comp_state state,
int ret)
{
if (state == ERROR)
cq->comps[idx].errcode = -ret;
barrier();
cq->comps[idx].status = state;
}