Files
mysysy/src/SysYIRAnalyser.cpp
rain2133 8f1e477e73 暂存
2025-07-19 14:23:57 +08:00

530 lines
18 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#include "SysYIRAnalyser.h"
#include <iostream>
namespace sysy {
void ControlFlowAnalysis::init() {
// 初始化分析器
auto &functions = pModule->getFunctions();
for (const auto &function : functions) {
auto func = function.second.get();
auto basicBlocks = func->getBasicBlocks();
for (auto &basicBlock : basicBlocks) {
blockAnalysisInfo[basicBlock.get()] = new BlockAnalysisInfo();
blockAnalysisInfo[basicBlock.get()]->clear();
}
functionAnalysisInfo[func] = new FunctionAnalysisInfo();
functionAnalysisInfo[func]->clear();
}
}
void ControlFlowAnalysis::runControlFlowAnalysis() {
// 运行控制流分析
clear(); // 清空之前的分析结果
init(); // 初始化分析器
computeDomNode();
computeDomTree();
computeDomFrontierAllBlk();
}
void ControlFlowAnalysis::intersectOP4Dom(std::unordered_set<BasicBlock *> &dom, const std::unordered_set<BasicBlock *> &other) {
// 计算交集
for (auto it = dom.begin(); it != dom.end();) {
if (other.find(*it) == other.end()) {
// 如果other中没有这个基本块则从dom中删除
it = dom.erase(it);
} else {
++it;
}
}
}
auto ControlFlowAnalysis::findCommonDominator(BasicBlock *a, BasicBlock *b) -> BasicBlock * {
// 查找两个基本块的共同支配结点
while (a != b) {
BlockAnalysisInfo* infoA = blockAnalysisInfo[a];
BlockAnalysisInfo* infoB = blockAnalysisInfo[b];
// 如果深度不同,则向上移动到直接支配结点
// TODO空间换时间倍增优化优先级较低
while (infoA->getDomDepth() > infoB->getDomDepth()) {
a = const_cast<BasicBlock*>(infoA->getIdom());
infoA = blockAnalysisInfo[a];
}
while (infoB->getDomDepth() > infoA->getDomDepth()) {
b = const_cast<BasicBlock*>(infoB->getIdom());
infoB = blockAnalysisInfo[b];
}
if (a == b) break;
a = const_cast<BasicBlock*>(infoA->getIdom());
b = const_cast<BasicBlock*>(infoB->getIdom());
}
return a;
}
void ControlFlowAnalysis::computeDomNode(){
auto &functions = pModule->getFunctions();
// 分析每个函数内的基本块
for (const auto &function : functions) {
auto func = function.second.get();
auto basicBlocks = func->getBasicBlocks();
std::unordered_set<BasicBlock *> domSetTmp;
// 一开始把domSetTmp置为所有block
auto entry_block = func->getEntryBlock();
entry_block->setName("Entry");
blockAnalysisInfo[entry_block]->addDominants(entry_block);
for (auto &basicBlock : basicBlocks) {
domSetTmp.emplace(basicBlock.get());
}
// 初始化
for (auto &basicBlock : basicBlocks) {
if (basicBlock.get() != entry_block) {
blockAnalysisInfo[basicBlock.get()]->setDominants(domSetTmp);
// 先把所有block的必经结点都设为N
}
}
// 支配节点计算公式
//DOM[B]={B} {⋂P∈pred(B) DOM[P]}
// 其中pred(B)是B的所有前驱结点
// 迭代计算支配结点,直到不再变化
// 这里使用迭代法,直到支配结点不再变化
// TODOLengauer-Tarjan 算法可以更高效地计算支配结点
// 或者按照CFG拓扑序遍历效率更高
bool changed = true;
while (changed) {
changed = false;
// 循环非start结点
for (auto &basicBlock : basicBlocks) {
if (basicBlock.get() != entry_block) {
auto olddom =
blockAnalysisInfo[basicBlock.get()]->getDominants();
std::unordered_set<BasicBlock *> dom =
blockAnalysisInfo[basicBlock->getPredecessors().front()]->getDominants();
// 对于每个基本块,计算其支配结点
// 取其前驱结点的支配结点的交集和自己
for (auto pred : basicBlock->getPredecessors()) {
intersectOP4Dom(dom, blockAnalysisInfo[pred]->getDominants());
}
dom.emplace(basicBlock.get());
blockAnalysisInfo[basicBlock.get()]->setDominants(dom);
if (dom != olddom) {
changed = true;
}
}
}
}
}
}
// TODO SEMI-NCA算法改进
void ControlFlowAnalysis::computeDomTree() {
// 构造支配树
auto &functions = pModule->getFunctions();
for (const auto &function : functions) {
auto func = function.second.get();
auto basicBlocks = func->getBasicBlocks();
auto entry_block = func->getEntryBlock();
blockAnalysisInfo[entry_block]->setIdom(entry_block);
blockAnalysisInfo[entry_block]->setDomDepth(0); // 入口块深度为0
bool changed = true;
while (changed) {
changed = false;
for (auto &basicBlock : basicBlocks) {
if (basicBlock.get() == entry_block) continue;
BasicBlock *new_idom = nullptr;
for (auto pred : basicBlock->getPredecessors()) {
// 跳过未处理的前驱
if (blockAnalysisInfo[pred]->getIdom() == nullptr) continue;
// new_idom = (new_idom == nullptr) ? pred : findCommonDominator(new_idom, pred);
if (new_idom == nullptr)
new_idom = pred;
else
new_idom = findCommonDominator(new_idom, pred);
}
// 更新直接支配节点
if (new_idom && new_idom != blockAnalysisInfo[basicBlock.get()]->getIdom()) {
// 移除旧的支配关系
if (blockAnalysisInfo[basicBlock.get()]->getIdom()) {
blockAnalysisInfo[const_cast<BasicBlock*>(blockAnalysisInfo[basicBlock.get()]->getIdom())]->removeSdoms(basicBlock.get());
}
// 设置新的支配关系
// std::cout << "Block: " << basicBlock->getName()
// << " New Idom: " << new_idom->getName() << std::endl;
blockAnalysisInfo[basicBlock.get()]->setIdom(new_idom);
blockAnalysisInfo[new_idom]->addSdoms(basicBlock.get());
// 更新深度 = 直接支配节点深度 + 1
blockAnalysisInfo[basicBlock.get()]->setDomDepth(
blockAnalysisInfo[new_idom]->getDomDepth() + 1);
changed = true;
}
}
}
}
// for (auto &basicBlock : basicBlocks) {
// if (basicBlock.get() != func->getEntryBlock()) {
// auto dominats =
// blockAnalysisInfo[basicBlock.get()]->getDominants();
// bool found = false;
// // 从前驱结点开始寻找直接支配结点
// std::queue<BasicBlock *> q;
// for (auto pred : basicBlock->getPredecessors()) {
// q.push(pred);
// }
// // BFS遍历前驱结点直到找到直接支配结点
// while (!found && !q.empty()) {
// auto curr = q.front();
// q.pop();
// if (curr == basicBlock.get())
// continue;
// if (dominats.count(curr) != 0U) {
// blockAnalysisInfo[basicBlock.get()]->setIdom(curr);
// blockAnalysisInfo[curr]->addSdoms(basicBlock.get());
// found = true;
// } else {
// for (auto pred : curr->getPredecessors()) {
// q.push(pred);
// }
// }
// }
// }
// }
}
// std::unordered_set<BasicBlock *> ControlFlowAnalysis::computeDomFrontier(BasicBlock *block) {
// std::unordered_set<BasicBlock *> ret_list;
// // 计算 localDF
// for (auto local_successor : block->getSuccessors()) {
// if (local_successor->getIdom() != block) {
// ret_list.emplace(local_successor);
// }
// }
// // 计算 upDF
// for (auto up_successor : block->getSdoms()) {
// auto childrenDF = computeDF(up_successor);
// for (auto w : childrenDF) {
// if (block != w->getIdom() || block == w) {
// ret_list.emplace(w);
// }
// }
// }
// return ret_list;
// }
void ControlFlowAnalysis::computeDomFrontierAllBlk() {
auto &functions = pModule->getFunctions();
for (const auto &function : functions) {
auto func = function.second.get();
auto basicBlocks = func->getBasicBlocks();
// 按支配树深度排序(从深到浅)
std::vector<BasicBlock *> orderedBlocks;
for (auto &bb : basicBlocks) {
orderedBlocks.push_back(bb.get());
}
std::sort(orderedBlocks.begin(), orderedBlocks.end(),
[this](BasicBlock *a, BasicBlock *b) {
return blockAnalysisInfo[a]->getDomDepth() > blockAnalysisInfo[b]->getDomDepth();
});
// 计算支配边界
for (auto block : orderedBlocks) {
std::unordered_set<BasicBlock *> df;
// Local DF: 直接后继中不被当前块支配的
for (auto succ : block->getSuccessors()) {
// 当前块不支配该后继(即不是其直接支配节点)
if (blockAnalysisInfo[succ]->getIdom() != block) {
df.insert(succ);
}
}
// Up DF: 从支配子树中继承
for (auto child : blockAnalysisInfo[block]->getSdoms()) {
for (auto w : blockAnalysisInfo[child]->getDomFrontiers()) {
// 如果w不被当前块支配
if (block != blockAnalysisInfo[w]->getIdom()) {
df.insert(w);
}
}
}
blockAnalysisInfo[block]->setDomFrontiers(df);
}
}
}
// ==========================
// dataflow analysis utils
// ==========================
// 先引用学长的代码
// TODO: Worklist 增加逆后序遍历机制
void DataFlowAnalysisUtils::forwardAnalyze(Module *pModule){
std::map<DataFlowAnalysis *, bool> workAnalysis;
for (auto &dataflow : forwardAnalysisList) {
dataflow->init(pModule);
}
for (const auto &function : pModule->getFunctions()) {
for (auto &dataflow : forwardAnalysisList) {
workAnalysis.emplace(dataflow, false);
}
while (!workAnalysis.empty()) {
for (const auto &block : function.second->getBasicBlocks()) {
for (auto &elem : workAnalysis) {
if (elem.first->analyze(pModule, block.get())) {
elem.second = true;
}
}
}
std::map<DataFlowAnalysis *, bool> tmp;
std::remove_copy_if(workAnalysis.begin(), workAnalysis.end(), std::inserter(tmp, tmp.end()),
[](const std::pair<DataFlowAnalysis *, bool> &elem) -> bool { return !elem.second; });
workAnalysis.swap(tmp);
for (auto &elem : workAnalysis) {
elem.second = false;
}
}
}
}
void DataFlowAnalysisUtils::backwardAnalyze(Module *pModule) {
std::map<DataFlowAnalysis *, bool> workAnalysis;
for (auto &dataflow : backwardAnalysisList) {
dataflow->init(pModule);
}
for (const auto &function : pModule->getFunctions()) {
for (auto &dataflow : backwardAnalysisList) {
workAnalysis.emplace(dataflow, false);
}
while (!workAnalysis.empty()) {
for (const auto &block : function.second->getBasicBlocks()) {
for (auto &elem : workAnalysis) {
if (elem.first->analyze(pModule, block.get())) {
elem.second = true;
}
}
}
std::map<DataFlowAnalysis *, bool> tmp;
std::remove_copy_if(workAnalysis.begin(), workAnalysis.end(), std::inserter(tmp, tmp.end()),
[](const std::pair<DataFlowAnalysis *, bool> &elem) -> bool { return !elem.second; });
workAnalysis.swap(tmp);
for (auto &elem : workAnalysis) {
elem.second = false;
}
}
}
}
std::set<User *> ActiveVarAnalysis::getUsedSet(Instruction *inst) {
using Kind = Instruction::Kind;
std::vector<User *> operands;
for (const auto &operand : inst->getOperands()) {
operands.emplace_back(dynamic_cast<User *>(operand->getValue()));
}
std::set<User *> result;
switch (inst->getKind()) {
// phi op
case Kind::kPhi:
case Kind::kCall:
result.insert(std::next(operands.begin()), operands.end());
break;
case Kind::kCondBr:
result.insert(operands[0]);
break;
case Kind::kBr:
case Kind::kAlloca:
break;
// mem op
case Kind::kStore:
// StoreInst 的第一个操作数是被存储的值,第二个操作数是存储的变量
// 后续的是可能的数组维度
result.insert(operands[0]);
result.insert(operands.begin() + 2, operands.end());
break;
case Kind::kLoad:
case Kind::kLa: {
auto variable = dynamic_cast<AllocaInst *>(operands[0]);
auto global = dynamic_cast<GlobalValue *>(operands[0]);
auto constArray = dynamic_cast<ConstantVariable *>(operands[0]);
if ((variable != nullptr && variable->getNumDims() == 0) || (global != nullptr && global->getNumDims() == 0) ||
(constArray != nullptr && constArray->getNumDims() == 0)) {
result.insert(operands[0]);
}
result.insert(std::next(operands.begin()), operands.end());
break;
}
case Kind::kGetSubArray: {
for (unsigned i = 2; i < operands.size(); i++) {
// 数组的维度信息
result.insert(operands[i]);
}
break;
}
case Kind::kMemset: {
result.insert(std::next(operands.begin()), operands.end());
break;
}
case Kind::kInvalid:
// Binary
case Kind::kAdd:
case Kind::kSub:
case Kind::kMul:
case Kind::kDiv:
case Kind::kRem:
case Kind::kICmpEQ:
case Kind::kICmpNE:
case Kind::kICmpLT:
case Kind::kICmpLE:
case Kind::kICmpGT:
case Kind::kICmpGE:
case Kind::kFAdd:
case Kind::kFSub:
case Kind::kFMul:
case Kind::kFDiv:
case Kind::kFCmpEQ:
case Kind::kFCmpNE:
case Kind::kFCmpLT:
case Kind::kFCmpLE:
case Kind::kFCmpGT:
case Kind::kFCmpGE:
case Kind::kAnd:
case Kind::kOr:
// Unary
case Kind::kNeg:
case Kind::kNot:
case Kind::kFNot:
case Kind::kFNeg:
case Kind::kFtoI:
case Kind::kItoF:
// terminator
case Kind::kReturn:
result.insert(operands.begin(), operands.end());
break;
default:
assert(false);
break;
}
result.erase(nullptr);
return result;
}
User * ActiveVarAnalysis::getDefine(Instruction *inst) {
User *result = nullptr;
if (inst->isStore()) {
StoreInst* store = dynamic_cast<StoreInst *>(inst);
auto operand = store->getPointer();
AllocaInst* variable = dynamic_cast<AllocaInst *>(operand);
GlobalValue* global = dynamic_cast<GlobalValue *>(operand);
if ((variable != nullptr && variable->getNumDims() != 0) || (global != nullptr && global->getNumDims() != 0)) {
// 如果是数组变量或者全局变量,则不返回定义
// TODO兼容数组变量
result = nullptr;
} else {
result = dynamic_cast<User *>(operand);
}
} else if (inst->isPhi()) {
result = dynamic_cast<User *>(inst->getOperand(0));
} else if (inst->isBinary() || inst->isUnary() || inst->isCall() ||
inst->isLoad() || inst->isLa()) {
result = dynamic_cast<User *>(inst);
}
return result;
}
void ActiveVarAnalysis::init(Module *pModule) {
for (const auto &function : pModule->getFunctions()) {
for (const auto &block : function.second->getBasicBlocks()) {
activeTable.emplace(block.get(), std::vector<std::set<User *>>{});
for (unsigned i = 0; i < block->getNumInstructions() + 1; i++)
activeTable.at(block.get()).emplace_back();
}
}
}
// 活跃变量分析公式 每个块内的分析动作供分析器调用
bool ActiveVarAnalysis::analyze(Module *pModule, BasicBlock *block) {
bool changed = false; // 标记数据流结果是否有变化
std::set<User *> activeSet{}; // 当前计算的活跃变量集合
// 步骤1: 计算基本块出口的活跃变量集 (OUT[B])
// 公式: OUT[B] = _{S ∈ succ(B)} IN[S]
for (const auto &succ : block->getSuccessors()) {
// 获取后继块入口的活跃变量集 (IN[S])
auto succActiveSet = activeTable.at(succ).front();
// 合并所有后继块的入口活跃变量
activeSet.insert(succActiveSet.begin(), succActiveSet.end());
}
// 步骤2: 处理基本块出口处的活跃变量集
const auto &instructions = block->getInstructions();
const auto numInstructions = instructions.size();
// 获取旧的出口活跃变量集 (block出口对应索引numInstructions)
const auto &oldEndActiveSet = activeTable.at(block)[numInstructions];
// 检查出口活跃变量集是否有变化
if (!std::equal(activeSet.begin(), activeSet.end(),
oldEndActiveSet.begin(), oldEndActiveSet.end()))
{
changed = true; // 标记变化
activeTable.at(block)[numInstructions] = activeSet; // 更新出口活跃变量集
}
// 步骤3: 逆序遍历基本块中的指令
// 从最后一条指令开始向前计算每个程序点的活跃变量
auto instructionIter = instructions.end();
instructionIter--; // 指向最后一条指令
// 从出口向入口遍历 (索引从numInstructions递减到1)
for (unsigned i = numInstructions; i > 0; i--) {
auto inst = instructionIter->get(); // 当前指令
auto used = getUsedSet(inst);
User *defined = getDefine(inst);
// 步骤3.3: 计算指令入口的活跃变量 (IN[i])
// 公式: IN[i] = use_i (OUT[i] - def_i)
activeSet.erase(defined); // 移除被定义的变量 (OUT[i] - def_i)
activeSet.insert(used.begin(), used.end()); // 添加使用的变量
// 获取旧的入口活跃变量集 (位置i-1对应当前指令的入口)
const auto &oldActiveSet = activeTable.at(block)[i - 1];
// 检查活跃变量集是否有变化
if (!std::equal(activeSet.begin(), activeSet.end(),
oldActiveSet.begin(), oldActiveSet.end()))
{
changed = true; // 标记变化
activeTable.at(block)[i - 1] = activeSet; // 更新入口活跃变量集
}
instructionIter--; // 移动到前一条指令
}
return changed; // 返回数据流结果是否变化
}
} // namespace sysy