Files
mysysy/src/midend/Pass/Optimize/SCCP.cpp

1402 lines
52 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#include "SCCP.h"
#include "Dom.h"
#include "Liveness.h"
#include "SideEffectAnalysis.h"
#include <algorithm>
#include <cassert>
#include <cmath> // For std::fmod, std::fabs
#include <limits> // For std::numeric_limits
#include <set> // For std::set in isKnownPureFunction
namespace sysy {
// Pass ID for SCCP
void *SCCP::ID = (void *)&SCCP::ID;
// SCCPContext methods
SSAPValue SCCPContext::Meet(const SSAPValue &a, const SSAPValue &b) {
if (a.state == LatticeVal::Bottom || b.state == LatticeVal::Bottom) {
return SSAPValue(LatticeVal::Bottom);
}
if (a.state == LatticeVal::Top) {
return b;
}
if (b.state == LatticeVal::Top) {
return a;
}
// Both are constants
if (a.constant_type != b.constant_type) {
return SSAPValue(LatticeVal::Bottom); // 不同类型的常量,结果为 Bottom
}
if (a.constantVal == b.constantVal) {
return a; // 相同常量
}
return SSAPValue(LatticeVal::Bottom); // 相同类型但值不同,结果为 Bottom
}
SSAPValue SCCPContext::GetValueState(Value *v) {
if (auto constVal = dynamic_cast<ConstantValue *>(v)) {
// 特殊处理 UndefinedValue将其视为 Bottom
if (dynamic_cast<UndefinedValue *>(constVal)) {
return SSAPValue(LatticeVal::Bottom);
}
// 处理常规的 ConstantInteger 和 ConstantFloating
if (constVal->getType()->isInt()) {
return SSAPValue(constVal->getInt());
} else if (constVal->getType()->isFloat()) {
return SSAPValue(constVal->getFloat());
} else {
// 对于其他 ConstantValue 类型例如ConstantArray 等),
// 如果它们的具体值不能用于标量常量传播,则保守地视为 Bottom。
return SSAPValue(LatticeVal::Bottom);
}
}
if (valueState.count(v)) {
return valueState[v];
}
return SSAPValue(); // 默认初始化为 Top
}
void SCCPContext::UpdateState(Value *v, SSAPValue newState) {
SSAPValue oldState = GetValueState(v);
if (newState != oldState) {
if (DEBUG) {
std::cout << "Updating state for " << v->getName() << " from (";
if (oldState.state == LatticeVal::Top)
std::cout << "Top";
else if (oldState.state == LatticeVal::Constant) {
if (oldState.constant_type == ValueType::Integer)
std::cout << "Const<int>(" << std::get<int>(oldState.constantVal) << ")";
else
std::cout << "Const<float>(" << std::get<float>(oldState.constantVal) << ")";
} else
std::cout << "Bottom";
std::cout << ") to (";
if (newState.state == LatticeVal::Top)
std::cout << "Top";
else if (newState.state == LatticeVal::Constant) {
if (newState.constant_type == ValueType::Integer)
std::cout << "Const<int>(" << std::get<int>(newState.constantVal) << ")";
else
std::cout << "Const<float>(" << std::get<float>(newState.constantVal) << ")";
} else
std::cout << "Bottom";
std::cout << ")" << std::endl;
}
valueState[v] = newState;
// 如果状态发生变化,将所有使用者添加到指令工作列表
for (auto &use_ptr : v->getUses()) {
if (auto userInst = dynamic_cast<Instruction *>(use_ptr->getUser())) {
instWorkList.push(userInst);
}
}
}
}
void SCCPContext::AddEdgeToWorkList(BasicBlock *fromBB, BasicBlock *toBB) {
// 检查边是否已经访问过,防止重复处理
if (visitedCFGEdges.count({fromBB, toBB})) {
return;
}
visitedCFGEdges.insert({fromBB, toBB});
if (DEBUG) {
std::cout << "Adding edge to worklist: " << fromBB->getName() << " -> " << toBB->getName() << std::endl;
}
edgeWorkList.push({fromBB, toBB});
}
void SCCPContext::MarkBlockExecutable(BasicBlock *block) {
if (executableBlocks.insert(block).second) { // insert 返回 pairsecond 为 true 表示插入成功
if (DEBUG) {
std::cout << "Marking block " << block->getName() << " as executable." << std::endl;
}
// 将新可执行块中的所有指令添加到指令工作列表
for (auto &inst_ptr : block->getInstructions()) {
instWorkList.push(inst_ptr.get());
}
}
}
// 辅助函数:对二元操作进行常量折叠
SSAPValue SCCPContext::ComputeConstant(BinaryInst *binaryInst, SSAPValue lhsVal, SSAPValue rhsVal) {
// 确保操作数是常量
if (lhsVal.state != LatticeVal::Constant || rhsVal.state != LatticeVal::Constant) {
return SSAPValue(LatticeVal::Bottom); // 如果不是常量,则不能折叠
}
// 处理整数运算 (kAdd, kSub, kMul, kDiv, kRem, kICmp*, kAnd, kOr)
if (lhsVal.constant_type == ValueType::Integer && rhsVal.constant_type == ValueType::Integer) {
int lhs = std::get<int>(lhsVal.constantVal);
int rhs = std::get<int>(rhsVal.constantVal);
int result = 0;
switch (binaryInst->getKind()) {
case Instruction::kAdd:
result = lhs + rhs;
break;
case Instruction::kSub:
result = lhs - rhs;
break;
case Instruction::kMul:
result = lhs * rhs;
break;
case Instruction::kDiv:
if (rhs == 0)
return SSAPValue(LatticeVal::Bottom); // 除零
result = lhs / rhs;
break;
case Instruction::kRem:
if (rhs == 0)
return SSAPValue(LatticeVal::Bottom); // 模零
result = lhs % rhs;
break;
case Instruction::kICmpEQ:
result = (lhs == rhs);
break;
case Instruction::kICmpNE:
result = (lhs != rhs);
break;
case Instruction::kICmpLT:
result = (lhs < rhs);
break;
case Instruction::kICmpGT:
result = (lhs > rhs);
break;
case Instruction::kICmpLE:
result = (lhs <= rhs);
break;
case Instruction::kICmpGE:
result = (lhs >= rhs);
break;
case Instruction::kAnd:
result = (lhs && rhs);
break;
case Instruction::kOr:
result = (lhs || rhs);
break;
default:
return SSAPValue(LatticeVal::Bottom); // 未知或不匹配的二元操作
}
return SSAPValue(result);
}
// 处理浮点运算 (kFAdd, kFSub, kFMul, kFDiv, kFCmp*)
else if (lhsVal.constant_type == ValueType::Float && rhsVal.constant_type == ValueType::Float) {
float lhs = std::get<float>(lhsVal.constantVal);
float rhs = std::get<float>(rhsVal.constantVal);
float f_result = 0.0f;
int i_result = 0; // For comparison results
switch (binaryInst->getKind()) {
case Instruction::kFAdd:
f_result = lhs + rhs;
break;
case Instruction::kFSub:
f_result = lhs - rhs;
break;
case Instruction::kFMul:
f_result = lhs * rhs;
break;
case Instruction::kFDiv:
if (rhs == 0.0f)
return SSAPValue(LatticeVal::Bottom); // 除零
f_result = lhs / rhs;
break;
// kRem 不支持浮点数,但如果你的 IR 定义了浮点模运算,需要使用 std::fmod
case Instruction::kFCmpEQ:
i_result = (lhs == rhs);
return SSAPValue(i_result);
case Instruction::kFCmpNE:
i_result = (lhs != rhs);
return SSAPValue(i_result);
case Instruction::kFCmpLT:
i_result = (lhs < rhs);
return SSAPValue(i_result);
case Instruction::kFCmpGT:
i_result = (lhs > rhs);
return SSAPValue(i_result);
case Instruction::kFCmpLE:
i_result = (lhs <= rhs);
return SSAPValue(i_result);
case Instruction::kFCmpGE:
i_result = (lhs >= rhs);
return SSAPValue(i_result);
default:
return SSAPValue(LatticeVal::Bottom); // 未知或不匹配的浮点二元操作
}
return SSAPValue(f_result);
}
return SSAPValue(LatticeVal::Bottom); // 类型不匹配或不支持的类型组合
}
// 辅助函数:对一元操作进行常量折叠
SSAPValue SCCPContext::ComputeConstant(UnaryInst *unaryInst, SSAPValue operandVal) {
if (operandVal.state != LatticeVal::Constant) {
return SSAPValue(LatticeVal::Bottom);
}
if (operandVal.constant_type == ValueType::Integer) {
int val = std::get<int>(operandVal.constantVal);
switch (unaryInst->getKind()) {
case Instruction::kAdd:
return SSAPValue(val);
case Instruction::kNeg:
return SSAPValue(-val);
case Instruction::kNot:
return SSAPValue(!val);
default:
return SSAPValue(LatticeVal::Bottom);
}
} else if (operandVal.constant_type == ValueType::Float) {
float val = std::get<float>(operandVal.constantVal);
switch (unaryInst->getKind()) {
case Instruction::kAdd:
return SSAPValue(val);
case Instruction::kFNeg:
return SSAPValue(-val);
case Instruction::kFNot:
return SSAPValue(static_cast<int>(val == 0.0f)); // 浮点数非0.0f 为真,其他为假
default:
return SSAPValue(LatticeVal::Bottom);
}
}
return SSAPValue(LatticeVal::Bottom);
}
// 辅助函数:检查是否为已知的纯函数
bool SCCPContext::isKnownPureFunction(const std::string &funcName) const {
// SysY中一些已知的纯函数不修改全局状态结果只依赖参数
static const std::set<std::string> knownPureFunctions = {
// 数学函数(如果有的话)
// "abs", "fabs", "sqrt", "sin", "cos"
// SysY标准中基本没有纯函数大多数都有I/O副作用
};
return knownPureFunctions.find(funcName) != knownPureFunctions.end();
}
// 辅助函数:计算纯函数的常量结果
SSAPValue SCCPContext::computePureFunctionResult(CallInst *call, const std::vector<SSAPValue> &argValues) {
Function *calledFunc = call->getCallee();
if (!calledFunc) {
return SSAPValue(LatticeVal::Bottom);
}
std::string funcName = calledFunc->getName();
// 目前SysY中没有标准的纯函数这里预留扩展空间
// 未来可以添加数学函数的常量折叠
/*
if (funcName == "abs" && argValues.size() == 1) {
if (argValues[0].constant_type == ValueType::Integer) {
int val = std::get<int>(argValues[0].constantVal);
return SSAPValue(std::abs(val));
}
}
*/
return SSAPValue(LatticeVal::Bottom);
}
// 辅助函数:查找存储到指定位置的常量值
SSAPValue SCCPContext::findStoredConstantValue(Value *ptr, BasicBlock *currentBB) {
if (!aliasAnalysis) {
if (DEBUG) {
std::cout << "SCCP: No alias analysis available" << std::endl;
}
return SSAPValue(LatticeVal::Bottom);
}
if (DEBUG) {
std::cout << "SCCP: Searching for stored constant value for ptr" << std::endl;
}
// 从当前块的指令列表末尾向前查找最近的Store
std::vector<Instruction*> instructions;
for (auto it = currentBB->begin(); it != currentBB->end(); ++it) {
instructions.push_back(it->get());
}
for (int i = instructions.size() - 1; i >= 0; --i) {
Instruction *prevInst = instructions[i];
if (prevInst->isStore()) {
StoreInst *storeInst = static_cast<StoreInst *>(prevInst);
Value *storePtr = storeInst->getPointer();
if (DEBUG) {
std::cout << "SCCP: Checking store instruction" << std::endl;
}
// 使用别名分析检查Store是否针对相同的内存位置
auto aliasResult = aliasAnalysis->queryAlias(ptr, storePtr);
if (DEBUG) {
std::cout << "SCCP: Alias result: " << (int)aliasResult << std::endl;
}
if (aliasResult == AliasType::SELF_ALIAS) {
// 找到了对相同位置的Store获取存储的值
Value *storedValue = storeInst->getValue();
if (DEBUG) {
std::cout << "SCCP: Found matching store, checking value type" << std::endl;
}
// 检查存储的值是否为常量
if (auto constInt = dynamic_cast<ConstantInteger *>(storedValue)) {
int val = std::get<int>(constInt->getVal());
if (DEBUG) {
std::cout << "SCCP: Found constant integer value: " << val << std::endl;
}
return SSAPValue(val);
} else if (auto constFloat = dynamic_cast<ConstantFloating *>(storedValue)) {
float val = std::get<float>(constFloat->getVal());
if (DEBUG) {
std::cout << "SCCP: Found constant float value: " << val << std::endl;
}
return SSAPValue(val);
} else {
// 存储的值不是常量检查其SCCP状态
SSAPValue storedState = GetValueState(storedValue);
if (storedState.state == LatticeVal::Constant) {
if (DEBUG) {
std::cout << "SCCP: Found SCCP constant value" << std::endl;
}
return storedState;
} else {
if (DEBUG) {
std::cout << "SCCP: Stored value is not constant" << std::endl;
}
}
}
// 找到了最近的Store但不是常量停止查找
if (DEBUG) {
std::cout << "SCCP: Found non-constant store, stopping search" << std::endl;
}
break;
}
}
}
if (DEBUG) {
std::cout << "SCCP: No constant value found" << std::endl;
}
return SSAPValue(LatticeVal::Bottom);
}
// 辅助函数动态检查数组访问是否为常量索引考虑SCCP状态
bool SCCPContext::hasRuntimeConstantAccess(Value *ptr) {
if (auto gep = dynamic_cast<GetElementPtrInst *>(ptr)) {
if (DEBUG) {
std::cout << "SCCP: Checking runtime constant access for GEP instruction" << std::endl;
}
// 检查所有索引是否为常量或SCCP传播的常量
bool allConstantIndices = true;
for (auto indexUse : gep->getIndices()) {
Value* index = indexUse->getValue();
// 首先检查是否为编译时常量
if (auto constInt = dynamic_cast<ConstantInteger *>(index)) {
if (DEBUG) {
std::cout << "SCCP: Index is compile-time constant integer: " << std::get<int>(constInt->getVal()) << std::endl;
}
continue;
}
if (auto constFloat = dynamic_cast<ConstantFloating *>(index)) {
if (DEBUG) {
std::cout << "SCCP: Index is compile-time constant float: " << std::get<float>(constFloat->getVal()) << std::endl;
}
continue;
}
// 检查是否为SCCP传播的常量
SSAPValue indexState = GetValueState(index);
if (indexState.state == LatticeVal::Constant) {
if (DEBUG) {
std::cout << "SCCP: Index is SCCP constant: ";
if (indexState.constant_type == ValueType::Integer) {
std::cout << std::get<int>(indexState.constantVal);
} else {
std::cout << std::get<float>(indexState.constantVal);
}
std::cout << std::endl;
}
continue;
}
// 如果任何一个索引不是常量返回false
if (DEBUG) {
std::cout << "SCCP: Index is not constant, access is not constant" << std::endl;
}
allConstantIndices = false;
break;
}
if (DEBUG) {
std::cout << "SCCP: hasRuntimeConstantAccess result: " << (allConstantIndices ? "true" : "false") << std::endl;
}
return allConstantIndices;
}
// 对于非GEP指令回退到别名分析的静态结果
if (aliasAnalysis) {
return aliasAnalysis->hasConstantAccess(ptr);
}
return false;
}
// 辅助函数:处理单条指令
void SCCPContext::ProcessInstruction(Instruction *inst) {
SSAPValue oldState = GetValueState(inst);
SSAPValue newState;
if (!executableBlocks.count(inst->getParent())) {
// 如果指令所在的块不可执行,其值应保持 Top
// 除非它之前已经是 Bottom因为 Bottom 是单调的
if (oldState.state != LatticeVal::Bottom) {
newState = SSAPValue(); // Top
} else {
newState = oldState; // 保持 Bottom
}
UpdateState(inst, newState);
return; // 不处理不可达块中的指令的实际值
}
if(DEBUG) {
std::cout << "Processing instruction: " << inst->getName() << " in block " << inst->getParent()->getName() << std::endl;
std::cout << "Old state: ";
if (oldState.state == LatticeVal::Top) {
std::cout << "Top";
} else if (oldState.state == LatticeVal::Constant) {
if (oldState.constant_type == ValueType::Integer) {
std::cout << "Const<int>(" << std::get<int>(oldState.constantVal) << ")";
} else {
std::cout << "Const<float>(" << std::get<float>(oldState.constantVal) << ")";
}
} else {
std::cout << "Bottom";
}
}
switch (inst->getKind()) {
case Instruction::kAdd:
case Instruction::kSub:
case Instruction::kMul:
case Instruction::kDiv:
case Instruction::kRem:
case Instruction::kICmpEQ:
case Instruction::kICmpNE:
case Instruction::kICmpLT:
case Instruction::kICmpGT:
case Instruction::kICmpLE:
case Instruction::kICmpGE:
case Instruction::kFAdd:
case Instruction::kFSub:
case Instruction::kFMul:
case Instruction::kFDiv:
case Instruction::kFCmpEQ:
case Instruction::kFCmpNE:
case Instruction::kFCmpLT:
case Instruction::kFCmpGT:
case Instruction::kFCmpLE:
case Instruction::kFCmpGE:
case Instruction::kAnd:
case Instruction::kOr: {
BinaryInst *binaryInst = static_cast<BinaryInst *>(inst);
SSAPValue lhs = GetValueState(binaryInst->getOperand(0));
SSAPValue rhs = GetValueState(binaryInst->getOperand(1));
// 如果任一操作数是 Bottom结果就是 Bottom
if (lhs.state == LatticeVal::Bottom || rhs.state == LatticeVal::Bottom) {
newState = SSAPValue(LatticeVal::Bottom);
} else if (lhs.state == LatticeVal::Top || rhs.state == LatticeVal::Top) {
newState = SSAPValue(); // Top
} else { // 都是常量
newState = ComputeConstant(binaryInst, lhs, rhs);
}
break;
}
case Instruction::kNeg:
case Instruction::kNot:
case Instruction::kFNeg:
case Instruction::kFNot: {
UnaryInst *unaryInst = static_cast<UnaryInst *>(inst);
SSAPValue operand = GetValueState(unaryInst->getOperand());
if (operand.state == LatticeVal::Bottom) {
newState = SSAPValue(LatticeVal::Bottom);
} else if (operand.state == LatticeVal::Top) {
newState = SSAPValue(); // Top
} else { // 是常量
newState = ComputeConstant(unaryInst, operand);
}
break;
}
// 直接处理类型转换指令
case Instruction::kFtoI: {
SSAPValue operand = GetValueState(inst->getOperand(0));
if (operand.state == LatticeVal::Constant && operand.constant_type == ValueType::Float) {
newState = SSAPValue(static_cast<int>(std::get<float>(operand.constantVal)));
} else if (operand.state == LatticeVal::Bottom) {
newState = SSAPValue(LatticeVal::Bottom);
} else { // Top
newState = SSAPValue();
}
break;
}
case Instruction::kItoF: {
SSAPValue operand = GetValueState(inst->getOperand(0));
if (operand.state == LatticeVal::Constant && operand.constant_type == ValueType::Integer) {
newState = SSAPValue(static_cast<float>(std::get<int>(operand.constantVal)));
} else if (operand.state == LatticeVal::Bottom) {
newState = SSAPValue(LatticeVal::Bottom);
} else { // Top
newState = SSAPValue();
}
break;
}
case Instruction::kBitFtoI: {
SSAPValue operand = GetValueState(inst->getOperand(0));
if (operand.state == LatticeVal::Constant && operand.constant_type == ValueType::Float) {
float fval = std::get<float>(operand.constantVal);
newState = SSAPValue(*reinterpret_cast<int *>(&fval));
} else if (operand.state == LatticeVal::Bottom) {
newState = SSAPValue(LatticeVal::Bottom);
} else { // Top
newState = SSAPValue();
}
break;
}
case Instruction::kBitItoF: {
SSAPValue operand = GetValueState(inst->getOperand(0));
if (operand.state == LatticeVal::Constant && operand.constant_type == ValueType::Integer) {
int ival = std::get<int>(operand.constantVal);
newState = SSAPValue(*reinterpret_cast<float *>(&ival));
} else if (operand.state == LatticeVal::Bottom) {
newState = SSAPValue(LatticeVal::Bottom);
} else { // Top
newState = SSAPValue();
}
break;
}
case Instruction::kLoad: {
// 使用别名分析和副作用分析改进Load指令的处理
Value *ptr = inst->getOperand(0);
// 首先检查是否是全局常量
if (auto globalVal = dynamic_cast<GlobalValue *>(ptr)) {
// 如果 GlobalValue 有初始化器,并且它是常量,我们可以传播
// TODO: 检查全局变量的初始化器进行常量传播
newState = SSAPValue(LatticeVal::Bottom);
} else if (aliasAnalysis && sideEffectAnalysis) {
// 使用别名分析和副作用分析进行更精确的Load分析
if (aliasAnalysis->isLocalArray(ptr) && (aliasAnalysis->hasConstantAccess(ptr) || hasRuntimeConstantAccess(ptr))) {
// 对于局部数组的常量索引访问检查是否有影响该位置的Store
bool mayBeModified = false;
if (DEBUG) {
std::cout << "SCCP: Analyzing local array with constant access for modification" << std::endl;
}
// 遍历指令所在块之前的所有指令查找可能修改该内存位置的Store
BasicBlock *currentBB = inst->getParent();
auto instPos = currentBB->findInstIterator(inst);
SSAPValue foundConstantValue = SSAPValue(LatticeVal::Bottom);
bool hasFoundDefinitiveStore = false;
for (auto it = currentBB->begin(); it != instPos; ++it) {
Instruction *prevInst = it->get();
if (prevInst->isStore()) {
StoreInst *storeInst = static_cast<StoreInst *>(prevInst);
Value *storePtr = storeInst->getPointer();
// 使用别名分析判断Store是否可能影响当前Load
auto aliasResult = aliasAnalysis->queryAlias(ptr, storePtr);
if (DEBUG) {
std::cout << "SCCP: Checking store with alias result: " << (int)aliasResult << std::endl;
}
if (aliasResult == AliasType::SELF_ALIAS) {
// 找到对相同位置的精确Store
Value *storedValue = storeInst->getValue();
if (DEBUG) {
std::cout << "SCCP: Found exact store to same location, checking value" << std::endl;
}
// 检查存储的值是否为常量
if (auto constInt = dynamic_cast<ConstantInteger *>(storedValue)) {
int val = std::get<int>(constInt->getVal());
if (DEBUG) {
std::cout << "SCCP: Store contains constant integer: " << val << std::endl;
}
foundConstantValue = SSAPValue(val);
hasFoundDefinitiveStore = true;
// 继续遍历查找是否有更后面的Store覆盖这个值
} else if (auto constFloat = dynamic_cast<ConstantFloating *>(storedValue)) {
float val = std::get<float>(constFloat->getVal());
if (DEBUG) {
std::cout << "SCCP: Store contains constant float: " << val << std::endl;
}
foundConstantValue = SSAPValue(val);
hasFoundDefinitiveStore = true;
} else {
// 存储的值不是编译时常量检查其SCCP状态
SSAPValue storedState = GetValueState(storedValue);
if (storedState.state == LatticeVal::Constant) {
if (DEBUG) {
std::cout << "SCCP: Store contains SCCP constant" << std::endl;
}
foundConstantValue = storedState;
hasFoundDefinitiveStore = true;
} else {
if (DEBUG) {
std::cout << "SCCP: Store contains non-constant value" << std::endl;
}
// 非常量Store覆盖了之前的常量无法传播
foundConstantValue = SSAPValue(LatticeVal::Bottom);
hasFoundDefinitiveStore = true;
}
}
} else if (aliasResult != AliasType::NO_ALIAS) {
// 可能有别名,但不确定
if (DEBUG) {
std::cout << "SCCP: Found store with uncertain alias, stopping propagation" << std::endl;
}
mayBeModified = true;
break;
}
} else if (prevInst->isCall()) {
// 检查函数调用是否可能修改该内存位置
if (sideEffectAnalysis->mayModifyMemory(prevInst)) {
// 进一步检查是否可能影响局部数组
if (!aliasAnalysis->isLocalArray(ptr) ||
sideEffectAnalysis->mayModifyGlobal(prevInst)) {
mayBeModified = true;
break;
}
}
} else if (prevInst->isMemset()) {
// Memset指令可能影响内存但只有在它在相关Store之前时才阻止常量传播
MemsetInst *memsetInst = static_cast<MemsetInst *>(prevInst);
Value *memsetPtr = memsetInst->getOperand(0);
auto aliasResult = aliasAnalysis->queryAlias(ptr, memsetPtr);
if (aliasResult != AliasType::NO_ALIAS) {
// Memset可能影响这个位置但我们继续查找是否有Store覆盖了memset
// 不立即设置mayBeModified = true让后续的Store有机会覆盖
if (DEBUG) {
std::cout << "SCCP: Found memset that may affect location, but continuing to check for overwriting stores" << std::endl;
}
}
}
}
if (DEBUG) {
std::cout << "SCCP: mayBeModified = " << (mayBeModified ? "true" : "false") << std::endl;
std::cout << "SCCP: hasFoundDefinitiveStore = " << (hasFoundDefinitiveStore ? "true" : "false") << std::endl;
}
if (!mayBeModified) {
if (hasFoundDefinitiveStore && foundConstantValue.state == LatticeVal::Constant) {
// 直接使用找到的常量值
if (DEBUG) {
std::cout << "SCCP: Using found constant value from store analysis: ";
if (foundConstantValue.constant_type == ValueType::Integer) {
std::cout << std::get<int>(foundConstantValue.constantVal);
} else {
std::cout << std::get<float>(foundConstantValue.constantVal);
}
std::cout << std::endl;
}
newState = foundConstantValue;
} else {
// 如果没有发现修改该位置的指令尝试用旧方法找到对应的Store值
SSAPValue constantValue = findStoredConstantValue(ptr, inst->getParent());
if (constantValue.state == LatticeVal::Constant) {
if (DEBUG) {
std::cout << "SCCP: Found constant value for array load using fallback method: ";
if (constantValue.constant_type == ValueType::Integer) {
std::cout << std::get<int>(constantValue.constantVal);
} else {
std::cout << std::get<float>(constantValue.constantVal);
}
std::cout << std::endl;
}
newState = constantValue;
} else {
newState = SSAPValue(LatticeVal::Bottom);
}
}
} else {
newState = SSAPValue(LatticeVal::Bottom);
}
} else {
// 非局部数组或非常量访问,保守处理
newState = SSAPValue(LatticeVal::Bottom);
}
} else {
// 没有分析信息时保守处理
newState = SSAPValue(LatticeVal::Bottom);
}
if (DEBUG && aliasAnalysis && sideEffectAnalysis) {
std::cout << "SCCP: Load instruction analysis - "
<< (aliasAnalysis->isLocalArray(ptr) ? "local array" : "other")
<< ", static constant access: "
<< (aliasAnalysis->hasConstantAccess(ptr) ? "yes" : "no")
<< ", runtime constant access: "
<< (hasRuntimeConstantAccess(ptr) ? "yes" : "no") << std::endl;
}
break;
}
case Instruction::kStore:
// Store 指令不产生值,其 SSAPValue 不重要
newState = SSAPValue(); // 保持 Top
break;
case Instruction::kCall: {
// 使用副作用分析改进Call指令处理
CallInst *callInst = static_cast<CallInst *>(inst);
if (sideEffectAnalysis) {
const auto &sideEffect = sideEffectAnalysis->getInstructionSideEffect(callInst);
// 检查是否为纯函数且所有参数都是常量
if (sideEffect.isPure && sideEffect.type == SideEffectType::NO_SIDE_EFFECT) {
// 对于纯函数,检查所有参数是否都是常量
bool allArgsConstant = true;
std::vector<SSAPValue> argValues;
for (unsigned i = 0; i < callInst->getNumOperands() - 1; ++i) { // 减1排除函数本身
SSAPValue argVal = GetValueState(callInst->getOperand(i));
argValues.push_back(argVal);
if (argVal.state != LatticeVal::Constant) {
allArgsConstant = false;
break;
}
}
if (allArgsConstant) {
// 对于参数全为常量的纯函数,可以尝试常量折叠
// 但由于实际执行函数比较复杂,这里先标记为可优化
// TODO: 实现具体的纯函数常量折叠
Function *calledFunc = callInst->getCallee();
if (calledFunc && isKnownPureFunction(calledFunc->getName())) {
// 对已知的纯函数进行常量计算
newState = computePureFunctionResult(callInst, argValues);
} else {
newState = SSAPValue(LatticeVal::Bottom);
}
} else {
// 参数不全是常量,但函数无副作用
newState = SSAPValue(LatticeVal::Bottom);
}
if (DEBUG) {
std::cout << "SCCP: Pure function call with "
<< (allArgsConstant ? "constant" : "non-constant") << " arguments" << std::endl;
}
} else {
// 有副作用的函数调用,保守处理
newState = SSAPValue(LatticeVal::Bottom);
if (DEBUG) {
std::cout << "SCCP: Function call with side effects" << std::endl;
}
}
} else {
// 没有副作用分析时保守处理所有Call
newState = SSAPValue(LatticeVal::Bottom);
}
break;
}
case Instruction::kGetElementPtr: {
// GEP 指令计算地址,通常其结果值(地址指向的内容)是 Bottom
// 除非所有索引和基指针都是常量,指向一个确定常量值的内存位置
bool all_ops_constant = true;
for (unsigned i = 0; i < inst->getNumOperands(); ++i) {
if (GetValueState(inst->getOperand(i)).state != LatticeVal::Constant) {
all_ops_constant = false;
break;
}
}
// 即使地址是常量,地址处的内容通常不是。所以通常是 Bottom
newState = SSAPValue(LatticeVal::Bottom);
break;
}
case Instruction::kPhi: {
PhiInst *phi = static_cast<PhiInst *>(inst);
if(DEBUG) {
std::cout << "Processing Phi node: " << phi->getName() << std::endl;
}
// 标准SCCP的phi节点处理
// 只考虑可执行前驱,但要保证单调性
SSAPValue currentPhiState = GetValueState(phi);
SSAPValue phiResult = SSAPValue(); // 初始为 Top
bool hasAnyExecutablePred = false;
for (unsigned i = 0; i < phi->getNumIncomingValues(); ++i) {
BasicBlock *incomingBlock = phi->getIncomingBlock(i);
if (executableBlocks.count(incomingBlock)) {
hasAnyExecutablePred = true;
Value *incomingVal = phi->getIncomingValue(i);
SSAPValue incomingState = GetValueState(incomingVal);
if(DEBUG) {
std::cout << " Incoming from block " << incomingBlock->getName()
<< " with value " << incomingVal->getName() << " state: ";
if (incomingState.state == LatticeVal::Top)
std::cout << "Top";
else if (incomingState.state == LatticeVal::Constant) {
if (incomingState.constant_type == ValueType::Integer)
std::cout << "Const<int>(" << std::get<int>(incomingState.constantVal) << ")";
else
std::cout << "Const<float>(" << std::get<float>(incomingState.constantVal) << ")";
} else
std::cout << "Bottom";
std::cout << std::endl;
}
phiResult = Meet(phiResult, incomingState);
if (phiResult.state == LatticeVal::Bottom) {
break; // 提前退出优化
}
}
// 不可执行前驱暂时被忽略
// 这是标准SCCP的做法依赖于单调性保证正确性
}
if (!hasAnyExecutablePred) {
// 没有可执行前驱保持Top状态
newState = SSAPValue();
} else {
// 关键修复:使用严格的单调性
// 确保phi的值只能从Top -> Constant -> Bottom单向变化
if (currentPhiState.state == LatticeVal::Top) {
// 从Top状态可以变为任何计算结果
newState = phiResult;
} else if (currentPhiState.state == LatticeVal::Constant) {
// 从Constant状态只能保持相同常量或变为Bottom
if (phiResult.state == LatticeVal::Constant &&
currentPhiState.constantVal == phiResult.constantVal &&
currentPhiState.constant_type == phiResult.constant_type) {
// 保持相同的常量
newState = currentPhiState;
} else {
// 不同的值必须变为Bottom
newState = SSAPValue(LatticeVal::Bottom);
}
} else {
// 已经是Bottom保持Bottom
newState = currentPhiState;
}
}
break;
}
case Instruction::kAlloca: // 对应 kAlloca
// Alloca 分配内存,返回一个指针,其内容是 Bottom
newState = SSAPValue(LatticeVal::Bottom);
break;
case Instruction::kBr: // 对应 kBr
case Instruction::kCondBr: // 对应 kCondBr
case Instruction::kReturn: // 对应 kReturn
case Instruction::kUnreachable: // 对应 kUnreachable
// 终结符指令不产生值
newState = SSAPValue(); // 保持 Top
break;
case Instruction::kMemset:
// Memset 不产生值,但有副作用,不进行常量传播
newState = SSAPValue(LatticeVal::Bottom);
break;
default:
if (DEBUG) {
std::cout << "Unimplemented instruction kind in SCCP: " << inst->getKind() << std::endl;
}
newState = SSAPValue(LatticeVal::Bottom); // 未知指令保守处理为 Bottom
break;
}
UpdateState(inst, newState);
// 特殊处理终结符指令,影响 CFG 边的可达性
if (inst->isTerminator()) {
if (inst->isBranch()) {
if (inst->isCondBr()) { // 使用 kCondBr
CondBrInst *branchInst = static_cast<CondBrInst *>(inst);
SSAPValue condVal = GetValueState(branchInst->getOperand(0));
if (condVal.state == LatticeVal::Constant) {
bool condition_is_true = false;
if (condVal.constant_type == ValueType::Integer) {
condition_is_true = (std::get<int>(condVal.constantVal) != 0);
} else if (condVal.constant_type == ValueType::Float) {
condition_is_true = (std::get<float>(condVal.constantVal) != 0.0f);
}
if (condition_is_true) {
AddEdgeToWorkList(branchInst->getParent(), branchInst->getThenBlock());
} else {
AddEdgeToWorkList(branchInst->getParent(), branchInst->getElseBlock());
}
} else { // 条件是 Top 或 Bottom两条路径都可能
AddEdgeToWorkList(branchInst->getParent(), branchInst->getThenBlock());
AddEdgeToWorkList(branchInst->getParent(), branchInst->getElseBlock());
}
} else { // 无条件分支 (kBr)
UncondBrInst *branchInst = static_cast<UncondBrInst *>(inst);
AddEdgeToWorkList(branchInst->getParent(), branchInst->getBlock());
}
}
}
if (DEBUG) {
std::cout << "New state: ";
if (newState.state == LatticeVal::Top) {
std::cout << "Top";
} else if (newState.state == LatticeVal::Constant) {
if (newState.constant_type == ValueType::Integer) {
std::cout << "Const<int>(" << std::get<int>(newState.constantVal) << ")";
} else {
std::cout << "Const<float>(" << std::get<float>(newState.constantVal) << ")";
}
} else {
std::cout << "Bottom";
}
std::cout << std::endl;
}
}
// 辅助函数:处理单条控制流边
void SCCPContext::ProcessEdge(const std::pair<BasicBlock *, BasicBlock *> &edge) {
BasicBlock *fromBB = edge.first;
BasicBlock *toBB = edge.second;
// 检查目标块是否已经可执行
bool wasAlreadyExecutable = executableBlocks.count(toBB) > 0;
// 标记目标块为可执行(如果还不是的话)
MarkBlockExecutable(toBB);
// 如果目标块之前就已经可执行那么需要重新处理其中的phi节点
// 因为现在有新的前驱变为可执行phi节点的值可能需要更新
if (wasAlreadyExecutable) {
for (auto &inst_ptr : toBB->getInstructions()) {
if (dynamic_cast<PhiInst *>(inst_ptr.get())) {
instWorkList.push(inst_ptr.get());
}
}
}
// 如果目标块是新变为可执行的MarkBlockExecutable已经添加了所有指令
}
// 阶段1: 常量传播与折叠
bool SCCPContext::PropagateConstants(Function *func) {
bool changed = false;
// 初始化:所有值 Top所有块不可执行
for (auto &bb_ptr : func->getBasicBlocks()) {
executableBlocks.erase(bb_ptr.get());
for (auto &inst_ptr : bb_ptr->getInstructions()) {
valueState[inst_ptr.get()] = SSAPValue(); // Top
}
}
// 初始化函数参数为Bottom因为它们在编译时是未知的
for (auto arg : func->getArguments()) {
valueState[arg] = SSAPValue(LatticeVal::Bottom);
if (DEBUG) {
std::cout << "Initializing function argument " << arg->getName() << " to Bottom" << std::endl;
}
}
// 标记入口块为可执行
if (!func->getBasicBlocks().empty()) {
MarkBlockExecutable(func->getEntryBlock());
}
// 主循环标准的SCCP工作列表算法
// 交替处理边工作列表和指令工作列表直到不动点
while (!instWorkList.empty() || !edgeWorkList.empty()) {
// 处理所有待处理的CFG边
while (!edgeWorkList.empty()) {
ProcessEdge(edgeWorkList.front());
edgeWorkList.pop();
}
// 处理所有待处理的指令
while (!instWorkList.empty()) {
Instruction *inst = instWorkList.front();
instWorkList.pop();
ProcessInstruction(inst);
}
}
// 应用常量替换和死代码消除
std::vector<Instruction *> instsToDelete;
for (auto &bb_ptr : func->getBasicBlocks()) {
BasicBlock *bb = bb_ptr.get();
if (!executableBlocks.count(bb)) {
// 整个块是死块,标记所有指令删除
for (auto &inst_ptr : bb->getInstructions()) {
instsToDelete.push_back(inst_ptr.get());
}
changed = true;
continue;
}
for (auto it = bb->begin(); it != bb->end();) {
Instruction *inst = it->get();
SSAPValue ssaPVal = GetValueState(inst);
if (ssaPVal.state == LatticeVal::Constant) {
ConstantValue *constVal = nullptr;
if (ssaPVal.constant_type == ValueType::Integer) {
constVal = ConstantInteger::get(std::get<int>(ssaPVal.constantVal));
} else if (ssaPVal.constant_type == ValueType::Float) {
constVal = ConstantFloating::get(std::get<float>(ssaPVal.constantVal));
} else {
constVal = UndefinedValue::get(inst->getType()); // 不应发生
}
if (DEBUG) {
std::cout << "Replacing " << inst->getName() << " with constant ";
if (ssaPVal.constant_type == ValueType::Integer)
std::cout << std::get<int>(ssaPVal.constantVal);
else
std::cout << std::get<float>(ssaPVal.constantVal);
std::cout << std::endl;
}
inst->replaceAllUsesWith(constVal);
instsToDelete.push_back(inst);
++it;
changed = true;
} else {
// 如果操作数是常量,直接替换为常量值(常量折叠)
for (unsigned i = 0; i < inst->getNumOperands(); ++i) {
Value *operand = inst->getOperand(i);
SSAPValue opVal = GetValueState(operand);
if (opVal.state == LatticeVal::Constant) {
ConstantValue *constOp = nullptr;
if (opVal.constant_type == ValueType::Integer) {
constOp = ConstantInteger::get(std::get<int>(opVal.constantVal));
} else if (opVal.constant_type == ValueType::Float) {
constOp = ConstantFloating::get(std::get<float>(opVal.constantVal));
} else {
constOp = UndefinedValue::get(operand->getType());
}
if (constOp != operand) {
inst->setOperand(i, constOp);
changed = true;
}
}
}
++it;
}
}
}
// 实际删除指令
// TODO: 删除的逻辑需要考虑修改
for (Instruction *inst : instsToDelete) {
// 在尝试删除之前,先检查指令是否仍然附加到其父基本块。
// 如果它已经没有父块,可能说明它已被其他方式处理或已处于无效状态。
if (inst->getParent() != nullptr) {
// 调用负责完整删除的函数该函数应负责清除uses并将其从父块中移除。
SysYIROptUtils::usedelete(inst);
}
else {
// 指令已不属于任何父块,无需再次删除。
if (DEBUG) {
std::cerr << "Info: Instruction " << inst->getName() << " was already detached or is not in a parent block." << std::endl;
}
}
}
return changed;
}
// 阶段2: 控制流简化
bool SCCPContext::SimplifyControlFlow(Function *func) {
bool changed = false;
// 重新确定可达块,因为 PropagateConstants 可能改变了分支条件
std::unordered_set<BasicBlock *> newReachableBlocks = FindReachableBlocks(func);
// 移除不可达块
std::vector<BasicBlock *> blocksToDelete;
for (auto &bb_ptr : func->getBasicBlocks()) {
if (bb_ptr.get() == func->getEntryBlock())
continue; // 入口块不能删除
if (newReachableBlocks.find(bb_ptr.get()) == newReachableBlocks.end()) {
blocksToDelete.push_back(bb_ptr.get());
changed = true;
}
}
for (BasicBlock *bb : blocksToDelete) {
RemoveDeadBlock(bb, func);
}
// 简化分支指令
for (auto &bb_ptr : func->getBasicBlocks()) {
BasicBlock *bb = bb_ptr.get();
if (!newReachableBlocks.count(bb))
continue; // 只处理可达块
Instruction *terminator = bb->terminator()->get();
if (terminator->isBranch()) {
if (terminator->isCondBr()) { // 检查是否是条件分支 (kCondBr)
CondBrInst *branchInst = static_cast<CondBrInst *>(terminator);
SSAPValue condVal = GetValueState(branchInst->getOperand(0));
if (condVal.state == LatticeVal::Constant) {
bool condition_is_true = false;
if (condVal.constant_type == ValueType::Integer) {
condition_is_true = (std::get<int>(condVal.constantVal) != 0);
} else if (condVal.constant_type == ValueType::Float) {
condition_is_true = (std::get<float>(condVal.constantVal) != 0.0f);
}
SimplifyBranch(branchInst, condition_is_true);
changed = true;
}
}
}
}
return changed;
}
// 查找所有可达的基本块 (基于常量条件)
std::unordered_set<BasicBlock *> SCCPContext::FindReachableBlocks(Function *func) {
std::unordered_set<BasicBlock *> reachable;
std::queue<BasicBlock *> q;
if (func->getEntryBlock()) {
q.push(func->getEntryBlock());
reachable.insert(func->getEntryBlock());
}
while (!q.empty()) {
BasicBlock *currentBB = q.front();
q.pop();
Instruction *terminator = currentBB->terminator()->get();
if (!terminator)
continue;
if (terminator->isBranch()) {
if (terminator->isCondBr()) { // 检查是否是条件分支 (kCondBr)
CondBrInst *branchInst = static_cast<CondBrInst *>(terminator);
SSAPValue condVal = GetValueState(branchInst->getOperand(0));
if (condVal.state == LatticeVal::Constant) {
bool condition_is_true = false;
if (condVal.constant_type == ValueType::Integer) {
condition_is_true = (std::get<int>(condVal.constantVal) != 0);
} else if (condVal.constant_type == ValueType::Float) {
condition_is_true = (std::get<float>(condVal.constantVal) != 0.0f);
}
if (condition_is_true) {
BasicBlock *trueBlock = branchInst->getThenBlock();
if (reachable.find(trueBlock) == reachable.end()) {
reachable.insert(trueBlock);
q.push(trueBlock);
}
} else {
BasicBlock *falseBlock = branchInst->getElseBlock();
if (reachable.find(falseBlock) == reachable.end()) {
reachable.insert(falseBlock);
q.push(falseBlock);
}
}
} else { // 条件是 Top 或 Bottom两条路径都可达
for (auto succ : branchInst->getSuccessors()) {
if (reachable.find(succ) == reachable.end()) {
reachable.insert(succ);
q.push(succ);
}
}
}
} else { // 无条件分支 (kBr)
UncondBrInst *branchInst = static_cast<UncondBrInst *>(terminator);
BasicBlock *targetBlock = branchInst->getBlock();
if (reachable.find(targetBlock) == reachable.end()) {
reachable.insert(targetBlock);
q.push(targetBlock);
}
}
} else if (terminator->isReturn() || terminator->isUnreachable()) {
// ReturnInst 没有后继,不需要处理
// UnreachableInst 也没有后继,不需要处理
}
}
return reachable;
}
// 移除死块
void SCCPContext::RemoveDeadBlock(BasicBlock *bb, Function *func) {
if (DEBUG) {
std::cout << "Removing dead block: " << bb->getName() << std::endl;
}
// 首先更新其所有前驱的终结指令,移除指向死块的边
std::vector<BasicBlock *> preds_to_update;
for (auto &pred : bb->getPredecessors()) {
if (pred != nullptr) { // 检查是否为空指针
preds_to_update.push_back(pred);
}
}
for (BasicBlock *pred : preds_to_update) {
if (executableBlocks.count(pred)) {
UpdateTerminator(pred, bb);
}
}
// 移除其后继的 Phi 节点的入边
std::vector<BasicBlock *> succs_to_update;
for (auto succ : bb->getSuccessors()) {
succs_to_update.push_back(succ);
}
for (BasicBlock *succ : succs_to_update) {
RemovePhiIncoming(succ, bb);
succ->removePredecessor(bb);
}
func->removeBasicBlock(bb); // 从函数中移除基本块
}
// 简化分支(将条件分支替换为无条件分支)
void SCCPContext::SimplifyBranch(CondBrInst *brInst, bool condVal) {
BasicBlock *parentBB = brInst->getParent();
BasicBlock *trueBlock = brInst->getThenBlock();
BasicBlock *falseBlock = brInst->getElseBlock();
if (DEBUG) {
std::cout << "Simplifying branch in " << parentBB->getName() << ": cond is " << (condVal ? "true" : "false")
<< std::endl;
}
builder->setPosition(parentBB, parentBB->findInstIterator(brInst));
if (condVal) { // 条件为真,跳转到真分支
builder->createUncondBrInst(trueBlock); // 插入无条件分支 kBr
SysYIROptUtils::usedelete(brInst); // 移除旧的条件分支指令
parentBB->removeSuccessor(falseBlock);
falseBlock->removePredecessor(parentBB);
RemovePhiIncoming(falseBlock, parentBB);
} else { // 条件为假,跳转到假分支
builder->createUncondBrInst(falseBlock); // 插入无条件分支 kBr
SysYIROptUtils::usedelete(brInst); // 移除旧的条件分支指令
parentBB->removeSuccessor(trueBlock);
trueBlock->removePredecessor(parentBB);
RemovePhiIncoming(trueBlock, parentBB);
}
}
// 更新前驱块的终结指令(当一个后继块被移除时)
void SCCPContext::UpdateTerminator(BasicBlock *predBB, BasicBlock *removedSucc) {
Instruction *terminator = predBB->terminator()->get();
if (!terminator)
return;
if (terminator->isBranch()) {
if (terminator->isCondBr()) { // 如果是条件分支
CondBrInst *branchInst = static_cast<CondBrInst *>(terminator);
if (branchInst->getThenBlock() == removedSucc) {
if (DEBUG) {
std::cout << "Updating cond br in " << predBB->getName() << ": True block (" << removedSucc->getName()
<< ") removed. Converting to Br to " << branchInst->getElseBlock()->getName() << std::endl;
}
builder->setPosition(predBB, predBB->findInstIterator(branchInst));
builder->createUncondBrInst(branchInst->getElseBlock());
SysYIROptUtils::usedelete(branchInst);
predBB->removeSuccessor(removedSucc);
} else if (branchInst->getElseBlock() == removedSucc) {
if (DEBUG) {
std::cout << "Updating cond br in " << predBB->getName() << ": False block (" << removedSucc->getName()
<< ") removed. Converting to Br to " << branchInst->getThenBlock()->getName() << std::endl;
}
builder->setPosition(predBB, predBB->findInstIterator(branchInst));
builder->createUncondBrInst(branchInst->getThenBlock());
SysYIROptUtils::usedelete(branchInst);
predBB->removeSuccessor(removedSucc);
}
} else { // 无条件分支 (kBr)
UncondBrInst *branchInst = static_cast<UncondBrInst *>(terminator);
if (branchInst->getBlock() == removedSucc) {
if (DEBUG) {
std::cout << "Updating unconditional br in " << predBB->getName() << ": Target block ("
<< removedSucc->getName() << ") removed. Replacing with Unreachable." << std::endl;
}
SysYIROptUtils::usedelete(branchInst);
predBB->removeSuccessor(removedSucc);
builder->setPosition(predBB, predBB->end());
builder->createUnreachableInst();
}
}
}
}
// 移除 Phi 节点的入边(当其前驱块被移除时)
void SCCPContext::RemovePhiIncoming(BasicBlock *phiParentBB, BasicBlock *removedPred) { // 修正 removedPred 类型
std::vector<Instruction *> insts_to_check;
for (auto &inst_ptr : phiParentBB->getInstructions()) {
insts_to_check.push_back(inst_ptr.get());
}
for (Instruction *inst : insts_to_check) {
if (auto phi = dynamic_cast<PhiInst *>(inst)) {
phi->removeIncomingBlock(removedPred);
}
}
}
// 运行 SCCP 优化
void SCCPContext::run(Function *func, AnalysisManager &AM) {
bool changed_constant_propagation = PropagateConstants(func);
bool changed_control_flow = SimplifyControlFlow(func);
// 如果任何一个阶段修改了 IR标记分析结果为失效
bool changed = changed_constant_propagation || changed_control_flow;
changed |= SysYIROptUtils::eliminateRedundantPhisInFunction(func);
}
// SCCP Pass methods
bool SCCP::runOnFunction(Function *F, AnalysisManager &AM) {
if (DEBUG) {
std::cout << "Running SCCP on function: " << F->getName() << std::endl;
}
SCCPContext context(builder);
// 获取别名分析结果
if (auto *aliasResult = AM.getAnalysisResult<AliasAnalysisResult, SysYAliasAnalysisPass>(F)) {
context.setAliasAnalysis(aliasResult);
if (DEBUG) {
std::cout << "SCCP: Using alias analysis results" << std::endl;
}
}
// 获取副作用分析结果Module级别
if (auto *sideEffectResult = AM.getAnalysisResult<SideEffectAnalysisResult, SysYSideEffectAnalysisPass>()) {
context.setSideEffectAnalysis(sideEffectResult);
if (DEBUG) {
std::cout << "SCCP: Using side effect analysis results" << std::endl;
}
}
context.run(F, AM);
return true;
}
void SCCP::getAnalysisUsage(std::set<void *> &analysisDependencies, std::set<void *> &analysisInvalidations) const {
// 声明依赖别名分析和副作用分析
analysisDependencies.insert(&SysYAliasAnalysisPass::ID);
analysisDependencies.insert(&SysYSideEffectAnalysisPass::ID);
// analysisInvalidations.insert(nullptr); // 表示使所有默认分析失效
analysisInvalidations.insert(&DominatorTreeAnalysisPass::ID); // 支配树可能受影响
analysisInvalidations.insert(&LivenessAnalysisPass::ID); // 活跃性分析很可能失效
}
} // namespace sysy