Compare commits

..

90 Commits
1.2.2 ... 1.2.4

Author SHA1 Message Date
eca4018ecb mcctrl: release syscall packets when mcexec termination
refs #835
2017-03-11 20:57:54 +09:00
e936b2ebe1 memobj_release: don't call syscall_generic_forwarding after process termination
refs #816
2017-03-10 12:58:47 +09:00
d8112f92f8 terminate(): don't call free_all_process_memory_range
refs #816
2017-03-08 14:30:28 +09:00
1076010de4 Boundary check in early_alloc_pages() 2017-03-04 17:21:57 +09:00
da4a5ec44b page_allocator_init(): move memory_nodes to BSS 2017-02-24 19:33:25 +09:00
d35aa9b100 page_allocator_init(): clean-up code, eliminate initial flag 2017-02-24 14:25:22 +09:00
ba8dbf1b19 Put kernel image and page table into one chunk 2017-02-24 14:21:32 +09:00
6213f0e488 mcctrl: fix cpumask macros for Linux 4.6 2017-02-02 15:49:39 +09:00
4ef82c2683 OFP-SNC-4: offline/online MCDRAM before memory reservation 2017-01-30 14:47:36 +09:00
e066a8798c IKC: adjust master channel queue size to nr. of CPUs 2017-01-30 07:24:09 +09:00
b702c9691e AP init: synchronize syscall channel initialization 2017-01-30 07:24:09 +09:00
addbe91e59 do_migrate(): signal migrated thread before releasing runq lock 2017-01-30 07:24:09 +09:00
b812848a0e eclair-dump-backtrace.exp: handle user space threads 2017-01-30 07:24:09 +09:00
ad214c8206 reserve_user_space(): mutual exclusion on mmap 2017-01-30 07:24:09 +09:00
1bc3218fc1 partitioned execution: bind mcexec to corresponding NUMA node 2017-01-30 07:24:09 +09:00
5cc420a6c3 syscall/offload tracker: clean-up and support process-wise aggregation 2017-01-30 07:24:09 +09:00
c7686fdf4e execve(): fix memory leak 2017-01-30 07:24:09 +09:00
c1dae4d8b0 mmap(): no physical memory pre-allocation for Intel 128MB mapping 2017-01-30 07:24:08 +09:00
2473025201 do_mmap(): remove codes for debug
refs #395
2017-01-16 15:53:27 +09:00
fa5c1b23ca eclair-dump-backtrace.exp: dump full backtrace of all mckernel threads 2017-01-15 10:46:07 +09:00
f2f499aace mcreboot/stop: toggle address-space layout randomization (ASLR) to avoid mcexec user-space reservation failure 2017-01-15 10:36:50 +09:00
bd47b909bf futex(): spin wait when CPU not oversubscribed and fix lost wake-up bug 2017-01-13 08:43:25 +09:00
d646c2a4b9 cpu_set/clear(): unsigned long for IRQ flags 2017-01-13 08:43:25 +09:00
865ada46bf IKC2: eliminate unused IKC structures 2017-01-13 08:43:25 +09:00
cdffc5e853 do_syscall(): eliminate centralized lock for exit/kill code path (use IKC2 thread pool) 2017-01-08 14:16:10 +09:00
0e67e9266b ap_init(): reformat AP cores report 2017-01-08 14:16:10 +09:00
1ff0afe6fb devobj/fileobj: do not try to free memory for device file mappings 2017-01-08 14:16:10 +09:00
d34884f9a4 numa_init(): error handling and propagation 2017-01-08 14:15:51 +09:00
7a0c204dc1 eclair: report PID for all threads 2017-01-08 14:15:44 +09:00
25f67c9ef8 mcreboot/mcstop-smp-x86: surpress libkmod warnings 2017-01-08 14:15:34 +09:00
a776464a7e mcreboot/mcstop: adjust swappiness 2017-01-03 09:02:41 +09:00
c40e7105e6 NUMA: order nodes by distance for MPOL_BIND / MPOL_PREFERRED policies as well 2017-01-03 09:02:29 +09:00
5bac38ce8b mmap()/stack/heap: follow user requested NUMA policy 2016-12-31 19:38:05 +09:00
e3f0662130 allocate_aligned_pages_node(): debug msg format 2016-12-31 16:25:14 +09:00
21df56b233 sched_wakeup_thread(): memory barrier after status update 2016-12-31 10:44:13 +09:00
393cec513c allocate_aligned_pages_node(): follow user policiy only for user allocations 2016-12-31 10:10:42 +09:00
4437ecc69a do_mmap(): indicate user level allocations for anonymous mappings 2016-12-31 10:09:49 +09:00
40d75baca2 ihk_mc_ap_flag: rewrite flag type, intro for denoting user level allocations 2016-12-30 19:19:34 +09:00
00f3fe0840 ihk_mc_alloc_aligned_pages_node(): support for explicit indication of target NUMA node 2016-12-30 19:03:59 +09:00
47a8b5bda5 mmap(): faster pre-allocation for anonymous private mappings 2016-12-30 17:18:44 +09:00
ec75095073 add_process_memory_range(): optionally return range object 2016-12-30 15:51:17 +09:00
1794232989 irqbalance_mck: create environment file in /tmp to avoid race condition on PFS 2016-12-30 15:47:44 +09:00
40978d162e procfs_read/write(): rewrite synchronization for scalability and correctness 2016-12-28 14:17:17 +09:00
536ce9f927 process_procfs_request(): use IRQ save MCS locks while iterating thread list to avoid deadlock 2016-12-28 12:29:10 +09:00
4e5ec74ffe mmap(): fault in memory only up to file size for populated file mappings 2016-12-27 16:33:24 +09:00
a6d8125fd7 mcreboot-smp-x86: reserve memory first and then CPUs 2016-12-27 15:19:05 +09:00
15d3a0361e destroy_ikc_channels(): eliminate kprint from error free path 2016-12-27 11:52:24 +09:00
6ad84a96a3 mcexec_syscall(): avoid calling task_pid_nr_ns() in IRQ context 2016-12-26 20:43:17 +09:00
16e846e9b6 mcexec: report error in prepare_image() if wait queue interrupted 2016-12-26 20:42:31 +09:00
5bc7185f07 do_migrate(): update debug msg format 2016-12-25 17:34:26 +09:00
32462dfb2d eclair: fix CPU number display for non-active threads 2016-12-25 17:28:31 +09:00
e3ef88c0cf do_sigsuspend(): deschedule thread when neccessary (fixes gdb deadlock) 2016-12-25 17:24:32 +09:00
829aae7b8d mcexec: PATH_MAX buffer lenght in do_generic_syscall() 2016-12-25 17:20:14 +09:00
b836b84825 mcexec_prepare_image(): use memory barrier when updating request status 2016-12-25 17:19:14 +09:00
3e1f154412 patch_process_vm(): eliminate kprintfs from error free code path 2016-12-25 17:18:20 +09:00
e7af537452 get_pid_cred(): proper locking around pid_task 2016-12-25 17:17:27 +09:00
3565959af7 eclair: fix compiler warnings 2016-12-23 09:57:50 +09:00
4667136a4c mcctrl: refcount per-process data to avoid corrupted syscall request lists 2016-12-23 09:54:15 +09:00
972d14611a mcctrl: move prepare waitqueue to per-process data 2016-12-22 10:15:31 +09:00
e90eef8910 eclair: support for direct memory inspection 2016-12-21 21:55:32 +09:00
f81927b85b Revert "brk(): larger allocation units internally"
This reverts commit c58ab0f648.
2016-12-20 11:11:09 +09:00
701cdcdab1 use MCS locks in physical memory allocator 2016-12-19 12:57:59 +09:00
9635a628a9 fileobj/shmobj/devobj: add file size to memobj 2016-12-19 12:55:12 +09:00
3e1b16f3fc syscall_channel: increase queue size to avoid deadlock in ikc_send() 2016-12-18 21:12:38 +09:00
ff37ff9ccf memobj: synch prefetch among processes 2016-12-18 21:12:38 +09:00
5b7bcb7170 fileobj: use read/write MCS locks in page hash 2016-12-18 21:12:37 +09:00
6a5fe90f98 mcexec_get_cpuset(): save CPU set and IKC target cpu in per-process data 2016-12-18 21:12:37 +09:00
91373337ba mcctrl: add IKC target CPU to OS file release_handler 2016-12-18 21:12:37 +09:00
56ed726a88 pager_req_create(): prefetch for MPI library and zerofill for shm 2016-12-18 21:12:37 +09:00
bce10e11e4 fileobj: rewrite for scalability using per-file page hash 2016-12-18 21:12:37 +09:00
91cdb16158 MCS lock: separate IRQ disable/enable versions 2016-12-18 21:12:37 +09:00
c58ab0f648 brk(): larger allocation units internally 2016-12-18 21:12:37 +09:00
f410af1cfc xpmem: porting xpmem v2.6.3
implement xpmem_make, xpmem_remove
2016-12-16 17:00:09 +09:00
aa15e5eea8 mcexec: -t option and OMP_NUM_THREADS for thread pool size 2016-12-14 18:56:30 +09:00
df9f1f8f78 allocate_aligned_pages(): take user set NUMA policy into account 2016-12-13 17:51:39 +09:00
7ace35d737 mcexec_get_cpuset(): fix NUMA search bug 2016-12-13 17:50:50 +09:00
551999ff6b NUMA: order nodes based on distances 2016-12-13 10:46:17 +09:00
052b3f44ca mcexec: -n: topology aware partitioned execution 2016-12-10 16:27:57 +09:00
fdcf766337 prepare_process(): pass cpu_set in program_load_desc 2016-12-09 16:32:20 +09:00
7d13bfb14e set_mempolicy(): limit maxnode to PROCESS_NUMA_MASK_BITS 2016-12-08 21:05:10 +09:00
202bfd9955 IHK-API: expand and fix for ver 1.2. 2016-12-08 17:28:53 +09:00
c99e36235b execve(): disable debug warnings 2016-12-08 16:33:24 +09:00
3cecafac59 obtain_clone_cpuid(): respect parent's CPU set 2016-12-08 16:01:30 +09:00
61fc4c5e55 show_context_stack(): fix warning 2016-12-07 11:42:09 +09:00
fad73cacc1 x86: display call stack for IRQ 133 (for debug) 2016-12-07 11:32:02 +09:00
8fced29978 page_fault_handler(): improved debug msg format 2016-12-07 11:25:02 +09:00
b0f4ae4890 ihk_mc_pt_set_pte(): double check phys address alignment 2016-12-07 11:23:45 +09:00
7070094a31 ihk_mc_pt_print_pte(): handle large pages correctly 2016-12-07 11:13:53 +09:00
011185e3f7 __ihk_pagealloc_large(): fix 1GB page alignment bug 2016-12-07 09:38:37 +09:00
461881e46a /proc/mckernel to indicate McKernel 2016-12-06 14:29:25 +09:00
60 changed files with 3709 additions and 1228 deletions

View File

@ -49,6 +49,7 @@ install::
mkdir -p -m 755 $(SBINDIR); \
install -m 755 arch/x86/tools/mcreboot-smp-x86.sh $(SBINDIR)/mcreboot.sh; \
install -m 755 arch/x86/tools/mcstop+release-smp-x86.sh $(SBINDIR)/mcstop+release.sh; \
install -m 755 arch/x86/tools/eclair-dump-backtrace.exp $(SBINDIR)/eclair-dump-backtrace.exp;\
mkdir -p -m 755 $(ETCDIR); \
install -m 644 arch/x86/tools/irqbalance_mck.service $(ETCDIR)/irqbalance_mck.service; \
install -m 644 arch/x86/tools/irqbalance_mck.in $(ETCDIR)/irqbalance_mck.in; \

View File

@ -844,6 +844,25 @@ void set_signal(int sig, void *regs, struct siginfo *info);
void check_signal(unsigned long, void *, int);
extern void tlb_flush_handler(int vector);
void __show_stack(uintptr_t *sp) {
while (((uintptr_t)sp >= 0xffff800000000000)
&& ((uintptr_t)sp < 0xffffffff80000000)) {
uintptr_t fp;
uintptr_t ip;
fp = sp[0];
ip = sp[1];
kprintf("IP: %016lx, SP: %016lx, FP: %016lx\n", ip, (uintptr_t)sp, fp);
sp = (void *)fp;
}
return;
}
void show_context_stack(uintptr_t *rbp) {
__show_stack(rbp);
return;
}
void handle_interrupt(int vector, struct x86_user_context *regs)
{
struct ihk_mc_interrupt_handler *h;
@ -952,6 +971,9 @@ void handle_interrupt(int vector, struct x86_user_context *regs)
tlb_flush_handler(vector);
}
else if (vector == 133) {
show_context_stack((uintptr_t *)regs->gpr.rbp);
}
else {
list_for_each_entry(h, &handlers[vector - 32], list) {
if (h->func) {

View File

@ -131,6 +131,7 @@ static void __ihk_mc_spinlock_unlock(ihk_spinlock_t *lock, unsigned long flags)
typedef struct mcs_lock_node {
unsigned long locked;
struct mcs_lock_node *next;
unsigned long irqsave;
} __attribute__((aligned(64))) mcs_lock_node_t;
static void mcs_lock_init(struct mcs_lock_node *node)
@ -139,7 +140,7 @@ static void mcs_lock_init(struct mcs_lock_node *node)
node->next = NULL;
}
static void mcs_lock_lock(struct mcs_lock_node *lock,
static void __mcs_lock_lock(struct mcs_lock_node *lock,
struct mcs_lock_node *node)
{
struct mcs_lock_node *pred;
@ -158,7 +159,7 @@ static void mcs_lock_lock(struct mcs_lock_node *lock,
}
}
static void mcs_lock_unlock(struct mcs_lock_node *lock,
static void __mcs_lock_unlock(struct mcs_lock_node *lock,
struct mcs_lock_node *node)
{
if (node->next == NULL) {
@ -178,6 +179,35 @@ static void mcs_lock_unlock(struct mcs_lock_node *lock,
node->next->locked = 0;
}
static void mcs_lock_lock_noirq(struct mcs_lock_node *lock,
struct mcs_lock_node *node)
{
preempt_disable();
__mcs_lock_lock(lock, node);
}
static void mcs_lock_unlock_noirq(struct mcs_lock_node *lock,
struct mcs_lock_node *node)
{
__mcs_lock_unlock(lock, node);
preempt_enable();
}
static void mcs_lock_lock(struct mcs_lock_node *lock,
struct mcs_lock_node *node)
{
node->irqsave = cpu_disable_interrupt_save();
mcs_lock_lock_noirq(lock, node);
}
static void mcs_lock_unlock(struct mcs_lock_node *lock,
struct mcs_lock_node *node)
{
mcs_lock_unlock_noirq(lock, node);
cpu_restore_interrupt(node->irqsave);
}
// reader/writer lock
typedef struct mcs_rwlock_node {
ihk_atomic_t count; // num of readers (use only common reader)

View File

@ -22,7 +22,7 @@
SYSCALL_HANDLED(0, read)
SYSCALL_DELEGATED(1, write)
SYSCALL_DELEGATED(2, open)
SYSCALL_HANDLED(2, open)
SYSCALL_HANDLED(3, close)
SYSCALL_DELEGATED(4, stat)
SYSCALL_DELEGATED(5, fstat)
@ -151,7 +151,7 @@ SYSCALL_HANDLED(603, pmc_stop)
SYSCALL_HANDLED(604, pmc_reset)
SYSCALL_HANDLED(700, get_cpu_id)
#ifdef TRACK_SYSCALLS
SYSCALL_HANDLED(701, syscall_offload_clr_cntrs)
SYSCALL_HANDLED(__NR_track_syscalls, track_syscalls)
#endif // TRACK_SYSCALLS
/**** End of File ****/

View File

@ -45,7 +45,11 @@ void *early_alloc_pages(int nr_pages)
last_page = phys_to_virt(virt_to_phys(last_page));
} else if (last_page == (void *)-1) {
panic("Early allocator is already finalized. Do not use it.\n");
}
} else {
if(virt_to_phys(last_page) >= bootstrap_mem_end) {
panic("Early allocator: Out of memory\n");
}
}
p = last_page;
last_page += (nr_pages * PAGE_SIZE);
@ -179,7 +183,7 @@ static void init_normal_area(struct page_table *pt)
}
}
static struct page_table *__alloc_new_pt(enum ihk_mc_ap_flag ap_flag)
static struct page_table *__alloc_new_pt(ihk_mc_ap_flag ap_flag)
{
struct page_table *newpt = ihk_mc_alloc_pages(1, ap_flag);
@ -278,7 +282,7 @@ void set_pte(pte_t *ppte, unsigned long phys, enum ihk_mc_pt_attribute attr)
* and returns a pointer to the PTE corresponding to the
* virtual address.
*/
pte_t *get_pte(struct page_table *pt, void *virt, enum ihk_mc_pt_attribute attr, enum ihk_mc_ap_flag ap_flag)
pte_t *get_pte(struct page_table *pt, void *virt, enum ihk_mc_pt_attribute attr, ihk_mc_ap_flag ap_flag)
{
int l4idx, l3idx, l2idx, l1idx;
unsigned long v = (unsigned long)virt;
@ -339,7 +343,7 @@ static int __set_pt_page(struct page_table *pt, void *virt, unsigned long phys,
int l4idx, l3idx, l2idx, l1idx;
unsigned long v = (unsigned long)virt;
struct page_table *newpt;
enum ihk_mc_ap_flag ap_flag;
ihk_mc_ap_flag ap_flag;
int in_kernel =
(((unsigned long long)virt) >= 0xffff000000000000ULL);
unsigned long init_pt_lock_flags;
@ -558,28 +562,34 @@ int ihk_mc_pt_print_pte(struct page_table *pt, void *virt)
GET_VIRT_INDICES(v, l4idx, l3idx, l2idx, l1idx);
__kprintf("l4 table: 0x%lX l4idx: %d \n", virt_to_phys(pt), l4idx);
if (!(pt->entry[l4idx] & PFL4_PRESENT)) {
__kprintf("0x%lX l4idx not present! \n", (unsigned long)virt);
__kprintf("l4 entry: 0x%lX\n", pt->entry[l4idx]);
return -EFAULT;
}
__kprintf("l4 entry: 0x%lX\n", pt->entry[l4idx]);
pt = phys_to_virt(pt->entry[l4idx] & PAGE_MASK);
__kprintf("l3 table: 0x%lX l3idx: %d \n", virt_to_phys(pt), l3idx);
if (!(pt->entry[l3idx] & PFL3_PRESENT)) {
__kprintf("0x%lX l3idx not present! \n", (unsigned long)virt);
__kprintf("l3 entry: 0x%lX\n", pt->entry[l3idx]);
return -EFAULT;
}
__kprintf("l3 entry: 0x%lX\n", pt->entry[l3idx]);
if ((pt->entry[l3idx] & PFL3_SIZE)) {
__kprintf("l3 entry is 1G page\n");
return 0;
}
pt = phys_to_virt(pt->entry[l3idx] & PAGE_MASK);
__kprintf("l2 table: 0x%lX l2idx: %d \n", virt_to_phys(pt), l2idx);
if (!(pt->entry[l2idx] & PFL2_PRESENT)) {
__kprintf("0x%lX l2idx not present! \n", (unsigned long)virt);
__kprintf("l2 entry: 0x%lX\n", pt->entry[l2idx]);
return -EFAULT;
}
__kprintf("l2 entry: 0x%lX\n", pt->entry[l2idx]);
if ((pt->entry[l2idx] & PFL2_SIZE)) {
__kprintf("l2 entry is 2M page\n");
return 0;
}
pt = phys_to_virt(pt->entry[l2idx] & PAGE_MASK);
@ -658,7 +668,7 @@ int ihk_mc_pt_prepare_map(page_table_t p, void *virt, unsigned long size,
return ret;
}
struct page_table *ihk_mc_pt_create(enum ihk_mc_ap_flag ap_flag)
struct page_table *ihk_mc_pt_create(ihk_mc_ap_flag ap_flag)
{
struct page_table *pt = ihk_mc_alloc_pages(1, ap_flag);
@ -1091,7 +1101,8 @@ static int clear_range_l1(void *args0, pte_t *ptep, uint64_t base,
page = phys_to_page(phys);
}
if (page && page_is_in_memobj(page) && (old & PFL1_DIRTY)) {
if (page && page_is_in_memobj(page) && (old & PFL1_DIRTY) &&
!(args->memobj->flags & MF_ZEROFILL)) {
memobj_flush_page(args->memobj, phys, PTL1_SIZE);
}
@ -1265,6 +1276,9 @@ static int clear_range(struct page_table *pt, struct process_vm *vm,
}
args.free_physical = free_physical;
if (memobj && (memobj->flags & MF_DEV_FILE)) {
args.free_physical = 0;
}
args.memobj = memobj;
args.vm = vm;
@ -1773,9 +1787,19 @@ int ihk_mc_pt_set_pte(page_table_t pt, pte_t *ptep, size_t pgsize,
*ptep = phys | attr_to_l1attr(attr);
}
else if (pgsize == PTL2_SIZE) {
if (phys & (PTL2_SIZE - 1)) {
kprintf("%s: error: phys needs to be PTL2_SIZE aligned\n", __FUNCTION__);
error = -1;
goto out;
}
*ptep = phys | attr_to_l2attr(attr | PTATTR_LARGEPAGE);
}
else if ((pgsize == PTL3_SIZE) && (use_1gb_page)) {
if (phys & (PTL3_SIZE - 1)) {
kprintf("%s: error: phys needs to be PTL3_SIZE aligned\n", __FUNCTION__);
error = -1;
goto out;
}
*ptep = phys | attr_to_l3attr(attr | PTATTR_LARGEPAGE);
}
else {
@ -2213,30 +2237,28 @@ int strcpy_from_user(char *dst, const char *src)
return err;
}
long getlong_user(const long *p)
long getlong_user(long *dest, const long *p)
{
int error;
long l;
error = copy_from_user(&l, p, sizeof(l));
error = copy_from_user(dest, p, sizeof(long));
if (error) {
return error;
}
return l;
return 0;
}
int getint_user(const int *p)
int getint_user(int *dest, const int *p)
{
int error;
int i;
error = copy_from_user(&i, p, sizeof(i));
error = copy_from_user(dest, p, sizeof(int));
if (error) {
return error;
}
return i;
return 0;
}
int read_process_vm(struct process_vm *vm, void *kdst, const void *usrc, size_t siz)
@ -2402,7 +2424,7 @@ int patch_process_vm(struct process_vm *vm, void *udst, const void *ksrc, size_t
unsigned long pa;
void *va;
kprintf("patch_process_vm(%p,%p,%p,%lx)\n", vm, udst, ksrc, siz);
dkprintf("patch_process_vm(%p,%p,%p,%lx)\n", vm, udst, ksrc, siz);
if ((ustart < vm->region.user_start)
|| (vm->region.user_end <= ustart)
|| ((vm->region.user_end - ustart) < siz)) {
@ -2452,6 +2474,6 @@ int patch_process_vm(struct process_vm *vm, void *udst, const void *ksrc, size_t
remain -= cpsize;
}
kprintf("patch_process_vm(%p,%p,%p,%lx):%d\n", vm, udst, ksrc, siz, 0);
dkprintf("patch_process_vm(%p,%p,%p,%lx):%d\n", vm, udst, ksrc, siz, 0);
return 0;
} /* patch_process_vm() */

View File

@ -30,7 +30,7 @@ int ihk_mc_ikc_init_first_local(struct ihk_ikc_channel_desc *channel,
memset(channel, 0, sizeof(struct ihk_ikc_channel_desc));
mikc_queue_pages = ((num_processors * MASTER_IKCQ_PKTSIZE)
mikc_queue_pages = ((2 * num_processors * MASTER_IKCQ_PKTSIZE)
+ (PAGE_SIZE - 1)) / PAGE_SIZE;
/* Place both sides in this side */

View File

@ -70,71 +70,37 @@ static struct vdso vdso;
static size_t container_size = 0;
static ptrdiff_t vdso_offset;
/*
See dkprintf("BSP HW ID = %d, ", bsp_hw_id); (in ./mcos/kernel/ap.c)
extern int num_processors;
Core with BSP HW ID 224 is 1st logical core of last physical core.
It boots first and is given SW-ID of 0
int obtain_clone_cpuid(cpu_set_t *cpu_set) {
int min_queue_len = -1;
int cpu, min_cpu = -1;
Core with BSP HW ID 0 is 1st logical core of 1st physical core.
It boots next and is given SW-ID of 1.
Core with BSP HW ID 1 boots next and is given SW-ID of 2.
Core with BSP HW ID 2 boots next and is given SW-ID of 3.
Core with BSP HW ID 3 boots next and is given SW-ID of 4.
...
Core with BSP HW ID 220 is 1st logical core of 56-th physical core.
It boots next and is given SW-ID of 221.
Core with BSP HW ID 221 boots next and is given SW-ID of 222.
Core with BSP HW ID 222 boots next and is given SW-ID of 223.
Core with BSP HW ID 223 boots next and is given SW-ID of 224.
/* Find the first allowed core with the shortest run queue */
for (cpu = 0; cpu < num_processors; ++cpu) {
struct cpu_local_var *v;
unsigned long irqstate;
Core with BSP HW ID 225 is 2nd logical core of last physical core.
It boots next and is given SW-ID of 225.
Core with BSP HW ID 226 boots next and is given SW-ID of 226.
Core with BSP HW ID 227 boots next and is given SW-ID of 227.
*/
ihk_spinlock_t cpuid_head_lock = 0;
static int cpuid_head = 0;
if (!CPU_ISSET(cpu, cpu_set)) continue;
/* archtecture-depended syscall handlers */
int obtain_clone_cpuid() {
/* see above on BSP HW ID */
struct ihk_mc_cpu_info *cpu_info = ihk_mc_get_cpu_info();
int cpuid, nretry = 0;
ihk_mc_spinlock_lock_noirq(&cpuid_head_lock);
/* Always start from 0 to fill in LWK cores linearily */
cpuid_head = 0;
retry:
/* Try to obtain next physical core */
cpuid = cpuid_head;
v = get_cpu_local_var(cpu);
irqstate = ihk_mc_spinlock_lock(&v->runq_lock);
if (min_queue_len == -1 || v->runq_len < min_queue_len) {
min_queue_len = v->runq_len;
min_cpu = cpu;
}
ihk_mc_spinlock_unlock(&v->runq_lock, irqstate);
/* A hyper-threading core on the same physical core as
the parent process might be chosen. Use sched_setaffinity
if you want to skip that kind of busy physical core for
performance reason. */
cpuid_head += 1;
if(cpuid_head >= cpu_info->ncpus) {
cpuid_head = 0;
}
if (min_queue_len == 0)
break;
}
/* A hyper-threading core whose parent physical core has a
process on one of its hyper-threading core might
be chosen. Use sched_setaffinity if you want to skip that
kind of busy physical core for performance reason. */
if(get_cpu_local_var(cpuid)->status != CPU_STATUS_IDLE) {
nretry++;
if(nretry >= cpu_info->ncpus) {
cpuid = -1;
ihk_mc_spinlock_unlock_noirq(&cpuid_head_lock);
goto out;
}
goto retry;
}
get_cpu_local_var(cpuid)->status = CPU_STATUS_RESERVED;
ihk_mc_spinlock_unlock_noirq(&cpuid_head_lock);
out:
return cpuid;
if (min_cpu != -1) {
if (get_cpu_local_var(min_cpu)->status != CPU_STATUS_RESERVED)
get_cpu_local_var(min_cpu)->status = CPU_STATUS_RESERVED;
}
return min_cpu;
}
int
@ -1775,7 +1741,8 @@ int arch_map_vdso(struct process_vm *vm)
vrflags = VR_REMOTE;
vrflags |= VR_PROT_READ | VR_PROT_EXEC;
vrflags |= VRFLAG_PROT_TO_MAXPROT(vrflags);
error = add_process_memory_range(vm, (intptr_t)s, (intptr_t)e, NOPHYS, vrflags, NULL, 0, PAGE_SHIFT);
error = add_process_memory_range(vm, (intptr_t)s, (intptr_t)e,
NOPHYS, vrflags, NULL, 0, PAGE_SHIFT, NULL);
if (error) {
ekprintf("ERROR: adding memory range for vdso. %d\n", error);
goto out;
@ -1806,7 +1773,8 @@ int arch_map_vdso(struct process_vm *vm)
vrflags = VR_REMOTE;
vrflags |= VR_PROT_READ;
vrflags |= VRFLAG_PROT_TO_MAXPROT(vrflags);
error = add_process_memory_range(vm, (intptr_t)s, (intptr_t)e, NOPHYS, vrflags, NULL, 0, PAGE_SHIFT);
error = add_process_memory_range(vm, (intptr_t)s, (intptr_t)e,
NOPHYS, vrflags, NULL, 0, PAGE_SHIFT, NULL);
if (error) {
ekprintf("ERROR: adding memory range for vvar. %d\n", error);
goto out;

View File

@ -0,0 +1,67 @@
#!/usr/bin/expect
set INST_DIR "@prefix@"
spawn $INST_DIR/bin/eclair -d /tmp/mckernel.dump -k $INST_DIR/smp-x86/kernel/mckernel.img -i
set state "init"
set thread_id 0
expect {
"in ?? ()" {
switch -- $state {
"thread_chosen" {
set state "thread_skip"
}
"thread_bt" {
set state "thread_skip"
}
}
exp_continue
}
"(eclair) " {
switch -- $state {
"init" {
set state "threads_list"
send "info threads\r"
}
"threads_list" {
incr thread_id
set state "thread_chosen"
send "thread $thread_id\r"
}
"thread_skip" {
incr thread_id
set state "thread_chosen"
send "thread $thread_id\r"
}
"thread_chosen" {
set state "thread_bt"
send "bt\r"
}
}
exp_continue
}
"Type <return> to continue, or q <return> to quit" {
switch -- $state {
"threads_list" {
send "\r"
}
"thread_bt" {
send "\r"
}
"thread_skip" {
send "q\r"
}
}
exp_continue
}
" not known." {
expect "(eclair) " { send "quit\r" }
expect "Quit anyway? (y or n) " { send "y\r" }
exit 0
}
}

View File

@ -3,7 +3,7 @@ Description=irqbalance daemon
After=syslog.target
[Service]
EnvironmentFile=@ETCDIR@/irqbalance_mck
EnvironmentFile=/tmp/irqbalance_mck
ExecStart=/usr/sbin/irqbalance --foreground $IRQBALANCE_ARGS
[Install]

View File

@ -104,7 +104,7 @@ error_exit() {
;&
mcoverlayfs_loaded)
if [ "$enable_mcoverlay" == "yes" ]; then
rmmod mcoverlay
rmmod mcoverlay 2>/dev/null
fi
;&
linux_proc_bind_mounted)
@ -134,15 +134,7 @@ error_exit() {
fi
;&
mcctrl_loaded)
rmmod mcctrl || echo "warning: failed to remove mcctrl" >&2
;&
mem_reserved)
mem=`${SBINDIR}/ihkconfig 0 query mem`
if [ "${mem}" != "" ]; then
if ! ${SBINDIR}/ihkconfig 0 release mem $mem > /dev/null; then
echo "warning: failed to release memory" >&2
fi
fi
rmmod mcctrl 2>/dev/null || echo "warning: failed to remove mcctrl" >&2
;&
cpus_reserved)
cpus=`${SBINDIR}/ihkconfig 0 query cpu`
@ -152,11 +144,19 @@ error_exit() {
fi
fi
;&
mem_reserved)
mem=`${SBINDIR}/ihkconfig 0 query mem`
if [ "${mem}" != "" ]; then
if ! ${SBINDIR}/ihkconfig 0 release mem $mem > /dev/null; then
echo "warning: failed to release memory" >&2
fi
fi
;&
ihk_smp_loaded)
rmmod ihk_smp_x86 || echo "warning: failed to remove ihk_smp_x86" >&2
rmmod ihk_smp_x86 2>/dev/null || echo "warning: failed to remove ihk_smp_x86" >&2
;&
ihk_loaded)
rmmod ihk || echo "warning: failed to remove ihk" >&2
rmmod ihk 2>/dev/null || echo "warning: failed to remove ihk" >&2
;&
irqbalance_stopped)
if [ "`systemctl status irqbalance_mck.service 2> /dev/null |grep -E 'Active: active'`" != "" ]; then
@ -174,6 +174,11 @@ error_exit() {
fi
fi
;&
aslr_disabled)
if [ -f /tmp/mckernel_randomize_va_space ]; then
cat /tmp/mckernel_randomize_va_space > /proc/sys/kernel/randomize_va_space
fi
;&
initial)
# Nothing more to revert
;;
@ -225,17 +230,23 @@ if [ "$cpus" == "" ]; then
fi
fi
# Disable address space layout randomization
if [ -f /proc/sys/kernel/randomize_va_space ] && [ "`cat /proc/sys/kernel/randomize_va_space`" != "0" ]; then
cat /proc/sys/kernel/randomize_va_space > /tmp/mckernel_randomize_va_space
echo "0" > /proc/sys/kernel/randomize_va_space
fi
# Remove mcoverlay if loaded
if [ "$enable_mcoverlay" == "yes" ]; then
if [ "`lsmod | grep mcoverlay`" != "" ]; then
if grep mcoverlay /proc/modules &>/dev/null; then
if [ "`cat /proc/mounts | grep /tmp/mcos/mcos0_sys`" != "" ]; then umount -l /tmp/mcos/mcos0_sys; fi
if [ "`cat /proc/mounts | grep /tmp/mcos/mcos0_proc`" != "" ]; then umount -l /tmp/mcos/mcos0_proc; fi
if [ "`cat /proc/mounts | grep /tmp/mcos/linux_proc`" != "" ]; then umount -l /tmp/mcos/linux_proc; fi
if [ "`cat /proc/mounts | grep /tmp/mcos`" != "" ]; then umount -l /tmp/mcos; fi
if [ -e /tmp/mcos ]; then rm -rf /tmp/mcos; fi
if ! rmmod mcoverlay; then
if ! rmmod mcoverlay 2>/dev/null; then
echo "error: removing mcoverlay" >&2
error_exit "initial"
error_exit "aslr_disabled"
fi
fi
fi
@ -245,7 +256,7 @@ if [ "${irqbalance_used}" == "yes" ]; then
systemctl stop irqbalance_mck.service 2>/dev/null
if ! systemctl stop irqbalance.service 2>/dev/null ; then
echo "error: stopping irqbalance" >&2
error_exit "initial"
error_exit "aslr_disabled"
fi;
fi
@ -260,21 +271,26 @@ if [ ${LOGMODE} -ne 0 ]; then
fi
# Load IHK if not loaded
if [ "`lsmod | grep ihk`" == "" ]; then
if ! insmod ${KMODDIR}/ihk.ko; then
if ! grep -E 'ihk\s' /proc/modules &>/dev/null; then
if ! insmod ${KMODDIR}/ihk.ko 2>/dev/null; then
echo "error: loading ihk" >&2
error_exit "irqbalance_stopped"
fi
fi
# Increase swappiness so that we have better chance to allocate memory for IHK
echo 100 > /proc/sys/vm/swappiness
# Drop Linux caches to free memory
sync && echo 3 > /proc/sys/vm/drop_caches
# Merge free memory areas into large, physically contigous ones
echo 1 > /proc/sys/vm/compact_memory 2>/dev/null
sync
# Load IHK-SMP if not loaded and reserve CPUs and memory
if [ "`lsmod | grep ihk_smp_x86`" == "" ]; then
if ! grep ihk_smp_x86 /proc/modules &>/dev/null; then
ihk_irq=""
for i in `seq 64 255`; do
if [ ! -d /proc/irq/$i ] && [ "`cat /proc/interrupts | grep ":" | awk '{print $1}' | grep -o '[0-9]*' | grep -e '^$i$'`" == "" ]; then
@ -286,25 +302,38 @@ if [ "`lsmod | grep ihk_smp_x86`" == "" ]; then
echo "error: no IRQ available" >&2
error_exit "ihk_loaded"
fi
if ! insmod ${KMODDIR}/ihk-smp-x86.ko ihk_start_irq=$ihk_irq ihk_ikc_irq_core=$ihk_ikc_irq_core; then
if ! insmod ${KMODDIR}/ihk-smp-x86.ko ihk_start_irq=$ihk_irq ihk_ikc_irq_core=$ihk_ikc_irq_core 2>/dev/null; then
echo "error: loading ihk-smp-x86" >&2
error_exit "ihk_loaded"
fi
if ! ${SBINDIR}/ihkconfig 0 reserve cpu ${cpus}; then
echo "error: reserving CPUs" >&2;
error_exit "ihk_smp_loaded"
# Free MCDRAM (special case for OFP SNC-4 mode)
if [ "`hostname | grep "c[0-9][0-9][0-9][0-9].ofp"`" != "" ] && [ "`cat /sys/devices/system/node/online`" == "0-7" ]; then
for i in 4 5 6 7; do
find /sys/devices/system/node/node$i/memory*/ -name "online" | while read f; do
echo 0 > $f 2>&1 > /dev/null;
done
find /sys/devices/system/node/node$i/memory*/ -name "online" | while read f; do
echo 1 > $f 2>&1 > /dev/null;
done
done
fi
if ! ${SBINDIR}/ihkconfig 0 reserve mem ${mem}; then
echo "error: reserving memory" >&2
error_exit "cpus_reserved"
error_exit "ihk_smp_loaded"
fi
if ! ${SBINDIR}/ihkconfig 0 reserve cpu ${cpus}; then
echo "error: reserving CPUs" >&2;
error_exit "mem_reserved"
fi
fi
# Load mcctrl if not loaded
if [ "`lsmod | grep mcctrl`" == "" ]; then
if ! insmod ${KMODDIR}/mcctrl.ko; then
if ! grep mcctrl /proc/modules &>/dev/null; then
if ! insmod ${KMODDIR}/mcctrl.ko 2>/dev/null; then
echo "error: inserting mcctrl.ko" >&2
error_exit "mem_reserved"
error_exit "cpus_reserved"
fi
fi
@ -362,17 +391,21 @@ fi
# Overlay /proc, /sys with McKernel specific contents
if [ "$enable_mcoverlay" == "yes" ]; then
if [ ! -e /tmp/mcos ]; then mkdir -p /tmp/mcos; fi
if [ ! -e /tmp/mcos ]; then
mkdir -p /tmp/mcos;
fi
if ! mount -t tmpfs tmpfs /tmp/mcos; then
echo "error: mount /tmp/mcos" >&2
error_exit "tmp_mcos_created"
fi
if [ ! -e /tmp/mcos/linux_proc ]; then mkdir -p /tmp/mcos/linux_proc; fi
if [ ! -e /tmp/mcos/linux_proc ]; then
mkdir -p /tmp/mcos/linux_proc;
fi
if ! mount --bind /proc /tmp/mcos/linux_proc; then
echo "error: mount /tmp/mcos/linux_proc" >&2
error_exit "tmp_mcos_mounted"
fi
if ! insmod ${KMODDIR}/mcoverlay.ko; then
if ! insmod ${KMODDIR}/mcoverlay.ko 2>/dev/null; then
echo "error: inserting mcoverlay.ko" >&2
error_exit "linux_proc_bind_mounted"
fi
@ -380,9 +413,15 @@ if [ "$enable_mcoverlay" == "yes" ]; then
do
sleep 0.1
done
if [ ! -e /tmp/mcos/mcos0_proc ]; then mkdir -p /tmp/mcos/mcos0_proc; fi
if [ ! -e /tmp/mcos/mcos0_proc_upper ]; then mkdir -p /tmp/mcos/mcos0_proc_upper; fi
if [ ! -e /tmp/mcos/mcos0_proc_work ]; then mkdir -p /tmp/mcos/mcos0_proc_work; fi
if [ ! -e /tmp/mcos/mcos0_proc ]; then
mkdir -p /tmp/mcos/mcos0_proc;
fi
if [ ! -e /tmp/mcos/mcos0_proc_upper ]; then
mkdir -p /tmp/mcos/mcos0_proc_upper;
fi
if [ ! -e /tmp/mcos/mcos0_proc_work ]; then
mkdir -p /tmp/mcos/mcos0_proc_work;
fi
if ! mount -t mcoverlay mcoverlay -o lowerdir=/proc/mcos0:/proc,upperdir=/tmp/mcos/mcos0_proc_upper,workdir=/tmp/mcos/mcos0_proc_work,nocopyupw,nofscheck /tmp/mcos/mcos0_proc; then
echo "error: mounting /tmp/mcos/mcos0_proc" >&2
error_exit "mcoverlayfs_loaded"
@ -394,9 +433,15 @@ if [ "$enable_mcoverlay" == "yes" ]; then
do
sleep 0.1
done
if [ ! -e /tmp/mcos/mcos0_sys ]; then mkdir -p /tmp/mcos/mcos0_sys; fi
if [ ! -e /tmp/mcos/mcos0_sys_upper ]; then mkdir -p /tmp/mcos/mcos0_sys_upper; fi
if [ ! -e /tmp/mcos/mcos0_sys_work ]; then mkdir -p /tmp/mcos/mcos0_sys_work; fi
if [ ! -e /tmp/mcos/mcos0_sys ]; then
mkdir -p /tmp/mcos/mcos0_sys;
fi
if [ ! -e /tmp/mcos/mcos0_sys_upper ]; then
mkdir -p /tmp/mcos/mcos0_sys_upper;
fi
if [ ! -e /tmp/mcos/mcos0_sys_work ]; then
mkdir -p /tmp/mcos/mcos0_sys_work;
fi
if ! mount -t mcoverlay mcoverlay -o lowerdir=/sys/devices/virtual/mcos/mcos0/sys:/sys,upperdir=/tmp/mcos/mcos0_sys_upper,workdir=/tmp/mcos/mcos0_sys_work,nocopyupw,nofscheck /tmp/mcos/mcos0_sys; then
echo "error: mount /tmp/mcos/mcos0_sys" >&2
error_exit "mcos_proc_mounted"
@ -404,6 +449,8 @@ if [ "$enable_mcoverlay" == "yes" ]; then
# TODO: How de we revert this in case of failure??
mount --make-rprivate /sys
touch /tmp/mcos/mcos0_proc/mckernel
rm -rf /tmp/mcos/mcos0_sys/setup_complete
# Hide NUMA related files which are outside the LWK partition
@ -460,8 +507,9 @@ if [ "${irqbalance_used}" == "yes" ]; then
banirq=`cat /proc/interrupts| perl -e 'while(<>) { if(/^\s*(\d+).*IHK\-SMP\s*$/) {print $1;}}'`
sed "s/%mask%/$smp_affinity_mask/g" $ETCDIR/irqbalance_mck.in | sed "s/%banirq%/$banirq/g" > $ETCDIR/irqbalance_mck
if ! systemctl link $ETCDIR/irqbalance_mck.service >/dev/null 2>/dev/null; then
sed "s/%mask%/$smp_affinity_mask/g" $ETCDIR/irqbalance_mck.in | sed "s/%banirq%/$banirq/g" > /tmp/irqbalance_mck
systemctl disable irqbalance_mck.service >/dev/null 2>/dev/null
if ! systemctl link $ETCDIR/irqbalance_mck.service >/dev/null 2>/dev/null; then
echo "error: linking irqbalance_mck" >&2
error_exit "mcos_sys_mounted"
fi

View File

@ -18,7 +18,7 @@ mem=""
cpus=""
# No SMP module? Exit.
if [ "`lsmod | grep ihk_smp_x86`" == "" ]; then exit 0; fi
if ! grep ihk_smp_x86 /proc/modules &>/dev/null; then exit 0; fi
# Destroy all LWK instances
if ls /dev/mcos* 1>/dev/null 2>&1; then
@ -59,36 +59,36 @@ if [ "${mem}" != "" ]; then
fi
# Remove delegator if loaded
if [ "`lsmod | grep mcctrl`" != "" ]; then
if ! rmmod mcctrl; then
if grep mcctrl /proc/modules &>/dev/null; then
if ! rmmod mcctrl 2>/dev/null; then
echo "error: removing mcctrl" >&2
exit 1
fi
fi
# Remove mcoverlay if loaded
if [ "`lsmod | grep mcoverlay`" != "" ]; then
if grep mcoverlay /proc/modules &>/dev/null; then
if [ "`cat /proc/mounts | grep /tmp/mcos/mcos0_sys`" != "" ]; then umount -l /tmp/mcos/mcos0_sys; fi
if [ "`cat /proc/mounts | grep /tmp/mcos/mcos0_proc`" != "" ]; then umount -l /tmp/mcos/mcos0_proc; fi
if [ "`cat /proc/mounts | grep /tmp/mcos/linux_proc`" != "" ]; then umount -l /tmp/mcos/linux_proc; fi
if [ "`cat /proc/mounts | grep /tmp/mcos`" != "" ]; then umount -l /tmp/mcos; fi
if [ -e /tmp/mcos ]; then rm -rf /tmp/mcos; fi
if ! rmmod mcoverlay; then
if ! rmmod mcoverlay 2>/dev/null; then
echo "warning: failed to remove mcoverlay" >&2
fi
fi
# Remove SMP module
if [ "`lsmod | grep ihk_smp_x86`" != "" ]; then
if ! rmmod ihk_smp_x86; then
if grep ihk_smp_x86 /proc/modules &>/dev/null; then
if ! rmmod ihk_smp_x86 2>/dev/null; then
echo "error: removing ihk_smp_x86" >&2
exit 1
fi
fi
# Remove core module
if [ "`lsmod | grep -E 'ihk\s' | awk '{print $1}'`" != "" ]; then
if ! rmmod ihk; then
if grep -E 'ihk\s' /proc/modules &>/dev/null; then
if ! rmmod ihk 2>/dev/null; then
echo "error: removing ihk" >&2
exit 1
fi
@ -113,3 +113,10 @@ if [ "`systemctl status irqbalance_mck.service 2> /dev/null |grep -E 'Active: ac
fi
fi
# Re-enable ASLR
if [ -f /tmp/mckernel_randomize_va_space ]; then
cat /tmp/mckernel_randomize_va_space > /proc/sys/kernel/randomize_va_space
fi
# Set back default swappiness
echo 60 > /proc/sys/vm/swappiness

3
configure vendored
View File

@ -3918,7 +3918,7 @@ fi
ac_config_headers="$ac_config_headers executer/config.h"
ac_config_files="$ac_config_files Makefile executer/user/Makefile executer/kernel/mcctrl/Makefile executer/kernel/mcctrl/arch/x86_64/Makefile executer/kernel/mcoverlayfs/Makefile executer/kernel/mcoverlayfs/linux-3.10.0-327.36.1.el7/Makefile executer/kernel/mcoverlayfs/linux-4.0.9/Makefile executer/kernel/mcoverlayfs/linux-4.6.7/Makefile kernel/Makefile kernel/Makefile.build arch/x86/tools/mcreboot-attached-mic.sh arch/x86/tools/mcshutdown-attached-mic.sh arch/x86/tools/mcreboot-builtin-x86.sh arch/x86/tools/mcreboot-smp-x86.sh arch/x86/tools/mcstop+release-smp-x86.sh arch/x86/tools/mcshutdown-builtin-x86.sh arch/x86/tools/mcreboot.1:arch/x86/tools/mcreboot.1in arch/x86/tools/irqbalance_mck.service arch/x86/tools/irqbalance_mck.in"
ac_config_files="$ac_config_files Makefile executer/user/Makefile executer/kernel/mcctrl/Makefile executer/kernel/mcctrl/arch/x86_64/Makefile executer/kernel/mcoverlayfs/Makefile executer/kernel/mcoverlayfs/linux-3.10.0-327.36.1.el7/Makefile executer/kernel/mcoverlayfs/linux-4.0.9/Makefile executer/kernel/mcoverlayfs/linux-4.6.7/Makefile kernel/Makefile kernel/Makefile.build arch/x86/tools/mcreboot-attached-mic.sh arch/x86/tools/mcshutdown-attached-mic.sh arch/x86/tools/mcreboot-builtin-x86.sh arch/x86/tools/mcreboot-smp-x86.sh arch/x86/tools/mcstop+release-smp-x86.sh arch/x86/tools/eclair-dump-backtrace.exp arch/x86/tools/mcshutdown-builtin-x86.sh arch/x86/tools/mcreboot.1:arch/x86/tools/mcreboot.1in arch/x86/tools/irqbalance_mck.service arch/x86/tools/irqbalance_mck.in"
if test "x$enable_dcfa" = xyes; then :
@ -4632,6 +4632,7 @@ do
"arch/x86/tools/mcreboot-builtin-x86.sh") CONFIG_FILES="$CONFIG_FILES arch/x86/tools/mcreboot-builtin-x86.sh" ;;
"arch/x86/tools/mcreboot-smp-x86.sh") CONFIG_FILES="$CONFIG_FILES arch/x86/tools/mcreboot-smp-x86.sh" ;;
"arch/x86/tools/mcstop+release-smp-x86.sh") CONFIG_FILES="$CONFIG_FILES arch/x86/tools/mcstop+release-smp-x86.sh" ;;
"arch/x86/tools/eclair-dump-backtrace.exp") CONFIG_FILES="$CONFIG_FILES arch/x86/tools/eclair-dump-backtrace.exp" ;;
"arch/x86/tools/mcshutdown-builtin-x86.sh") CONFIG_FILES="$CONFIG_FILES arch/x86/tools/mcshutdown-builtin-x86.sh" ;;
"arch/x86/tools/mcreboot.1") CONFIG_FILES="$CONFIG_FILES arch/x86/tools/mcreboot.1:arch/x86/tools/mcreboot.1in" ;;
"arch/x86/tools/irqbalance_mck.service") CONFIG_FILES="$CONFIG_FILES arch/x86/tools/irqbalance_mck.service" ;;

View File

@ -315,6 +315,7 @@ AC_CONFIG_FILES([
arch/x86/tools/mcreboot-builtin-x86.sh
arch/x86/tools/mcreboot-smp-x86.sh
arch/x86/tools/mcstop+release-smp-x86.sh
arch/x86/tools/eclair-dump-backtrace.exp
arch/x86/tools/mcshutdown-builtin-x86.sh
arch/x86/tools/mcreboot.1:arch/x86/tools/mcreboot.1in
arch/x86/tools/irqbalance_mck.service

View File

@ -42,6 +42,7 @@
#define MCEXEC_UP_GET_CRED 0x30a0290a
#define MCEXEC_UP_GET_CREDV 0x30a0290b
#define MCEXEC_UP_GET_NODES 0x30a0290c
#define MCEXEC_UP_GET_CPUSET 0x30a0290d
#define MCEXEC_UP_PREPARE_DMA 0x30a02910
#define MCEXEC_UP_FREE_DMA 0x30a02911
@ -79,6 +80,18 @@ struct program_image_section {
#define SHELL_PATH_MAX_LEN 1024
#define MCK_RLIM_MAX 20
struct get_cpu_set_arg {
int nr_processes;
void *cpu_set;
size_t cpu_set_size; // Size in bytes
int *target_core;
int *mcexec_linux_numa; // NUMA domain to bind mcexec to
};
#define PLD_CPU_SET_MAX_CPUS 1024
typedef unsigned long __cpu_set_unit;
#define PLD_CPU_SET_SIZE (PLD_CPU_SET_MAX_CPUS / (8 * sizeof(__cpu_set_unit)))
struct program_load_desc {
int num_sections;
int status;
@ -108,6 +121,7 @@ struct program_load_desc {
struct rlimit rlimit[MCK_RLIM_MAX];
unsigned long interp_align;
char shell_path[SHELL_PATH_MAX_LEN];
__cpu_set_unit cpu_set[PLD_CPU_SET_SIZE];
struct program_image_section sections[0];
};

View File

@ -64,6 +64,8 @@ reserve_user_space(struct mcctrl_usrdata *usrdata, unsigned long *startp, unsign
unsigned long start = 0L;
unsigned long end;
mutex_lock(&usrdata->reserve_lock);
#define DESIRED_USER_END 0x800000000000
#define GAP_FOR_MCEXEC 0x008000000000UL
end = DESIRED_USER_END;
@ -81,6 +83,8 @@ reserve_user_space(struct mcctrl_usrdata *usrdata, unsigned long *startp, unsign
up_write(&current->mm->mmap_sem);
#endif
mutex_unlock(&usrdata->reserve_lock);
if (IS_ERR_VALUE(start)) {
return start;
}

View File

@ -34,6 +34,7 @@
#include <linux/version.h>
#include <linux/semaphore.h>
#include <linux/interrupt.h>
#include <linux/cpumask.h>
#include <asm/uaccess.h>
#include <asm/delay.h>
#include <asm/io.h>
@ -81,17 +82,18 @@ int (*mcctrl_sys_umount)(char *dir_name, int flags) = sys_umount;
#endif
#endif
//static DECLARE_WAIT_QUEUE_HEAD(wq_prepare);
//extern struct mcctrl_channel *channels;
int mcctrl_ikc_set_recv_cpu(ihk_os_t os, int cpu);
static long mcexec_prepare_image(ihk_os_t os,
struct program_load_desc * __user udesc)
{
struct program_load_desc *desc, *pdesc;
struct program_load_desc *desc = NULL;
struct program_load_desc *pdesc = NULL;
struct ikc_scd_packet isp;
void *args, *envs;
long ret = 0;
void *args = NULL;
void *envs = NULL;
int ret = 0;
struct mcctrl_usrdata *usrdata = ihk_host_os_get_usrdata(os);
struct mcctrl_per_proc_data *ppd = NULL;
int num_sections;
@ -107,48 +109,59 @@ static long mcexec_prepare_image(ihk_os_t os,
sizeof(struct program_load_desc))) {
printk("%s: error: copying program_load_desc\n",
__FUNCTION__);
kfree(desc);
return -EFAULT;
ret = -EFAULT;
goto free_out;
}
ppd = mcctrl_get_per_proc_data(usrdata, desc->pid);
if (!ppd) {
printk("%s: ERROR: no per process data for PID %d\n",
__FUNCTION__, desc->pid);
ret = -EINVAL;
goto free_out;
}
num_sections = desc->num_sections;
if (num_sections <= 0 || num_sections > 16) {
printk("# of sections: %d\n", num_sections);
return -EINVAL;
printk("%s: ERROR: # of sections: %d\n",
__FUNCTION__, num_sections);
ret = -EINVAL;
goto put_and_free_out;
}
pdesc = kmalloc(sizeof(struct program_load_desc) +
sizeof(struct program_image_section)
* num_sections, GFP_KERNEL);
memcpy(pdesc, desc, sizeof(struct program_load_desc));
if (copy_from_user(pdesc->sections, udesc->sections,
sizeof(struct program_image_section)
* num_sections)) {
kfree(desc);
kfree(pdesc);
return -EFAULT;
ret = -EFAULT;
goto put_and_free_out;
}
kfree(desc);
desc = NULL;
pdesc->pid = task_tgid_vnr(current);
if (reserve_user_space(usrdata, &pdesc->user_start, &pdesc->user_end)) {
kfree(pdesc);
return -ENOMEM;
ret = -ENOMEM;
goto put_and_free_out;
}
args = kmalloc(pdesc->args_len, GFP_KERNEL);
if (copy_from_user(args, pdesc->args, pdesc->args_len)) {
kfree(args);
kfree(pdesc);
return -EFAULT;
ret = -EFAULT;
goto put_and_free_out;
}
envs = kmalloc(pdesc->envs_len, GFP_KERNEL);
if (copy_from_user(envs, pdesc->envs, pdesc->envs_len)) {
ret = -EFAULT;
goto free_out;
goto put_and_free_out;
}
pdesc->args = (void*)virt_to_phys(args);
@ -166,20 +179,18 @@ static long mcexec_prepare_image(ihk_os_t os,
dprintk("%p (%lx)\n", pdesc, isp.arg);
pdesc->status = 0;
mb();
mcctrl_ikc_send(os, pdesc->cpu, &isp);
while (wait_event_interruptible(usrdata->wq_prepare, pdesc->status) != 0);
if(pdesc->err < 0){
ret = pdesc->err;
goto free_out;
ret = wait_event_interruptible(ppd->wq_prepare, pdesc->status);
if (ret < 0) {
printk("%s: ERROR after wait: %d\n", __FUNCTION__, ret);
goto put_and_free_out;
}
ppd = mcctrl_get_per_proc_data(usrdata, task_tgid_vnr(current));
if (!ppd) {
printk("ERROR: no per process data for PID %d\n", task_tgid_vnr(current));
ret = -EINVAL;
goto free_out;
if (pdesc->err < 0) {
ret = pdesc->err;
goto put_and_free_out;
}
/* Update rpgtable */
@ -188,7 +199,7 @@ static long mcexec_prepare_image(ihk_os_t os,
if (copy_to_user(udesc, pdesc, sizeof(struct program_load_desc) +
sizeof(struct program_image_section) * num_sections)) {
ret = -EFAULT;
goto free_out;
goto put_and_free_out;
}
dprintk("%s: pid %d, rpgtable: 0x%lx added\n",
@ -196,10 +207,13 @@ static long mcexec_prepare_image(ihk_os_t os,
ret = 0;
put_and_free_out:
mcctrl_put_per_proc_data(ppd);
free_out:
kfree(args);
kfree(pdesc);
kfree(envs);
kfree(desc);
return ret;
}
@ -292,8 +306,9 @@ int mcexec_transfer_image(ihk_os_t os, struct remote_transfer *__user upt)
//extern unsigned long last_thread_exec;
struct handlerinfo {
int pid;
struct release_handler_info {
int pid;
int cpu;
};
static long mcexec_debug_log(ihk_os_t os, unsigned long arg)
@ -307,20 +322,35 @@ static long mcexec_debug_log(ihk_os_t os, unsigned long arg)
return 0;
}
int mcexec_close_exec(ihk_os_t os);
static void release_handler(ihk_os_t os, void *param)
{
struct handlerinfo *info = param;
struct release_handler_info *info = param;
struct ikc_scd_packet isp;
int os_ind = ihk_host_os_get_index(os);
struct mcctrl_usrdata *usrdata = ihk_host_os_get_usrdata(os);
struct mcctrl_per_proc_data *ppd = NULL;
ppd = mcctrl_get_per_proc_data(usrdata, info->pid);
if (ppd) {
mcctrl_put_per_proc_data(ppd);
mcexec_close_exec(os);
}
memset(&isp, '\0', sizeof isp);
isp.msg = SCD_MSG_CLEANUP_PROCESS;
isp.pid = info->pid;
mcctrl_ikc_send(os, 0, &isp);
if(os_ind >= 0)
dprintk("%s: SCD_MSG_CLEANUP_PROCESS, info: %p, cpu: %d\n",
__FUNCTION__, info, info->cpu);
mcctrl_ikc_send(os, info->cpu, &isp);
if (os_ind >= 0) {
delete_pid_entry(os_ind, info->pid);
}
kfree(param);
dprintk("%s: SCD_MSG_CLEANUP_PROCESS, info: %p OK\n",
__FUNCTION__, info);
}
static long mcexec_newprocess(ihk_os_t os,
@ -328,12 +358,12 @@ static long mcexec_newprocess(ihk_os_t os,
struct file *file)
{
struct newprocess_desc desc;
struct handlerinfo *info;
struct release_handler_info *info;
if (copy_from_user(&desc, udesc, sizeof(struct newprocess_desc))) {
return -EFAULT;
}
info = kmalloc(sizeof(struct handlerinfo), GFP_KERNEL);
info = kmalloc(sizeof(struct release_handler_info), GFP_KERNEL);
info->pid = desc.pid;
ihk_os_register_release_handler(file, release_handler, info);
return 0;
@ -347,7 +377,7 @@ static long mcexec_start_image(ihk_os_t os,
struct ikc_scd_packet isp;
struct mcctrl_channel *c;
struct mcctrl_usrdata *usrdata = ihk_host_os_get_usrdata(os);
struct handlerinfo *info;
struct release_handler_info *info;
desc = kmalloc(sizeof(*desc), GFP_KERNEL);
if (!desc) {
@ -362,8 +392,9 @@ static long mcexec_start_image(ihk_os_t os,
return -EFAULT;
}
info = kmalloc(sizeof(struct handlerinfo), GFP_KERNEL);
info = kmalloc(sizeof(struct release_handler_info), GFP_KERNEL);
info->pid = desc->pid;
info->cpu = desc->cpu;
ihk_os_register_release_handler(file, release_handler, info);
c = usrdata->channels + desc->cpu;
@ -414,7 +445,7 @@ static long mcexec_send_signal(ihk_os_t os, struct signal_desc *sigparam)
isp.pid = sig.pid;
isp.arg = virt_to_phys(msigp);
if((rc = mcctrl_ikc_send(os, sig.cpu, &isp)) < 0){
if ((rc = mcctrl_ikc_send(os, sig.cpu, &isp)) < 0) {
printk("mcexec_send_signal: mcctrl_ikc_send ret=%d\n", rc);
return rc;
}
@ -460,6 +491,236 @@ static long mcexec_get_nodes(ihk_os_t os)
return usrdata->mem_info->n_numa_nodes;
}
extern int linux_numa_2_mckernel_numa(struct mcctrl_usrdata *udp, int numa_id);
extern int mckernel_cpu_2_linux_cpu(struct mcctrl_usrdata *udp, int cpu_id);
static long mcexec_get_cpuset(ihk_os_t os, unsigned long arg)
{
struct mcctrl_usrdata *udp = ihk_host_os_get_usrdata(os);
struct mcctrl_part_exec *pe;
struct get_cpu_set_arg req;
struct cpu_topology *cpu_top, *cpu_top_i;
struct cache_topology *cache_top;
int cpu, cpus_assigned, cpus_to_assign, cpu_prev;
int ret = 0;
int mcexec_linux_numa;
cpumask_t cpus_used;
cpumask_t cpus_to_use;
struct mcctrl_per_proc_data *ppd;
if (!udp) {
return -EINVAL;
}
/* Look up per-process structure */
ppd = mcctrl_get_per_proc_data(udp, task_tgid_vnr(current));
if (!ppd) {
return -EINVAL;
}
pe = &udp->part_exec;
if (copy_from_user(&req, (void *)arg, sizeof(req))) {
printk("%s: error copying user request\n", __FUNCTION__);
ret = -EINVAL;
goto put_and_unlock_out;
}
mutex_lock(&pe->lock);
memcpy(&cpus_used, &pe->cpus_used, sizeof(cpumask_t));
memset(&cpus_to_use, 0, sizeof(cpus_to_use));
/* First process to enter CPU partitioning */
if (pe->nr_processes == -1) {
pe->nr_processes = req.nr_processes;
pe->nr_processes_left = req.nr_processes;
dprintk("%s: nr_processes: %d (partitioned exec starts)\n",
__FUNCTION__,
pe->nr_processes);
}
if (pe->nr_processes != req.nr_processes) {
printk("%s: error: requested number of processes"
" doesn't match current partitioned execution\n",
__FUNCTION__);
ret = -EINVAL;
goto put_and_unlock_out;
}
--pe->nr_processes_left;
dprintk("%s: nr_processes: %d, nr_processes_left: %d\n",
__FUNCTION__,
pe->nr_processes,
pe->nr_processes_left);
cpus_to_assign = udp->cpu_info->n_cpus / req.nr_processes;
/* Find the first unused CPU */
cpu = cpumask_next_zero(-1, &cpus_used);
if (cpu >= udp->cpu_info->n_cpus) {
printk("%s: error: no more CPUs available\n",
__FUNCTION__);
ret = -EINVAL;
goto put_and_unlock_out;
}
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4,1,0)
cpumask_set_cpu(cpu, &cpus_used);
cpumask_set_cpu(cpu, &cpus_to_use);
#else
cpu_set(cpu, cpus_used);
cpu_set(cpu, cpus_to_use);
#endif
cpu_prev = cpu;
dprintk("%s: CPU %d assigned (first)\n", __FUNCTION__, cpu);
for (cpus_assigned = 1; cpus_assigned < cpus_to_assign;
++cpus_assigned) {
int node;
cpu_top = NULL;
/* Find the topology object of the last core assigned */
list_for_each_entry(cpu_top_i, &udp->cpu_topology_list, chain) {
if (cpu_top_i->mckernel_cpu_id == cpu_prev) {
cpu_top = cpu_top_i;
break;
}
}
if (!cpu_top) {
printk("%s: error: couldn't find CPU topology info\n",
__FUNCTION__);
ret = -EINVAL;
goto put_and_unlock_out;
}
/* Find a core sharing the same cache iterating caches from
* the most inner one outwards */
list_for_each_entry(cache_top, &cpu_top->cache_list, chain) {
for_each_cpu(cpu, &cache_top->shared_cpu_map) {
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4,1,0)
if (!cpumask_test_cpu(cpu, &cpus_used)) {
#else
if (!cpu_isset(cpu, cpus_used)) {
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4,1,0)
cpumask_set_cpu(cpu, &cpus_used);
cpumask_set_cpu(cpu, &cpus_to_use);
#else
cpu_set(cpu, cpus_used);
cpu_set(cpu, cpus_to_use);
#endif
cpu_prev = cpu;
dprintk("%s: CPU %d assigned (same cache L%lu)\n",
__FUNCTION__, cpu, cache_top->saved->level);
goto next_cpu;
}
}
}
/* No CPU? Find a core from the same NUMA node */
node = linux_numa_2_mckernel_numa(udp,
cpu_to_node(mckernel_cpu_2_linux_cpu(udp, cpu_prev)));
for_each_cpu_not(cpu, &cpus_used) {
/* Invalid CPU? */
if (cpu >= udp->cpu_info->n_cpus)
break;
/* Found one */
if (node == linux_numa_2_mckernel_numa(udp,
cpu_to_node(mckernel_cpu_2_linux_cpu(udp, cpu)))) {
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4,1,0)
cpumask_set_cpu(cpu, &cpus_used);
cpumask_set_cpu(cpu, &cpus_to_use);
#else
cpu_set(cpu, cpus_used);
cpu_set(cpu, cpus_to_use);
#endif
cpu_prev = cpu;
dprintk("%s: CPU %d assigned (same NUMA)\n",
__FUNCTION__, cpu);
goto next_cpu;
}
}
/* No CPU? Simply find the next unused one */
cpu = cpumask_next_zero(-1, &cpus_used);
if (cpu >= udp->cpu_info->n_cpus) {
printk("%s: error: no more CPUs available\n",
__FUNCTION__);
ret = -EINVAL;
goto put_and_unlock_out;
}
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4,1,0)
cpumask_set_cpu(cpu, &cpus_used);
cpumask_set_cpu(cpu, &cpus_to_use);
#else
cpu_set(cpu, cpus_used);
cpu_set(cpu, cpus_to_use);
#endif
cpu_prev = cpu;
dprintk("%s: CPU %d assigned (unused)\n",
__FUNCTION__, cpu);
next_cpu:
continue;
}
/* Found all cores, let user know */
if (copy_to_user(req.cpu_set, &cpus_to_use,
(req.cpu_set_size < sizeof(cpus_to_use) ?
req.cpu_set_size : sizeof(cpus_to_use)))) {
printk("%s: error copying mask to user\n", __FUNCTION__);
ret = -EINVAL;
goto put_and_unlock_out;
}
/* Copy IKC target core and mcexec Linux NUMA id */
cpu = cpumask_next(-1, &cpus_to_use);
if (copy_to_user(req.target_core, &cpu, sizeof(cpu))) {
printk("%s: error copying target core to user\n",
__FUNCTION__);
ret = -EINVAL;
goto put_and_unlock_out;
}
mcexec_linux_numa = cpu_to_node(mckernel_cpu_2_linux_cpu(udp, cpu));
if (copy_to_user(req.mcexec_linux_numa, &mcexec_linux_numa,
sizeof(mcexec_linux_numa))) {
printk("%s: error copying mcexec Linux NUMA id\n",
__FUNCTION__);
ret = -EINVAL;
goto put_and_unlock_out;
}
/* Save in per-process structure */
memcpy(&ppd->cpu_set, &cpus_to_use, sizeof(cpumask_t));
ppd->ikc_target_cpu = cpu;
/* Commit used cores to OS structure */
memcpy(&pe->cpus_used, &cpus_used, sizeof(cpus_used));
/* Reset if last process */
if (pe->nr_processes_left == 0) {
dprintk("%s: nr_processes: %d (partitioned exec ends)\n",
__FUNCTION__,
pe->nr_processes);
pe->nr_processes = -1;
memset(&pe->cpus_used, 0, sizeof(pe->cpus_used));
}
ret = 0;
put_and_unlock_out:
mcctrl_put_per_proc_data(ppd);
mutex_unlock(&pe->lock);
return ret;
}
int mcctrl_add_per_proc_data(struct mcctrl_usrdata *ud, int pid,
struct mcctrl_per_proc_data *ppd)
{
@ -484,34 +745,10 @@ out:
return ret;
}
int mcctrl_delete_per_proc_data(struct mcctrl_usrdata *ud, int pid)
{
struct mcctrl_per_proc_data *ppd_iter, *ppd = NULL;
int hash = (pid & MCCTRL_PER_PROC_DATA_HASH_MASK);
int ret = 0;
unsigned long flags;
write_lock_irqsave(&ud->per_proc_data_hash_lock[hash], flags);
list_for_each_entry(ppd_iter, &ud->per_proc_data_hash[hash], hash) {
if (ppd_iter->pid == pid) {
ppd = ppd_iter;
break;
}
}
if (!ppd) {
ret = -EINVAL;
goto out;
}
list_del(&ppd->hash);
out:
write_unlock_irqrestore(&ud->per_proc_data_hash_lock[hash], flags);
return ret;
}
inline struct mcctrl_per_proc_data *mcctrl_get_per_proc_data(
/* NOTE: per-process data is refcounted.
* For every get call the user should call put. */
struct mcctrl_per_proc_data *mcctrl_get_per_proc_data(
struct mcctrl_usrdata *ud, int pid)
{
struct mcctrl_per_proc_data *ppd_iter, *ppd = NULL;
@ -520,7 +757,6 @@ inline struct mcctrl_per_proc_data *mcctrl_get_per_proc_data(
/* Check if data for this process exists and return it */
read_lock_irqsave(&ud->per_proc_data_hash_lock[hash], flags);
list_for_each_entry(ppd_iter, &ud->per_proc_data_hash[hash], hash) {
if (ppd_iter->pid == pid) {
ppd = ppd_iter;
@ -528,10 +764,57 @@ inline struct mcctrl_per_proc_data *mcctrl_get_per_proc_data(
}
}
if (ppd) {
atomic_inc(&ppd->refcount);
}
read_unlock_irqrestore(&ud->per_proc_data_hash_lock[hash], flags);
return ppd;
}
/* Drop reference. If zero, remove and deallocate */
void mcctrl_put_per_proc_data(struct mcctrl_per_proc_data *ppd)
{
int hash;
unsigned long flags;
int i;
if (!ppd)
return;
if (!atomic_dec_and_test(&ppd->refcount))
return;
dprintk("%s: deallocating PPD for pid %d\n", __FUNCTION__, ppd->pid);
hash = (ppd->pid & MCCTRL_PER_PROC_DATA_HASH_MASK);
write_lock_irqsave(&ppd->ud->per_proc_data_hash_lock[hash], flags);
list_del(&ppd->hash);
write_unlock_irqrestore(&ppd->ud->per_proc_data_hash_lock[hash], flags);
for (i = 0; i < MCCTRL_PER_THREAD_DATA_HASH_SIZE; i++) {
struct mcctrl_per_thread_data *ptd;
struct mcctrl_per_thread_data *next;
struct ikc_scd_packet *packet;
list_for_each_entry_safe(ptd, next,
ppd->per_thread_data_hash + i, hash) {
packet = ptd->data;
list_del(&ptd->hash);
kfree(ptd);
__return_syscall(ppd->ud->os, packet, -EINTR,
task_pid_vnr(current));
ihk_ikc_release_packet(
(struct ihk_ikc_free_packet *)packet,
(ppd->ud->channels + packet->ref)->c);
}
}
kfree(ppd);
}
/*
* Called indirectly from the IKC message handler.
*/
@ -544,7 +827,7 @@ int mcexec_syscall(struct mcctrl_usrdata *ud, struct ikc_scd_packet *packet)
unsigned long flags;
struct mcctrl_per_proc_data *ppd;
/* Look up per-process structure */
/* Get a reference to per-process structure */
ppd = mcctrl_get_per_proc_data(ud, pid);
if (unlikely(!ppd)) {
@ -570,7 +853,7 @@ int mcexec_syscall(struct mcctrl_usrdata *ud, struct ikc_scd_packet *packet)
/* Is this a request for a specific thread? See if it's waiting */
if (unlikely(packet->req.ttid)) {
list_for_each_entry(wqhln_iter, &ppd->wq_list_exact, list) {
if (packet->req.ttid != task_pid_vnr(wqhln_iter->task))
if (packet->req.ttid != wqhln_iter->rtid)
continue;
wqhln = wqhln_iter;
@ -609,8 +892,10 @@ retry_alloc:
wqhln->packet = packet;
wqhln->req = 1;
wake_up(&wqhln->wq_syscall);
ihk_ikc_spinlock_unlock(&ppd->wq_list_lock, flags);
wake_up(&wqhln->wq_syscall);
mcctrl_put_per_proc_data(ppd);
return 0;
}
@ -628,7 +913,7 @@ int mcexec_wait_syscall(ihk_os_t os, struct syscall_wait_desc *__user req)
unsigned long irqflags;
struct mcctrl_per_proc_data *ppd;
/* Look up per-process structure */
/* Get a reference to per-process structure */
ppd = mcctrl_get_per_proc_data(usrdata, task_tgid_vnr(current));
if (unlikely(!ppd)) {
@ -641,7 +926,8 @@ int mcexec_wait_syscall(ihk_os_t os, struct syscall_wait_desc *__user req)
if (packet) {
printk("%s: ERROR: packet %p is already registered for thread %d\n",
__FUNCTION__, packet, task_pid_vnr(current));
return -EBUSY;
ret = -EBUSY;
goto put_ppd_out;
}
retry:
@ -667,12 +953,13 @@ retry_alloc:
wqhln->task = current;
wqhln->req = 0;
wqhln->packet = NULL;
init_waitqueue_head(&wqhln->wq_syscall);
/* Wait for a request.. */
list_add(&wqhln->list, &ppd->wq_list);
ihk_ikc_spinlock_unlock(&ppd->wq_list_lock, irqflags);
/* Wait for a request.. */
ret = wait_event_interruptible(wqhln->wq_syscall, wqhln->req);
/* Remove per-thread wait queue head */
@ -684,7 +971,8 @@ retry_alloc:
if (ret && !wqhln->req) {
kfree(wqhln);
wqhln = NULL;
return -EINTR;
ret = -EINTR;
goto put_ppd_out;
}
packet = wqhln->packet;
@ -720,7 +1008,8 @@ retry_alloc:
if (mcctrl_add_per_thread_data(ppd, current, packet) < 0) {
kprintf("%s: error adding per-thread data\n", __FUNCTION__);
return -EINVAL;
ret = -EINVAL;;
goto put_ppd_out;
}
if (__do_in_kernel_syscall(os, packet)) {
@ -729,11 +1018,13 @@ retry_alloc:
if (mcctrl_delete_per_thread_data(ppd, current) < 0) {
kprintf("%s: error deleting per-thread data\n", __FUNCTION__);
return -EINVAL;
}
return -EFAULT;
ret = -EINVAL;;
goto put_ppd_out;
}
return 0;
ret = 0;
goto put_ppd_out;
}
ihk_ikc_release_packet((struct ihk_ikc_free_packet *)packet,
@ -741,10 +1032,15 @@ retry_alloc:
if (mcctrl_delete_per_thread_data(ppd, current) < 0) {
kprintf("%s: error deleting per-thread data\n", __FUNCTION__);
return -EINVAL;
ret = -EINVAL;;
goto put_ppd_out;
}
goto retry;
put_ppd_out:
mcctrl_put_per_proc_data(ppd);
return ret;
}
long mcexec_pin_region(ihk_os_t os, unsigned long *__user arg)
@ -854,6 +1150,7 @@ long mcexec_ret_syscall(ihk_os_t os, struct syscall_ret_desc *__user arg)
if (!packet) {
kprintf("%s: ERROR: no packet registered for TID %d\n",
__FUNCTION__, task_pid_vnr(current));
mcctrl_put_per_proc_data(ppd);
return -EINVAL;
}
@ -872,6 +1169,7 @@ long mcexec_ret_syscall(ihk_os_t os, struct syscall_ret_desc *__user arg)
ret.size, NULL, 0);
#endif
if (copy_from_user(rpm, (void *__user)ret.src, ret.size)) {
mcctrl_put_per_proc_data(ppd);
return -EFAULT;
}
@ -889,6 +1187,7 @@ long mcexec_ret_syscall(ihk_os_t os, struct syscall_ret_desc *__user arg)
ihk_ikc_release_packet((struct ihk_ikc_free_packet *)packet,
(usrdata->channels + packet->ref)->c);
mcctrl_put_per_proc_data(ppd);
return 0;
}
@ -957,7 +1256,7 @@ int mcexec_open_exec(ihk_os_t os, char * __user filename)
int i;
if (os_ind < 0) {
return EINVAL;
return -EINVAL;
}
ppd = mcctrl_get_per_proc_data(usrdata, task_tgid_vnr(current));
@ -969,6 +1268,7 @@ int mcexec_open_exec(ihk_os_t os, char * __user filename)
return -ENOMEM;
}
ppd->ud = usrdata;
ppd->pid = task_tgid_vnr(current);
/*
* XXX: rpgtable will be updated in __do_in_kernel_syscall()
@ -977,7 +1277,13 @@ int mcexec_open_exec(ihk_os_t os, char * __user filename)
INIT_LIST_HEAD(&ppd->wq_list);
INIT_LIST_HEAD(&ppd->wq_req_list);
INIT_LIST_HEAD(&ppd->wq_list_exact);
init_waitqueue_head(&ppd->wq_prepare);
init_waitqueue_head(&ppd->wq_procfs);
spin_lock_init(&ppd->wq_list_lock);
memset(&ppd->cpu_set, 0, sizeof(cpumask_t));
ppd->ikc_target_cpu = 0;
/* Final ref will be dropped in close_exec() */
atomic_set(&ppd->refcount, 1);
for (i = 0; i < MCCTRL_PER_THREAD_DATA_HASH_SIZE; ++i) {
INIT_LIST_HEAD(&ppd->per_thread_data_hash[i]);
@ -986,36 +1292,33 @@ int mcexec_open_exec(ihk_os_t os, char * __user filename)
if (mcctrl_add_per_proc_data(usrdata, ppd->pid, ppd) < 0) {
printk("%s: error adding per process data\n", __FUNCTION__);
retval = EINVAL;
goto out_free_ppd;
retval = -EINVAL;
kfree(ppd);
goto out;
}
}
else {
/* Only deallocate in case of an error if we added it above */
ppd = NULL;
}
pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
if (!pathbuf) {
retval = ENOMEM;
goto out_error_drop_ppd;
retval = -ENOMEM;
goto out_put_ppd;
}
file = open_exec(filename);
retval = PTR_ERR(file);
if (IS_ERR(file)) {
goto out_error_free;
goto out_free;
}
fullpath = d_path(&file->f_path, pathbuf, PATH_MAX);
if (IS_ERR(fullpath)) {
retval = PTR_ERR(fullpath);
goto out_error_free;
goto out_free;
}
mcef = kmalloc(sizeof(*mcef), GFP_KERNEL);
if (!mcef) {
retval = ENOMEM;
retval = -ENOMEM;
goto out_put_file;
}
@ -1050,13 +1353,12 @@ int mcexec_open_exec(ihk_os_t os, char * __user filename)
out_put_file:
fput(file);
out_error_free:
out_free:
kfree(pathbuf);
out_error_drop_ppd:
if (ppd) mcctrl_delete_per_proc_data(usrdata, ppd->pid);
out_free_ppd:
if (ppd) kfree(ppd);
return -retval;
out_put_ppd:
mcctrl_put_per_proc_data(ppd);
out:
return retval;
}
@ -1071,12 +1373,12 @@ int mcexec_close_exec(ihk_os_t os)
ppd = mcctrl_get_per_proc_data(usrdata, task_tgid_vnr(current));
if (ppd) {
mcctrl_delete_per_proc_data(usrdata, ppd->pid);
/* One for the reference and one for deallocation */
mcctrl_put_per_proc_data(ppd);
mcctrl_put_per_proc_data(ppd);
dprintk("pid: %d, tid: %d: rpgtable for %d (0x%lx) removed\n",
task_tgid_vnr(current), current->pid, ppd->pid, ppd->rpgtable);
kfree(ppd);
}
else {
printk("WARNING: no per process data for pid %d ?\n",
@ -1279,6 +1581,9 @@ long __mcctrl_control(ihk_os_t os, unsigned int req, unsigned long arg,
case MCEXEC_UP_GET_NODES:
return mcexec_get_nodes(os);
case MCEXEC_UP_GET_CPUSET:
return mcexec_get_cpuset(os, arg);
case MCEXEC_UP_STRNCPY_FROM_USER:
return mcexec_strncpy_from_user(os,
(struct strncpy_from_user_desc *)arg);
@ -1324,10 +1629,20 @@ void mcexec_prepare_ack(ihk_os_t os, unsigned long arg, int err)
{
struct program_load_desc *desc = phys_to_virt(arg);
struct mcctrl_usrdata *usrdata = ihk_host_os_get_usrdata(os);
struct mcctrl_per_proc_data *ppd = NULL;
ppd = mcctrl_get_per_proc_data(usrdata, desc->pid);
if (!ppd) {
printk("%s: ERROR: no per process data for PID %d\n",
__FUNCTION__, desc->pid);
return;
}
desc->err = err;
desc->status = 1;
mb();
wake_up_all(&usrdata->wq_prepare);
wake_up_all(&ppd->wq_prepare);
mcctrl_put_per_proc_data(ppd);
}

View File

@ -61,6 +61,7 @@ static struct ihk_os_user_call_handler mcctrl_uchs[] = {
{ .request = MCEXEC_UP_SEND_SIGNAL, .func = mcctrl_ioctl },
{ .request = MCEXEC_UP_GET_CPU, .func = mcctrl_ioctl },
{ .request = MCEXEC_UP_GET_NODES, .func = mcctrl_ioctl },
{ .request = MCEXEC_UP_GET_CPUSET, .func = mcctrl_ioctl },
{ .request = MCEXEC_UP_STRNCPY_FROM_USER, .func = mcctrl_ioctl },
{ .request = MCEXEC_UP_NEW_PROCESS, .func = mcctrl_ioctl },
{ .request = MCEXEC_UP_PREPARE_DMA, .func = mcctrl_ioctl },

View File

@ -80,7 +80,7 @@ static int syscall_packet_handler(struct ihk_ikc_channel_desc *c,
break;
case SCD_MSG_PROCFS_ANSWER:
procfs_answer(pisp->arg, pisp->err);
procfs_answer(usrdata, pisp->pid);
break;
case SCD_MSG_SEND_SIGNAL:
@ -240,7 +240,7 @@ static struct ihk_ikc_listen_param listen_param = {
.port = 501,
.handler = connect_handler,
.pkt_size = sizeof(struct ikc_scd_packet),
.queue_size = PAGE_SIZE,
.queue_size = PAGE_SIZE * 4,
.magic = 0x1129,
};
@ -248,7 +248,7 @@ static struct ihk_ikc_listen_param listen_param2 = {
.port = 502,
.handler = connect_handler2,
.pkt_size = sizeof(struct ikc_scd_packet),
.queue_size = PAGE_SIZE,
.queue_size = PAGE_SIZE * 4,
.magic = 0x1329,
};
@ -283,12 +283,13 @@ int prepare_ikc_channels(ihk_os_t os)
}
usrdata->os = os;
init_waitqueue_head(&usrdata->wq_prepare);
ihk_host_os_set_usrdata(os, usrdata);
memcpy(&usrdata->listen_param, &listen_param, sizeof listen_param);
ihk_ikc_listen_port(os, &usrdata->listen_param);
memcpy(&usrdata->listen_param2, &listen_param2, sizeof listen_param2);
ihk_ikc_listen_port(os, &usrdata->listen_param2);
init_waitqueue_head(&usrdata->wq_procfs);
mutex_init(&usrdata->reserve_lock);
for (i = 0; i < MCCTRL_PER_PROC_DATA_HASH_SIZE; ++i) {
INIT_LIST_HEAD(&usrdata->per_proc_data_hash[i]);
@ -298,6 +299,9 @@ int prepare_ikc_channels(ihk_os_t os)
INIT_LIST_HEAD(&usrdata->cpu_topology_list);
INIT_LIST_HEAD(&usrdata->node_topology_list);
mutex_init(&usrdata->part_exec.lock);
usrdata->part_exec.nr_processes = -1;
return 0;
}
@ -323,7 +327,6 @@ void destroy_ikc_channels(ihk_os_t os)
// ihk_ikc_disconnect(usrdata->channels[i].c);
ihk_ikc_free_channel(usrdata->channels[i].c);
__destroy_ikc_channel(os, usrdata->channels + i);
printk("Channel #%d freed.\n", i);
}
}

View File

@ -187,6 +187,7 @@ struct mcctrl_per_thread_data {
#define MCCTRL_PER_THREAD_DATA_HASH_MASK (MCCTRL_PER_THREAD_DATA_HASH_SIZE - 1)
struct mcctrl_per_proc_data {
struct mcctrl_usrdata *ud;
struct list_head hash;
int pid;
unsigned long rpgtable; /* per process, not per OS */
@ -195,9 +196,14 @@ struct mcctrl_per_proc_data {
struct list_head wq_req_list;
struct list_head wq_list_exact;
ihk_spinlock_t wq_list_lock;
wait_queue_head_t wq_prepare;
wait_queue_head_t wq_procfs;
struct list_head per_thread_data_hash[MCCTRL_PER_THREAD_DATA_HASH_SIZE];
rwlock_t per_thread_data_hash_lock[MCCTRL_PER_THREAD_DATA_HASH_SIZE];
cpumask_t cpu_set;
int ikc_target_cpu;
atomic_t refcount;
};
struct sysfsm_req {
@ -254,6 +260,13 @@ struct node_topology {
struct list_head chain;
};
struct mcctrl_part_exec {
struct mutex lock;
int nr_processes;
int nr_processes_left;
cpumask_t cpus_used;
};
#define CPU_LONGS (((NR_CPUS) + (BITS_PER_LONG) - 1) / (BITS_PER_LONG))
#define MCCTRL_PER_PROC_DATA_HASH_SHIFT 7
@ -270,9 +283,9 @@ struct mcctrl_usrdata {
int base_cpu;
int job_pos;
int mcctrl_dma_abort;
struct mutex reserve_lock;
unsigned long last_thread_exec;
wait_queue_head_t wq_prepare;
wait_queue_head_t wq_procfs;
struct list_head per_proc_data_hash[MCCTRL_PER_PROC_DATA_HASH_SIZE];
rwlock_t per_proc_data_hash_lock[MCCTRL_PER_PROC_DATA_HASH_SIZE];
@ -284,6 +297,7 @@ struct mcctrl_usrdata {
nodemask_t numa_online;
struct list_head cpu_topology_list;
struct list_head node_topology_list;
struct mcctrl_part_exec part_exec;
};
struct mcctrl_signal {
@ -305,8 +319,9 @@ int __do_in_kernel_syscall(ihk_os_t os, struct ikc_scd_packet *packet);
int mcctrl_add_per_proc_data(struct mcctrl_usrdata *ud, int pid,
struct mcctrl_per_proc_data *ppd);
int mcctrl_delete_per_proc_data(struct mcctrl_usrdata *ud, int pid);
inline struct mcctrl_per_proc_data *mcctrl_get_per_proc_data(
struct mcctrl_per_proc_data *mcctrl_get_per_proc_data(
struct mcctrl_usrdata *ud, int pid);
void mcctrl_put_per_proc_data(struct mcctrl_per_proc_data *ppd);
int mcctrl_add_per_thread_data(struct mcctrl_per_proc_data* ppd,
struct task_struct *task, void *data);
@ -338,7 +353,7 @@ struct procfs_file {
char fname[PROCFS_NAME_MAX]; /* procfs filename (request) */
};
void procfs_answer(unsigned int arg, int err);
void procfs_answer(struct mcctrl_usrdata *ud, int pid);
int procfsm_packet_handler(void *os, int msg, int pid, unsigned long arg);
void add_tid_entry(int osnum, int pid, int tid);
void add_pid_entry(int osnum, int pid);

View File

@ -59,7 +59,6 @@ static const struct procfs_entry base_entry_stuff[];
static const struct file_operations mckernel_forward_ro;
static const struct file_operations mckernel_forward;
static DECLARE_WAIT_QUEUE_HEAD(procfsq);
static ssize_t mckernel_procfs_read(struct file *file, char __user *buf,
size_t nbytes, loff_t *ppos);
@ -106,14 +105,28 @@ getpath(struct procfs_list_entry *e, char *buf, int bufsize)
/**
* \brief Process SCD_MSG_PROCFS_ANSWER message.
*
* \param arg sent argument
* \param err error info (redundant)
* \param ud mcctrl_usrdata pointer
* \param pid PID of the requesting process
*/
void
procfs_answer(unsigned int arg, int err)
void procfs_answer(struct mcctrl_usrdata *ud, int pid)
{
dprintk("procfs: received SCD_MSG_PROCFS_ANSWER message(err = %d).\n", err);
wake_up_interruptible(&procfsq);
struct mcctrl_per_proc_data *ppd = NULL;
if (pid > 0) {
ppd = mcctrl_get_per_proc_data(ud, pid);
if (unlikely(!ppd)) {
kprintf("%s: ERROR: no per-process structure for PID %d\n",
__FUNCTION__, pid);
return;
}
}
wake_up_all(pid > 0 ? &ppd->wq_procfs : &ud->wq_procfs);
if (pid > 0) {
mcctrl_put_per_proc_data(ppd);
}
}
static struct procfs_list_entry *
@ -248,9 +261,11 @@ get_pid_cred(int pid)
{
struct task_struct *task = NULL;
if(pid > 0){
if (pid > 0) {
rcu_read_lock();
task = pid_task(find_vpid(pid), PIDTYPE_PID);
if(task){
rcu_read_unlock();
if (task) {
return __task_cred(task);
}
}
@ -493,36 +508,84 @@ procfs_exit(int osnum)
* This function conforms to the 2) way of fs/proc/generic.c
* from linux-2.6.39.4.
*/
static ssize_t
mckernel_procfs_read(struct file *file, char __user *buf, size_t nbytes,
loff_t *ppos)
static ssize_t __mckernel_procfs_read_write(
struct file *file,
char __user *buf, size_t nbytes,
loff_t *ppos, int read_write)
{
struct inode * inode = file->f_inode;
char *kern_buffer = NULL;
int order = 0;
volatile struct procfs_read *r = NULL;
struct ikc_scd_packet isp;
int ret;
int ret, osnum, pid, retw;
unsigned long pbuf;
unsigned long count = nbytes;
#if LINUX_VERSION_CODE < KERNEL_VERSION(3,10,0)
struct proc_dir_entry *dp = PDE(inode);
struct procfs_list_entry *e = dp->data;
#else
#else
struct procfs_list_entry *e = PDE_DATA(inode);
#endif
#endif
loff_t offset = *ppos;
char pathbuf[PROCFS_NAME_MAX];
char *path;
char *path, *p;
ihk_os_t os = NULL;
struct mcctrl_usrdata *udp = NULL;
struct mcctrl_per_proc_data *ppd = NULL;
path = getpath(e, pathbuf, 256);
dprintk("mckernel_procfs_read: invoked for %s, offset: %lu, count: %d\n",
path, offset, count);
if (count <= 0 || offset < 0) {
return 0;
}
path = getpath(e, pathbuf, PROCFS_NAME_MAX);
dprintk("%s: invoked for %s, offset: %lu, count: %lu\n",
__FUNCTION__, path,
(unsigned long)offset, count);
/* Verify OS number */
ret = sscanf(path, "mcos%d/", &osnum);
if (ret != 1) {
printk("%s: error: couldn't determine OS number\n", __FUNCTION__);
return -EINVAL;
}
if (osnum != e->osnum) {
printk("%s: error: OS numbers don't match\n", __FUNCTION__);
return -EINVAL;
}
/* Is this request for a specific process? */
p = strchr(path, '/') + 1;
ret = sscanf(p, "%d/", &pid);
if (ret != 1) {
pid = -1;
}
os = osnum_to_os(osnum);
if (!os) {
printk("%s: error: no IHK OS data found for OS %d\n",
__FUNCTION__, osnum);
return -EINVAL;
}
udp = ihk_host_os_get_usrdata(os);
if (!udp) {
printk("%s: error: no MCCTRL data found for OS %d\n",
__FUNCTION__, osnum);
return -EINVAL;
}
if (pid > 0) {
ppd = mcctrl_get_per_proc_data(udp, pid);
if (unlikely(!ppd)) {
printk("%s: error: no per-process structure for PID %d",
__FUNCTION__, pid);
return -EINVAL;
}
}
while ((1 << order) < count) ++order;
if (order > 12) {
order -= 12;
@ -534,10 +597,11 @@ mckernel_procfs_read(struct file *file, char __user *buf, size_t nbytes,
/* NOTE: we need physically contigous memory to pass through IKC */
kern_buffer = (char *)__get_free_pages(GFP_KERNEL, order);
if (!kern_buffer) {
printk("mckernel_procfs_read(): ERROR: allocating kernel buffer\n");
return -ENOMEM;
printk("%s: ERROR: allocating kernel buffer\n", __FUNCTION__);
ret = -ENOMEM;
goto out;
}
pbuf = virt_to_phys(kern_buffer);
r = kmalloc(sizeof(struct procfs_read), GFP_KERNEL);
@ -551,152 +615,96 @@ mckernel_procfs_read(struct file *file, char __user *buf, size_t nbytes,
r->status = 0;
r->offset = offset;
r->count = count;
r->readwrite = 0;
r->readwrite = read_write;
strncpy((char *)r->fname, path, PROCFS_NAME_MAX);
isp.msg = SCD_MSG_PROCFS_REQUEST;
isp.ref = 0;
isp.arg = virt_to_phys(r);
ret = mcctrl_ikc_send(osnum_to_os(e->osnum), 0, &isp);
isp.pid = pid;
ret = mcctrl_ikc_send(osnum_to_os(e->osnum),
(pid > 0) ? ppd->ikc_target_cpu : 0, &isp);
if (ret < 0) {
goto out; /* error */
}
/* Wait for a reply. */
ret = -EIO; /* default exit code */
dprintk("now wait for a relpy\n");
/* Wait for the status field of the procfs_read structure set ready. */
if (wait_event_interruptible_timeout(procfsq, r->status != 0, HZ) == 0) {
kprintf("ERROR: mckernel_procfs_read: timeout (1 sec).\n");
dprintk("%s: waiting for reply\n", __FUNCTION__);
retry_wait:
/* Wait for the status field of the procfs_read structure,
* wait on per-process or OS specific data depending on
* who the request is for.
*/
if (pid > 0) {
retw = wait_event_interruptible_timeout(ppd->wq_procfs,
r->status != 0, HZ);
}
else {
retw = wait_event_interruptible_timeout(udp->wq_procfs,
r->status != 0, HZ);
}
/* Timeout? */
if (retw == 0 && r->status == 0) {
printk("%s: error: timeout (1 sec)\n", __FUNCTION__);
goto out;
}
/* Wake up and check the result. */
dprintk("mckernel_procfs_read: woke up. ret: %d, eof: %d\n", r->ret, r->eof);
if (r->ret > 0) {
if (copy_to_user(buf, kern_buffer, r->ret)) {
kprintf("ERROR: mckernel_procfs_read: copy_to_user failed.\n");
ret = -EFAULT;
goto out;
}
/* Interrupted? */
else if (retw == -ERESTARTSYS) {
ret = -ERESTART;
goto out;
}
/* Were we woken up by a reply to another procfs request? */
else if (r->status == 0) {
/* TODO: r->status is not set atomically, we could be woken
* up with status == 0 and it could change to 1 while in this
* code, we could potentially miss the wake_up()...
*/
printk("%s: stale wake-up, retrying\n", __FUNCTION__);
goto retry_wait;
}
/* Wake up and check the result. */
dprintk("%s: woke up. ret: %d, eof: %d\n",
__FUNCTION__, r->ret, r->eof);
if (r->ret > 0) {
if (read_write == 0) {
if (copy_to_user(buf, kern_buffer, r->ret)) {
printk("%s: ERROR: copy_to_user failed.\n", __FUNCTION__);
ret = -EFAULT;
goto out;
}
}
*ppos += r->ret;
}
ret = r->ret;
out:
if(kern_buffer)
if (ppd)
mcctrl_put_per_proc_data(ppd);
if (kern_buffer)
free_pages((uintptr_t)kern_buffer, order);
if(r)
if (r)
kfree((void *)r);
return ret;
}
static ssize_t
mckernel_procfs_write(struct file *file, const char __user *buf, size_t nbytes,
loff_t *ppos)
static ssize_t mckernel_procfs_read(struct file *file,
char __user *buf, size_t nbytes, loff_t *ppos)
{
struct inode * inode = file->f_inode;
char *kern_buffer = NULL;
int order = 0;
volatile struct procfs_read *r = NULL;
struct ikc_scd_packet isp;
int ret;
unsigned long pbuf;
unsigned long count = nbytes;
#if LINUX_VERSION_CODE < KERNEL_VERSION(3,10,0)
struct proc_dir_entry *dp = PDE(inode);
struct procfs_list_entry *e = dp->data;
#else
struct procfs_list_entry *e = PDE_DATA(inode);
#endif
loff_t offset = *ppos;
char pathbuf[PROCFS_NAME_MAX];
char *path;
return __mckernel_procfs_read_write(file, buf, nbytes, ppos, 0);
}
path = getpath(e, pathbuf, 256);
dprintk("mckernel_procfs_read: invoked for %s, offset: %lu, count: %d\n",
path, offset, count);
if (count <= 0 || offset < 0) {
return 0;
}
while ((1 << order) < count) ++order;
if (order > 12) {
order -= 12;
}
else {
order = 1;
}
/* NOTE: we need physically contigous memory to pass through IKC */
kern_buffer = (char *)__get_free_pages(GFP_KERNEL, order);
if (!kern_buffer) {
printk("mckernel_procfs_read(): ERROR: allocating kernel buffer\n");
return -ENOMEM;
}
if (copy_from_user(kern_buffer, buf, nbytes)) {
ret = -EFAULT;
goto out;
}
pbuf = virt_to_phys(kern_buffer);
r = kmalloc(sizeof(struct procfs_read), GFP_KERNEL);
if (r == NULL) {
ret = -ENOMEM;
goto out;
}
dprintk("offset: %lx, count: %d, cpu: %d\n", offset, count, e->cpu);
r->pbuf = pbuf;
r->eof = 0;
r->ret = -EIO; /* default */
r->status = 0;
r->offset = offset;
r->count = count;
r->readwrite = 1;
strncpy((char *)r->fname, path, PROCFS_NAME_MAX);
isp.msg = SCD_MSG_PROCFS_REQUEST;
isp.ref = 0;
isp.arg = virt_to_phys(r);
ret = mcctrl_ikc_send(osnum_to_os(e->osnum), 0, &isp);
if (ret < 0) {
goto out; /* error */
}
/* Wait for a reply. */
ret = -EIO; /* default exit code */
dprintk("now wait for a relpy\n");
/* Wait for the status field of the procfs_read structure set ready. */
if (wait_event_interruptible_timeout(procfsq, r->status != 0, HZ) == 0) {
kprintf("ERROR: mckernel_procfs_read: timeout (1 sec).\n");
goto out;
}
/* Wake up and check the result. */
dprintk("mckernel_procfs_read: woke up. ret: %d, eof: %d\n", r->ret, r->eof);
if (r->ret > 0) {
*ppos += r->ret;
}
ret = r->ret;
out:
if(kern_buffer)
free_pages((uintptr_t)kern_buffer, order);
if(r)
kfree((void *)r);
return ret;
static ssize_t mckernel_procfs_write(struct file *file,
const char __user *buf, size_t nbytes, loff_t *ppos)
{
return __mckernel_procfs_read_write(file,
(char __user *)buf, nbytes, ppos, 1);
}
static loff_t

View File

@ -306,7 +306,7 @@ static int remote_page_fault(struct mcctrl_usrdata *usrdata, void *fault_addr, u
error = -ENOENT;
printk("%s: no packet registered for TID %d\n",
__FUNCTION__, task_pid_vnr(current));
goto out_no_unmap;
goto out_put_ppd;
}
req = &packet->req;
@ -326,6 +326,9 @@ retry_alloc:
/* Prepare per-thread wait queue head */
wqhln->task = current;
/* Save the TID explicitly, because mcexec_syscall(), where the request
* will be matched, is in IRQ context and can't call task_pid_vnr() */
wqhln->rtid = task_pid_vnr(current);
wqhln->req = 0;
init_waitqueue_head(&wqhln->wq_syscall);
@ -434,9 +437,11 @@ out:
ihk_device_unmap_virtual(ihk_os_to_dev(usrdata->os), resp, sizeof(*resp));
ihk_device_unmap_memory(ihk_os_to_dev(usrdata->os), phys, sizeof(*resp));
out_no_unmap:
out_put_ppd:
dprintk("%s: tid: %d, fault_addr: %lu, reason: %lu, error: %d\n",
__FUNCTION__, task_pid_vnr(current), fault_addr, reason, error);
mcctrl_put_per_proc_data(ppd);
return error;
}
@ -574,6 +579,7 @@ static int rus_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
size_t pix;
#endif
struct mcctrl_per_proc_data *ppd;
int ret = 0;
dprintk("mcctrl:page fault:flags %#x pgoff %#lx va %p page %p\n",
vmf->flags, vmf->pgoff, vmf->virtual_address, vmf->page);
@ -584,7 +590,6 @@ static int rus_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
ppd = mcctrl_get_per_proc_data(usrdata, vma->vm_mm->owner->pid);
}
if (!ppd) {
kprintf("%s: ERROR: no per-process structure for PID %d??\n",
__FUNCTION__, task_tgid_vnr(current));
@ -618,7 +623,8 @@ static int rus_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
if (error) {
printk("mcctrl:page fault error:flags %#x pgoff %#lx va %p page %p\n",
vmf->flags, vmf->pgoff, vmf->virtual_address, vmf->page);
return VM_FAULT_SIGBUS;
ret = VM_FAULT_SIGBUS;
goto put_and_out;
}
rva = (unsigned long)vmf->virtual_address & ~(pgsize - 1);
@ -655,10 +661,15 @@ static int rus_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
if (error) {
printk("mcctrl:page fault:remap error:flags %#x pgoff %#lx va %p page %p\n",
vmf->flags, vmf->pgoff, vmf->virtual_address, vmf->page);
return VM_FAULT_SIGBUS;
ret = VM_FAULT_SIGBUS;
goto put_and_out;
}
return VM_FAULT_NOPAGE;
ret = VM_FAULT_NOPAGE;
put_and_out:
mcctrl_put_per_proc_data(ppd);
return ret;
}
static struct vm_operations_struct rus_vmops = {
@ -746,6 +757,20 @@ static struct list_head pager_list = LIST_HEAD_INIT(pager_list);
struct pager_create_result {
uintptr_t handle;
int maxprot;
uint32_t flags;
size_t size;
};
enum {
/* for memobj.flags */
MF_HAS_PAGER = 0x0001,
MF_SHMDT_OK = 0x0002,
MF_IS_REMOVABLE = 0x0004,
MF_PREFETCH = 0x0008,
MF_ZEROFILL = 0x0010,
MF_REG_FILE = 0x1000,
MF_DEV_FILE = 0x2000,
MF_END
};
static int pager_req_create(ihk_os_t os, int fd, uintptr_t result_pa)
@ -760,6 +785,7 @@ static int pager_req_create(ihk_os_t os, int fd, uintptr_t result_pa)
struct pager *newpager = NULL;
uintptr_t phys;
struct kstat st;
int mf_flags = 0;
dprintk("pager_req_create(%d,%lx)\n", fd, (long)result_pa);
@ -827,6 +853,32 @@ static int pager_req_create(ihk_os_t os, int fd, uintptr_t result_pa)
list_add(&newpager->list, &pager_list);
pager = newpager;
newpager = NULL;
/* Intel MPI library and shared memory "prefetch" */
{
char *pathbuf, *fullpath;
pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
if (pathbuf) {
fullpath = d_path(&file->f_path, pathbuf, PATH_MAX);
if (!IS_ERR(fullpath)) {
if (!strncmp("/dev/shm/Intel_MPI", fullpath, 18)) {
//mf_flags = (MF_PREFETCH | MF_ZEROFILL);
mf_flags = (MF_ZEROFILL);
dprintk("%s: filename: %s, zerofill\n",
__FUNCTION__, fullpath);
}
else if (strstr(fullpath, "libmpi") != NULL) {
mf_flags = MF_PREFETCH;
dprintk("%s: filename: %s, prefetch\n",
__FUNCTION__, fullpath);
}
}
kfree(pathbuf);
}
}
break;
}
@ -856,6 +908,8 @@ found:
resp = ihk_device_map_virtual(dev, phys, sizeof(*resp), NULL, 0);
resp->handle = (uintptr_t)pager;
resp->maxprot = maxprot;
resp->flags = mf_flags;
resp->size = st.size;
ihk_device_unmap_virtual(dev, resp, sizeof(*resp));
ihk_device_unmap_memory(dev, phys, sizeof(*resp));
@ -1582,6 +1636,7 @@ int __do_in_kernel_syscall(ihk_os_t os, struct ikc_scd_packet *packet)
dprintk("%s: pid: %d, rpgtable: 0x%lx updated\n",
__FUNCTION__, ppd->pid, ppd->rpgtable);
mcctrl_put_per_proc_data(ppd);
}
ret = clear_pte_range(sc->args[0], sc->args[1]);

View File

@ -197,19 +197,19 @@ void free_topology_info(ihk_os_t os)
/*
* CPU and NUMA node mapping conversion functions.
*/
static int mckernel_cpu_2_linux_cpu(struct mcctrl_usrdata *udp, int cpu_id)
int mckernel_cpu_2_linux_cpu(struct mcctrl_usrdata *udp, int cpu_id)
{
return (cpu_id < udp->cpu_info->n_cpus) ?
udp->cpu_info->mapping[cpu_id] : -1;
}
static int mckernel_cpu_2_hw_id(struct mcctrl_usrdata *udp, int cpu_id)
int mckernel_cpu_2_hw_id(struct mcctrl_usrdata *udp, int cpu_id)
{
return (cpu_id < udp->cpu_info->n_cpus) ?
udp->cpu_info->hw_ids[cpu_id] : -1;
}
static int linux_cpu_2_mckernel_cpu(struct mcctrl_usrdata *udp, int cpu_id)
int linux_cpu_2_mckernel_cpu(struct mcctrl_usrdata *udp, int cpu_id)
{
int i;
@ -222,7 +222,7 @@ static int linux_cpu_2_mckernel_cpu(struct mcctrl_usrdata *udp, int cpu_id)
}
#if 0
static int hw_id_2_mckernel_cpu(struct mcctrl_usrdata *udp, int hw_id)
int hw_id_2_mckernel_cpu(struct mcctrl_usrdata *udp, int hw_id)
{
int i;
@ -235,7 +235,7 @@ static int hw_id_2_mckernel_cpu(struct mcctrl_usrdata *udp, int hw_id)
return -1;
}
static int hw_id_2_linux_cpu(struct mcctrl_usrdata *udp, int hw_id)
int hw_id_2_linux_cpu(struct mcctrl_usrdata *udp, int hw_id)
{
int i;
@ -248,7 +248,7 @@ static int hw_id_2_linux_cpu(struct mcctrl_usrdata *udp, int hw_id)
return -1;
}
static int linux_cpu_2_hw_id(struct mcctrl_usrdata *udp, int cpu)
int linux_cpu_2_hw_id(struct mcctrl_usrdata *udp, int cpu)
{
int mckernel_cpu = linux_cpu_2_mckernel_cpu(udp, cpu);
@ -257,13 +257,13 @@ static int linux_cpu_2_hw_id(struct mcctrl_usrdata *udp, int cpu)
}
#endif
static int mckernel_numa_2_linux_numa(struct mcctrl_usrdata *udp, int numa_id)
int mckernel_numa_2_linux_numa(struct mcctrl_usrdata *udp, int numa_id)
{
return (numa_id < udp->mem_info->n_numa_nodes) ?
udp->mem_info->numa_mapping[numa_id] : -1;
}
static int linux_numa_2_mckernel_numa(struct mcctrl_usrdata *udp, int numa_id)
int linux_numa_2_mckernel_numa(struct mcctrl_usrdata *udp, int numa_id)
{
int i;

View File

@ -6,14 +6,15 @@ VPATH=@abs_srcdir@
TARGET=mcexec
@uncomment_if_ENABLE_MEMDUMP@TARGET+=eclair
LIBS=@LIBS@
IHKDIR ?= $(VPATH)/../../../ihk/linux/include/
all: $(TARGET)
mcexec: mcexec.c
$(CC) -I${KDIR} $(CFLAGS) $(EXTRA_CFLAGS) -fPIE -pie -lrt -pthread -o $@ $^ $(EXTRA_OBJS)
$(CC) -I${KDIR} $(CFLAGS) $(EXTRA_CFLAGS) -fPIE -pie -lrt -lnuma -pthread -o $@ $^ $(EXTRA_OBJS)
eclair: eclair.c
$(CC) $(CFLAGS) -o $@ $^ $(LIBS)
$(CC) $(CFLAGS) -I${IHKDIR} -o $@ $^ $(LIBS)
clean:
$(RM) $(TARGET) *.o

View File

@ -16,20 +16,8 @@
#include <unistd.h>
#include <sys/socket.h>
#include <arpa/inet.h>
/* From ihk/linux/include/ihk/ihk_host_user.h */
#define PHYS_CHUNKS_DESC_SIZE 8192
struct dump_mem_chunk {
unsigned long addr;
unsigned long size;
};
typedef struct dump_mem_chunks_s {
int nr_chunks;
struct dump_mem_chunk chunks[];
} dump_mem_chunks_t;
/* ---------- */
#include <sys/ioctl.h>
#include <ihk/ihk_host_user.h>
#define CPU_TID_BASE 1000000
@ -39,6 +27,10 @@ struct options {
char *kernel_path;
char *dump_path;
char *log_path;
int interactive;
int os_id;
int mcos_fd;
int print_idle;
}; /* struct options */
struct thread_info {
@ -56,7 +48,7 @@ struct thread_info {
int tid;
int cpu;
int lcpu;
int padding;
int idle;
uintptr_t process;
uintptr_t clv;
uintptr_t x86_clv;
@ -150,7 +142,21 @@ static int read_mem(uintptr_t va, void *buf, size_t size) {
}
return 1;
}
error = read_physmem(pa, buf, size);
if (opt.interactive) {
dumpargs_t args;
args.cmd = DUMP_READ;
args.start = pa;
args.size = size;
args.buf = buf;
error = ioctl(opt.mcos_fd, IHK_OS_DUMP, &args);
}
else {
error = read_physmem(pa, buf, size);
}
if (error) {
perror("read_mem:read_physmem");
return 1;
@ -256,6 +262,7 @@ static int setup_threads(void) {
perror("num_processors");
return 1;
}
printf("%s: num_processors: %d\n", __FUNCTION__, num_processors);
error = read_symbol_64("locals", &locals);
if (error) {
@ -278,64 +285,6 @@ static int setup_threads(void) {
ihk_mc_switch_context = lookup_symbol("ihk_mc_switch_context");
if (0) printf("ihk_mc_switch_context: %lx\n", ihk_mc_switch_context);
/* Set up idle threads first */
for (cpu = 0; cpu < num_processors; ++cpu) {
uintptr_t v;
uintptr_t thread;
uintptr_t proc;
int pid;
int tid;
struct thread_info *ti;
int status;
v = clv + (cpu * K(CPU_LOCAL_VAR_SIZE));
ti = malloc(sizeof(*ti));
if (!ti) {
perror("malloc");
return 1;
}
thread = v+K(IDLE_THREAD_OFFSET);
error = read_64(thread+K(PROC_OFFSET), &proc);
if (error) {
perror("proc");
return 1;
}
error = read_32(thread+K(STATUS_OFFSET), &status);
if (error) {
perror("status");
return 1;
}
error = read_32(proc+K(PID_OFFSET), &pid);
if (error) {
perror("pid");
return 1;
}
error = read_32(thread+K(TID_OFFSET), &tid);
if (error) {
perror("tid");
return 1;
}
ti->next = NULL;
ti->status = status;
ti->pid = pid;
ti->tid = tid;
ti->cpu = cpu;
ti->lcpu = cpu;
ti->process = thread;
ti->clv = v;
ti->x86_clv = locals + locals_span*cpu;
*titailp = ti;
titailp = &ti->next;
}
for (cpu = 0; cpu < num_processors; ++cpu) {
uintptr_t v;
uintptr_t head;
@ -400,15 +349,19 @@ static int setup_threads(void) {
ti->status = status;
ti->pid = pid;
ti->tid = tid;
ti->cpu = (thread == current)? cpu: -1;
ti->cpu = (thread == current) ? cpu : -1;
ti->lcpu = cpu;
ti->process = thread;
ti->idle = 0;
ti->clv = v;
ti->x86_clv = locals + locals_span*cpu;
*titailp = ti;
titailp = &ti->next;
if (!curr_thread)
curr_thread = ti;
error = read_64(entry, &entry);
if (error) {
perror("process2");
@ -417,8 +370,78 @@ static int setup_threads(void) {
}
}
/* Set up idle threads */
if (opt.print_idle) {
for (cpu = 0; cpu < num_processors; ++cpu) {
uintptr_t v;
uintptr_t thread;
uintptr_t proc;
int pid;
int tid;
struct thread_info *ti;
int status;
v = clv + (cpu * K(CPU_LOCAL_VAR_SIZE));
error = read_64(v+K(CURRENT_OFFSET), &current);
if (error) {
perror("current");
return 1;
}
ti = malloc(sizeof(*ti));
if (!ti) {
perror("malloc");
return 1;
}
thread = v+K(IDLE_THREAD_OFFSET);
error = read_64(thread+K(PROC_OFFSET), &proc);
if (error) {
perror("proc");
return 1;
}
error = read_32(thread+K(STATUS_OFFSET), &status);
if (error) {
perror("status");
return 1;
}
error = read_32(proc+K(PID_OFFSET), &pid);
if (error) {
perror("pid");
return 1;
}
error = read_32(thread+K(TID_OFFSET), &tid);
if (error) {
perror("tid");
return 1;
}
ti->next = NULL;
ti->status = status;
ti->pid = 1;
ti->tid = 2000000000 + tid;
ti->cpu = (thread == current) ? cpu : -1;
ti->lcpu = cpu;
ti->process = thread;
ti->idle = 1;
ti->clv = v;
ti->x86_clv = locals + locals_span*cpu;
*titailp = ti;
titailp = &ti->next;
if (!curr_thread)
curr_thread = ti;
}
}
if (!tihead) {
printf("thread not found. cpu mode forcibly\n");
printf("No threads found, forcing CPU mode.\n");
opt.cpu = 1;
}
@ -459,6 +482,7 @@ static int setup_threads(void) {
ti->tid = CPU_TID_BASE + cpu;
ti->cpu = cpu;
ti->process = current;
ti->idle = 1;
ti->clv = v;
ti->x86_clv = locals + locals_span*cpu;
@ -471,7 +495,9 @@ static int setup_threads(void) {
printf("thread not found\n");
return 1;
}
curr_thread = tihead;
if (!curr_thread)
curr_thread = tihead;
return 0;
} /* setup_threads() */
@ -713,18 +739,21 @@ static void command(char *cmd, char *res) {
break;
}
//if (regs[17] > MAP_KERNEL) {}
pu8 = (void *)&regs;
for (i = 0; i < sizeof(regs)-4; ++i) {
rbp += sprintf(rbp, "%02x", pu8[i]);
}
}
}
/*
else if (!strcmp(p, "mffffffff80018a82,1")) {
rbp += sprintf(rbp, "b8");
}
else if (!strcmp(p, "mffffffff80018a82,9")) {
rbp += sprintf(rbp, "b8f2ffffff41564155");
}
*/
else if (!strncmp(p, "m", 1)) {
int n;
uintptr_t start;
@ -820,33 +849,35 @@ static void command(char *cmd, char *res) {
break;
}
q = buf;
q += sprintf(q, "PID %d, ", ti->pid);
if (ti->status & PS_RUNNING) {
q += sprintf(q, "running on cpu%d", ti->cpu);
q += sprintf(q, "%srunning on cpu %d",
ti->idle ? "idle " : "", ti->lcpu);
}
else if (ti->status & (PS_INTERRUPTIBLE | PS_UNINTERRUPTIBLE)) {
q += sprintf(q, "waiting on cpu%d", ti->lcpu);
q += sprintf(q, "%swaiting on cpu %d",
ti->idle ? "idle " : "", ti->lcpu);
}
else if (ti->status & PS_STOPPED) {
q += sprintf(q, "stopped on cpu%d", ti->lcpu);
q += sprintf(q, "%sstopped on cpu %d",
ti->idle ? "idle " : "", ti->lcpu);
}
else if (ti->status & PS_TRACED) {
q += sprintf(q, "traced on cpu%d", ti->lcpu);
q += sprintf(q, "%straced on cpu %d",
ti->idle ? "idle " : "", ti->lcpu);
}
else if (ti->status == CS_IDLE) {
q += sprintf(q, "cpu%d idle", ti->cpu);
q += sprintf(q, "cpu %d idle", ti->cpu);
}
else if (ti->status == CS_RUNNING) {
q += sprintf(q, "cpu%d running", ti->cpu);
q += sprintf(q, "cpu %d running", ti->cpu);
}
else if (ti->status == CS_RESERVED) {
q += sprintf(q, "cpu%d reserved", ti->cpu);
q += sprintf(q, "cpu %d reserved", ti->cpu);
}
else {
q += sprintf(q, "status=%#x", ti->status);
}
if (ti->tid != ti->pid) {
q += sprintf(q, ",pid=%d", ti->pid);
}
rbp += print_hex(rbp, buf);
}
} while (0);
@ -859,11 +890,12 @@ static void options(int argc, char *argv[]) {
memset(&opt, 0, sizeof(opt));
opt.kernel_path = "./mckernel.img";
opt.dump_path = "./mcdump";
opt.mcos_fd = -1;
for (;;) {
int c;
c = getopt(argc, argv, "cd:hk:");
c = getopt(argc, argv, "ilcd:hk:o:");
if (c < 0) {
break;
}
@ -881,12 +913,32 @@ static void options(int argc, char *argv[]) {
case 'd':
opt.dump_path = optarg;
break;
case 'i':
opt.interactive = 1;
break;
case 'o':
opt.os_id = atoi(optarg);
break;
case 'l':
opt.print_idle = 1;
break;
}
}
if (optind < argc) {
opt.help = 1;
}
if (opt.interactive) {
char fn[128];
sprintf(fn, "/dev/mcos%d", opt.os_id);
opt.mcos_fd = open(fn, O_RDONLY);
if (opt.mcos_fd < 0) {
perror("open");
exit(1);
}
}
return;
} /* options() */
@ -969,7 +1021,7 @@ int main(int argc, char *argv[]) {
uint8_t sum;
uint8_t check;
static char lbuf[1024];
static char rbuf[1024];
static char rbuf[8192];
static char cbuf[3];
char *lbp;
char *p;

View File

@ -66,6 +66,8 @@
#include "../include/uprotocol.h"
#include <getopt.h>
#include "../config.h"
#include <numa.h>
#include <numaif.h>
//#define DEBUG
@ -153,6 +155,10 @@ static const char rlimit_stack_envname[] = "MCKERNEL_RLIMIT_STACK";
static int ischild;
static int enable_vdso = 1;
/* Partitioned execution (e.g., for MPI) */
static int nr_processes = 0;
static int nr_threads = -1;
struct fork_sync {
pid_t pid;
int status;
@ -502,7 +508,7 @@ retry:
/* Check whether the resolved path is a symlink */
if (lstat(path, &sb) == -1) {
fprintf(stderr, "lookup_exec_path(): error stat\n");
__dprintf(stderr, "lookup_exec_path(): error stat\n");
return errno;
}
@ -1102,7 +1108,7 @@ static int reduce_stack(struct rlimit *orig_rlim, char *argv[])
void print_usage(char **argv)
{
fprintf(stderr, "Usage: %s [-c target_core] [<mcos-id>] (program) [args...]\n", argv[0]);
fprintf(stderr, "Usage: %s [-c target_core] [-n nr_partitions] [<mcos-id>] (program) [args...]\n", argv[0]);
}
void init_sigaction(void)
@ -1329,12 +1335,20 @@ int main(int argc, char **argv)
}
/* Parse options ("+" denotes stop at the first non-option) */
while ((opt = getopt_long(argc, argv, "+c:", mcexec_options, NULL)) != -1) {
while ((opt = getopt_long(argc, argv, "+c:n:t:", mcexec_options, NULL)) != -1) {
switch (opt) {
case 'c':
target_core = atoi(optarg);
break;
case 'n':
nr_processes = atoi(optarg);
break;
case 't':
nr_threads = atoi(optarg);
break;
case 0: /* long opt */
break;
@ -1550,7 +1564,16 @@ int main(int argc, char **argv)
return 1;
}
n_threads = ncpu;
if (nr_threads > 0) {
n_threads = nr_threads;
}
else if (getenv("OMP_NUM_THREADS")) {
/* Leave some headroom for helper threads.. */
n_threads = atoi(getenv("OMP_NUM_THREADS")) + 4;
}
else {
n_threads = ncpu;
}
/*
* XXX: keep thread_data ncpu sized despite that there are only
@ -1599,6 +1622,53 @@ int main(int argc, char **argv)
exit(1);
}
/* Partitioned execution, obtain CPU set */
if (nr_processes > 0) {
struct get_cpu_set_arg cpu_set_arg;
int mcexec_linux_numa = 0;
cpu_set_arg.cpu_set = (void *)&desc->cpu_set;
cpu_set_arg.cpu_set_size = sizeof(desc->cpu_set);
cpu_set_arg.nr_processes = nr_processes;
cpu_set_arg.target_core = &target_core;
cpu_set_arg.mcexec_linux_numa = &mcexec_linux_numa;
if (ioctl(fd, MCEXEC_UP_GET_CPUSET, (void *)&cpu_set_arg) != 0) {
perror("getting CPU set for partitioned execution");
close(fd);
return 1;
}
desc->cpu = target_core;
/* This call may not succeed, but that is fine */
if (numa_run_on_node(mcexec_linux_numa) < 0) {
__dprint("%s: WARNING: couldn't bind to NUMA %d\n",
__FUNCTION__, mcexec_linux_numa);
}
#ifdef DEBUG
else {
cpu_set_t cpuset;
char affinity[BUFSIZ];
CPU_ZERO(&cpuset);
if ((sched_getaffinity(0, sizeof(cpu_set_t), &cpuset)) != 0) {
perror("Error sched_getaffinity");
exit(1);
}
affinity[0] = '\0';
for (i = 0; i < 512; i++) {
if (CPU_ISSET(i, &cpuset) == 1) {
sprintf(affinity, "%s %d", affinity, i);
}
}
__dprint("%s: PID: %d affinity: %s\n",
__FUNCTION__, getpid(), affinity);
}
#endif
}
if (ioctl(fd, MCEXEC_UP_PREPARE_IMAGE, (unsigned long)desc) != 0) {
perror("prepare");
close(fd);
@ -1707,8 +1777,8 @@ do_generic_syscall(
/* Overlayfs /sys/X directory lseek() problem work around */
if (w->sr.number == __NR_lseek && ret == -EINVAL) {
char proc_path[512];
char path[512];
char proc_path[PATH_MAX];
char path[PATH_MAX];
struct stat sb;
sprintf(proc_path, "/proc/self/fd/%d", (int)w->sr.args[0]);
@ -1717,6 +1787,7 @@ do_generic_syscall(
if (readlink(proc_path, path, sizeof(path)) < 0) {
fprintf(stderr, "%s: error: readlink() failed for %s\n",
__FUNCTION__, proc_path);
perror(": ");
goto out;
}
@ -1910,9 +1981,18 @@ int close_cloexec_fds(int mcos_fd)
return 0;
}
void chgdevpath(char *in, char *buf)
{
if(!strcmp(in, "/dev/xpmem")){
sprintf(in, "/dev/null");
}
}
char *
chgpath(char *in, char *buf)
{
chgdevpath(in, buf);
#ifdef ENABLE_MCOVERLAYFS
return in;
#endif // ENABLE_MCOVERLAYFS

View File

@ -3,7 +3,7 @@ SRC=$(VPATH)
IHKDIR=$(IHKBASE)/$(TARGETDIR)
OBJS = init.o mem.o debug.o mikc.o listeners.o ap.o syscall.o cls.o host.o
OBJS += process.o copy.o waitq.o futex.o timer.o plist.o fileobj.o shmobj.o
OBJS += zeroobj.o procfs.o devobj.o sysfs.o
OBJS += zeroobj.o procfs.o devobj.o sysfs.o xpmem.o
DEPSRCS=$(wildcard $(SRC)/*.c)
CFLAGS += -I$(SRC)/include -D__KERNEL__ -g -fno-omit-frame-pointer -fno-inline -fno-inline-small-functions

View File

@ -26,9 +26,21 @@
#include <march.h>
#include <cls.h>
//#define DEBUG_PRINT_AP
#ifdef DEBUG_PRINT_AP
#define dkprintf(...) kprintf(__VA_ARGS__)
#define ekprintf(...) kprintf(__VA_ARGS__)
#else
#define dkprintf(...) do { if (0) kprintf(__VA_ARGS__); } while (0)
#define ekprintf(...) kprintf(__VA_ARGS__)
#endif
int num_processors = 1;
static volatile int ap_stop = 1;
mcs_lock_node_t ap_syscall_semaphore;
static void ap_wait(void)
{
init_tick();
@ -43,7 +55,11 @@ static void ap_wait(void)
arch_start_pvclock();
if (find_command_line("hidos")) {
mcs_lock_node_t mcs_node;
mcs_lock_lock_noirq(&ap_syscall_semaphore, &mcs_node);
init_host_syscall_channel();
mcs_lock_unlock_noirq(&ap_syscall_semaphore, &mcs_node);
}
pc_ap_init();
@ -57,6 +73,7 @@ static void ap_wait(void)
void ap_start(void)
{
init_tick();
mcs_lock_init(&ap_syscall_semaphore);
ap_stop = 0;
sync_tick();
}
@ -93,13 +110,13 @@ void ap_init(void)
if (cpu_info->hw_ids[i] == bsp_hw_id) {
continue;
}
kprintf("AP Booting: %d (HW ID: %d @ NUMA %d)\n", i,
dkprintf("AP Booting: %d (HW ID: %d @ NUMA %d)\n", i,
cpu_info->hw_ids[i], cpu_info->nodes[i]);
ihk_mc_boot_cpu(cpu_info->hw_ids[i], (unsigned long)ap_wait);
num_processors++;
}
kprintf("AP Booting: Done\n");
kprintf("BSP: booted %d AP CPUs\n", cpu_info->ncpus - 1);
}
#include <sysfs.h>

View File

@ -23,7 +23,7 @@
extern int num_processors;
struct cpu_local_var *clv;
static int cpu_local_var_initialized = 0;
int cpu_local_var_initialized = 0;
void cpu_local_var_init(void)
{

View File

@ -126,7 +126,8 @@ int devobj_create(int fd, size_t len, off_t off, struct memobj **objp, int *maxp
__FUNCTION__, fd, len, off, result.handle, result.maxprot);
obj->memobj.ops = &devobj_ops;
obj->memobj.flags = MF_HAS_PAGER;
obj->memobj.flags = MF_HAS_PAGER | MF_DEV_FILE;
obj->memobj.size = len;
obj->handle = result.handle;
obj->ref = 1;
obj->pfn_pgoff = off / PAGE_SIZE;
@ -180,19 +181,21 @@ static void devobj_release(struct memobj *memobj)
memobj_unlock(&obj->memobj);
if (free_obj) {
int error;
ihk_mc_user_context_t ctx;
if (!(free_obj->memobj.flags & MF_HOST_RELEASED)) {
int error;
ihk_mc_user_context_t ctx;
ihk_mc_syscall_arg0(&ctx) = PAGER_REQ_UNMAP;
ihk_mc_syscall_arg1(&ctx) = handle;
ihk_mc_syscall_arg2(&ctx) = 1;
ihk_mc_syscall_arg0(&ctx) = PAGER_REQ_UNMAP;
ihk_mc_syscall_arg1(&ctx) = handle;
ihk_mc_syscall_arg2(&ctx) = 1;
error = syscall_generic_forwarding(__NR_mmap, &ctx);
if (error) {
kprintf("devobj_release(%p %lx):"
"release failed. %d\n",
free_obj, handle, error);
/* through */
error = syscall_generic_forwarding(__NR_mmap, &ctx);
if (error) {
kprintf("devobj_release(%p %lx):"
"release failed. %d\n",
free_obj, handle, error);
/* through */
}
}
if (obj->pfn_table) {

View File

@ -29,22 +29,27 @@
#define dkprintf(...) do { if (0) kprintf(__VA_ARGS__); } while (0)
#define ekprintf(...) kprintf(__VA_ARGS__)
static ihk_spinlock_t fileobj_list_lock = SPIN_LOCK_UNLOCKED;
mcs_rwlock_lock_t fileobj_list_lock =
{{{0}, MCS_RWLOCK_TYPE_COMMON_READER, 0, 0, 0, NULL}, NULL};
static LIST_HEAD(fileobj_list);
#define FILEOBJ_PAGE_HASH_SHIFT 9
#define FILEOBJ_PAGE_HASH_SIZE (1 << FILEOBJ_PAGE_HASH_SHIFT)
#define FILEOBJ_PAGE_HASH_MASK (FILEOBJ_PAGE_HASH_SIZE - 1)
struct fileobj {
struct memobj memobj; /* must be first */
long sref;
long cref;
uintptr_t handle;
struct list_head page_list;
struct list_head list;
struct memobj memobj; /* must be first */
long sref;
long cref;
uintptr_t handle;
struct list_head list;
struct list_head page_hash[FILEOBJ_PAGE_HASH_SIZE];
mcs_rwlock_lock_t page_hash_locks[FILEOBJ_PAGE_HASH_SIZE];
};
static memobj_release_func_t fileobj_release;
static memobj_ref_func_t fileobj_ref;
static memobj_get_page_func_t fileobj_get_page;
static memobj_copy_page_func_t fileobj_copy_page;
static memobj_flush_page_func_t fileobj_flush_page;
static memobj_invalidate_page_func_t fileobj_invalidate_page;
static memobj_lookup_page_func_t fileobj_lookup_page;
@ -53,7 +58,7 @@ static struct memobj_ops fileobj_ops = {
.release = &fileobj_release,
.ref = &fileobj_ref,
.get_page = &fileobj_get_page,
.copy_page = &fileobj_copy_page,
.copy_page = NULL,
.flush_page = &fileobj_flush_page,
.invalidate_page = &fileobj_invalidate_page,
.lookup_page = &fileobj_lookup_page,
@ -72,28 +77,36 @@ static struct memobj *to_memobj(struct fileobj *fileobj)
/***********************************************************************
* page_list
*/
static void page_list_init(struct fileobj *obj)
static void fileobj_page_hash_init(struct fileobj *obj)
{
INIT_LIST_HEAD(&obj->page_list);
int i;
for (i = 0; i < FILEOBJ_PAGE_HASH_SIZE; ++i) {
mcs_rwlock_init(&obj->page_hash_locks[i]);
INIT_LIST_HEAD(&obj->page_hash[i]);
}
return;
}
static void page_list_insert(struct fileobj *obj, struct page *page)
/* NOTE: caller must hold page_hash_locks[hash] */
static void __fileobj_page_hash_insert(struct fileobj *obj,
struct page *page, int hash)
{
list_add(&page->list, &obj->page_list);
return;
list_add(&page->list, &obj->page_hash[hash]);
}
static void page_list_remove(struct fileobj *obj, struct page *page)
/* NOTE: caller must hold page_hash_locks[hash] */
static void __fileobj_page_hash_remove(struct page *page)
{
list_del(&page->list);
}
static struct page *page_list_lookup(struct fileobj *obj, off_t off)
/* NOTE: caller must hold page_hash_locks[hash] */
static struct page *__fileobj_page_hash_lookup(struct fileobj *obj,
int hash, off_t off)
{
struct page *page;
list_for_each_entry(page, &obj->page_list, list) {
list_for_each_entry(page, &obj->page_hash[hash], list) {
if ((page->mode != PM_WILL_PAGEIO)
&& (page->mode != PM_PAGEIO)
&& (page->mode != PM_DONE_PAGEIO)
@ -104,6 +117,7 @@ static struct page *page_list_lookup(struct fileobj *obj, off_t off)
obj, off, page->mode);
panic("page_list_lookup:invalid obj page");
}
if (page->offset == off) {
goto out;
}
@ -114,13 +128,22 @@ out:
return page;
}
static struct page *page_list_first(struct fileobj *obj)
static struct page *fileobj_page_hash_first(struct fileobj *obj)
{
if (list_empty(&obj->page_list)) {
return NULL;
int i;
for (i = 0; i < FILEOBJ_PAGE_HASH_SIZE; ++i) {
if (!list_empty(&obj->page_hash[i])) {
break;
}
}
return list_first_entry(&obj->page_list, struct page, list);
if (i != FILEOBJ_PAGE_HASH_SIZE) {
return list_first_entry(&obj->page_hash[i], struct page, list);
}
else {
return NULL;
}
}
/***********************************************************************
@ -163,10 +186,11 @@ static struct fileobj *obj_list_lookup(uintptr_t handle)
int fileobj_create(int fd, struct memobj **objp, int *maxprotp)
{
ihk_mc_user_context_t ctx;
struct pager_create_result result; // XXX: assumes contiguous physical
struct pager_create_result result __attribute__((aligned(64)));
int error;
struct fileobj *newobj = NULL;
struct fileobj *obj;
struct mcs_rwlock_node node;
dkprintf("fileobj_create(%d)\n", fd);
newobj = kmalloc(sizeof(*newobj), IHK_MC_AP_NOWAIT);
@ -179,6 +203,7 @@ int fileobj_create(int fd, struct memobj **objp, int *maxprotp)
ihk_mc_syscall_arg0(&ctx) = PAGER_REQ_CREATE;
ihk_mc_syscall_arg1(&ctx) = fd;
ihk_mc_syscall_arg2(&ctx) = virt_to_phys(&result);
memset(&result, 0, sizeof(result));
error = syscall_generic_forwarding(__NR_mmap, &ctx);
if (error) {
@ -188,27 +213,43 @@ int fileobj_create(int fd, struct memobj **objp, int *maxprotp)
memset(newobj, 0, sizeof(*newobj));
newobj->memobj.ops = &fileobj_ops;
newobj->memobj.flags = MF_HAS_PAGER;
newobj->memobj.flags = MF_HAS_PAGER | MF_REG_FILE;
newobj->handle = result.handle;
newobj->sref = 1;
newobj->cref = 1;
page_list_init(newobj);
fileobj_page_hash_init(newobj);
ihk_mc_spinlock_init(&newobj->memobj.lock);
ihk_mc_spinlock_lock_noirq(&fileobj_list_lock);
mcs_rwlock_writer_lock_noirq(&fileobj_list_lock, &node);
obj = obj_list_lookup(result.handle);
if (!obj) {
obj_list_insert(newobj);
obj = newobj;
to_memobj(obj)->size = result.size;
to_memobj(obj)->flags |= result.flags;
to_memobj(obj)->status = MEMOBJ_READY;
if (to_memobj(obj)->flags & MF_PREFETCH) {
to_memobj(obj)->status = MEMOBJ_TO_BE_PREFETCHED;
}
newobj = NULL;
dkprintf("%s: new obj 0x%lx cref: %d, %s\n",
__FUNCTION__,
obj,
obj->cref,
to_memobj(obj)->flags & MF_ZEROFILL ? "zerofill" : "");
}
else {
++obj->sref;
++obj->cref;
memobj_unlock(&obj->memobj); /* locked by obj_list_lookup() */
dkprintf("%s: existing obj 0x%lx cref: %d, %s\n",
__FUNCTION__,
obj,
obj->cref,
to_memobj(obj)->flags & MF_ZEROFILL ? "zerofill" : "");
}
ihk_mc_spinlock_unlock_noirq(&fileobj_list_lock);
mcs_rwlock_writer_unlock_noirq(&fileobj_list_lock, &node);
error = 0;
*objp = to_memobj(obj);
@ -239,6 +280,7 @@ static void fileobj_release(struct memobj *memobj)
long free_sref = 0;
uintptr_t free_handle;
struct fileobj *free_obj = NULL;
struct mcs_rwlock_node node;
dkprintf("fileobj_release(%p %lx)\n", obj, obj->handle);
@ -252,19 +294,28 @@ static void fileobj_release(struct memobj *memobj)
obj->sref -= free_sref;
free_handle = obj->handle;
memobj_unlock(&obj->memobj);
if (obj->memobj.flags & MF_HOST_RELEASED) {
free_sref = 0; // don't call syscall_generic_forwarding
}
if (free_obj) {
ihk_mc_spinlock_lock_noirq(&fileobj_list_lock);
dkprintf("%s: release obj 0x%lx cref: %d, free_obj: 0x%lx, %s\n",
__FUNCTION__,
obj,
obj->cref,
free_obj,
to_memobj(obj)->flags & MF_ZEROFILL ? "zerofill" : "");
mcs_rwlock_writer_lock_noirq(&fileobj_list_lock, &node);
/* zap page_list */
for (;;) {
struct page *page;
void *page_va;
page = page_list_first(obj);
page = fileobj_page_hash_first(obj);
if (!page) {
break;
}
page_list_remove(obj, page);
__fileobj_page_hash_remove(page);
page_va = phys_to_virt(page_to_phys(page));
if (ihk_atomic_read(&page->count) != 1) {
@ -295,7 +346,7 @@ static void fileobj_release(struct memobj *memobj)
#endif
}
obj_list_remove(free_obj);
ihk_mc_spinlock_unlock_noirq(&fileobj_list_lock);
mcs_rwlock_writer_unlock_noirq(&fileobj_list_lock, &node);
kfree(free_obj);
}
@ -341,83 +392,101 @@ static void fileobj_do_pageio(void *args0)
struct page *page;
ihk_mc_user_context_t ctx;
ssize_t ss;
struct mcs_rwlock_node mcs_node;
int hash = (off >> PAGE_SHIFT) & FILEOBJ_PAGE_HASH_MASK;
memobj_lock(&obj->memobj);
page = page_list_lookup(obj, off);
mcs_rwlock_writer_lock_noirq(&obj->page_hash_locks[hash],
&mcs_node);
page = __fileobj_page_hash_lookup(obj, hash, off);
if (!page) {
goto out;
}
while (page->mode == PM_PAGEIO) {
memobj_unlock(&obj->memobj);
mcs_rwlock_writer_unlock_noirq(&obj->page_hash_locks[hash],
&mcs_node);
cpu_pause();
memobj_lock(&obj->memobj);
mcs_rwlock_writer_lock_noirq(&obj->page_hash_locks[hash],
&mcs_node);
}
if (page->mode == PM_WILL_PAGEIO) {
page->mode = PM_PAGEIO;
memobj_unlock(&obj->memobj);
ihk_mc_syscall_arg0(&ctx) = PAGER_REQ_READ;
ihk_mc_syscall_arg1(&ctx) = obj->handle;
ihk_mc_syscall_arg2(&ctx) = off;
ihk_mc_syscall_arg3(&ctx) = pgsize;
ihk_mc_syscall_arg4(&ctx) = page_to_phys(page);
ss = syscall_generic_forwarding(__NR_mmap, &ctx);
memobj_lock(&obj->memobj);
if (page->mode != PM_PAGEIO) {
kprintf("fileobj_do_pageio(%p,%lx,%lx):"
"invalid mode %x\n",
obj, off, pgsize, page->mode);
panic("fileobj_do_pageio:invalid page mode");
if (to_memobj(obj)->flags & MF_ZEROFILL) {
void *virt = phys_to_virt(page_to_phys(page));
memset(virt, 0, PAGE_SIZE);
}
else {
page->mode = PM_PAGEIO;
mcs_rwlock_writer_unlock_noirq(&obj->page_hash_locks[hash],
&mcs_node);
if (ss == 0) {
dkprintf("fileobj_do_pageio(%p,%lx,%lx):EOF? %ld\n",
obj, off, pgsize, ss);
page->mode = PM_PAGEIO_EOF;
goto out;
}
else if (ss != pgsize) {
kprintf("fileobj_do_pageio(%p,%lx,%lx):"
"read failed. %ld\n",
obj, off, pgsize, ss);
page->mode = PM_PAGEIO_ERROR;
goto out;
ihk_mc_syscall_arg0(&ctx) = PAGER_REQ_READ;
ihk_mc_syscall_arg1(&ctx) = obj->handle;
ihk_mc_syscall_arg2(&ctx) = off;
ihk_mc_syscall_arg3(&ctx) = pgsize;
ihk_mc_syscall_arg4(&ctx) = page_to_phys(page);
dkprintf("%s: __NR_mmap for handle 0x%lx\n",
__FUNCTION__, obj->handle);
ss = syscall_generic_forwarding(__NR_mmap, &ctx);
mcs_rwlock_writer_lock_noirq(&obj->page_hash_locks[hash],
&mcs_node);
if (page->mode != PM_PAGEIO) {
kprintf("fileobj_do_pageio(%p,%lx,%lx):"
"invalid mode %x\n",
obj, off, pgsize, page->mode);
panic("fileobj_do_pageio:invalid page mode");
}
if (ss == 0) {
dkprintf("fileobj_do_pageio(%p,%lx,%lx):EOF? %ld\n",
obj, off, pgsize, ss);
page->mode = PM_PAGEIO_EOF;
goto out;
}
else if (ss != pgsize) {
kprintf("fileobj_do_pageio(%p,%lx,%lx):"
"read failed. %ld\n",
obj, off, pgsize, ss);
page->mode = PM_PAGEIO_ERROR;
goto out;
}
}
page->mode = PM_DONE_PAGEIO;
}
out:
memobj_unlock(&obj->memobj);
mcs_rwlock_writer_unlock_noirq(&obj->page_hash_locks[hash],
&mcs_node);
fileobj_release(&obj->memobj); /* got fileobj_get_page() */
kfree(args0);
dkprintf("fileobj_do_pageio(%p,%lx,%lx):\n", obj, off, pgsize);
return;
}
static int fileobj_get_page(struct memobj *memobj, off_t off, int p2align, uintptr_t *physp, unsigned long *pflag)
static int fileobj_get_page(struct memobj *memobj, off_t off,
int p2align, uintptr_t *physp, unsigned long *pflag)
{
struct thread *proc = cpu_local_var(current);
struct fileobj *obj = to_fileobj(memobj);
int error;
int error = -1;
void *virt = NULL;
int npages;
uintptr_t phys = -1;
struct page *page;
struct pageio_args *args = NULL;
struct mcs_rwlock_node mcs_node;
int hash = (off >> PAGE_SHIFT) & FILEOBJ_PAGE_HASH_MASK;
dkprintf("fileobj_get_page(%p,%lx,%x,%p)\n", obj, off, p2align, physp);
memobj_lock(&obj->memobj);
if (p2align != PAGE_P2ALIGN) {
error = -ENOMEM;
goto out;
return -ENOMEM;
}
page = page_list_lookup(obj, off);
mcs_rwlock_writer_lock_noirq(&obj->page_hash_locks[hash],
&mcs_node);
page = __fileobj_page_hash_lookup(obj, hash, off);
if (!page || (page->mode == PM_WILL_PAGEIO)
|| (page->mode == PM_PAGEIO)) {
args = kmalloc(sizeof(*args), IHK_MC_AP_NOWAIT);
@ -431,7 +500,10 @@ static int fileobj_get_page(struct memobj *memobj, off_t off, int p2align, uintp
if (!page) {
npages = 1 << p2align;
virt = ihk_mc_alloc_pages(npages, IHK_MC_AP_NOWAIT);
virt = ihk_mc_alloc_pages(npages, IHK_MC_AP_NOWAIT |
(to_memobj(obj)->flags & MF_ZEROFILL) ? IHK_MC_AP_USER : 0);
if (!virt) {
error = -ENOMEM;
kprintf("fileobj_get_page(%p,%lx,%x,%p):"
@ -445,13 +517,15 @@ static int fileobj_get_page(struct memobj *memobj, off_t off, int p2align, uintp
if (page->mode != PM_NONE) {
panic("fileobj_get_page:invalid new page");
}
page->mode = PM_WILL_PAGEIO;
page->offset = off;
ihk_atomic_set(&page->count, 1);
page_list_insert(obj, page);
__fileobj_page_hash_insert(obj, page, hash);
page->mode = PM_WILL_PAGEIO;
}
memobj_lock(&obj->memobj);
++obj->cref; /* for fileobj_do_pageio() */
memobj_unlock(&obj->memobj);
args->fileobj = obj;
args->objoff = off;
@ -483,7 +557,8 @@ static int fileobj_get_page(struct memobj *memobj, off_t off, int p2align, uintp
*physp = page_to_phys(page);
virt = NULL;
out:
memobj_unlock(&obj->memobj);
mcs_rwlock_writer_unlock_noirq(&obj->page_hash_locks[hash],
&mcs_node);
if (virt) {
ihk_mc_free_pages(virt, npages);
}
@ -495,78 +570,6 @@ out:
return error;
}
static uintptr_t fileobj_copy_page(
struct memobj *memobj, uintptr_t orgpa, int p2align)
{
struct page *orgpage = phys_to_page(orgpa);
size_t pgsize = PAGE_SIZE << p2align;
int npages = 1 << p2align;
void *newkva = NULL;
uintptr_t newpa = -1;
void *orgkva;
int count;
dkprintf("fileobj_copy_page(%p,%lx,%d)\n", memobj, orgpa, p2align);
if (p2align != PAGE_P2ALIGN) {
panic("p2align");
}
memobj_lock(memobj);
for (;;) {
if (!orgpage || orgpage->mode != PM_MAPPED) {
kprintf("fileobj_copy_page(%p,%lx,%d):"
"invalid cow page. %x\n",
memobj, orgpa, p2align, orgpage ? orgpage->mode : 0);
panic("fileobj_copy_page:invalid cow page");
}
count = ihk_atomic_read(&orgpage->count);
if (count == 2) { // XXX: private only
list_del(&orgpage->list);
ihk_atomic_dec(&orgpage->count);
orgpage->mode = PM_NONE;
newpa = orgpa;
break;
}
if (count <= 0) {
kprintf("fileobj_copy_page(%p,%lx,%d):"
"orgpage count corrupted. %x\n",
memobj, orgpa, p2align, count);
panic("fileobj_copy_page:orgpage count corrupted");
}
if (newkva) {
orgkva = phys_to_virt(orgpa);
memcpy(newkva, orgkva, pgsize);
ihk_atomic_dec(&orgpage->count);
newpa = virt_to_phys(newkva);
if (phys_to_page(newpa)) {
page_map(phys_to_page(newpa));
}
newkva = NULL; /* avoid ihk_mc_free_pages() */
break;
}
memobj_unlock(memobj);
newkva = ihk_mc_alloc_aligned_pages(npages, p2align,
IHK_MC_AP_NOWAIT);
if (!newkva) {
kprintf("fileobj_copy_page(%p,%lx,%d):"
"alloc page failed\n",
memobj, orgpa, p2align);
goto out;
}
memobj_lock(memobj);
}
memobj_unlock(memobj);
out:
if (newkva) {
ihk_mc_free_pages(newkva, npages);
}
dkprintf("fileobj_copy_page(%p,%lx,%d): %lx\n",
memobj, orgpa, p2align, newpa);
return newpa;
}
static int fileobj_flush_page(struct memobj *memobj, uintptr_t phys,
size_t pgsize)
{
@ -575,6 +578,10 @@ static int fileobj_flush_page(struct memobj *memobj, uintptr_t phys,
ihk_mc_user_context_t ctx;
ssize_t ss;
if (to_memobj(obj)->flags & MF_ZEROFILL) {
return 0;
}
page = phys_to_page(phys);
if (!page) {
kprintf("%s: warning: tried to flush non-existing page for phys addr: 0x%lx\n",
@ -603,63 +610,48 @@ static int fileobj_flush_page(struct memobj *memobj, uintptr_t phys,
static int fileobj_invalidate_page(struct memobj *memobj, uintptr_t phys,
size_t pgsize)
{
struct fileobj *obj = to_fileobj(memobj);
int error;
struct page *page;
dkprintf("fileobj_invalidate_page(%p,%#lx,%#lx)\n",
memobj, phys, pgsize);
if (!(page = phys_to_page(phys))
|| !(page = page_list_lookup(obj, page->offset))) {
error = 0;
goto out;
}
if (ihk_atomic_read(&page->count) == 1) {
if (page_unmap(page)) {
ihk_mc_free_pages(phys_to_virt(phys),
pgsize/PAGE_SIZE);
}
}
error = 0;
out:
dkprintf("fileobj_invalidate_page(%p,%#lx,%#lx):%d\n",
memobj, phys, pgsize, error);
return error;
/* TODO: keep track of reverse mappings so that invalidation
* can be performed */
kprintf("%s: WARNING: file mapping invalidation not supported\n",
__FUNCTION__);
return 0;
}
static int fileobj_lookup_page(struct memobj *memobj, off_t off, int p2align, uintptr_t *physp, unsigned long *pflag)
static int fileobj_lookup_page(struct memobj *memobj, off_t off,
int p2align, uintptr_t *physp, unsigned long *pflag)
{
struct fileobj *obj = to_fileobj(memobj);
int error;
uintptr_t phys = -1;
int error = -1;
struct page *page;
struct mcs_rwlock_node mcs_node;
int hash = (off >> PAGE_SHIFT) & FILEOBJ_PAGE_HASH_MASK;
dkprintf("fileobj_lookup_page(%p,%lx,%x,%p)\n", obj, off, p2align, physp);
memobj_lock(&obj->memobj);
if (p2align != PAGE_P2ALIGN) {
error = -ENOMEM;
goto out;
return -ENOMEM;
}
page = page_list_lookup(obj, off);
mcs_rwlock_reader_lock_noirq(&obj->page_hash_locks[hash],
&mcs_node);
page = __fileobj_page_hash_lookup(obj, hash, off);
if (!page) {
error = -ENOENT;
dkprintf("fileobj_lookup_page(%p,%lx,%x,%p): page not found. %d\n", obj, off, p2align, physp, error);
goto out;
}
phys = page_to_phys(page);
*physp = page_to_phys(page);
error = 0;
if (physp) {
*physp = phys;
}
out:
memobj_unlock(&obj->memobj);
dkprintf("fileobj_lookup_page(%p,%lx,%x,%p): %d %lx\n",
obj, off, p2align, physp, error, phys);
mcs_rwlock_reader_unlock_noirq(&obj->page_hash_locks[hash],
&mcs_node);
dkprintf("fileobj_lookup_page(%p,%lx,%x,%p): %d \n",
obj, off, p2align, physp, error);
return error;
}

View File

@ -248,9 +248,13 @@ static int cmpxchg_futex_value_locked(uint32_t __user *uaddr, uint32_t uval, uin
static int get_futex_value_locked(uint32_t *dest, uint32_t *from)
{
/* RIKEN: futexes are always on not swappable pages */
*dest = getint_user((int *)from);
/*
* Officially we should call:
* return getint_user((int *)dest, (int *)from);
*
* but McKernel on x86 can just access user-space.
*/
*dest = *(volatile uint32_t *)from;
return 0;
}
@ -670,25 +674,32 @@ static uint64_t futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q
uint64_t timeout)
{
uint64_t time_remain = 0;
unsigned long irqstate;
struct thread *thread = cpu_local_var(current);
/*
* The task state is guaranteed to be set before another task can
* wake it. set_current_state() is implemented using set_mb() and
* queue_me() calls spin_unlock() upon completion, both serializing
* access to the hash list and forcing another memory barrier.
* wake it.
* queue_me() calls spin_unlock() upon completion, serializing
* access to the hash list and forcing a memory barrier.
*/
xchg4(&(cpu_local_var(current)->status), PS_INTERRUPTIBLE);
/* Indicate spin sleep */
irqstate = ihk_mc_spinlock_lock(&thread->spin_sleep_lock);
thread->spin_sleep = 1;
ihk_mc_spinlock_unlock(&thread->spin_sleep_lock, irqstate);
queue_me(q, hb);
if (!plist_node_empty(&q->list)) {
/* RIKEN: use mcos timers */
if (timeout) {
dkprintf("futex_wait_queue_me(): tid: %d schedule_timeout()\n", cpu_local_var(current)->tid);
time_remain = schedule_timeout(timeout);
}
else {
dkprintf("futex_wait_queue_me(): tid: %d schedule()\n", cpu_local_var(current)->tid);
schedule();
spin_sleep_or_schedule();
time_remain = 0;
}
@ -697,6 +708,7 @@ static uint64_t futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q
/* This does not need to be serialized */
cpu_local_var(current)->status = PS_RUNNING;
thread->spin_sleep = 0;
return time_remain;
}
@ -743,14 +755,17 @@ static int futex_wait_setup(uint32_t __user *uaddr, uint32_t val, int fshared,
*/
q->key = FUTEX_KEY_INIT;
ret = get_futex_key(uaddr, fshared, &q->key);
if ((ret != 0))
if (ret != 0)
return ret;
*hb = queue_lock(q);
ret = get_futex_value_locked(&uval, uaddr);
/* RIKEN: get_futex_value_locked() always returns 0 on mckernel */
if (ret) {
queue_unlock(q, *hb);
put_futex_key(fshared, &q->key);
return ret;
}
if (uval != val) {
queue_unlock(q, *hb);
@ -776,8 +791,6 @@ static int futex_wait(uint32_t __user *uaddr, int fshared,
q.bitset = bitset;
q.requeue_pi_key = NULL;
/* RIKEN: futex_wait_queue_me() calls schedule_timeout() if timer is set */
retry:
/* Prepare to wait on uaddr. */
ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);

View File

@ -125,7 +125,7 @@ int prepare_process_ranges_args_envs(struct thread *thread,
up = virt_to_phys(up_v);
if (add_process_memory_range(vm, s, e, up, flags, NULL, 0,
PAGE_SHIFT) != 0) {
PAGE_SHIFT, NULL) != 0) {
ihk_mc_free_pages(up_v, range_npages);
kprintf("ERROR: adding memory range for ELF section %i\n", i);
goto err;
@ -213,7 +213,7 @@ int prepare_process_ranges_args_envs(struct thread *thread,
args_envs_p = virt_to_phys(args_envs);
if(add_process_memory_range(vm, addr, e, args_envs_p,
flags, NULL, 0, PAGE_SHIFT) != 0){
flags, NULL, 0, PAGE_SHIFT, NULL) != 0){
ihk_mc_free_pages(args_envs, ARGENV_PAGE_COUNT);
kprintf("ERROR: adding memory range for args/envs\n");
goto err;
@ -393,7 +393,9 @@ static int process_msg_prepare_process(unsigned long rphys)
memcpy_long(pn, p, sizeof(struct program_load_desc)
+ sizeof(struct program_image_section) * n);
if((thread = create_thread(p->entry)) == NULL){
if ((thread = create_thread(p->entry,
(unsigned long *)&p->cpu_set,
sizeof(p->cpu_set))) == NULL) {
kfree(pn);
ihk_mc_unmap_virtual(p, npages, 1);
ihk_mc_unmap_memory(NULL, phys, sz);
@ -432,9 +434,6 @@ static int process_msg_prepare_process(unsigned long rphys)
vm->region.map_end = vm->region.map_start;
memcpy(proc->rlimit, pn->rlimit, sizeof(struct rlimit) * MCK_RLIM_MAX);
/* TODO: Clear it at the proper timing */
cpu_local_var(scp).post_idx = 0;
if (prepare_process_ranges_args_envs(thread, pn, p, attr,
NULL, 0, NULL, 0) != 0) {
kprintf("error: preparing process ranges, args, envs, stack\n");
@ -459,70 +458,6 @@ err:
return -ENOMEM;
}
static void process_msg_init(struct ikc_scd_init_param *pcp, struct syscall_params *lparam)
{
lparam->response_va = ihk_mc_alloc_pages(RESPONSE_PAGE_COUNT, 0);
lparam->response_pa = virt_to_phys(lparam->response_va);
pcp->request_page = 0;
pcp->doorbell_page = 0;
pcp->response_page = lparam->response_pa;
}
static void process_msg_init_acked(struct ihk_ikc_channel_desc *c, unsigned long pphys)
{
struct ikc_scd_init_param *param = phys_to_virt(pphys);
struct syscall_params *lparam;
enum ihk_mc_pt_attribute attr;
attr = PTATTR_NO_EXECUTE | PTATTR_WRITABLE | PTATTR_FOR_USER;
lparam = &cpu_local_var(scp);
if(cpu_local_var(syscall_channel2) == c)
lparam = &cpu_local_var(scp2);
lparam->request_rpa = param->request_page;
lparam->request_pa = ihk_mc_map_memory(NULL, param->request_page,
REQUEST_PAGE_COUNT * PAGE_SIZE);
if((lparam->request_va = ihk_mc_map_virtual(lparam->request_pa,
REQUEST_PAGE_COUNT,
attr)) == NULL){
// TODO:
panic("ENOMEM");
}
lparam->doorbell_rpa = param->doorbell_page;
lparam->doorbell_pa = ihk_mc_map_memory(NULL, param->doorbell_page,
DOORBELL_PAGE_COUNT *
PAGE_SIZE);
if((lparam->doorbell_va = ihk_mc_map_virtual(lparam->doorbell_pa,
DOORBELL_PAGE_COUNT,
attr)) == NULL){
// TODO:
panic("ENOMEM");
}
lparam->post_rpa = param->post_page;
lparam->post_pa = ihk_mc_map_memory(NULL, param->post_page,
PAGE_SIZE);
if((lparam->post_va = ihk_mc_map_virtual(lparam->post_pa, 1,
attr)) == NULL){
// TODO:
panic("ENOMEM");
}
lparam->post_fin = 1;
dkprintf("Syscall parameters: (%d)\n", ihk_mc_get_processor_id());
dkprintf(" Response: %lx, %p\n",
lparam->response_pa, lparam->response_va);
dkprintf(" Request : %lx, %lx, %p\n",
lparam->request_pa, lparam->request_rpa, lparam->request_va);
dkprintf(" Doorbell: %lx, %lx, %p\n",
lparam->doorbell_pa, lparam->doorbell_rpa, lparam->doorbell_va);
dkprintf(" Post: %lx, %lx, %p\n",
lparam->post_pa, lparam->post_rpa, lparam->post_va);
}
static void syscall_channel_send(struct ihk_ikc_channel_desc *c,
struct ikc_scd_packet *packet)
{
@ -530,7 +465,7 @@ static void syscall_channel_send(struct ihk_ikc_channel_desc *c,
}
extern unsigned long do_kill(struct thread *, int, int, int, struct siginfo *, int ptracecont);
extern void process_procfs_request(unsigned long rarg);
extern void process_procfs_request(struct ikc_scd_packet *rpacket);
extern void terminate_host(int pid);
extern void debug_log(long);
@ -557,7 +492,6 @@ static int syscall_packet_handler(struct ihk_ikc_channel_desc *c,
switch (packet->msg) {
case SCD_MSG_INIT_CHANNEL_ACKED:
dkprintf("SCD_MSG_INIT_CHANNEL_ACKED\n");
process_msg_init_acked(c, packet->arg);
ret = 0;
break;
@ -579,14 +513,16 @@ static int syscall_packet_handler(struct ihk_ikc_channel_desc *c,
break;
case SCD_MSG_SCHEDULE_PROCESS:
cpuid = obtain_clone_cpuid();
if(cpuid == -1){
thread = (struct thread *)packet->arg;
cpuid = obtain_clone_cpuid(&thread->cpu_set);
if (cpuid == -1) {
kprintf("No CPU available\n");
ret = -1;
break;
}
dkprintf("SCD_MSG_SCHEDULE_PROCESS: %lx\n", packet->arg);
thread = (struct thread *)packet->arg;
proc = thread->proc;
thread->tid = proc->pid;
proc->status = PS_RUNNING;
@ -594,8 +530,7 @@ static int syscall_packet_handler(struct ihk_ikc_channel_desc *c,
chain_thread(thread);
chain_process(proc);
runq_add_thread(thread, cpuid);
//cpu_local_var(next) = (struct thread *)packet->arg;
ret = 0;
break;
@ -637,7 +572,7 @@ static int syscall_packet_handler(struct ihk_ikc_channel_desc *c,
break;
case SCD_MSG_PROCFS_REQUEST:
process_procfs_request(packet->arg);
process_procfs_request(packet);
ret = 0;
break;
@ -683,7 +618,7 @@ void init_host_syscall_channel(void)
param.port = 501;
param.pkt_size = sizeof(struct ikc_scd_packet);
param.queue_size = PAGE_SIZE;
param.queue_size = PAGE_SIZE * 4;
param.magic = 0x1129;
param.handler = syscall_packet_handler;
@ -696,7 +631,6 @@ void init_host_syscall_channel(void)
get_this_cpu_local_var()->syscall_channel = param.channel;
process_msg_init(&cpu_local_var(iip), &cpu_local_var(scp));
pckt.msg = SCD_MSG_INIT_CHANNEL;
pckt.ref = ihk_mc_get_processor_id();
pckt.arg = virt_to_phys(&cpu_local_var(iip));
@ -710,7 +644,7 @@ void init_host_syscall_channel2(void)
param.port = 502;
param.pkt_size = sizeof(struct ikc_scd_packet);
param.queue_size = PAGE_SIZE;
param.queue_size = PAGE_SIZE * 4;
param.magic = 0x1329;
param.handler = syscall_packet_handler;
@ -723,7 +657,6 @@ void init_host_syscall_channel2(void)
get_this_cpu_local_var()->syscall_channel2 = param.channel;
process_msg_init(&cpu_local_var(iip2), &cpu_local_var(scp2));
pckt.msg = SCD_MSG_INIT_CHANNEL;
pckt.ref = ihk_mc_get_processor_id();
pckt.arg = virt_to_phys(&cpu_local_var(iip2));

View File

@ -56,11 +56,9 @@ struct cpu_local_var {
size_t runq_len;
struct ihk_ikc_channel_desc *syscall_channel;
struct syscall_params scp;
struct ikc_scd_init_param iip;
struct ihk_ikc_channel_desc *syscall_channel2;
struct syscall_params scp2;
struct ikc_scd_init_param iip2;
struct resource_set *resource_set;

View File

@ -16,7 +16,7 @@
extern void arch_init(void);
extern void kmsg_init(int);
extern void mem_init(void);
extern void ikc_master_init(void);
extern void ihk_ikc_master_init(void);
extern void ap_init(void);
extern void arch_ready(void);
extern void mc_ikc_test_init(void);

View File

@ -28,9 +28,9 @@ r;\
})
#define kfree(ptr) _kfree(ptr, __FILE__, __LINE__)
#define memcheck(ptr, msg) _memcheck(ptr, msg, __FILE__, __LINE__, 0)
void *_kmalloc(int size, enum ihk_mc_ap_flag flag, char *file, int line);
void *_kmalloc(int size, ihk_mc_ap_flag flag, char *file, int line);
void _kfree(void *ptr, char *file, int line);
void *__kmalloc(int size, enum ihk_mc_ap_flag flag);
void *__kmalloc(int size, ihk_mc_ap_flag flag);
void __kfree(void *ptr);
int _memcheck(void *ptr, char *msg, char *file, int line, int free);

View File

@ -32,13 +32,23 @@ enum {
MF_HAS_PAGER = 0x0001,
MF_SHMDT_OK = 0x0002,
MF_IS_REMOVABLE = 0x0004,
MF_PREFETCH = 0x0008,
MF_ZEROFILL = 0x0010,
MF_REG_FILE = 0x1000,
MF_DEV_FILE = 0x2000,
MF_HOST_RELEASED = 0x80000000,
MF_END
};
#define MEMOBJ_READY 0
#define MEMOBJ_TO_BE_PREFETCHED 1
struct memobj {
struct memobj_ops * ops;
uint32_t flags;
int8_t padding[4];
ihk_spinlock_t lock;
struct memobj_ops *ops;
uint32_t flags;
uint32_t status;
size_t size;
ihk_spinlock_t lock;
};
typedef void memobj_release_func_t(struct memobj *obj);

View File

@ -30,7 +30,8 @@ enum pager_op {
struct pager_create_result {
uintptr_t handle;
int maxprot;
int8_t padding[4];
uint32_t flags;
size_t size;
};
/*

View File

@ -166,7 +166,7 @@
#define NOPHYS ((uintptr_t)-1)
#define PROCESS_NUMA_MASK_BITS 64
#define PROCESS_NUMA_MASK_BITS 256
/*
* Both the MPOL_* mempolicy mode and the MPOL_F_* optional mode flags are
@ -232,8 +232,6 @@ enum mpol_rebind_step {
#include <waitq.h>
#include <futex.h>
//#define TRACK_SYSCALLS
struct resource_set;
struct process_hash;
struct thread_hash;
@ -244,6 +242,28 @@ struct process_vm;
struct vm_regions;
struct vm_range;
//#define TRACK_SYSCALLS
#ifdef TRACK_SYSCALLS
#define TRACK_SYSCALLS_MAX 300
#define __NR_track_syscalls 701
#define TRACK_SYSCALLS_CLEAR 0x01
#define TRACK_SYSCALLS_ON 0x02
#define TRACK_SYSCALLS_OFF 0x04
#define TRACK_SYSCALLS_PRINT 0x08
#define TRACK_SYSCALLS_PRINT_PROC 0x10
void track_syscalls_print_thread_stats(struct thread *thread);
void track_syscalls_print_proc_stats(struct process *proc);
void track_syscalls_accumulate_counters(struct thread *thread,
struct process *proc);
void track_syscalls_alloc_counters(struct thread *thread);
void track_syscalls_dealloc_thread_counters(struct thread *thread);
void track_syscalls_dealloc_proc_counters(struct process *proc);
#endif // TRACK_SYSCALLS
#define HASH_SIZE 73
struct resource_set {
@ -539,6 +559,13 @@ struct process {
#define PP_COUNT 2
#define PP_STOP 3
struct mc_perf_event *monitoring_event;
#ifdef TRACK_SYSCALLS
mcs_lock_node_t st_lock;
uint64_t *syscall_times;
uint32_t *syscall_cnts;
uint64_t *offload_times;
uint32_t *offload_cnts;
#endif // TRACK_SYSCALLS
};
void hold_thread(struct thread *ftn);
@ -612,7 +639,7 @@ struct thread {
int in_syscall_offload;
#ifdef TRACK_SYSCALLS
int socc_enabled;
int track_syscalls;
uint64_t *syscall_times;
uint32_t *syscall_cnts;
uint64_t *offload_times;
@ -700,7 +727,8 @@ static inline int has_cap_sys_admin(struct thread *th)
void hold_address_space(struct address_space *);
void release_address_space(struct address_space *);
struct thread *create_thread(unsigned long user_pc);
struct thread *create_thread(unsigned long user_pc,
unsigned long *__cpu_set, size_t cpu_set_size);
struct thread *clone_thread(struct thread *org, unsigned long pc,
unsigned long sp, int clone_flags);
void destroy_thread(struct thread *thread);
@ -715,9 +743,10 @@ void free_process_memory_ranges(struct process_vm *vm);
int populate_process_memory(struct process_vm *vm, void *start, size_t len);
int add_process_memory_range(struct process_vm *vm,
unsigned long start, unsigned long end,
unsigned long phys, unsigned long flag,
struct memobj *memobj, off_t objoff, int pgshift);
unsigned long start, unsigned long end,
unsigned long phys, unsigned long flag,
struct memobj *memobj, off_t offset,
int pgshift, struct vm_range **rp);
int remove_process_memory_range(struct process_vm *vm, unsigned long start,
unsigned long end, int *ro_freedp);
int split_process_memory_range(struct process_vm *vm,
@ -757,9 +786,11 @@ extern enum ihk_mc_pt_attribute arch_vrflag_to_ptattr(unsigned long flag, uint64
enum ihk_mc_pt_attribute common_vrflag_to_ptattr(unsigned long flag, uint64_t fault, pte_t *ptep);
void schedule(void);
void spin_sleep_or_schedule(void);
void runq_add_thread(struct thread *thread, int cpu_id);
void runq_del_thread(struct thread *thread, int cpu_id);
int sched_wakeup_thread(struct thread *thread, int valid_states);
int sched_wakeup_thread_locked(struct thread *thread, int valid_states);
void sched_request_migrate(int cpu_id, struct thread *thread);
void check_need_resched(void);

View File

@ -149,6 +149,10 @@ struct program_image_section {
#define MCK_RLIMIT_SIGPENDING 14
#define MCK_RLIMIT_STACK 15
#define PLD_CPU_SET_MAX_CPUS 1024
typedef unsigned long __cpu_set_unit;
#define PLD_CPU_SET_SIZE (PLD_CPU_SET_MAX_CPUS / (8 * sizeof(__cpu_set_unit)))
struct program_load_desc {
int num_sections;
int status;
@ -178,6 +182,7 @@ struct program_load_desc {
struct rlimit rlimit[MCK_RLIM_MAX];
unsigned long interp_align;
char shell_path[SHELL_PATH_MAX_LEN];
__cpu_set_unit cpu_set[PLD_CPU_SET_SIZE];
struct program_image_section sections[0];
};
@ -250,22 +255,6 @@ struct syscall_post {
unsigned long v[8];
};
struct syscall_params {
unsigned long request_rpa, request_pa;
struct syscall_request *request_va;
unsigned long response_pa;
struct syscall_response *response_va;
unsigned long doorbell_rpa, doorbell_pa;
unsigned long *doorbell_va;
unsigned int post_idx;
unsigned long post_rpa, post_pa;
struct syscall_post *post_va;
unsigned long post_fin;
struct syscall_post post_buf IHK_DMA_ALIGN;
};
#define SYSCALL_DECLARE(name) long sys_##name(int n, ihk_mc_user_context_t *ctx)
#define SYSCALL_HEADER struct syscall_request request IHK_DMA_ALIGN; \
request.number = n
@ -387,6 +376,7 @@ extern struct tod_data_s tod_data; /* residing in arch-dependent file */
void reset_cputime();
void set_cputime(int mode);
int do_munmap(void *addr, size_t len);
intptr_t do_mmap(intptr_t addr0, size_t len0, int prot, int flags, int fd,
off_t off0);
void clear_host_pte(uintptr_t addr, size_t len);

View File

@ -27,6 +27,8 @@ typedef int (*waitq_func_t)(struct waitq_entry *wait, unsigned mode,
int default_wake_function(struct waitq_entry *wait, unsigned mode, int flags,
void *key);
int locked_wake_function(struct waitq_entry *wait, unsigned mode, int flags,
void *key);
typedef struct waitq {
ihk_spinlock_t lock;
@ -57,6 +59,13 @@ typedef struct waitq_entry {
.link = { &(name).link, &(name).link } \
}
#define DECLARE_WAITQ_ENTRY_LOCKED(name, tsk) \
waitq_entry_t name = { \
.private = tsk, \
.func = locked_wake_function, \
.link = { &(name).link, &(name).link } \
}
extern void waitq_init(waitq_t *waitq);
extern void waitq_init_entry(waitq_entry_t *entry, struct thread *proc);
extern int waitq_active(waitq_t *waitq);

21
kernel/include/xpmem.h Normal file
View File

@ -0,0 +1,21 @@
/**
* \file xpmem.h
* License details are found in the file LICENSE.
* \brief
* Structures and functions of xpmem
*/
/*
* HISTORY
*/
#ifndef _XPMEM_H
#define _XPMEM_H
#include <ihk/context.h>
#define XPMEM_DEV_PATH "/dev/xpmem"
extern int xpmem_open(ihk_mc_user_context_t *ctx);
#endif /* _XPMEM_H */

View File

@ -0,0 +1,388 @@
/**
* \file xpmem_private.h
* License details are found in the file LICENSE.
* \brief
* Private Cross Partition Memory (XPMEM) structures and macros.
*/
/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (c) 2004-2007 Silicon Graphics, Inc. All Rights Reserved.
* Copyright 2009, 2010, 2014 Cray Inc. All Rights Reserved
* Copyright (c) 2014-2016 Los Alamos National Security, LCC. All rights
* reserved.
*/
/*
* HISTORY
*/
#ifndef _XPMEM_PRIVATE_H
#define _XPMEM_PRIVATE_H
#include <mc_xpmem.h>
#include <xpmem.h>
#define XPMEM_CURRENT_VERSION 0x00026003
//#define DEBUG_PRINT_XPMEM
#ifdef DEBUG_PRINT_XPMEM
#define dkprintf(...) kprintf(__VA_ARGS__)
#define ekprintf(...) kprintf(__VA_ARGS__)
#define XPMEM_DEBUG(format, a...) kprintf("[%d] %s: "format"\n", cpu_local_var(current)->proc->rgid, __func__, ##a)
#else
#define dkprintf(...) do { if (0) kprintf(__VA_ARGS__); } while (0)
#define ekprintf(...) kprintf(__VA_ARGS__)
#define XPMEM_DEBUG(format, a...) do { if (0) kprintf("\n"); } while (0)
#endif
//#define USE_DBUG_ON
#ifdef USE_DBUG_ON
#define DBUG_ON(condition) do { if (condition) kprintf("[%d] BUG: func=%s\n", cpu_local_var(current)->proc->rgid, __func__); } while (0)
#else
#define DBUG_ON(condition)
#endif
#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
#define min(x, y) ({ \
__typeof__(x) _min1 = (x); \
__typeof__(y) _min2 = (y); \
(void) (&_min1 == &_min2); \
_min1 < _min2 ? _min1 : _min2;})
#define max(x, y) ({ \
__typeof__(x) _max1 = (x); \
__typeof__(y) _max2 = (y); \
(void) (&_max1 == &_max2); \
_max1 > _max2 ? _max1 : _max2;})
#define MAX_ERRNO 4095
#define IS_ERR_VALUE(x) ((x) >= (unsigned long)-MAX_ERRNO)
static inline void * ERR_PTR(long error)
{
return (void *)error;
}
static inline long PTR_ERR(const void *ptr)
{
return (long)ptr;
}
static inline long IS_ERR(const void *ptr)
{
return IS_ERR_VALUE((unsigned long)ptr);
}
static inline long IS_ERR_OR_NULL(const void *ptr)
{
return !ptr || IS_ERR_VALUE((unsigned long)ptr);
}
/*
* Both the xpmem_segid_t and xpmem_apid_t are of type __s64 and designed
* to be opaque to the user. Both consist of the same underlying fields.
*
* The 'uniq' field is designed to give each segid or apid a unique value.
* Each type is only unique with respect to itself.
*
* An ID is never less than or equal to zero.
*/
struct xpmem_id {
pid_t tgid; /* thread group that owns ID */
unsigned int uniq; /* this value makes the ID unique */
};
typedef union {
struct xpmem_id xpmem_id;
xpmem_segid_t segid;
xpmem_apid_t apid;
} xpmem_id_t;
/* Shift INT_MAX by one so we can tell when we overflow. */
#define XPMEM_MAX_UNIQ_ID (INT_MAX >> 1)
static inline pid_t xpmem_segid_to_tgid(xpmem_segid_t segid)
{
DBUG_ON(segid <= 0);
return ((xpmem_id_t *)&segid)->xpmem_id.tgid;
}
static inline pid_t xpmem_apid_to_tgid(xpmem_apid_t apid)
{
DBUG_ON(apid <= 0);
return ((xpmem_id_t *)&apid)->xpmem_id.tgid;
}
/*
* Hash Tables
*
* XPMEM utilizes hash tables to enable faster lookups of list entries.
* These hash tables are implemented as arrays. A simple modulus of the hash
* key yields the appropriate array index. A hash table's array element (i.e.,
* hash table bucket) consists of a hash list and the lock that protects it.
*
* XPMEM has the following two hash tables:
*
* table bucket key
* part->tg_hashtable list of struct xpmem_thread_group tgid
* tg->ap_hashtable list of struct xpmem_access_permit apid.uniq
*/
struct xpmem_hashlist {
mcs_rwlock_lock_t lock; /* lock for hash list */
struct list_head list; /* hash list */
};
#define XPMEM_TG_HASHTABLE_SIZE 8
#define XPMEM_AP_HASHTABLE_SIZE 8
static inline int xpmem_tg_hashtable_index(pid_t tgid)
{
int index;
index = (unsigned int)tgid % XPMEM_TG_HASHTABLE_SIZE;
XPMEM_DEBUG("return: tgid=%lu, index=%d", tgid, index);
return index;
}
static inline int xpmem_ap_hashtable_index(xpmem_apid_t apid)
{
int index;
DBUG_ON(apid <= 0);
index = ((xpmem_id_t *)&apid)->xpmem_id.uniq % XPMEM_AP_HASHTABLE_SIZE;
XPMEM_DEBUG("return: apid=%lu, index=%d", apid, index);
return index;
}
/*
* general internal driver structures
*/
struct xpmem_thread_group {
ihk_spinlock_t lock; /* tg lock */
pid_t tgid; /* tg's tgid */
uid_t uid; /* tg's uid */
gid_t gid; /* tg's gid */
volatile int flags; /* tg attributes and state */
ihk_atomic_t uniq_segid;
ihk_atomic_t uniq_apid;
mcs_rwlock_lock_t seg_list_lock;
struct list_head seg_list; /* tg's list of segs */
ihk_atomic_t refcnt; /* references to tg */
ihk_atomic_t n_pinned; /* #of pages pinned by this tg */
struct list_head tg_hashlist; /* tg hash list */
struct thread *group_leader; /* thread group leader */
struct process_vm *vm; /* tg's mm */
ihk_atomic_t n_recall_PFNs; /* #of recall of PFNs in progress */
struct xpmem_hashlist ap_hashtable[]; /* locks + ap hash lists */
};
struct xpmem_segment {
ihk_spinlock_t lock; /* seg lock */
mcs_rwlock_lock_t seg_lock; /* seg sema */
xpmem_segid_t segid; /* unique segid */
unsigned long vaddr; /* starting address */
size_t size; /* size of seg */
int permit_type; /* permission scheme */
void *permit_value; /* permission data */
volatile int flags; /* seg attributes and state */
ihk_atomic_t refcnt; /* references to seg */
struct xpmem_thread_group *tg; /* creator tg */
struct list_head ap_list; /* local access permits of seg */
struct list_head seg_list; /* tg's list of segs */
};
struct xpmem_access_permit {
ihk_spinlock_t lock; /* access permit lock */
xpmem_apid_t apid; /* unique apid */
int mode; /* read/write mode */
volatile int flags; /* access permit attributes and state */
ihk_atomic_t refcnt; /* references to access permit */
struct xpmem_segment *seg; /* seg permitted to be accessed */
struct xpmem_thread_group *tg; /* access permit's tg */
struct list_head att_list; /* atts of this access permit's seg */
struct list_head ap_list; /* access permits linked to seg */
struct list_head ap_hashlist; /* access permit hash list */
};
struct xpmem_attachment {
mcs_rwlock_lock_t at_lock; /* att lock for serialization */
struct mcs_rwlock_node_irqsave at_irqsave; /* att lock for serialization */
unsigned long vaddr; /* starting address of seg attached */
unsigned long at_vaddr; /* address where seg is attached */
size_t at_size; /* size of seg attachment */
struct vm_range *at_vma; /* vma where seg is attachment */
volatile int flags; /* att attributes and state */
ihk_atomic_t refcnt; /* references to att */
struct xpmem_access_permit *ap; /* associated access permit */
struct list_head att_list; /* atts linked to access permit */
struct process_vm *vm; /* mm struct attached to */
mcs_rwlock_lock_t invalidate_lock; /* to serialize page table invalidates */
};
struct xpmem_partition {
ihk_atomic_t n_opened; /* # of /dev/xpmem opened */
struct xpmem_hashlist tg_hashtable[]; /* locks + tg hash lists */
};
#define XPMEM_FLAG_DESTROYING 0x00040 /* being destroyed */
#define XPMEM_FLAG_DESTROYED 0x00080 /* 'being destroyed' finished */
#define XPMEM_FLAG_VALIDPTEs 0x00200 /* valid PTEs exist */
struct xpmem_perm {
uid_t uid;
gid_t gid;
unsigned long mode;
};
#define XPMEM_PERM_IRUSR 00400
#define XPMEM_PERM_IWUSR 00200
static int xpmem_ioctl(struct mckfd *mckfd, ihk_mc_user_context_t *ctx);
static int xpmem_close( struct mckfd *mckfd, ihk_mc_user_context_t *ctx);
static int xpmem_init(void);
static void xpmem_exit(void);
static int __xpmem_open(void);
static void xpmem_destroy_tg(struct xpmem_thread_group *);
static int xpmem_make(unsigned long, size_t, int, void *, xpmem_segid_t *);
static xpmem_segid_t xpmem_make_segid(struct xpmem_thread_group *);
static int xpmem_remove(xpmem_segid_t);
static void xpmem_remove_seg(struct xpmem_thread_group *,
struct xpmem_segment *);
static void xpmem_clear_PTEs(struct xpmem_segment *);
extern struct xpmem_partition *xpmem_my_part;
static struct xpmem_thread_group * __xpmem_tg_ref_by_tgid_nolock_internal(
pid_t, int, int);
static inline struct xpmem_thread_group *__xpmem_tg_ref_by_tgid(
pid_t tgid,
int return_destroying)
{
struct xpmem_thread_group *tg;
int index;
struct mcs_rwlock_node_irqsave lock;
XPMEM_DEBUG("call: tgid=%d, return_destroying=%d",
tgid, return_destroying);
index = xpmem_tg_hashtable_index(tgid);
mcs_rwlock_reader_lock(&xpmem_my_part->tg_hashtable[index].lock, &lock);
tg = __xpmem_tg_ref_by_tgid_nolock_internal(tgid, index,
return_destroying);
mcs_rwlock_reader_unlock(&xpmem_my_part->tg_hashtable[index].lock,
&lock);
XPMEM_DEBUG("return: tg=0x%p", tg);
return tg;
}
static inline struct xpmem_thread_group *__xpmem_tg_ref_by_tgid_nolock(
pid_t tgid,
int return_destroying)
{
struct xpmem_thread_group *tg;
XPMEM_DEBUG("call: tgid=%d, return_destroying=%d",
tgid, return_destroying);
tg = __xpmem_tg_ref_by_tgid_nolock_internal(tgid,
xpmem_tg_hashtable_index(tgid), return_destroying);
XPMEM_DEBUG("return: tg=0x%p", tg);
return tg;
}
#define xpmem_tg_ref_by_tgid(t) __xpmem_tg_ref_by_tgid(t, 0)
#define xpmem_tg_ref_by_tgid_all(t) __xpmem_tg_ref_by_tgid(t, 1)
#define xpmem_tg_ref_by_tgid_nolock(t) __xpmem_tg_ref_by_tgid_nolock(t, 0)
#define xpmem_tg_ref_by_tgid_all_nolock(t) __xpmem_tg_ref_by_tgid_nolock(t, 1)
static struct xpmem_thread_group * xpmem_tg_ref_by_segid(xpmem_segid_t);
static void xpmem_tg_deref(struct xpmem_thread_group *);
static struct xpmem_segment *xpmem_seg_ref_by_segid(struct xpmem_thread_group *,
xpmem_segid_t);
static void xpmem_seg_deref(struct xpmem_segment *);
/*
* Inlines that mark an internal driver structure as being destroyable or not.
* The idea is to set the refcnt to 1 at structure creation time and then
* drop that reference at the time the structure is to be destroyed.
*/
static inline void xpmem_tg_not_destroyable(
struct xpmem_thread_group *tg)
{
ihk_atomic_set(&tg->refcnt, 1);
XPMEM_DEBUG("return: tg->refcnt=%d", tg->refcnt);
}
static inline void xpmem_tg_destroyable(
struct xpmem_thread_group *tg)
{
XPMEM_DEBUG("call: ");
xpmem_tg_deref(tg);
XPMEM_DEBUG("return: ");
}
static inline void xpmem_seg_not_destroyable(
struct xpmem_segment *seg)
{
ihk_atomic_set(&seg->refcnt, 1);
XPMEM_DEBUG("return: seg->refcnt=%d", seg->refcnt);
}
static inline void xpmem_seg_destroyable(
struct xpmem_segment *seg)
{
XPMEM_DEBUG("call: ");
xpmem_seg_deref(seg);
XPMEM_DEBUG("return: ");
}
/*
* Inlines that increment the refcnt for the specified structure.
*/
static inline void xpmem_tg_ref(
struct xpmem_thread_group *tg)
{
DBUG_ON(ihk_atomic_read(&tg->refcnt) <= 0);
ihk_atomic_inc(&tg->refcnt);
XPMEM_DEBUG("return: tg->refcnt=%d", tg->refcnt);
}
static inline void xpmem_seg_ref(
struct xpmem_segment *seg)
{
DBUG_ON(ihk_atomic_read(&seg->refcnt) <= 0);
ihk_atomic_inc(&seg->refcnt);
XPMEM_DEBUG("return: seg->refcnt=%d", seg->refcnt);
}
#endif /* _XPMEM_PRIVATE_H */

View File

@ -108,11 +108,11 @@ static void dma_test(void)
}
#endif
extern char *ihk_mc_get_kernel_args(void);
extern char *ihk_get_kargs(void);
char *find_command_line(char *name)
{
char *cmdline = ihk_mc_get_kernel_args();
char *cmdline = ihk_get_kargs();
if (!cmdline) {
return NULL;
@ -122,7 +122,7 @@ char *find_command_line(char *name)
static void parse_kargs(void)
{
kprintf("KCommand Line: %s\n", ihk_mc_get_kernel_args());
kprintf("KCommand Line: %s\n", ihk_get_kargs());
if (1) {
char *key = "osnum=";
@ -254,7 +254,7 @@ static void rest_init(void)
time_init();
kmalloc_init();
ikc_master_init();
ihk_ikc_master_init();
proc_init();
@ -336,11 +336,8 @@ static void post_init(void)
}
if (find_command_line("hidos")) {
extern ihk_spinlock_t syscall_lock;
init_host_syscall_channel();
init_host_syscall_channel2();
ihk_mc_spinlock_init(&syscall_lock);
}
arch_setup_vdso();
@ -373,6 +370,7 @@ int main(void)
kputs("IHK/McKernel started.\n");
ihk_set_kmsg(virt_to_phys(&kmsg_buf), IHK_KMSG_SIZE);
arch_init();
/*

View File

@ -49,7 +49,7 @@
#endif
static unsigned long pa_start, pa_end;
static struct ihk_mc_numa_node *memory_nodes = NULL;
static struct ihk_mc_numa_node memory_nodes[512];
extern void unhandled_page_fault(struct thread *, void *, void *);
extern int interrupt_from_user(void *);
@ -65,12 +65,12 @@ extern void early_alloc_invalidate(void);
static char *memdebug = NULL;
static void *___kmalloc(int size, enum ihk_mc_ap_flag flag);
static void *___kmalloc(int size, ihk_mc_ap_flag flag);
static void ___kfree(void *ptr);
static void *___ihk_mc_alloc_aligned_pages(int npages,
int p2align, enum ihk_mc_ap_flag flag);
static void *___ihk_mc_alloc_pages(int npages, enum ihk_mc_ap_flag flag);
static void *___ihk_mc_alloc_aligned_pages_node(int npages,
int p2align, ihk_mc_ap_flag flag, int node);
static void *___ihk_mc_alloc_pages(int npages, ihk_mc_ap_flag flag);
static void ___ihk_mc_free_pages(void *p, int npages);
/*
@ -151,14 +151,15 @@ struct pagealloc_track_entry *__pagealloc_track_find_entry(
}
/* Top level routines called from macros */
void *_ihk_mc_alloc_aligned_pages(int npages, int p2align,
enum ihk_mc_ap_flag flag, char *file, int line)
void *_ihk_mc_alloc_aligned_pages_node(int npages, int p2align,
ihk_mc_ap_flag flag, int node, char *file, int line)
{
unsigned long irqflags;
struct pagealloc_track_entry *entry;
struct pagealloc_track_addr_entry *addr_entry;
int hash, addr_hash;
void *r = ___ihk_mc_alloc_aligned_pages(npages, p2align, flag);
void *r = ___ihk_mc_alloc_aligned_pages_node(npages,
p2align, flag, node);
if (!memdebug || !pagealloc_track_initialized)
return r;
@ -230,12 +231,6 @@ out:
return r;
}
void *_ihk_mc_alloc_pages(int npages, enum ihk_mc_ap_flag flag,
char *file, int line)
{
return _ihk_mc_alloc_aligned_pages(npages, PAGE_P2ALIGN, flag, file, line);
}
void _ihk_mc_free_pages(void *ptr, int npages, char *file, int line)
{
unsigned long irqflags;
@ -449,18 +444,18 @@ void pagealloc_memcheck(void)
/* Actual allocation routines */
static void *___ihk_mc_alloc_aligned_pages(int npages, int p2align,
enum ihk_mc_ap_flag flag)
static void *___ihk_mc_alloc_aligned_pages_node(int npages, int p2align,
ihk_mc_ap_flag flag, int node)
{
if (pa_ops)
return pa_ops->alloc_page(npages, p2align, flag);
return pa_ops->alloc_page(npages, p2align, flag, node);
else
return early_alloc_pages(npages);
}
static void *___ihk_mc_alloc_pages(int npages, enum ihk_mc_ap_flag flag)
static void *___ihk_mc_alloc_pages(int npages, ihk_mc_ap_flag flag)
{
return ___ihk_mc_alloc_aligned_pages(npages, PAGE_P2ALIGN, flag);
return ___ihk_mc_alloc_aligned_pages_node(npages, PAGE_P2ALIGN, flag, -1);
}
static void ___ihk_mc_free_pages(void *p, int npages)
@ -494,18 +489,117 @@ static void reserve_pages(struct ihk_page_allocator_desc *pa_allocator,
ihk_pagealloc_reserve(pa_allocator, start, end);
}
static void *allocate_aligned_pages(int npages, int p2align,
enum ihk_mc_ap_flag flag)
extern int cpu_local_var_initialized;
static void *mckernel_allocate_aligned_pages_node(int npages, int p2align,
ihk_mc_ap_flag flag, int pref_node)
{
unsigned long pa;
int i;
unsigned long pa = 0;
int i, node;
struct ihk_page_allocator_desc *pa_allocator;
/* Not yet initialized or idle process */
if (!cpu_local_var_initialized ||
!cpu_local_var(current) ||
!cpu_local_var(current)->vm)
goto distance_based;
/* User requested policy? */
if (!(flag & IHK_MC_AP_USER)) {
goto distance_based;
}
node = ihk_mc_get_numa_id();
if (!memory_nodes[node].nodes_by_distance)
goto order_based;
switch (cpu_local_var(current)->vm->numa_mem_policy) {
case MPOL_BIND:
case MPOL_PREFERRED:
/* Look at nodes in the order of distance but consider
* only the ones requested in user policy */
for (i = 0; i < ihk_mc_get_nr_numa_nodes(); ++i) {
/* Not part of user requested policy? */
if (!test_bit(memory_nodes[node].nodes_by_distance[i].id,
cpu_local_var(current)->proc->vm->numa_mask)) {
continue;
}
list_for_each_entry(pa_allocator,
&memory_nodes[memory_nodes[node].
nodes_by_distance[i].id].allocators, list) {
pa = ihk_pagealloc_alloc(pa_allocator, npages, p2align);
if (pa) {
dkprintf("%s: policy: CPU @ node %d allocated "
"%d pages from node %d\n",
__FUNCTION__,
ihk_mc_get_numa_id(),
npages, node);
break;
}
}
if (pa) break;
}
break;
case MPOL_INTERLEAVE:
/* TODO: */
break;
default:
break;
}
if (pa) {
return phys_to_virt(pa);
}
else {
dkprintf("%s: couldn't fulfill user policy for %d pages\n",
__FUNCTION__, npages);
}
distance_based:
node = ihk_mc_get_numa_id();
/* Look at nodes in the order of distance */
if (!memory_nodes[node].nodes_by_distance)
goto order_based;
/* TODO: match NUMA id and distance matrix with allocating core */
for (i = 0; i < ihk_mc_get_nr_numa_nodes(); ++i) {
struct ihk_page_allocator_desc *pa_allocator;
list_for_each_entry(pa_allocator,
&memory_nodes[(ihk_mc_get_numa_id() + i) %
&memory_nodes[memory_nodes[node].
nodes_by_distance[i].id].allocators, list) {
pa = ihk_pagealloc_alloc(pa_allocator, npages, p2align);
if (pa) {
dkprintf("%s: distance: CPU @ node %d allocated "
"%d pages from node %d\n",
__FUNCTION__,
ihk_mc_get_numa_id(),
npages,
memory_nodes[node].nodes_by_distance[i].id);
break;
}
}
if (pa) break;
}
if (pa)
return phys_to_virt(pa);
order_based:
node = ihk_mc_get_numa_id();
/* Fall back to regular order */
for (i = 0; i < ihk_mc_get_nr_numa_nodes(); ++i) {
list_for_each_entry(pa_allocator,
&memory_nodes[(node + i) %
ihk_mc_get_nr_numa_nodes()].allocators, list) {
pa = ihk_pagealloc_alloc(pa_allocator, npages, p2align);
@ -524,12 +618,7 @@ static void *allocate_aligned_pages(int npages, int p2align,
return NULL;
}
static void *allocate_pages(int npages, enum ihk_mc_ap_flag flag)
{
return allocate_aligned_pages(npages, PAGE_P2ALIGN, flag);
}
static void __free_pages_in_allocator(void *va, int npages)
static void __mckernel_free_pages_in_allocator(void *va, int npages)
{
int i;
unsigned long pa_start = virt_to_phys(va);
@ -552,7 +641,7 @@ static void __free_pages_in_allocator(void *va, int npages)
}
static void free_pages(void *va, int npages)
static void mckernel_free_pages(void *va, int npages)
{
struct list_head *pendings = &cpu_local_var(pending_free_pages);
struct page *page;
@ -560,7 +649,8 @@ static void free_pages(void *va, int npages)
page = phys_to_page(virt_to_phys(va));
if (page) {
if (page->mode != PM_NONE) {
panic("free_pages:not PM_NONE");
kprintf("%s: WARNING: page phys 0x%lx is not PM_NONE",
__FUNCTION__, page->phys);
}
if (pendings->next != NULL) {
page->mode = PM_PENDING_FREE;
@ -570,7 +660,7 @@ static void free_pages(void *va, int npages)
}
}
__free_pages_in_allocator(va, npages);
__mckernel_free_pages_in_allocator(va, npages);
}
void begin_free_pages_pending(void) {
@ -599,7 +689,7 @@ void finish_free_pages_pending(void)
}
page->mode = PM_NONE;
list_del(&page->list);
__free_pages_in_allocator(phys_to_virt(page_to_phys(page)),
__mckernel_free_pages_in_allocator(phys_to_virt(page_to_phys(page)),
page->offset);
}
@ -608,8 +698,8 @@ void finish_free_pages_pending(void)
}
static struct ihk_mc_pa_ops allocator = {
.alloc_page = allocate_aligned_pages,
.free_page = free_pages,
.alloc_page = mckernel_allocate_aligned_pages_node,
.free_page = mckernel_free_pages,
};
void sbox_write(int offset, unsigned int value);
@ -806,8 +896,8 @@ static void page_fault_handler(void *fault_addr, uint64_t reason, void *regs)
int error;
set_cputime(interrupt_from_user(regs)? 1: 2);
dkprintf("[%d]page_fault_handler(%p,%lx,%p)\n",
ihk_mc_get_processor_id(), fault_addr, reason, regs);
dkprintf("%s: addr: %p, reason: %lx, regs: %p\n",
__FUNCTION__, fault_addr, reason, regs);
preempt_disable();
@ -862,21 +952,22 @@ static void page_fault_handler(void *fault_addr, uint64_t reason, void *regs)
error = 0;
preempt_enable();
out:
dkprintf("[%d]page_fault_handler(%p,%lx,%p): (%d)\n",
ihk_mc_get_processor_id(), fault_addr, reason,
regs, error);
dkprintf("%s: addr: %p, reason: %lx, regs: %p -> error: %d\n",
__FUNCTION__, fault_addr, reason, regs, error);
check_need_resched();
set_cputime(0);
return;
}
static struct ihk_page_allocator_desc *page_allocator_init(uint64_t start,
uint64_t end, int initial)
uint64_t end)
{
struct ihk_page_allocator_desc *pa_allocator;
unsigned long page_map_pa, pages;
void *page_map;
unsigned int i;
extern char _end[];
unsigned long phys_end = virt_to_phys(_end);
start &= PAGE_MASK;
pa_start = (start + PAGE_SIZE - 1) & PAGE_MASK;
@ -889,7 +980,12 @@ static struct ihk_page_allocator_desc *page_allocator_init(uint64_t start,
*/
page_map_pa = 0x100000;
#else
page_map_pa = initial ? virt_to_phys(get_last_early_heap()) : pa_start;
if (pa_start <= phys_end && phys_end <= pa_end) {
page_map_pa = virt_to_phys(get_last_early_heap());
}
else {
page_map_pa = pa_start;
}
#endif
page_map = phys_to_virt(page_map_pa);
@ -920,18 +1016,21 @@ static struct ihk_page_allocator_desc *page_allocator_init(uint64_t start,
static void numa_init(void)
{
int i, j;
memory_nodes = early_alloc_pages((sizeof(*memory_nodes) *
ihk_mc_get_nr_numa_nodes() + PAGE_SIZE - 1)
>> PAGE_SHIFT);
for (i = 0; i < ihk_mc_get_nr_numa_nodes(); ++i) {
int linux_numa_id, type;
ihk_mc_get_numa_node(i, &linux_numa_id, &type);
if (ihk_mc_get_numa_node(i, &linux_numa_id, &type) != 0) {
kprintf("%s: error: obtaining NUMA info for node %d\n",
__FUNCTION__, i);
panic("");
}
memory_nodes[i].id = i;
memory_nodes[i].linux_numa_id = linux_numa_id;
memory_nodes[i].type = type;
INIT_LIST_HEAD(&memory_nodes[i].allocators);
memory_nodes[i].nodes_by_distance = 0;
kprintf("NUMA: %d, Linux NUMA: %d, type: %d\n",
i, linux_numa_id, type);
@ -944,7 +1043,7 @@ static void numa_init(void)
ihk_mc_get_memory_chunk(j, &start, &end, &numa_id);
allocator = page_allocator_init(start, end, (j == 0));
allocator = page_allocator_init(start, end);
list_add_tail(&allocator->list, &memory_nodes[numa_id].allocators);
kprintf("Physical memory: 0x%lx - 0x%lx, %lu bytes, %d pages available @ NUMA: %d\n",
@ -955,6 +1054,72 @@ static void numa_init(void)
}
}
static void numa_distances_init()
{
int i, j, swapped;
for (i = 0; i < ihk_mc_get_nr_numa_nodes(); ++i) {
/* TODO: allocate on target node */
memory_nodes[i].nodes_by_distance =
ihk_mc_alloc_pages((sizeof(struct node_distance) *
ihk_mc_get_nr_numa_nodes() + PAGE_SIZE - 1)
>> PAGE_SHIFT, IHK_MC_AP_NOWAIT);
if (!memory_nodes[i].nodes_by_distance) {
kprintf("%s: error: allocating nodes_by_distance\n",
__FUNCTION__);
continue;
}
for (j = 0; j < ihk_mc_get_nr_numa_nodes(); ++j) {
memory_nodes[i].nodes_by_distance[j].id = j;
memory_nodes[i].nodes_by_distance[j].distance =
ihk_mc_get_numa_distance(i, j);
}
/* Sort by distance and node ID */
swapped = 1;
while (swapped) {
swapped = 0;
for (j = 1; j < ihk_mc_get_nr_numa_nodes(); ++j) {
if ((memory_nodes[i].nodes_by_distance[j - 1].distance >
memory_nodes[i].nodes_by_distance[j].distance) ||
((memory_nodes[i].nodes_by_distance[j - 1].distance ==
memory_nodes[i].nodes_by_distance[j].distance) &&
(memory_nodes[i].nodes_by_distance[j - 1].id >
memory_nodes[i].nodes_by_distance[j].id))) {
memory_nodes[i].nodes_by_distance[j - 1].id ^=
memory_nodes[i].nodes_by_distance[j].id;
memory_nodes[i].nodes_by_distance[j].id ^=
memory_nodes[i].nodes_by_distance[j - 1].id;
memory_nodes[i].nodes_by_distance[j - 1].id ^=
memory_nodes[i].nodes_by_distance[j].id;
memory_nodes[i].nodes_by_distance[j - 1].distance ^=
memory_nodes[i].nodes_by_distance[j].distance;
memory_nodes[i].nodes_by_distance[j].distance ^=
memory_nodes[i].nodes_by_distance[j - 1].distance;
memory_nodes[i].nodes_by_distance[j - 1].distance ^=
memory_nodes[i].nodes_by_distance[j].distance;
swapped = 1;
}
}
}
{
char buf[1024];
char *pbuf = buf;
pbuf += sprintf(pbuf, "NUMA %d distances: ", i);
for (j = 0; j < ihk_mc_get_nr_numa_nodes(); ++j) {
pbuf += sprintf(pbuf, "%d (%d), ",
memory_nodes[i].nodes_by_distance[j].id,
memory_nodes[i].nodes_by_distance[j].distance);
}
kprintf("%s\n", buf);
}
}
}
#define PHYS_PAGE_HASH_SHIFT (10)
#define PHYS_PAGE_HASH_SIZE (1 << PHYS_PAGE_HASH_SHIFT)
#define PHYS_PAGE_HASH_MASK (PHYS_PAGE_HASH_SIZE - 1)
@ -1236,6 +1401,9 @@ void mem_init(void)
kprintf("Demand paging on ANONYMOUS mappings enabled.\n");
anon_on_demand = 1;
}
/* Init distance vectors */
numa_distances_init();
}
#define KMALLOC_TRACK_HASH_SHIFT (8)
@ -1325,7 +1493,7 @@ struct kmalloc_track_entry *__kmalloc_track_find_entry(
}
/* Top level routines called from macro */
void *_kmalloc(int size, enum ihk_mc_ap_flag flag, char *file, int line)
void *_kmalloc(int size, ihk_mc_ap_flag flag, char *file, int line)
{
unsigned long irqflags;
struct kmalloc_track_entry *entry;
@ -1515,7 +1683,7 @@ void kmalloc_memcheck(void)
}
/* Redirection routines registered in alloc structure */
void *__kmalloc(int size, enum ihk_mc_ap_flag flag)
void *__kmalloc(int size, ihk_mc_ap_flag flag)
{
return kmalloc(size, flag);
}
@ -1613,7 +1781,7 @@ void kmalloc_consolidate_free_list(void)
#define KMALLOC_MIN_MASK (KMALLOC_MIN_SIZE - 1)
/* Actual low-level allocation routines */
static void *___kmalloc(int size, enum ihk_mc_ap_flag flag)
static void *___kmalloc(int size, ihk_mc_ap_flag flag)
{
struct kmalloc_header *chunk_iter;
struct kmalloc_header *chunk = NULL;

View File

@ -21,7 +21,7 @@ static struct ihk_ikc_channel_desc *mchannel;
static int arch_master_channel_packet_handler(struct ihk_ikc_channel_desc *,
void *__packet, void *arg);
void ikc_master_init(void)
void ihk_ikc_master_init(void)
{
mchannel = kmalloc(sizeof(struct ihk_ikc_channel_desc) +
sizeof(struct ihk_ikc_master_packet),

View File

@ -101,6 +101,13 @@ init_process(struct process *proc, struct process *parent)
waitq_init(&proc->waitpid_q);
ihk_atomic_set(&proc->refcount, 2);
proc->monitoring_event = NULL;
#ifdef TRACK_SYSCALLS
mcs_lock_init(&proc->st_lock);
proc->syscall_times = NULL;
proc->syscall_cnts = NULL;
proc->offload_times = NULL;
proc->offload_cnts = NULL;
#endif
}
void
@ -233,13 +240,15 @@ init_process_vm(struct process *owner, struct address_space *asp, struct process
return 0;
}
struct thread *
create_thread(unsigned long user_pc)
struct thread *create_thread(unsigned long user_pc,
unsigned long *__cpu_set, size_t cpu_set_size)
{
struct thread *thread;
struct process *proc;
struct process_vm *vm = NULL;
struct address_space *asp = NULL;
int cpu;
int cpu_set_empty = 1;
thread = ihk_mc_alloc_pages(KERNEL_STACK_NR_PAGES, IHK_MC_AP_NOWAIT);
if (!thread)
@ -255,7 +264,22 @@ create_thread(unsigned long user_pc)
memset(vm, 0, sizeof(struct process_vm));
init_process(proc, cpu_local_var(resource_set)->pid1);
if (1) {
/* Use requested CPU cores */
for_each_set_bit(cpu, __cpu_set, cpu_set_size * BITS_PER_BYTE) {
if (cpu >= num_processors) {
kprintf("%s: invalid CPU requested in initial cpu_set\n",
__FUNCTION__);
goto err;
}
dkprintf("%s: pid: %d, CPU: %d\n",
__FUNCTION__, proc->pid, cpu);
CPU_SET(cpu, &thread->cpu_set);
cpu_set_empty = 0;
}
/* Default allows all cores */
if (cpu_set_empty) {
struct ihk_mc_cpu_info *infop;
int i;
@ -451,6 +475,9 @@ clone_thread(struct thread *org, unsigned long pc, unsigned long sp,
ihk_mc_spinlock_init(&thread->spin_sleep_lock);
thread->spin_sleep = 0;
#ifdef TRACK_SYSCALLS
thread->track_syscalls = org->track_syscalls;
#endif
return thread;
@ -1001,21 +1028,18 @@ enum ihk_mc_pt_attribute common_vrflag_to_ptattr(unsigned long flag, uint64_t fa
}
int add_process_memory_range(struct process_vm *vm,
unsigned long start, unsigned long end,
unsigned long phys, unsigned long flag,
struct memobj *memobj, off_t offset,
int pgshift)
unsigned long start, unsigned long end,
unsigned long phys, unsigned long flag,
struct memobj *memobj, off_t offset,
int pgshift, struct vm_range **rp)
{
struct vm_range *range;
int rc;
#if 0
extern void __host_update_process_range(struct thread *process,
struct vm_range *range);
#endif
if ((start < vm->region.user_start)
|| (vm->region.user_end < end)) {
kprintf("range(%#lx - %#lx) is not in user avail(%#lx - %#lx)\n",
kprintf("%s: error: range %lx - %lx is not in user available area\n",
__FUNCTION__,
start, end, vm->region.user_start,
vm->region.user_end);
return -EINVAL;
@ -1023,9 +1047,10 @@ int add_process_memory_range(struct process_vm *vm,
range = kmalloc(sizeof(struct vm_range), IHK_MC_AP_NOWAIT);
if (!range) {
kprintf("ERROR: allocating pages for range\n");
kprintf("%s: ERROR: allocating pages for range\n", __FUNCTION__);
return -ENOMEM;
}
INIT_LIST_HEAD(&range->list);
range->start = start;
range->end = end;
@ -1034,48 +1059,34 @@ int add_process_memory_range(struct process_vm *vm,
range->objoff = offset;
range->pgshift = pgshift;
if(range->flag & VR_DEMAND_PAGING) {
dkprintf("range: 0x%lX - 0x%lX => physicall memory area is allocated on demand (%ld) [%lx]\n",
range->start, range->end, range->end - range->start,
range->flag);
} else {
dkprintf("range: 0x%lX - 0x%lX (%ld) [%lx]\n",
range->start, range->end, range->end - range->start,
range->flag);
}
rc = 0;
if (0) {
/* dummy */
}
else if (phys == NOPHYS) {
/* nothing to map */
}
else if (flag & VR_REMOTE) {
rc = 0;
if (phys == NOPHYS) {
/* Nothing to map */
}
else if (flag & VR_REMOTE) {
rc = update_process_page_table(vm, range, phys, IHK_PTA_REMOTE);
} else if (flag & VR_IO_NOCACHE) {
}
else if (flag & VR_IO_NOCACHE) {
rc = update_process_page_table(vm, range, phys, PTATTR_UNCACHABLE);
} else if(flag & VR_DEMAND_PAGING){
//demand paging no need to update process table now
dkprintf("demand paging do not update process page table\n");
rc = 0;
} else if ((range->flag & VR_PROT_MASK) == VR_PROT_NONE) {
}
else if (flag & VR_DEMAND_PAGING) {
dkprintf("%s: range: 0x%lx - 0x%lx is demand paging\n",
__FUNCTION__, range->start, range->end);
rc = 0;
} else {
}
else if ((range->flag & VR_PROT_MASK) == VR_PROT_NONE) {
rc = 0;
}
else {
rc = update_process_page_table(vm, range, phys, 0);
}
if(rc != 0){
kprintf("ERROR: preparing page tables\n");
if (rc != 0) {
kprintf("%s: ERROR: preparing page tables\n", __FUNCTION__);
kfree(range);
return rc;
}
#if 0 // disable __host_update_process_range() in add_process_memory_range(), because it has no effect on the actual mapping on the MICs side.
if (!(flag & VR_REMOTE)) {
__host_update_process_range(process, range);
}
#endif
insert_vm_range_list(vm, range);
/* Clear content! */
@ -1084,6 +1095,11 @@ int add_process_memory_range(struct process_vm *vm,
memset((void*)phys_to_virt(phys), 0, end - start);
}
/* Return range object if requested */
if (rp) {
*rp = range;
}
return 0;
}
@ -1367,6 +1383,11 @@ static int sync_one_page(void *arg0, page_table_t pt, pte_t *ptep,
flush_tlb_single((uintptr_t)pgaddr); /* XXX: TLB flush */
phys = pte_get_phys(ptep);
if (args->memobj->flags & MF_ZEROFILL) {
error = 0;
goto out;
}
error = memobj_flush_page(args->memobj, phys, pgsize);
if (error) {
ekprintf("sync_one_page(%p,%p,%p %#lx,%p,%d):"
@ -1394,11 +1415,19 @@ int sync_process_memory_range(struct process_vm *vm, struct vm_range *range,
args.memobj = range->memobj;
ihk_mc_spinlock_lock_noirq(&vm->page_table_lock);
memobj_lock(range->memobj);
if (!(range->memobj->flags & MF_ZEROFILL)) {
memobj_lock(range->memobj);
}
error = visit_pte_range(vm->address_space->page_table, (void *)start,
(void *)end, range->pgshift, VPTEF_SKIP_NULL,
&sync_one_page, &args);
memobj_unlock(range->memobj);
(void *)end, range->pgshift, VPTEF_SKIP_NULL,
&sync_one_page, &args);
if (!(range->memobj->flags & MF_ZEROFILL)) {
memobj_unlock(range->memobj);
}
ihk_mc_spinlock_unlock_noirq(&vm->page_table_lock);
if (error) {
ekprintf("sync_process_memory_range(%p,%p,%#lx,%#lx):"
@ -1822,6 +1851,7 @@ int init_process_stack(struct thread *thread, struct program_load_desc *pn,
unsigned long minsz;
unsigned long at_rand;
struct process *proc = thread->proc;
unsigned long __flag;
/* create stack range */
end = STACK_TOP(&thread->vm->region);
@ -1840,12 +1870,15 @@ int init_process_stack(struct thread *thread, struct program_load_desc *pn,
vrflag |= VR_MAXPROT_READ | VR_MAXPROT_WRITE | VR_MAXPROT_EXEC;
#define NOPHYS ((uintptr_t)-1)
if ((rc = add_process_memory_range(thread->vm, start, end, NOPHYS,
vrflag, NULL, 0, PAGE_SHIFT)) != 0) {
vrflag, NULL, 0, PAGE_SHIFT, NULL)) != 0) {
return rc;
}
__flag = (size >= 16777216) ? IHK_MC_AP_USER : 0;
/* map physical pages for initial stack frame */
stack = ihk_mc_alloc_pages(minsz >> PAGE_SHIFT, IHK_MC_AP_NOWAIT);
stack = ihk_mc_alloc_pages(minsz >> PAGE_SHIFT,
IHK_MC_AP_NOWAIT | __flag);
if (!stack) {
return -ENOMEM;
}
@ -1959,7 +1992,7 @@ unsigned long extend_process_region(struct process_vm *vm,
}
if((rc = add_process_memory_range(vm, old_aligned_end,
aligned_end, virt_to_phys(p), flag,
LARGE_PAGE_SHIFT)) != 0){
LARGE_PAGE_SHIFT, NULL)) != 0){
ihk_mc_free_pages(p, (aligned_end - old_aligned_end) >> PAGE_SHIFT);
return end;
}
@ -1989,7 +2022,7 @@ unsigned long extend_process_region(struct process_vm *vm,
if((rc = add_process_memory_range(vm, aligned_end,
aligned_new_end, virt_to_phys((void *)p_aligned),
flag, LARGE_PAGE_SHIFT)) != 0){
flag, LARGE_PAGE_SHIFT, NULL)) != 0){
ihk_mc_free_pages(p, (aligned_new_end - aligned_end + LARGE_PAGE_SIZE) >> PAGE_SHIFT);
return end;
}
@ -2008,15 +2041,16 @@ unsigned long extend_process_region(struct process_vm *vm,
p=0;
}else{
p = ihk_mc_alloc_pages((aligned_new_end - aligned_end) >> PAGE_SHIFT, IHK_MC_AP_NOWAIT);
p = ihk_mc_alloc_pages((aligned_new_end - aligned_end) >> PAGE_SHIFT,
IHK_MC_AP_NOWAIT | IHK_MC_AP_USER);
if (!p) {
return end;
}
}
if((rc = add_process_memory_range(vm, aligned_end, aligned_new_end,
(p==0?0:virt_to_phys(p)), flag, NULL, 0,
PAGE_SHIFT)) != 0){
if ((rc = add_process_memory_range(vm, aligned_end, aligned_new_end,
(p == 0 ? 0 : virt_to_phys(p)), flag, NULL, 0,
PAGE_SHIFT, NULL)) != 0) {
ihk_mc_free_pages(p, (aligned_new_end - aligned_end) >> PAGE_SHIFT);
return end;
}
@ -2131,6 +2165,10 @@ release_process(struct process *proc)
}
if (proc->tids) kfree(proc->tids);
#ifdef TRACK_SYSCALLS
track_syscalls_print_proc_stats(proc);
track_syscalls_dealloc_proc_counters(proc);
#endif // TRACK_SYSCALLS
kfree(proc);
}
@ -2148,6 +2186,9 @@ free_all_process_memory_range(struct process_vm *vm)
ihk_mc_spinlock_lock_noirq(&vm->memory_range_lock);
list_for_each_entry_safe(range, next, &vm->vm_range_list, list) {
if (range->memobj) {
range->memobj->flags |= MF_HOST_RELEASED;
}
error = free_process_memory_range(vm, range);
if (error) {
ekprintf("free_process_memory(%p):"
@ -2191,9 +2232,10 @@ int populate_process_memory(struct process_vm *vm, void *start, size_t len)
for (addr = (uintptr_t)start; addr < end; addr += PAGE_SIZE) {
error = page_fault_process_vm(vm, (void *)addr, reason);
if (error) {
ekprintf("populate_process_range:page_fault_process_vm"
"(%p,%lx,%lx) failed %d\n",
vm, addr, reason, error);
ekprintf("%s: WARNING: page_fault_process_vm(): vm: %p, "
"addr: %lx, reason: %lx, off: %lu, len: %lu returns %d\n",
__FUNCTION__, vm, addr, reason,
((void *)addr - start), len, error);
goto out;
}
}
@ -2313,6 +2355,11 @@ void release_thread(struct thread *thread)
vm = thread->vm;
#ifdef TRACK_SYSCALLS
track_syscalls_accumulate_counters(thread, thread->proc);
//track_syscalls_print_thread_stats(thread);
track_syscalls_dealloc_thread_counters(thread);
#endif // TRACK_SYSCALLS
procfs_delete_thread(thread);
destroy_thread(thread);
@ -2321,7 +2368,7 @@ void release_thread(struct thread *thread)
void cpu_set(int cpu, cpu_set_t *cpu_set, ihk_spinlock_t *lock)
{
unsigned int flags;
unsigned long flags;
flags = ihk_mc_spinlock_lock(lock);
CPU_SET(cpu, cpu_set);
ihk_mc_spinlock_unlock(lock, flags);
@ -2329,7 +2376,7 @@ void cpu_set(int cpu, cpu_set_t *cpu_set, ihk_spinlock_t *lock)
void cpu_clear(int cpu, cpu_set_t *cpu_set, ihk_spinlock_t *lock)
{
unsigned int flags;
unsigned long flags;
flags = ihk_mc_spinlock_lock(lock);
CPU_CLR(cpu, cpu_set);
ihk_mc_spinlock_unlock(lock, flags);
@ -2338,7 +2385,7 @@ void cpu_clear(int cpu, cpu_set_t *cpu_set, ihk_spinlock_t *lock)
void cpu_clear_and_set(int c_cpu, int s_cpu,
cpu_set_t *cpu_set, ihk_spinlock_t *lock)
{
unsigned int flags;
unsigned long flags;
flags = ihk_mc_spinlock_lock(lock);
CPU_CLR(c_cpu, cpu_set);
CPU_SET(s_cpu, cpu_set);
@ -2363,7 +2410,9 @@ static void idle(void)
cpu_enable_interrupt();
while (1) {
cpu_local_var(current)->status = PS_STOPPED;
schedule();
cpu_local_var(current)->status = PS_RUNNING;
cpu_disable_interrupt();
/* See if we need to migrate a process somewhere */
@ -2409,7 +2458,9 @@ static void idle(void)
v->status == CPU_STATUS_RESERVED) {
/* No work to do? Consolidate the kmalloc free list */
kmalloc_consolidate_free_list();
cpu_local_var(current)->status = PS_INTERRUPTIBLE;
cpu_safe_halt();
cpu_local_var(current)->status = PS_RUNNING;
}
else {
cpu_enable_interrupt();
@ -2606,13 +2657,13 @@ static void do_migrate(void)
&req->thread->vm->address_space->cpu_set,
&req->thread->vm->address_space->cpu_set_lock);
dkprintf("do_migrate(): migrated TID %d from CPU %d to CPU %d\n",
req->thread->tid, old_cpu_id, cpu_id);
dkprintf("%s: migrated TID %d from CPU %d to CPU %d\n",
__FUNCTION__, req->thread->tid, old_cpu_id, cpu_id);
v->flags |= CPU_FLAG_NEED_RESCHED;
ihk_mc_interrupt_cpu(get_x86_cpu_local_variable(cpu_id)->apic_id, 0xd1);
waitq_wakeup(&req->wq);
double_rq_unlock(cur_v, v, irqstate);
continue;
ack:
waitq_wakeup(&req->wq);
}
@ -2639,6 +2690,65 @@ set_timer()
}
}
/*
* NOTE: it is assumed that a wait-queue (or futex queue) is
* set before calling this function.
* NOTE: one must set thread->spin_sleep to 1 before evaluating
* the wait condition to avoid lost wake-ups.
*/
void spin_sleep_or_schedule(void)
{
struct thread *thread = cpu_local_var(current);
struct cpu_local_var *v;
int do_schedule = 0;
int woken = 0;
long irqstate;
/* Try to spin sleep */
irqstate = ihk_mc_spinlock_lock(&thread->spin_sleep_lock);
if (thread->spin_sleep == 0) {
dkprintf("%s: caught a lost wake-up!\n", __FUNCTION__);
}
ihk_mc_spinlock_unlock(&thread->spin_sleep_lock, irqstate);
for (;;) {
/* Check if we need to reschedule */
irqstate =
ihk_mc_spinlock_lock(&(get_this_cpu_local_var()->runq_lock));
v = get_this_cpu_local_var();
if (v->flags & CPU_FLAG_NEED_RESCHED || v->runq_len > 1) {
do_schedule = 1;
}
ihk_mc_spinlock_unlock(&v->runq_lock, irqstate);
/* Check if we were woken up */
irqstate = ihk_mc_spinlock_lock(&thread->spin_sleep_lock);
if (thread->spin_sleep == 0) {
woken = 1;
}
/* Indicate that we are not spinning any more */
if (do_schedule) {
thread->spin_sleep = 0;
}
ihk_mc_spinlock_unlock(&thread->spin_sleep_lock, irqstate);
if (woken) {
return;
}
if (do_schedule) {
break;
}
cpu_pause();
}
schedule();
}
void schedule(void)
{
struct cpu_local_var *v;
@ -2801,39 +2911,38 @@ void check_need_resched(void)
}
}
int
sched_wakeup_thread(struct thread *thread, int valid_states)
int __sched_wakeup_thread(struct thread *thread,
int valid_states, int runq_locked)
{
int status;
int spin_slept = 0;
unsigned long irqstate;
struct cpu_local_var *v = get_cpu_local_var(thread->cpu_id);
struct process *proc = thread->proc;
struct mcs_rwlock_node updatelock;
dkprintf("sched_wakeup_process,proc->pid=%d,valid_states=%08x,proc->status=%08x,proc->cpu_id=%d,my cpu_id=%d\n",
proc->pid, valid_states, thread->status, thread->cpu_id, ihk_mc_get_processor_id());
dkprintf("%s: proc->pid=%d, valid_states=%08x, "
"proc->status=%08x, proc->cpu_id=%d,my cpu_id=%d\n",
__FUNCTION__,
proc->pid, valid_states, thread->status,
thread->cpu_id, ihk_mc_get_processor_id());
irqstate = ihk_mc_spinlock_lock(&(thread->spin_sleep_lock));
if (thread->spin_sleep > 0) {
dkprintf("sched_wakeup_process() spin wakeup: cpu_id: %d\n",
thread->cpu_id);
if (thread->spin_sleep == 1) {
dkprintf("%s: spin wakeup: cpu_id: %d\n",
__FUNCTION__, thread->cpu_id);
spin_slept = 1;
status = 0;
}
--thread->spin_sleep;
thread->spin_sleep = 0;
ihk_mc_spinlock_unlock(&(thread->spin_sleep_lock), irqstate);
if (spin_slept) {
return status;
if (!runq_locked) {
irqstate = ihk_mc_spinlock_lock(&(v->runq_lock));
}
irqstate = ihk_mc_spinlock_lock(&(v->runq_lock));
if (thread->status & valid_states) {
mcs_rwlock_writer_lock_noirq(&proc->update_lock, &updatelock);
if(proc->status != PS_EXITED)
if (proc->status != PS_EXITED)
proc->status = PS_RUNNING;
mcs_rwlock_writer_unlock_noirq(&proc->update_lock, &updatelock);
xchg4((int *)(&thread->status), PS_RUNNING);
@ -2843,18 +2952,32 @@ sched_wakeup_thread(struct thread *thread, int valid_states)
status = -EINVAL;
}
ihk_mc_spinlock_unlock(&(v->runq_lock), irqstate);
if (!runq_locked) {
ihk_mc_spinlock_unlock(&(v->runq_lock), irqstate);
}
if (!status && (thread->cpu_id != ihk_mc_get_processor_id())) {
dkprintf("sched_wakeup_process,issuing IPI,thread->cpu_id=%d\n",
thread->cpu_id);
ihk_mc_interrupt_cpu(get_x86_cpu_local_variable(thread->cpu_id)->apic_id,
0xd1);
dkprintf("%s: issuing IPI, thread->cpu_id=%d\n",
__FUNCTION__, thread->cpu_id);
ihk_mc_interrupt_cpu(
get_x86_cpu_local_variable(thread->cpu_id)->apic_id,
0xd1);
}
return status;
}
int sched_wakeup_thread_locked(struct thread *thread, int valid_states)
{
return __sched_wakeup_thread(thread, valid_states, 1);
}
int sched_wakeup_thread(struct thread *thread, int valid_states)
{
return __sched_wakeup_thread(thread, valid_states, 0);
}
/*
* 1. Add current process to waitq
* 2. Queue migration request into the target CPU's queue
@ -2878,7 +3001,7 @@ void sched_request_migrate(int cpu_id, struct thread *thread)
struct cpu_local_var *v = get_cpu_local_var(cpu_id);
struct migrate_request req = { .thread = thread };
unsigned long irqstate;
DECLARE_WAITQ_ENTRY(entry, cpu_local_var(current));
DECLARE_WAITQ_ENTRY_LOCKED(entry, cpu_local_var(current));
waitq_init(&req.wq);
waitq_prepare_to_wait(&req.wq, &entry, PS_UNINTERRUPTIBLE);
@ -2895,6 +3018,8 @@ void sched_request_migrate(int cpu_id, struct thread *thread)
if (cpu_id != ihk_mc_get_processor_id())
ihk_mc_interrupt_cpu(/* Kick scheduler */
get_x86_cpu_local_variable(cpu_id)->apic_id, 0xd1);
dkprintf("%s: tid: %d -> cpu: %d\n",
__FUNCTION__, thread->tid, cpu_id);
schedule();
waitq_finish_wait(&req.wq, &entry);

View File

@ -76,11 +76,11 @@ procfs_delete_thread(struct thread *thread)
*
* \param rarg returned argument
*/
void
process_procfs_request(unsigned long rarg)
void process_procfs_request(struct ikc_scd_packet *rpacket)
{
unsigned long rarg = rpacket->arg;
unsigned long parg, pbuf;
struct thread *thread = NULL;
struct thread *thread = NULL;
struct process *proc = NULL;
struct process_vm *vm = NULL;
struct procfs_read *r;
@ -161,7 +161,7 @@ process_procfs_request(unsigned long rarg)
*/
ret = sscanf(p, "%d/", &pid);
if (ret == 1) {
struct mcs_rwlock_node tlock;
struct mcs_rwlock_node_irqsave tlock;
int tids;
struct thread *thread1 = NULL;
@ -178,7 +178,7 @@ process_procfs_request(unsigned long rarg)
else
tid = pid;
mcs_rwlock_reader_lock_noirq(&proc->threads_lock, &tlock);
mcs_rwlock_reader_lock(&proc->threads_lock, &tlock);
list_for_each_entry(thread, &proc->threads_list, siblings_list){
if(thread->tid == tid)
break;
@ -188,15 +188,15 @@ process_procfs_request(unsigned long rarg)
if(thread == NULL){
kprintf("process_procfs_request: no such tid %d-%d\n", pid, tid);
if(tids){
mcs_rwlock_reader_unlock(&proc->threads_lock, &tlock);
process_unlock(proc, &lock);
mcs_rwlock_reader_unlock_noirq(&proc->threads_lock, &tlock);
goto end;
}
thread = thread1;
}
if(thread)
hold_thread(thread);
mcs_rwlock_reader_unlock_noirq(&proc->threads_lock, &tlock);
mcs_rwlock_reader_unlock(&proc->threads_lock, &tlock);
hold_process(proc);
vm = proc->vm;
if(vm)
@ -633,6 +633,7 @@ dataunavail:
packet.msg = SCD_MSG_PROCFS_ANSWER;
packet.arg = rarg;
packet.pid = rpacket->pid;
ret = ihk_ikc_send(syscall_channel, &packet, 0);
if (ret < 0) {

View File

@ -179,6 +179,7 @@ int shmobj_create(struct shmid_ds *ds, struct memobj **objp)
memset(obj, 0, sizeof(*obj));
obj->memobj.ops = &shmobj_ops;
obj->memobj.size = ds->shm_segsz;
obj->ds = *ds;
obj->ds.shm_perm.seq = the_seq++;
obj->ds.shm_nattch = 1;

View File

@ -54,6 +54,7 @@
#include <process.h>
#include <bitops.h>
#include <bitmap.h>
#include <xpmem.h>
/* Headers taken from kitten LWK */
#include <lwk/stddef.h>
@ -93,8 +94,8 @@ static long (*syscall_table[])(int, ihk_mc_user_context_t *) = {
#define MCKERNEL_UNUSED __attribute__ ((unused))
static char *syscall_name[] MCKERNEL_UNUSED = {
#define DECLARATOR(number,name) [number] = #name,
#define SYSCALL_HANDLED(number,name) DECLARATOR(number,sys_##name)
#define SYSCALL_DELEGATED(number,name) DECLARATOR(number,sys_##name)
#define SYSCALL_HANDLED(number,name) DECLARATOR(number,#name)
#define SYSCALL_DELEGATED(number,name) DECLARATOR(number,#name)
#include <syscall_list.h>
#undef DECLARATOR
#undef SYSCALL_HANDLED
@ -131,24 +132,20 @@ static void do_mod_exit(int status);
#ifdef TRACK_SYSCALLS
#define SOCC_CLEAR 1
#define SOCC_ON 2
#define SOCC_OFF 4
#define SOCC_PRINT 8
void print_syscall_stats(struct thread *thread)
void track_syscalls_print_thread_stats(struct thread *thread)
{
int i;
unsigned long flags;
flags = kprintf_lock();
for (i = 0; i < 300; ++i) {
for (i = 0; i < TRACK_SYSCALLS_MAX; ++i) {
if (!thread->syscall_cnts[i] &&
!thread->offload_cnts[i]) continue;
//__kprintf("(%20s): sys.cnt: %3lu (%15lukC)\n",
__kprintf("(%3d,%20s): sys.cnt: %5lu (%10lukC), offl.cnt: %5lu (%10lukC)\n",
__kprintf("TID: %4d (%3d,%20s): sys: %6u %6lukC offl: %6u %6lukC\n",
thread->tid,
i,
syscall_name[i],
thread->syscall_cnts[i],
@ -165,38 +162,150 @@ void print_syscall_stats(struct thread *thread)
kprintf_unlock(flags);
}
void alloc_syscall_counters(struct thread *thread)
void track_syscalls_print_proc_stats(struct process *proc)
{
thread->syscall_times = kmalloc(sizeof(*thread->syscall_times) * 300, IHK_MC_AP_NOWAIT);
thread->syscall_cnts = kmalloc(sizeof(*thread->syscall_cnts) * 300, IHK_MC_AP_NOWAIT);
thread->offload_times = kmalloc(sizeof(*thread->offload_times) * 300, IHK_MC_AP_NOWAIT);
thread->offload_cnts = kmalloc(sizeof(*thread->offload_cnts) * 300, IHK_MC_AP_NOWAIT);
int i;
unsigned long flags;
flags = kprintf_lock();
for (i = 0; i < TRACK_SYSCALLS_MAX; ++i) {
if (!proc->syscall_cnts[i] &&
!proc->offload_cnts[i]) continue;
//__kprintf("(%20s): sys.cnt: %3lu (%15lukC)\n",
__kprintf("PID: %4d (%3d,%20s): sys: %6u %6lukC offl: %6u %6lukC\n",
proc->pid,
i,
syscall_name[i],
proc->syscall_cnts[i],
(proc->syscall_times[i] /
(proc->syscall_cnts[i] ? proc->syscall_cnts[i] : 1))
/ 1000,
proc->offload_cnts[i],
(proc->offload_times[i] /
(proc->offload_cnts[i] ? proc->offload_cnts[i] : 1))
/ 1000
);
}
kprintf_unlock(flags);
}
void track_syscalls_accumulate_counters(struct thread *thread,
struct process *proc)
{
int i;
struct mcs_lock_node mcs_node;
mcs_lock_lock(&proc->st_lock, &mcs_node);
for (i = 0; i < TRACK_SYSCALLS_MAX; ++i) {
if (thread->syscall_cnts[i]) {
proc->syscall_times[i] += thread->syscall_times[i];
proc->syscall_cnts[i] += thread->syscall_cnts[i];
}
if (thread->offload_cnts[i]) {
proc->offload_times[i] += thread->offload_times[i];
proc->offload_cnts[i] += thread->offload_cnts[i];
}
}
mcs_lock_unlock(&proc->st_lock, &mcs_node);
}
void track_syscalls_alloc_counters(struct thread *thread)
{
struct process *proc = thread->proc;
struct mcs_lock_node mcs_node;
thread->syscall_times = kmalloc(sizeof(*thread->syscall_times) *
TRACK_SYSCALLS_MAX, IHK_MC_AP_NOWAIT);
thread->syscall_cnts = kmalloc(sizeof(*thread->syscall_cnts) *
TRACK_SYSCALLS_MAX, IHK_MC_AP_NOWAIT);
thread->offload_times = kmalloc(sizeof(*thread->offload_times) *
TRACK_SYSCALLS_MAX, IHK_MC_AP_NOWAIT);
thread->offload_cnts = kmalloc(sizeof(*thread->offload_cnts) *
TRACK_SYSCALLS_MAX, IHK_MC_AP_NOWAIT);
if (!thread->syscall_times ||
!thread->syscall_cnts ||
!thread->offload_times ||
!thread->offload_cnts) {
kprintf("ERROR: allocating counters\n");
kprintf("%s: ERROR: allocating thread private counters\n",
__FUNCTION__);
panic("");
}
memset(thread->syscall_times, 0, sizeof(*thread->syscall_times) * 300);
memset(thread->syscall_cnts, 0, sizeof(*thread->syscall_cnts) * 300);
memset(thread->offload_times, 0, sizeof(*thread->offload_times) * 300);
memset(thread->offload_cnts, 0, sizeof(*thread->offload_cnts) * 300);
memset(thread->syscall_times, 0, sizeof(*thread->syscall_times) *
TRACK_SYSCALLS_MAX);
memset(thread->syscall_cnts, 0, sizeof(*thread->syscall_cnts) *
TRACK_SYSCALLS_MAX);
memset(thread->offload_times, 0, sizeof(*thread->offload_times) *
TRACK_SYSCALLS_MAX);
memset(thread->offload_cnts, 0, sizeof(*thread->offload_cnts) *
TRACK_SYSCALLS_MAX);
mcs_lock_lock(&proc->st_lock, &mcs_node);
if (!proc->syscall_times) {
proc->syscall_times = kmalloc(sizeof(*proc->syscall_times) *
TRACK_SYSCALLS_MAX, IHK_MC_AP_NOWAIT);
proc->syscall_cnts = kmalloc(sizeof(*proc->syscall_cnts) *
TRACK_SYSCALLS_MAX, IHK_MC_AP_NOWAIT);
proc->offload_times = kmalloc(sizeof(*proc->offload_times) *
TRACK_SYSCALLS_MAX, IHK_MC_AP_NOWAIT);
proc->offload_cnts = kmalloc(sizeof(*proc->offload_cnts) *
TRACK_SYSCALLS_MAX, IHK_MC_AP_NOWAIT);
if (!proc->syscall_times ||
!proc->syscall_cnts ||
!proc->offload_times ||
!proc->offload_cnts) {
kprintf("%s: ERROR: allocating process private counters\n",
__FUNCTION__);
panic("");
}
memset(proc->syscall_times, 0, sizeof(*proc->syscall_times) *
TRACK_SYSCALLS_MAX);
memset(proc->syscall_cnts, 0, sizeof(*proc->syscall_cnts) *
TRACK_SYSCALLS_MAX);
memset(proc->offload_times, 0, sizeof(*proc->offload_times) *
TRACK_SYSCALLS_MAX);
memset(proc->offload_cnts, 0, sizeof(*proc->offload_cnts) *
TRACK_SYSCALLS_MAX);
}
mcs_lock_unlock(&proc->st_lock, &mcs_node);
}
SYSCALL_DECLARE(syscall_offload_clr_cntrs)
void track_syscalls_dealloc_thread_counters(struct thread *thread)
{
kfree(thread->syscall_times);
kfree(thread->syscall_cnts);
kfree(thread->offload_times);
kfree(thread->offload_cnts);
}
void track_syscalls_dealloc_proc_counters(struct process *proc)
{
kfree(proc->syscall_times);
kfree(proc->syscall_cnts);
kfree(proc->offload_times);
kfree(proc->offload_cnts);
}
int do_track_syscalls(int flag)
{
int flag = (int)ihk_mc_syscall_arg0(ctx);
struct thread *thread = cpu_local_var(current);
int i;
if (flag & SOCC_PRINT)
print_syscall_stats(thread);
if (flag & TRACK_SYSCALLS_PRINT)
track_syscalls_print_thread_stats(thread);
if (flag & SOCC_CLEAR) {
for (i = 0; i < 300; ++i) {
if (flag & TRACK_SYSCALLS_PRINT_PROC)
track_syscalls_print_proc_stats(thread->proc);
if (flag & TRACK_SYSCALLS_CLEAR) {
for (i = 0; i < TRACK_SYSCALLS_MAX; ++i) {
if (!thread->syscall_cnts[i] &&
!thread->offload_cnts[i]) continue;
@ -207,15 +316,21 @@ SYSCALL_DECLARE(syscall_offload_clr_cntrs)
}
}
if (flag & SOCC_ON) {
thread->socc_enabled = 1;
if (flag & TRACK_SYSCALLS_ON) {
thread->track_syscalls = 1;
}
else if (flag & SOCC_OFF) {
thread->socc_enabled = 0;
else if (flag & TRACK_SYSCALLS_OFF) {
thread->track_syscalls = 0;
}
return 0;
}
SYSCALL_DECLARE(track_syscalls)
{
int flag = (int)ihk_mc_syscall_arg0(ctx);
return do_track_syscalls(flag);
}
#endif // TRACK_SYSCALLS
static void send_syscall(struct syscall_request *req, int cpu, int pid, struct syscall_response *res)
@ -266,16 +381,12 @@ static void send_syscall(struct syscall_request *req, int cpu, int pid, struct s
#endif
}
ihk_spinlock_t syscall_lock;
long do_syscall(struct syscall_request *req, int cpu, int pid)
{
struct syscall_response res;
struct syscall_request req2 IHK_DMA_ALIGN;
int error;
long rc;
int islock = 0;
unsigned long irqstate;
struct thread *thread = cpu_local_var(current);
struct process *proc = thread->proc;
#ifdef TRACK_SYSCALLS
@ -287,7 +398,6 @@ long do_syscall(struct syscall_request *req, int cpu, int pid)
ihk_mc_get_processor_id(),
req->number);
irqstate = 0; /* for avoidance of warning */
barrier();
if(req->number != __NR_exit_group){
@ -298,11 +408,6 @@ long do_syscall(struct syscall_request *req, int cpu, int pid)
++thread->in_syscall_offload;
}
if(req->number == __NR_exit_group ||
req->number == __NR_kill){ // interrupt syscall
islock = 1;
irqstate = ihk_mc_spinlock_lock(&syscall_lock);
}
/* The current thread is the requester and any thread from
* the pool may serve the request */
req->rtid = cpu_local_var(current)->tid;
@ -393,27 +498,25 @@ long do_syscall(struct syscall_request *req, int cpu, int pid)
__FUNCTION__, req->number, res.ret);
rc = res.ret;
if(islock){
ihk_mc_spinlock_unlock(&syscall_lock, irqstate);
}
if(req->number != __NR_exit_group){
--thread->in_syscall_offload;
}
#ifdef TRACK_SYSCALLS
if (req->number < 300) {
if (req->number < TRACK_SYSCALLS_MAX) {
if (!cpu_local_var(current)->offload_cnts) {
alloc_syscall_counters(cpu_local_var(current));
track_syscalls_alloc_counters(cpu_local_var(current));
}
if (cpu_local_var(current)->socc_enabled) {
if (cpu_local_var(current)->track_syscalls) {
cpu_local_var(current)->offload_times[req->number] +=
(rdtsc() - t_s);
cpu_local_var(current)->offload_cnts[req->number]++;
cpu_local_var(current)->offload_cnts[req->number] += 1;
}
}
else {
dkprintf("offload syscall > 300?? : %d\n", req->number);
dkprintf("%s: offload syscall > %d ?? : %d\n",
__FUNCTION__, TRACK_SYSCALLS_MAX, req->number);
}
#endif // TRACK_SYSCALLS
@ -854,7 +957,6 @@ terminate(int rc, int sig)
mcs_rwlock_writer_unlock(&proc->threads_lock, &lock);
vm = proc->vm;
free_all_process_memory_range(vm);
if (proc->saved_cmdline) {
kfree(proc->saved_cmdline);
@ -1062,7 +1164,7 @@ out:
return (int)lerror;
}
static int do_munmap(void *addr, size_t len)
int do_munmap(void *addr, size_t len)
{
int error;
int ro_freed;
@ -1134,6 +1236,7 @@ do_mmap(const intptr_t addr0, const size_t len0, const int prot,
struct vm_regions *region = &thread->vm->region;
intptr_t addr = addr0;
size_t len = len0;
size_t populate_len;
off_t off;
int error;
intptr_t npages;
@ -1150,6 +1253,7 @@ do_mmap(const intptr_t addr0, const size_t len0, const int prot,
struct process *proc = thread->proc;
struct mckfd *fdp = NULL;
int pgshift;
struct vm_range *range = NULL;
dkprintf("do_mmap(%lx,%lx,%x,%x,%d,%lx)\n",
addr0, len0, prot, flags, fd, off0);
@ -1233,16 +1337,9 @@ do_mmap(const intptr_t addr0, const size_t len0, const int prot,
vrflags |= (flags & MAP_LOCKED)? VR_LOCKED: 0;
vrflags |= VR_DEMAND_PAGING;
if (flags & MAP_ANONYMOUS) {
if (!anon_on_demand) {
populated_mapping = 1;
}
#ifdef USE_NOCACHE_MMAP
#define X_MAP_NOCACHE MAP_32BIT
else if (flags & X_MAP_NOCACHE) {
if (!anon_on_demand && (flags & MAP_PRIVATE)) {
vrflags &= ~VR_DEMAND_PAGING;
vrflags |= VR_IO_NOCACHE;
}
#endif
}
if (flags & (MAP_POPULATE | MAP_LOCKED)) {
@ -1251,6 +1348,9 @@ do_mmap(const intptr_t addr0, const size_t len0, const int prot,
/* XXX: Intel MPI 128MB mapping.. */
if (len == 134217728) {
dkprintf("%s: %ld bytes mapping -> no prefault\n",
__FUNCTION__, len);
vrflags |= VR_DEMAND_PAGING;
populated_mapping = 0;
}
@ -1308,19 +1408,39 @@ do_mmap(const intptr_t addr0, const size_t len0, const int prot,
goto out;
}
}
/* Prepopulated ANONYMOUS mapping */
else if (!(vrflags & VR_DEMAND_PAGING)
&& ((vrflags & VR_PROT_MASK) != VR_PROT_NONE)) {
npages = len >> PAGE_SHIFT;
p = ihk_mc_alloc_aligned_pages(npages, p2align, IHK_MC_AP_NOWAIT);
/* Small allocations mostly benefit from closest RAM,
* otherwise follow user requested policy */
unsigned long __flag = (len >= 2097152) ? IHK_MC_AP_USER : 0;
p = ihk_mc_alloc_aligned_pages(npages, p2align,
IHK_MC_AP_NOWAIT | __flag);
if (p == NULL) {
ekprintf("do_mmap:allocate_pages(%d,%d) failed.\n",
npages, p2align);
error = -ENOMEM;
goto out;
dkprintf("%s: warning: failed to allocate %d contiguous pages "
" (bytes: %lu, pgshift: %d), enabling demand paging\n",
__FUNCTION__,
npages, npages * PAGE_SIZE, p2align);
/* Give demand paging a chance */
vrflags |= VR_DEMAND_PAGING;
populated_mapping = 0;
error = zeroobj_create(&memobj);
if (error) {
ekprintf("%s: zeroobj_create failed, error: %d\n",
__FUNCTION__, error);
goto out;
}
}
else {
dkprintf("%s: 0x%x:%lu MAP_ANONYMOUS "
"allocated %d pages, p2align: %lx\n",
__FUNCTION__, addr, len, npages, p2align);
phys = virt_to_phys(p);
}
dkprintf("%s: 0x%x:%lu allocated %d pages, p2align: %lx\n",
__FUNCTION__, addr, len, npages, p2align);
phys = virt_to_phys(p);
}
else if (flags & MAP_SHARED) {
memset(&ads, 0, sizeof(ads));
@ -1353,7 +1473,7 @@ do_mmap(const intptr_t addr0, const size_t len0, const int prot,
vrflags |= VRFLAG_PROT_TO_MAXPROT(PROT_TO_VR_FLAG(maxprot));
error = add_process_memory_range(thread->vm, addr, addr+len, phys,
vrflags, memobj, off, pgshift);
vrflags, memobj, off, pgshift, &range);
if (error) {
kprintf("%s: add_process_memory_range failed for 0x%lx:%lu"
" flags: %lx, vrflags: %lx, pgshift: %d, error: %d\n",
@ -1362,6 +1482,19 @@ do_mmap(const intptr_t addr0, const size_t len0, const int prot,
goto out;
}
/* Determine pre-populated size */
populate_len = len;
if (!(flags & MAP_ANONYMOUS)) {
memobj_lock(memobj);
if (memobj->status == MEMOBJ_TO_BE_PREFETCHED) {
memobj->status = MEMOBJ_READY;
populated_mapping = 1;
populate_len = memobj->size;
}
memobj_unlock(memobj);
}
error = 0;
p = NULL;
memobj = NULL;
@ -1374,10 +1507,13 @@ out:
ihk_mc_spinlock_unlock_noirq(&thread->vm->memory_range_lock);
if (!error && populated_mapping && !((vrflags & VR_PROT_MASK) == VR_PROT_NONE)) {
error = populate_process_memory(thread->vm, (void *)addr, len);
error = populate_process_memory(thread->vm,
(void *)addr, populate_len);
if (error) {
ekprintf("%s: error :populate_process_memory"
"vm: %p, addr: %p, len: %d (flags: %s%s) failed %d\n", __FUNCTION__,
ekprintf("%s: WARNING: populate_process_memory(): "
"vm: %p, addr: %p, len: %d (flags: %s%s) failed %d\n",
__FUNCTION__,
thread->vm, (void *)addr, len,
(flags & MAP_POPULATE) ? "MAP_POPULATE " : "",
(flags & MAP_LOCKED) ? "MAP_LOCKED ": "",
@ -1884,8 +2020,9 @@ SYSCALL_DECLARE(execve)
ret = do_syscall(&request, ihk_mc_get_processor_id(), 0);
if (ret != 0) {
kprintf("execve(): ERROR: host failed to load elf header, errno: %d\n",
dkprintf("execve(): ERROR: host failed to load elf header, errno: %d\n",
ret);
ihk_mc_free_pages(desc, 1);
return -ret;
}
@ -1909,6 +2046,7 @@ SYSCALL_DECLARE(execve)
kprintf("ERROR: no argv for executable: %s?\n", kfilename? kfilename: "");
if(kfilename)
kfree(kfilename);
ihk_mc_free_pages(desc, 1);
return -EINVAL;
}
@ -1977,6 +2115,10 @@ SYSCALL_DECLARE(execve)
dkprintf("execve(): switching to new process\n");
proc->execed = 1;
ihk_mc_free_pages(desc, 1);
kfree(argv_flat);
kfree(envp_flat);
/* Lock run queue because enter_user_mode expects to release it */
cpu_local_var(runq_irqstate) =
ihk_mc_spinlock_lock(&(get_this_cpu_local_var()->runq_lock));
@ -2039,7 +2181,7 @@ unsigned long do_fork(int clone_flags, unsigned long newsp,
return -EINVAL;
}
cpuid = obtain_clone_cpuid();
cpuid = obtain_clone_cpuid(&old->cpu_set);
if (cpuid == -1) {
kprintf("do_fork,core not available\n");
return -EAGAIN;
@ -2696,6 +2838,21 @@ SYSCALL_DECLARE(ioctl)
return rc;
}
SYSCALL_DECLARE(open)
{
const char *pathname = (const char *)ihk_mc_syscall_arg0(ctx);
long rc;
dkprintf("open(): pathname=%s\n", pathname);
if (!strcmp(pathname, XPMEM_DEV_PATH)) {
rc = xpmem_open(ctx);
} else {
rc = syscall_generic_forwarding(__NR_open, ctx);
}
return rc;
}
SYSCALL_DECLARE(close)
{
int fd = ihk_mc_syscall_arg0(ctx);
@ -3539,9 +3696,28 @@ do_sigsuspend(struct thread *thread, const sigset_t *set)
thread->sigmask.__val[0] = wset;
thread->sigevent = 1;
for(;;){
while(thread->sigevent == 0)
cpu_pause();
for (;;) {
while (thread->sigevent == 0) {
int do_schedule = 0;
struct cpu_local_var *v;
long runq_irqstate;
runq_irqstate =
ihk_mc_spinlock_lock(&(get_this_cpu_local_var()->runq_lock));
v = get_this_cpu_local_var();
if (v->flags & CPU_FLAG_NEED_RESCHED) {
do_schedule = 1;
}
ihk_mc_spinlock_unlock(&v->runq_lock, runq_irqstate);
if (do_schedule) {
schedule();
}
else {
cpu_pause();
}
}
lock = &thread->sigcommon->lock;
head = &thread->sigcommon->sigpending;
@ -4294,7 +4470,7 @@ SYSCALL_DECLARE(shmat)
memobj_ref(&obj->memobj);
error = add_process_memory_range(vm, addr, addr+len, -1,
vrflags, &obj->memobj, 0, obj->pgshift);
vrflags, &obj->memobj, 0, obj->pgshift, NULL);
if (error) {
if (!(prot & PROT_WRITE)) {
(void)set_host_vma(addr, len, PROT_READ|PROT_WRITE);
@ -7054,7 +7230,7 @@ SYSCALL_DECLARE(mremap)
error = add_process_memory_range(thread->vm, newstart, newend, -1,
range->flag, range->memobj,
range->objoff + (oldstart - range->start),
range->pgshift);
range->pgshift, NULL);
if (error) {
ekprintf("sys_mremap(%#lx,%#lx,%#lx,%#x,%#lx):"
"add failed. %d\n",
@ -7400,7 +7576,9 @@ SYSCALL_DECLARE(mbind)
}
/* Verify NUMA mask */
for_each_set_bit(bit, numa_mask, maxnode) {
for_each_set_bit(bit, numa_mask,
maxnode < PROCESS_NUMA_MASK_BITS ?
maxnode : PROCESS_NUMA_MASK_BITS) {
if (bit >= ihk_mc_get_nr_numa_nodes()) {
dkprintf("%s: %d is bigger than # of NUMA nodes\n",
__FUNCTION__, bit);
@ -7703,7 +7881,9 @@ SYSCALL_DECLARE(set_mempolicy)
/* Verify NUMA mask */
valid_mask = 0;
for_each_set_bit(bit, numa_mask, maxnode) {
for_each_set_bit(bit, numa_mask,
maxnode < PROCESS_NUMA_MASK_BITS ?
maxnode : PROCESS_NUMA_MASK_BITS) {
if (bit >= ihk_mc_get_nr_numa_nodes()) {
dkprintf("%s: %d is bigger than # of NUMA nodes\n",
__FUNCTION__, bit);
@ -7725,7 +7905,9 @@ SYSCALL_DECLARE(set_mempolicy)
}
/* Update current mask by clearing non-requested nodes */
for_each_set_bit(bit, vm->numa_mask, maxnode) {
for_each_set_bit(bit, vm->numa_mask,
maxnode < PROCESS_NUMA_MASK_BITS ?
maxnode : PROCESS_NUMA_MASK_BITS) {
if (!test_bit(bit, numa_mask)) {
clear_bit(bit, vm->numa_mask);
}
@ -8455,6 +8637,7 @@ long syscall(int num, ihk_mc_user_context_t *ctx)
dkprintf("\n");
#ifdef TRACK_SYSCALLS
if (num == __NR_clone) cpu_local_var(current)->track_syscalls = 1;
t_s = rdtsc();
#endif // TRACK_SYSCALLS
@ -8479,18 +8662,20 @@ long syscall(int num, ihk_mc_user_context_t *ctx)
}
#ifdef TRACK_SYSCALLS
if (num < 300) {
if (num < TRACK_SYSCALLS_MAX) {
if (!cpu_local_var(current)->syscall_cnts) {
alloc_syscall_counters(cpu_local_var(current));
track_syscalls_alloc_counters(cpu_local_var(current));
}
if (cpu_local_var(current)->socc_enabled) {
if (cpu_local_var(current)->track_syscalls) {
cpu_local_var(current)->syscall_times[num] += (rdtsc() - t_s);
cpu_local_var(current)->syscall_cnts[num]++;
}
}
else {
if (num != 701)
kprintf("syscall > 300?? : %d\n", num);
if (num != __NR_track_syscalls) {
dkprintf("%s: syscall > %d ?? : %d\n",
__FUNCTION__, TRACK_SYSCALLS_MAX, num);
}
}
#endif // TRACK_SYSCALLS

View File

@ -54,136 +54,75 @@ void init_timers(void)
}
uint64_t schedule_timeout(uint64_t timeout)
{
struct waitq_entry my_wait;
struct timer my_timer;
{
struct thread *thread = cpu_local_var(current);
int irqstate;
int spin_sleep;
irqstate = ihk_mc_spinlock_lock(&thread->spin_sleep_lock);
dkprintf("schedule_timeout() spin sleep timeout: %lu\n", timeout);
spin_sleep = ++thread->spin_sleep;
ihk_mc_spinlock_unlock(&thread->spin_sleep_lock, irqstate);
long irqstate;
/* Spin sleep.. */
for (;;) {
int need_schedule;
struct cpu_local_var *v = get_this_cpu_local_var();
uint64_t t_s = rdtsc();
uint64_t t_e;
int spin_over = 0;
irqstate = ihk_mc_spinlock_lock(&thread->spin_sleep_lock);
/* Woken up by someone? */
if (thread->spin_sleep < 1) {
if (thread->spin_sleep == 0) {
t_e = rdtsc();
spin_over = 1;
if ((t_e - t_s) < timeout) {
timeout -= (t_e - t_s);
}
else {
timeout = 1;
}
ihk_mc_spinlock_unlock(&thread->spin_sleep_lock, irqstate);
break;
}
ihk_mc_spinlock_unlock(&thread->spin_sleep_lock, irqstate);
if (!spin_over) {
t_s = rdtsc();
int need_schedule;
struct cpu_local_var *v = get_this_cpu_local_var();
int irqstate = ihk_mc_spinlock_lock(&(v->runq_lock));
need_schedule = v->runq_len > 1 ? 1 : 0;
/* Give a chance to another thread (if any) in case the core is
* oversubscribed, but make sure we will be re-scheduled */
irqstate = ihk_mc_spinlock_lock(&(v->runq_lock));
need_schedule = v->runq_len > 1 ? 1 : 0;
if (need_schedule) {
xchg4(&(cpu_local_var(current)->status), PS_RUNNING);
ihk_mc_spinlock_unlock(&(v->runq_lock), irqstate);
schedule();
/* Give a chance to another thread (if any) in case the core is
* oversubscribed, but make sure we will be re-scheduled */
if (need_schedule) {
xchg4(&(cpu_local_var(current)->status), PS_RUNNING);
schedule();
xchg4(&(cpu_local_var(current)->status),
PS_INTERRUPTIBLE);
}
else {
/* Spin wait */
while ((rdtsc() - t_s) < LOOP_TIMEOUT) {
cpu_pause();
}
if (timeout < LOOP_TIMEOUT) {
timeout = 0;
spin_over = 1;
}
else {
timeout -= LOOP_TIMEOUT;
}
}
/* Recheck if woken */
continue;
}
else {
ihk_mc_spinlock_unlock(&(v->runq_lock), irqstate);
}
if (spin_over) {
dkprintf("schedule_timeout() spin woken up, timeout: %lu\n",
timeout);
/* Give a chance to another thread (if any) in case we timed out,
* but make sure we will be re-scheduled */
if (timeout == 0) {
int need_schedule;
struct cpu_local_var *v = get_this_cpu_local_var();
int irqstate =
ihk_mc_spinlock_lock(&(v->runq_lock));
need_schedule = v->runq_len > 1 ? 1 : 0;
ihk_mc_spinlock_unlock(&(v->runq_lock), irqstate);
/* Spin wait */
while ((rdtsc() - t_s) < LOOP_TIMEOUT) {
cpu_pause();
}
if (need_schedule) {
xchg4(&(cpu_local_var(current)->status), PS_RUNNING);
schedule();
xchg4(&(cpu_local_var(current)->status),
PS_INTERRUPTIBLE);
}
}
/* Time out? */
if (timeout < LOOP_TIMEOUT) {
timeout = 0;
/* We are not sleeping any more */
irqstate = ihk_mc_spinlock_lock(&thread->spin_sleep_lock);
if (spin_sleep == thread->spin_sleep) {
--thread->spin_sleep;
}
thread->spin_sleep = 0;
ihk_mc_spinlock_unlock(&thread->spin_sleep_lock, irqstate);
return timeout;
break;
}
else {
timeout -= LOOP_TIMEOUT;
}
}
/* Init waitq and wait entry for this timer */
my_timer.timeout = (timeout < LOOP_TIMEOUT) ? LOOP_TIMEOUT : timeout;
my_timer.thread = cpu_local_var(current);
waitq_init(&my_timer.processes);
waitq_init_entry(&my_wait, cpu_local_var(current));
/* Add ourself to the timer queue */
ihk_mc_spinlock_lock_noirq(&timers_lock);
list_add_tail(&my_timer.list, &timers);
dkprintf("schedule_timeout() sleep timeout: %lu\n", my_timer.timeout);
/* Add ourself to the waitqueue and sleep */
waitq_prepare_to_wait(&my_timer.processes, &my_wait, PS_INTERRUPTIBLE);
ihk_mc_spinlock_unlock_noirq(&timers_lock);
schedule();
waitq_finish_wait(&my_timer.processes, &my_wait);
ihk_mc_spinlock_lock_noirq(&timers_lock);
/* Waken up by someone else then timeout? */
if (my_timer.timeout) {
list_del(&my_timer.list);
}
ihk_mc_spinlock_unlock_noirq(&timers_lock);
dkprintf("schedule_timeout() woken up, timeout: %lu\n",
my_timer.timeout);
return my_timer.timeout;
return timeout;
}

View File

@ -22,6 +22,13 @@ default_wake_function(waitq_entry_t *entry, unsigned mode,
return sched_wakeup_thread(entry->private, PS_NORMAL);
}
int
locked_wake_function(waitq_entry_t *entry, unsigned mode,
int flags, void *key)
{
return sched_wakeup_thread_locked(entry->private, PS_NORMAL);
}
void
waitq_init(waitq_t *waitq)
{

739
kernel/xpmem.c Normal file
View File

@ -0,0 +1,739 @@
/**
* \file xpmem.c
* License details are found in the file LICENSE.
* \brief
* Cross Partition Memory (XPMEM) support.
*/
/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (c) 2004-2007 Silicon Graphics, Inc. All Rights Reserved.
* Copyright 2010, 2014 Cray Inc. All Rights Reserved
* Copyright 2015-2016 Los Alamos National Security, LLC. All rights reserved.
*/
/*
* HISTORY
*/
#include <errno.h>
#include <kmalloc.h>
#include <limits.h>
#include <memobj.h>
#include <mman.h>
#include <string.h>
#include <types.h>
#include <vsprintf.h>
#include <ihk/lock.h>
#include <ihk/mm.h>
#include <xpmem_private.h>
struct xpmem_partition *xpmem_my_part = NULL; /* pointer to this partition */
int xpmem_open(
ihk_mc_user_context_t *ctx)
{
const char *pathname = (const char *)ihk_mc_syscall_arg0(ctx);
int flags = (int)ihk_mc_syscall_arg1(ctx);
int ret;
struct thread *thread = cpu_local_var(current);
struct process *proc = thread->proc;
struct syscall_request request IHK_DMA_ALIGN;
int fd;
struct mckfd *mckfd;
long irqstate;
XPMEM_DEBUG("call: pathname=%s, flags=%d", pathname, flags);
if (!xpmem_my_part) {
ret = xpmem_init();
if (ret) {
return ret;
}
}
request.number = __NR_open;
request.args[0] = (unsigned long)pathname;
request.args[1] = flags;
fd = do_syscall(&request, ihk_mc_get_processor_id(), 0);
if(fd < 0){
XPMEM_DEBUG("__NR_open error: fd=%d", fd);
return fd;
}
ret = __xpmem_open();
if (ret) {
XPMEM_DEBUG("return: ret=%d", ret);
return ret;
}
mckfd = kmalloc(sizeof(struct mckfd), IHK_MC_AP_NOWAIT);
if(!mckfd) {
return -ENOMEM;
}
XPMEM_DEBUG("kmalloc(): mckfd=0x%p", mckfd);
memset(mckfd, 0, sizeof(struct mckfd));
mckfd->fd = fd;
mckfd->sig_no = -1;
mckfd->ioctl_cb = xpmem_ioctl;
mckfd->close_cb = xpmem_close;
irqstate = ihk_mc_spinlock_lock(&proc->mckfd_lock);
if(proc->mckfd == NULL) {
proc->mckfd = mckfd;
mckfd->next = NULL;
} else {
mckfd->next = proc->mckfd;
proc->mckfd = mckfd;
}
ihk_mc_spinlock_unlock(&proc->mckfd_lock, irqstate);
ihk_atomic_inc_return(&xpmem_my_part->n_opened);
XPMEM_DEBUG("return: ret=%d", mckfd->fd);
return mckfd->fd;
}
static int xpmem_ioctl(
struct mckfd *mckfd,
ihk_mc_user_context_t *ctx)
{
int ret;
unsigned int cmd = ihk_mc_syscall_arg1(ctx);
unsigned long arg = ihk_mc_syscall_arg2(ctx);
XPMEM_DEBUG("call: cmd=0x%x, arg=0x%lx", cmd, arg);
switch (cmd) {
case XPMEM_CMD_VERSION: {
ret = XPMEM_CURRENT_VERSION;
XPMEM_DEBUG("return: cmd=0x%x, ret=0x%lx", cmd, ret);
return ret;
}
case XPMEM_CMD_MAKE: {
struct xpmem_cmd_make make_info;
xpmem_segid_t segid = 0;
if (copy_from_user(&make_info, (void __user *)arg,
sizeof(struct xpmem_cmd_make)))
return -EFAULT;
ret = xpmem_make(make_info.vaddr, make_info.size,
make_info.permit_type,
(void *)make_info.permit_value, &segid);
if (ret != 0) {
XPMEM_DEBUG("return: cmd=0x%x, ret=%d", cmd, ret);
return ret;
}
if (copy_to_user(&((struct xpmem_cmd_make __user *)arg)->segid,
(void *)&segid, sizeof(xpmem_segid_t))) {
(void)xpmem_remove(segid);
return -EFAULT;
}
XPMEM_DEBUG("return: cmd=0x%x, ret=%d", cmd, ret);
return ret;
}
case XPMEM_CMD_REMOVE: {
struct xpmem_cmd_remove remove_info;
if (copy_from_user(&remove_info, (void __user *)arg,
sizeof(struct xpmem_cmd_remove)))
return -EFAULT;
ret = xpmem_remove(remove_info.segid);
XPMEM_DEBUG("return: cmd=0x%x, ret=%d", cmd, ret);
return ret;
}
case XPMEM_CMD_GET: {
struct xpmem_cmd_get get_info;
// xpmem_apid_t apid = 0;
if (copy_from_user(&get_info, (void __user *)arg,
sizeof(struct xpmem_cmd_get)))
return -EFAULT;
// ret = xpmem_get(get_info.segid, get_info.flags,
// get_info.permit_type,
// (void *)get_info.permit_value, &apid); // TODO
ret = -EINVAL;
if (ret != 0) {
XPMEM_DEBUG("return: cmd=0x%x, ret=%d", cmd, ret);
return ret;
}
// if (copy_to_user(&((struct xpmem_cmd_get __user *)arg)->apid,
// (void *)&apid, sizeof(xpmem_apid_t))) {
// (void)xpmem_release(apid);
// return -EFAULT;
// }
XPMEM_DEBUG("return: cmd=0x%x, ret=%d", cmd, ret);
return ret;
}
case XPMEM_CMD_RELEASE: {
struct xpmem_cmd_release release_info;
if (copy_from_user(&release_info, (void __user *)arg,
sizeof(struct xpmem_cmd_release)))
return -EFAULT;
// ret = xpmem_release(release_info.apid); // TODO
ret = -EINVAL;
XPMEM_DEBUG("return: cmd=0x%x, ret=%d", cmd, ret);
return ret;
}
case XPMEM_CMD_ATTACH: {
struct xpmem_cmd_attach attach_info;
// unsigned long at_vaddr = 0;
if (copy_from_user(&attach_info, (void __user *)arg,
sizeof(struct xpmem_cmd_attach)))
return -EFAULT;
// ret = xpmem_attach(mckfd, attach_info.apid, attach_info.offset,
// attach_info.size, attach_info.vaddr,
// attach_info.fd, attach_info.flags,
// &at_vaddr); // TODO
ret = -EINVAL;
if (ret != 0) {
XPMEM_DEBUG("return: cmd=0x%x, ret=%d", cmd, ret);
return ret;
}
// if (copy_to_user(
// &((struct xpmem_cmd_attach __user *)arg)->vaddr,
// (void *)&at_vaddr, sizeof(unsigned long))) {
// (void)xpmem_detach(at_vaddr);
// return -EFAULT;
// }
XPMEM_DEBUG("return: cmd=0x%x, ret=%d", cmd, ret);
return ret;
}
case XPMEM_CMD_DETACH: {
struct xpmem_cmd_detach detach_info;
if (copy_from_user(&detach_info, (void __user *)arg,
sizeof(struct xpmem_cmd_detach)))
return -EFAULT;
// ret = xpmem_detach(detach_info.vaddr); // TODO
ret = -EINVAL;
XPMEM_DEBUG("return: cmd=0x%x, ret=%d", cmd, ret);
return ret;
}
default:
break;
}
XPMEM_DEBUG("return: cmd=0x%x, ret=%d", cmd, -EINVAL);
return -EINVAL;
}
static int xpmem_close(
struct mckfd *mckfd,
ihk_mc_user_context_t *ctx)
{
struct xpmem_thread_group *tg;
int index;
struct mcs_rwlock_node_irqsave lock;
int n_opened;
XPMEM_DEBUG("call: fd=%d", mckfd->fd);
n_opened = ihk_atomic_dec_return(&xpmem_my_part->n_opened);
if (n_opened) {
XPMEM_DEBUG("return: ret=%d, n_opened=%d", 0, n_opened);
return 0;
}
XPMEM_DEBUG("n_opened=%d", n_opened);
index = xpmem_tg_hashtable_index(cpu_local_var(current)->proc->pid);
mcs_rwlock_writer_lock(&xpmem_my_part->tg_hashtable[index].lock, &lock);
tg = xpmem_tg_ref_by_tgid_all_nolock(
cpu_local_var(current)->proc->pid);
if (!tg) {
mcs_rwlock_writer_unlock(
&xpmem_my_part->tg_hashtable[index].lock, &lock);
return 0;
}
list_del_init(&tg->tg_hashlist);
mcs_rwlock_writer_unlock(&xpmem_my_part->tg_hashtable[index].lock,
&lock);
XPMEM_DEBUG("tg->vm=0x%p", tg->vm);
xpmem_destroy_tg(tg);
if (!n_opened) {
xpmem_exit();
}
XPMEM_DEBUG("return: ret=%d", 0);
return 0;
}
static int xpmem_init(void)
{
int i;
XPMEM_DEBUG("call: ");
xpmem_my_part = kmalloc(sizeof(struct xpmem_partition) +
sizeof(struct xpmem_hashlist) * XPMEM_TG_HASHTABLE_SIZE,
IHK_MC_AP_NOWAIT);
if (xpmem_my_part == NULL) {
return -ENOMEM;
}
XPMEM_DEBUG("kmalloc(): xpmem_my_part=0x%p", xpmem_my_part);
memset(xpmem_my_part, 0, sizeof(struct xpmem_partition) +
sizeof(struct xpmem_hashlist) * XPMEM_TG_HASHTABLE_SIZE);
for (i = 0; i < XPMEM_TG_HASHTABLE_SIZE; i++) {
mcs_rwlock_init(&xpmem_my_part->tg_hashtable[i].lock);
INIT_LIST_HEAD(&xpmem_my_part->tg_hashtable[i].list);
}
ihk_atomic_set(&xpmem_my_part->n_opened, 0);
XPMEM_DEBUG("return: ret=%d", 0);
return 0;
}
static void xpmem_exit(void)
{
XPMEM_DEBUG("call: ");
if (xpmem_my_part) {
XPMEM_DEBUG("kfree(): 0x%p", xpmem_my_part);
kfree(xpmem_my_part);
xpmem_my_part = NULL;
}
XPMEM_DEBUG("return: ");
}
static int __xpmem_open(void)
{
struct xpmem_thread_group *tg;
int index;
struct mcs_rwlock_node_irqsave lock;
XPMEM_DEBUG("call: ");
tg = xpmem_tg_ref_by_tgid(cpu_local_var(current)->proc->pid);
if (!IS_ERR(tg)) {
xpmem_tg_deref(tg);
XPMEM_DEBUG("return: ret=%d, tg=0x%p", 0, tg);
return 0;
}
tg = kmalloc(sizeof(struct xpmem_thread_group) +
sizeof(struct xpmem_hashlist) * XPMEM_AP_HASHTABLE_SIZE,
IHK_MC_AP_NOWAIT);
if (tg == NULL) {
return -ENOMEM;
}
XPMEM_DEBUG("kmalloc(): tg=0x%p", tg);
memset(tg, 0, sizeof(struct xpmem_thread_group) +
sizeof(struct xpmem_hashlist) * XPMEM_AP_HASHTABLE_SIZE);
ihk_mc_spinlock_init(&tg->lock);
tg->tgid = cpu_local_var(current)->proc->pid;
tg->uid = cpu_local_var(current)->proc->ruid;
tg->gid = cpu_local_var(current)->proc->rgid;
ihk_atomic_set(&tg->uniq_segid, 0);
ihk_atomic_set(&tg->uniq_apid, 0);
mcs_rwlock_init(&tg->seg_list_lock);
INIT_LIST_HEAD(&tg->seg_list);
ihk_atomic_set(&tg->n_pinned, 0);
INIT_LIST_HEAD(&tg->tg_hashlist);
tg->vm = cpu_local_var(current)->vm;
ihk_atomic_set(&tg->n_recall_PFNs, 0);
for (index = 0; index < XPMEM_AP_HASHTABLE_SIZE; index++) {
mcs_rwlock_init(&tg->ap_hashtable[index].lock);
INIT_LIST_HEAD(&tg->ap_hashtable[index].list);
}
xpmem_tg_not_destroyable(tg);
index = xpmem_tg_hashtable_index(tg->tgid);
mcs_rwlock_writer_lock(&xpmem_my_part->tg_hashtable[index].lock, &lock);
list_add_tail(&tg->tg_hashlist,
&xpmem_my_part->tg_hashtable[index].list);
mcs_rwlock_writer_unlock(&xpmem_my_part->tg_hashtable[index].lock,
&lock);
tg->group_leader = cpu_local_var(current);
XPMEM_DEBUG("return: ret=%d", 0);
return 0;
}
static void xpmem_destroy_tg(
struct xpmem_thread_group *tg)
{
XPMEM_DEBUG("call: tg=0x%p", tg);
XPMEM_DEBUG("tg->vm=0x%p", tg->vm);
xpmem_tg_destroyable(tg);
xpmem_tg_deref(tg);
XPMEM_DEBUG("return: ");
}
static int xpmem_make(
unsigned long vaddr,
size_t size,
int permit_type,
void *permit_value,
xpmem_segid_t *segid_p)
{
xpmem_segid_t segid;
struct xpmem_thread_group *seg_tg;
struct xpmem_segment *seg;
struct mcs_rwlock_node_irqsave lock;
XPMEM_DEBUG("call: vaddr=0x%lx, size=%lu, permit_type=%d, "
"permit_value=0%04lo",
vaddr, size, permit_type,
(unsigned long)(uintptr_t)permit_value);
if (permit_type != XPMEM_PERMIT_MODE ||
((unsigned long)(uintptr_t)permit_value & ~00777) ||
size == 0) {
XPMEM_DEBUG("return: ret=%d", -EINVAL);
return -EINVAL;
}
seg_tg = xpmem_tg_ref_by_tgid(cpu_local_var(current)->proc->pid);
if (IS_ERR(seg_tg)) {
DBUG_ON(PTR_ERR(seg_tg) != -ENOENT);
return -XPMEM_ERRNO_NOPROC;
}
/*
* The start of the segment must be page aligned and it must be a
* multiple of pages in size.
*/
if (offset_in_page(vaddr) != 0 || offset_in_page(size) != 0) {
xpmem_tg_deref(seg_tg);
XPMEM_DEBUG("return: ret=%d", -EINVAL);
return -EINVAL;
}
segid = xpmem_make_segid(seg_tg);
if (segid < 0) {
xpmem_tg_deref(seg_tg);
return segid;
}
/* create a new struct xpmem_segment structure with a unique segid */
seg = kmalloc(sizeof(struct xpmem_segment), IHK_MC_AP_NOWAIT);
if (seg == NULL) {
xpmem_tg_deref(seg_tg);
return -ENOMEM;
}
XPMEM_DEBUG("kmalloc(): seg=0x%p", seg);
memset(seg, 0, sizeof(struct xpmem_segment));
ihk_mc_spinlock_init(&seg->lock);
mcs_rwlock_init(&seg->seg_lock);
seg->segid = segid;
seg->vaddr = vaddr;
seg->size = size;
seg->permit_type = permit_type;
seg->permit_value = permit_value;
seg->tg = seg_tg;
INIT_LIST_HEAD(&seg->ap_list);
INIT_LIST_HEAD(&seg->seg_list);
xpmem_seg_not_destroyable(seg);
/* add seg to its tg's list of segs */
mcs_rwlock_writer_lock(&seg_tg->seg_list_lock, &lock);
list_add_tail(&seg->seg_list, &seg_tg->seg_list);
mcs_rwlock_writer_unlock(&seg_tg->seg_list_lock, &lock);
xpmem_tg_deref(seg_tg);
*segid_p = segid;
XPMEM_DEBUG("return: ret=%d, segid=0x%lx", 0, *segid_p);
return 0;
}
static xpmem_segid_t xpmem_make_segid(
struct xpmem_thread_group *seg_tg)
{
struct xpmem_id segid;
xpmem_segid_t *segid_p = (xpmem_segid_t *)&segid;
int uniq;
XPMEM_DEBUG("call: seg_tg=0x%p, uniq_segid=%d",
seg_tg, ihk_atomic_read(&seg_tg->uniq_segid));
DBUG_ON(sizeof(struct xpmem_id) != sizeof(xpmem_segid_t));
uniq = ihk_atomic_inc_return(&seg_tg->uniq_segid);
if (uniq > XPMEM_MAX_UNIQ_ID) {
ihk_atomic_dec(&seg_tg->uniq_segid);
return -EBUSY;
}
*segid_p = 0;
segid.tgid = seg_tg->tgid;
segid.uniq = (unsigned long)uniq;
DBUG_ON(*segid_p <= 0);
XPMEM_DEBUG("return: segid=0x%lx, segid.tgid=%d, segid.uniq=%d",
segid, segid.tgid, segid.uniq);
return *segid_p;
}
static int xpmem_remove(
xpmem_segid_t segid)
{
struct xpmem_thread_group *seg_tg;
struct xpmem_segment *seg;
XPMEM_DEBUG("call: segid=0x%lx", segid);
if (segid <= 0) {
XPMEM_DEBUG("return: ret=%d", -EINVAL);
return -EINVAL;
}
seg_tg = xpmem_tg_ref_by_segid(segid);
if (IS_ERR(seg_tg))
return PTR_ERR(seg_tg);
if (cpu_local_var(current)->proc->pid != seg_tg->tgid) {
xpmem_tg_deref(seg_tg);
XPMEM_DEBUG("return: ret=%d", -EACCES);
return -EACCES;
}
seg = xpmem_seg_ref_by_segid(seg_tg, segid);
if (IS_ERR(seg)) {
xpmem_tg_deref(seg_tg);
return PTR_ERR(seg);
}
DBUG_ON(seg->tg != seg_tg);
xpmem_remove_seg(seg_tg, seg);
xpmem_seg_deref(seg);
xpmem_tg_deref(seg_tg);
XPMEM_DEBUG("return: ret=%d", 0);
return 0;
}
static void xpmem_remove_seg(
struct xpmem_thread_group *seg_tg,
struct xpmem_segment *seg)
{
DBUG_ON(ihk_atomic_read(&seg->refcnt) <= 0);
struct mcs_rwlock_node_irqsave seg_lock;
struct mcs_rwlock_node_irqsave lock;
XPMEM_DEBUG("call: tgid=%d, segid=0x%lx", seg_tg->tgid, seg->segid);
ihk_mc_spinlock_lock(&seg->lock);
if (seg->flags & XPMEM_FLAG_DESTROYING) {
ihk_mc_spinlock_unlock_noirq(&seg->lock);
schedule();
return;
}
seg->flags |= XPMEM_FLAG_DESTROYING;
ihk_mc_spinlock_unlock_noirq(&seg->lock);
mcs_rwlock_writer_lock(&seg->seg_lock, &seg_lock);
/* unpin pages and clear PTEs for each attachment to this segment */
xpmem_clear_PTEs(seg);
/* indicate that the segment has been destroyed */
ihk_mc_spinlock_lock(&seg->lock);
seg->flags |= XPMEM_FLAG_DESTROYED;
ihk_mc_spinlock_unlock_noirq(&seg->lock);
/* Remove segment structure from its tg's list of segs */
mcs_rwlock_writer_lock(&seg_tg->seg_list_lock, &lock);
list_del_init(&seg->seg_list);
mcs_rwlock_writer_unlock(&seg_tg->seg_list_lock, &lock);
mcs_rwlock_writer_unlock(&seg->seg_lock, &seg_lock);
xpmem_seg_destroyable(seg);
XPMEM_DEBUG("return: ");
}
static void xpmem_clear_PTEs(
struct xpmem_segment *seg)
{
XPMEM_DEBUG("call: seg=0x%p", seg);
// xpmem_clear_PTEs_range(seg, seg->vaddr, seg->vaddr + seg->size, 0); // TODO
XPMEM_DEBUG("return: ");
}
static struct xpmem_thread_group * __xpmem_tg_ref_by_tgid_nolock_internal(
pid_t tgid,
int index,
int return_destroying)
{
struct xpmem_thread_group *tg;
XPMEM_DEBUG("call: tgid=%d, index=%d, return_destroying=%d",
tgid, index, return_destroying);
list_for_each_entry(tg, &xpmem_my_part->tg_hashtable[index].list,
tg_hashlist) {
if (tg->tgid == tgid) {
if ((tg->flags & XPMEM_FLAG_DESTROYING) &&
!return_destroying) {
continue;
}
xpmem_tg_ref(tg);
XPMEM_DEBUG("return: tg=0x%p", tg);
return tg;
}
}
XPMEM_DEBUG("return: tg=0x%p", ERR_PTR(-ENOENT));
return ERR_PTR(-ENOENT);
}
static struct xpmem_thread_group * xpmem_tg_ref_by_segid(
xpmem_segid_t segid)
{
struct xpmem_thread_group *tg;
XPMEM_DEBUG("call: segid=0x%lx", segid);
tg = xpmem_tg_ref_by_tgid(xpmem_segid_to_tgid(segid));
XPMEM_DEBUG("return: tg=0x%p", tg);
return tg;
}
static void xpmem_tg_deref(
struct xpmem_thread_group *tg)
{
XPMEM_DEBUG("call: tg=0x%p", tg);
DBUG_ON(ihk_atomic_read(&tg->refcnt) <= 0);
if (ihk_atomic_dec_return(&tg->refcnt) != 0) {
XPMEM_DEBUG("return: tg->refcnt=%d", tg->refcnt);
return;
}
XPMEM_DEBUG("kfree(): tg=0x%p", tg);
kfree(tg);
XPMEM_DEBUG("return: ");
}
static struct xpmem_segment * xpmem_seg_ref_by_segid(
struct xpmem_thread_group *seg_tg,
xpmem_segid_t segid)
{
struct xpmem_segment *seg;
struct mcs_rwlock_node_irqsave lock;
XPMEM_DEBUG("call: seg_tg=0x%p, segid=0x%lx", seg_tg, segid);
mcs_rwlock_reader_lock(&seg_tg->seg_list_lock, &lock);
list_for_each_entry(seg, &seg_tg->seg_list, seg_list) {
if (seg->segid == segid) {
if (seg->flags & XPMEM_FLAG_DESTROYING)
continue;
xpmem_seg_ref(seg);
mcs_rwlock_reader_unlock(&seg_tg->seg_list_lock, &lock);
return seg;
}
}
mcs_rwlock_reader_unlock(&seg_tg->seg_list_lock, &lock);
return ERR_PTR(-ENOENT);
}
static void xpmem_seg_deref(
struct xpmem_segment *seg)
{
XPMEM_DEBUG("call: seg=0x%p", seg);
DBUG_ON(ihk_atomic_read(&seg->refcnt) <= 0);
if (ihk_atomic_dec_return(&seg->refcnt) != 0) {
XPMEM_DEBUG("return: seg->refcnt=%d", seg->refcnt);
return;
}
DBUG_ON(!(seg->flags & XPMEM_FLAG_DESTROYING));
XPMEM_DEBUG("kfree(): seg=0x%p", seg);
kfree(seg);
XPMEM_DEBUG("return: ");
}

View File

@ -102,6 +102,7 @@ static int alloc_zeroobj(void)
memset(obj, 0, sizeof(*obj));
obj->memobj.ops = &zeroobj_ops;
obj->memobj.size = 0;
page_list_init(obj);
ihk_mc_spinlock_init(&obj->memobj.lock);

View File

@ -49,6 +49,7 @@ struct ihk_mc_cpu_info {
int ncpus;
int *hw_ids;
int *nodes;
int *linux_cpu_ids;
};
struct ihk_mc_cpu_info *ihk_mc_get_cpu_info(void);
@ -56,6 +57,9 @@ void ihk_mc_boot_cpu(int cpuid, unsigned long pc);
int ihk_mc_get_processor_id(void);
int ihk_mc_get_hardware_processor_id(void);
int ihk_mc_get_numa_id(void);
int ihk_mc_get_nr_cores();
int ihk_mc_get_core(int id, unsigned long *linux_core_id, unsigned long *apic_id,
int *numa_id);
void ihk_mc_delay_us(int us);
void ihk_mc_set_syscall_handler(long (*handler)(int, ihk_mc_user_context_t *));

View File

@ -34,18 +34,25 @@ enum ihk_mc_gma_type {
IHK_MC_RESERVED_AREA_END,
};
extern unsigned long bootstrap_mem_end;
enum ihk_mc_ma_type {
IHK_MC_MA_AVAILABLE,
IHK_MC_MA_RESERVED,
IHK_MC_MA_SPECIAL,
};
enum ihk_mc_ap_flag {
IHK_MC_AP_FLAG,
IHK_MC_AP_CRITICAL, /* panic on no memory space */
IHK_MC_AP_NOWAIT, /* error return on no memory space */
IHK_MC_AP_WAIT /* wait on no memory space */
};
typedef unsigned long ihk_mc_ap_flag;
/* Panic on no memory space */
#define IHK_MC_AP_CRITICAL 0x000001
/* Error return on no memory space */
#define IHK_MC_AP_NOWAIT 0x000002
/* Wait on no memory space */
#define IHK_MC_AP_WAIT 0x000004
#define IHK_MC_AP_USER 0x001000
#define IHK_MC_AP_BANDWIDTH 0x010000
#define IHK_MC_AP_LATENCY 0x020000
enum ihk_mc_pt_prepare_flag {
IHK_MC_PT_FIRST_LEVEL,
@ -79,10 +86,10 @@ void ihk_mc_reserve_arch_pages(struct ihk_page_allocator_desc *pa_allocator,
unsigned long, unsigned long, int));
struct ihk_mc_pa_ops {
void *(*alloc_page)(int, int, enum ihk_mc_ap_flag);
void *(*alloc_page)(int, int, ihk_mc_ap_flag, int node);
void (*free_page)(void *, int);
void *(*alloc)(int, enum ihk_mc_ap_flag);
void *(*alloc)(int, ihk_mc_ap_flag);
void (*free)(void *);
};
@ -103,17 +110,20 @@ void ihk_mc_map_micpa(unsigned long host_pa, unsigned long* mic_pa);
int ihk_mc_free_micpa(unsigned long mic_pa);
void ihk_mc_clean_micpa(void);
void *_ihk_mc_alloc_aligned_pages(int npages, int p2align,
enum ihk_mc_ap_flag flag, char *file, int line);
#define ihk_mc_alloc_aligned_pages(npages, p2align, flag) ({\
void *r = _ihk_mc_alloc_aligned_pages(npages, p2align, flag, __FILE__, __LINE__);\
void *_ihk_mc_alloc_aligned_pages_node(int npages, int p2align,
ihk_mc_ap_flag flag, int node, char *file, int line);
#define ihk_mc_alloc_aligned_pages_node(npages, p2align, flag, node) ({\
void *r = _ihk_mc_alloc_aligned_pages_node(npages, p2align, flag, node, __FILE__, __LINE__);\
r;\
})
#define ihk_mc_alloc_aligned_pages(npages, p2align, flag) ({\
void *r = _ihk_mc_alloc_aligned_pages_node(npages, p2align, flag, -1, __FILE__, __LINE__);\
r;\
})
void *_ihk_mc_alloc_pages(int npages, enum ihk_mc_ap_flag flag,
char *file, int line);
#define ihk_mc_alloc_pages(npages, flag) ({\
void *r = _ihk_mc_alloc_pages(npages, flag, __FILE__, __LINE__);\
void *r = _ihk_mc_alloc_aligned_pages_node(npages, PAGE_P2ALIGN, flag, -1, __FILE__, __LINE__);\
r;\
})
@ -160,7 +170,7 @@ int visit_pte_range(page_table_t pt, void *start, void *end, int pgshift,
int move_pte_range(page_table_t pt, struct process_vm *vm,
void *src, void *dest, size_t size);
struct page_table *ihk_mc_pt_create(enum ihk_mc_ap_flag ap_flag);
struct page_table *ihk_mc_pt_create(ihk_mc_ap_flag ap_flag);
/* XXX: proper use of struct page_table and page_table_t is unknown */
void ihk_mc_pt_destroy(struct page_table *pt);
void ihk_mc_load_page_table(struct page_table *pt);
@ -185,6 +195,9 @@ int ihk_mc_get_memory_chunk(int id,
void remote_flush_tlb_cpumask(struct process_vm *vm,
unsigned long addr, int cpu_id);
int ihk_set_kmsg(unsigned long addr, unsigned long size);
char *ihk_get_kargs();
extern void (*__tlb_flush_handler)(int vector);
struct tlb_flush_entry {

View File

@ -17,11 +17,17 @@
#include <list.h>
/* XXX: Physical memory management shouldn't be part of IHK */
struct node_distance {
int id;
int distance;
};
struct ihk_mc_numa_node {
int id;
int linux_numa_id;
int type;
struct list_head allocators;
struct node_distance *nodes_by_distance;
};
struct ihk_page_allocator_desc {
@ -30,7 +36,7 @@ struct ihk_page_allocator_desc {
unsigned int count;
unsigned int flag;
unsigned int shift;
ihk_spinlock_t lock;
mcs_lock_node_t lock;
struct list_head list;
unsigned long map[0];

153
lib/include/mc_xpmem.h Normal file
View File

@ -0,0 +1,153 @@
/**
* \file mc_xpmem.h
* License details are found in the file LICENSE.
* \brief
* Cross Partition Memory (XPMEM) structures and macros.
*/
/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (c) 2004-2007 Silicon Graphics, Inc. All Rights Reserved.
*/
/*
* HISTORY
*/
#ifndef _MC_XPMEM_H
#define _MC_XPMEM_H
#ifndef __KERNEL__
#include <sys/types.h>
#endif
/*
* _IOC definitions for McKernel
*/
#define _IOC_NRBITS 8
#define _IOC_TYPEBITS 8
#define _IOC_SIZEBITS 14
#define _IOC_DIRBITS 2
#define _IOC_NRSHIFT 0
#define _IOC_TYPESHIFT (_IOC_NRSHIFT+_IOC_NRBITS)
#define _IOC_SIZESHIFT (_IOC_TYPESHIFT+_IOC_TYPEBITS)
#define _IOC_DIRSHIFT (_IOC_SIZESHIFT+_IOC_SIZEBITS)
#define _IOC_NONE 0U
#define _IOC(dir,type,nr,size) \
(((dir) << _IOC_DIRSHIFT) | \
((type) << _IOC_TYPESHIFT) | \
((nr) << _IOC_NRSHIFT) | \
((size) << _IOC_SIZESHIFT))
#define _IO(type,nr) _IOC(_IOC_NONE,(type),(nr),0)
/*
* basic argument type definitions for McKernel
*/
typedef uint64_t u64;
typedef uint64_t __u64;
typedef int64_t __s64;
/*
* basic argument type definitions
*/
typedef __s64 xpmem_segid_t; /* segid returned from xpmem_make() */
typedef __s64 xpmem_apid_t; /* apid returned from xpmem_get() */
struct xpmem_addr {
xpmem_apid_t apid; /* apid that represents memory */
off_t offset; /* offset into apid's memory */
};
#define XPMEM_MAXADDR_SIZE (size_t)(-1L)
/*
* path to XPMEM device
*/
#define XPMEM_DEV_PATH "/dev/xpmem"
/*
* The following are the possible XPMEM related errors.
*/
#define XPMEM_ERRNO_NOPROC 2004 /* unknown thread due to fork() */
/*
* flags for segment permissions
*/
#define XPMEM_RDONLY 0x1
#define XPMEM_RDWR 0x2
/*
* Valid permit_type values for xpmem_make().
*/
#define XPMEM_PERMIT_MODE 0x1
/*
* ioctl() commands used to interface to the kernel module.
*/
#define XPMEM_IOC_MAGIC 'x'
#define XPMEM_CMD_VERSION _IO(XPMEM_IOC_MAGIC, 0)
#define XPMEM_CMD_MAKE _IO(XPMEM_IOC_MAGIC, 1)
#define XPMEM_CMD_REMOVE _IO(XPMEM_IOC_MAGIC, 2)
#define XPMEM_CMD_GET _IO(XPMEM_IOC_MAGIC, 3)
#define XPMEM_CMD_RELEASE _IO(XPMEM_IOC_MAGIC, 4)
#define XPMEM_CMD_ATTACH _IO(XPMEM_IOC_MAGIC, 5)
#define XPMEM_CMD_DETACH _IO(XPMEM_IOC_MAGIC, 6)
/*
* Structures used with the preceding ioctl() commands to pass data.
*/
struct xpmem_cmd_make {
__u64 vaddr;
size_t size;
int permit_type;
__u64 permit_value;
xpmem_segid_t segid; /* returned on success */
};
struct xpmem_cmd_remove {
xpmem_segid_t segid;
};
struct xpmem_cmd_get {
xpmem_segid_t segid;
int flags;
int permit_type;
__u64 permit_value;
xpmem_apid_t apid; /* returned on success */
};
struct xpmem_cmd_release {
xpmem_apid_t apid;
};
struct xpmem_cmd_attach {
xpmem_apid_t apid;
off_t offset;
size_t size;
__u64 vaddr;
int fd;
int flags;
};
struct xpmem_cmd_detach {
__u64 vaddr;
};
#ifndef __KERNEL__
extern int xpmem_version(void);
extern xpmem_segid_t xpmem_make(void *, size_t, int, void *);
extern int xpmem_remove(xpmem_segid_t);
extern xpmem_apid_t xpmem_get(xpmem_segid_t, int, int, void *);
extern int xpmem_release(xpmem_apid_t);
extern void *xpmem_attach(struct xpmem_addr, size_t, void *);
extern int xpmem_detach(void *);
#endif
#endif /* _MC_XPMEM_H */

View File

@ -35,8 +35,8 @@ void *phys_to_virt(unsigned long p);
int copy_from_user(void *dst, const void *src, size_t siz);
int strlen_user(const char *s);
int strcpy_from_user(char *dst, const char *src);
long getlong_user(const long *p);
int getint_user(const int *p);
long getlong_user(long *dest, const long *p);
int getint_user(int *dest, const int *p);
int read_process_vm(struct process_vm *vm, void *kdst, const void *usrc, size_t siz);
int copy_to_user(void *dst, const void *src, size_t siz);
int setlong_user(long *dst, long data);

View File

@ -19,7 +19,6 @@
#include <memory.h>
#include <bitops.h>
void *allocate_pages(int npages, enum ihk_mc_ap_flag flag);
void free_pages(void *, int npages);
#define MAP_INDEX(n) ((n) >> 6)
@ -73,7 +72,7 @@ void *__ihk_pagealloc_init(unsigned long start, unsigned long size,
//kprintf("page allocator @ %lx - %lx (%d)\n", start, start + size,
// page_shift);
ihk_mc_spinlock_init(&desc->lock);
mcs_lock_init(&desc->lock);
/* Reserve align padding area */
for (i = mapsize; i < mapaligned * 8; i++) {
@ -99,12 +98,12 @@ void ihk_pagealloc_destroy(void *__desc)
static unsigned long __ihk_pagealloc_large(struct ihk_page_allocator_desc *desc,
int npages, int p2align)
{
unsigned long flags;
unsigned int i, j, mi;
int nblocks;
int nfrags;
unsigned long mask;
int mialign;
unsigned long align_mask = ((PAGE_SIZE << p2align) - 1);
mcs_lock_node_t node;
nblocks = (npages / 64);
mask = -1;
@ -113,14 +112,13 @@ static unsigned long __ihk_pagealloc_large(struct ihk_page_allocator_desc *desc,
++nblocks;
mask = (1UL << nfrags) - 1;
}
mialign = (p2align <= 6)? 1: (1 << (p2align - 6));
flags = ihk_mc_spinlock_lock(&desc->lock);
mcs_lock_lock(&desc->lock, &node);
for (i = 0, mi = desc->last; i < desc->count; i++, mi++) {
if (mi >= desc->count) {
mi = 0;
}
if ((mi + nblocks >= desc->count) || (mi % mialign)) {
if ((mi + nblocks >= desc->count) || (ADDRESS(desc, mi, 0) & align_mask)) {
continue;
}
for (j = mi; j < mi + nblocks - 1; j++) {
@ -133,11 +131,11 @@ static unsigned long __ihk_pagealloc_large(struct ihk_page_allocator_desc *desc,
desc->map[j] = (unsigned long)-1;
}
desc->map[j] |= mask;
ihk_mc_spinlock_unlock(&desc->lock, flags);
mcs_lock_unlock(&desc->lock, &node);
return ADDRESS(desc, mi, 0);
}
}
ihk_mc_spinlock_unlock(&desc->lock, flags);
mcs_lock_unlock(&desc->lock, &node);
return 0;
}
@ -147,8 +145,9 @@ unsigned long ihk_pagealloc_alloc(void *__desc, int npages, int p2align)
struct ihk_page_allocator_desc *desc = __desc;
unsigned int i, mi;
int j;
unsigned long v, mask, flags;
unsigned long v, mask;
int jalign;
mcs_lock_node_t node;
if ((npages >= 32) || (p2align >= 5)) {
return __ihk_pagealloc_large(desc, npages, p2align);
@ -157,7 +156,7 @@ unsigned long ihk_pagealloc_alloc(void *__desc, int npages, int p2align)
mask = (1UL << npages) - 1;
jalign = (p2align <= 0)? 1: (1 << p2align);
flags = ihk_mc_spinlock_lock(&desc->lock);
mcs_lock_lock(&desc->lock, &node);
for (i = 0, mi = desc->last; i < desc->count; i++, mi++) {
if (mi >= desc->count) {
mi = 0;
@ -174,12 +173,12 @@ unsigned long ihk_pagealloc_alloc(void *__desc, int npages, int p2align)
if (!(v & (mask << j))) { /* free */
desc->map[mi] |= (mask << j);
ihk_mc_spinlock_unlock(&desc->lock, flags);
mcs_lock_unlock(&desc->lock, &node);
return ADDRESS(desc, mi, j);
}
}
}
ihk_mc_spinlock_unlock(&desc->lock, flags);
mcs_lock_unlock(&desc->lock, &node);
/* We use null pointer for failure */
return 0;
@ -189,7 +188,7 @@ void ihk_pagealloc_reserve(void *__desc, unsigned long start, unsigned long end)
{
int i, n;
struct ihk_page_allocator_desc *desc = __desc;
unsigned long flags;
mcs_lock_node_t node;
n = (end + (1 << desc->shift) - 1 - desc->start) >> desc->shift;
i = ((start - desc->start) >> desc->shift);
@ -197,7 +196,7 @@ void ihk_pagealloc_reserve(void *__desc, unsigned long start, unsigned long end)
return;
}
flags = ihk_mc_spinlock_lock(&desc->lock);
mcs_lock_lock(&desc->lock, &node);
for (; i < n; i++) {
if (!(i & 63) && i + 63 < n) {
desc->map[MAP_INDEX(i)] = (unsigned long)-1L;
@ -206,7 +205,7 @@ void ihk_pagealloc_reserve(void *__desc, unsigned long start, unsigned long end)
desc->map[MAP_INDEX(i)] |= (1UL << MAP_BIT(i));
}
}
ihk_mc_spinlock_unlock(&desc->lock, flags);
mcs_lock_unlock(&desc->lock, &node);
}
void ihk_pagealloc_free(void *__desc, unsigned long address, int npages)
@ -214,24 +213,24 @@ void ihk_pagealloc_free(void *__desc, unsigned long address, int npages)
struct ihk_page_allocator_desc *desc = __desc;
int i;
unsigned mi;
unsigned long flags;
mcs_lock_node_t node;
/* XXX: Parameter check */
flags = ihk_mc_spinlock_lock(&desc->lock);
mcs_lock_lock(&desc->lock, &node);
mi = (address - desc->start) >> desc->shift;
for (i = 0; i < npages; i++, mi++) {
desc->map[MAP_INDEX(mi)] &= ~(1UL << MAP_BIT(mi));
}
ihk_mc_spinlock_unlock(&desc->lock, flags);
mcs_lock_unlock(&desc->lock, &node);
}
unsigned long ihk_pagealloc_count(void *__desc)
{
struct ihk_page_allocator_desc *desc = __desc;
unsigned long i, j, n = 0;
unsigned long flags;
mcs_lock_node_t node;
flags = ihk_mc_spinlock_lock(&desc->lock);
mcs_lock_lock(&desc->lock, &node);
/* XXX: Very silly counting */
for (i = 0; i < desc->count; i++) {
for (j = 0; j < 64; j++) {
@ -240,7 +239,7 @@ unsigned long ihk_pagealloc_count(void *__desc)
}
}
}
ihk_mc_spinlock_unlock(&desc->lock, flags);
mcs_lock_unlock(&desc->lock, &node);
return n;
}
@ -250,10 +249,11 @@ int ihk_pagealloc_query_free(void *__desc)
struct ihk_page_allocator_desc *desc = __desc;
unsigned int mi;
int j;
unsigned long v, flags;
unsigned long v;
int npages = 0;
mcs_lock_node_t node;
flags = ihk_mc_spinlock_lock(&desc->lock);
mcs_lock_lock(&desc->lock, &node);
for (mi = 0; mi < desc->count; mi++) {
v = desc->map[mi];
@ -266,7 +266,7 @@ int ihk_pagealloc_query_free(void *__desc)
}
}
}
ihk_mc_spinlock_unlock(&desc->lock, flags);
mcs_lock_unlock(&desc->lock, &node);
return npages;
}
@ -276,11 +276,12 @@ void __ihk_pagealloc_zero_free_pages(void *__desc)
struct ihk_page_allocator_desc *desc = __desc;
unsigned int mi;
int j;
unsigned long v, flags;
unsigned long v;
mcs_lock_node_t node;
kprintf("zeroing free memory... ");
flags = ihk_mc_spinlock_lock(&desc->lock);
mcs_lock_lock(&desc->lock, &node);
for (mi = 0; mi < desc->count; mi++) {
v = desc->map[mi];
@ -294,7 +295,7 @@ kprintf("zeroing free memory... ");
}
}
}
ihk_mc_spinlock_unlock(&desc->lock, flags);
mcs_lock_unlock(&desc->lock, &node);
kprintf("\nzeroing done\n");
}

View File

@ -275,13 +275,21 @@ int flatten_strings_from_user(int nr_strings, char *first, char **strings, char
long *_flat;
char *p;
long r;
int n;
int n, ret;
/* How many strings do we have? */
if (nr_strings == -1) {
for (nr_strings = 0; (r = getlong_user((void *)(strings + nr_strings))) > 0; ++nr_strings);
if(r < 0)
return r;
nr_strings = 0;
for (;;) {
ret = getlong_user(&r, (void *)(strings + nr_strings));
if (ret < 0)
return ret;
if (r == 0)
break;
++nr_strings;
}
}
/* Count full length */
@ -295,13 +303,19 @@ int flatten_strings_from_user(int nr_strings, char *first, char **strings, char
}
for (string_i = 0; string_i < nr_strings; ++string_i) {
char *userp = (char *)getlong_user((void *)(strings + string_i));
int len = strlen_user(userp);
char *userp;
int len;
ret = getlong_user((long *)&userp, (void *)(strings + string_i));
if (ret < 0)
return ret;
len = strlen_user(userp);
if(len < 0)
return len;
// Pointer + actual value
full_len += sizeof(char *) + len + 1;
full_len += sizeof(char *) + len + 1;
}
full_len = (full_len + sizeof(long) - 1) & ~(sizeof(long) - 1);
@ -326,8 +340,13 @@ int flatten_strings_from_user(int nr_strings, char *first, char **strings, char
}
for (string_i = 0; string_i < nr_strings; ++string_i) {
char *userp = (char *)getlong_user((void *)(strings + string_i));
char *userp;
_flat[n++] = p - (char *)_flat;
ret = getlong_user((long *)&userp, (void *)(strings + string_i));
if (ret < 0)
return ret;
strcpy_from_user(p, userp);
p = strchr(p, '\0') + 1;
}