Merge branch 'backend' into deploy-20250820-3
This commit is contained in:
247
script/runit.sh
247
script/runit.sh
@ -29,10 +29,12 @@ EXEC_TIMEOUT=30
|
||||
MAX_OUTPUT_LINES=20
|
||||
MAX_OUTPUT_CHARS=1000
|
||||
TEST_SETS=()
|
||||
PERF_RUN_COUNT=1 # 新增: 性能测试运行次数
|
||||
TOTAL_CASES=0
|
||||
PASSED_CASES=0
|
||||
FAILED_CASES_LIST=""
|
||||
INTERRUPTED=false
|
||||
PERFORMANCE_MODE=false # 新增: 标记是否进行性能测试
|
||||
|
||||
# =================================================================
|
||||
# --- 函数定义 ---
|
||||
@ -49,6 +51,8 @@ show_help() {
|
||||
echo " -c, --clean 清理 'tmp' 目录下的所有生成文件。"
|
||||
echo " -O1 启用 sysyc 的 -O1 优化。"
|
||||
echo " -set [f|h|p|all]... 指定要运行的测试集 (functional, h_functional, performance)。可多选,默认为 all。"
|
||||
echo " 当包含 'p' 时,会自动记录性能数据到 ${TMP_DIR}/performance_time.csv。"
|
||||
echo " -pt N 设置 performance 测试集的每个用例运行 N 次取平均值 (默认: 1)。"
|
||||
echo " -sct N 设置 sysyc 编译超时为 N 秒 (默认: 30)。"
|
||||
echo " -lct N 设置 llc-19 编译超时为 N 秒 (默认: 10)。"
|
||||
echo " -gct N 设置 gcc 交叉编译超时为 N 秒 (默认: 10)。"
|
||||
@ -104,7 +108,6 @@ print_summary() {
|
||||
|
||||
local failed_count
|
||||
if [ -n "$FAILED_CASES_LIST" ]; then
|
||||
# `wc -l` 计算由换行符分隔的列表项数
|
||||
failed_count=$(echo -e -n "${FAILED_CASES_LIST}" | wc -l)
|
||||
else
|
||||
failed_count=0
|
||||
@ -116,10 +119,27 @@ print_summary() {
|
||||
if [ -n "$FAILED_CASES_LIST" ]; then
|
||||
echo ""
|
||||
echo -e "\e[31m未通过的测例:\e[0m"
|
||||
# 使用 printf 保证原样输出
|
||||
printf "%b" "${FAILED_CASES_LIST}"
|
||||
fi
|
||||
|
||||
# --- 本次修改点: 提示性能测试结果文件 ---
|
||||
if ${PERFORMANCE_MODE}; then
|
||||
# --- 本次修改点: 计算并添加总计行 ---
|
||||
if [ -f "${PERFORMANCE_CSV_FILE}" ] && [ $(wc -l < "${PERFORMANCE_CSV_FILE}") -gt 1 ]; then
|
||||
local total_seconds_sum
|
||||
total_seconds_sum=$(awk -F, 'NR > 1 {sum += $3} END {printf "%.5f", sum}' "${PERFORMANCE_CSV_FILE}")
|
||||
|
||||
local total_s_int=${total_seconds_sum%.*}
|
||||
[[ -z "$total_s_int" ]] && total_s_int=0 # 处理小于1秒的情况
|
||||
local total_us_int=$(echo "(${total_seconds_sum} - ${total_s_int}) * 1000000" | bc | cut -d. -f1)
|
||||
local total_time_str="${total_s_int}s${total_us_int}us"
|
||||
|
||||
echo "all,${total_time_str},${total_seconds_sum}" >> "${PERFORMANCE_CSV_FILE}"
|
||||
fi
|
||||
echo ""
|
||||
echo -e "\e[32m性能测试数据已保存到: ${PERFORMANCE_CSV_FILE}\e[0m"
|
||||
fi
|
||||
|
||||
echo "========================================"
|
||||
|
||||
if [ "$failed_count" -gt 0 ]; then
|
||||
@ -139,12 +159,9 @@ handle_sigint() {
|
||||
# --- 主逻辑开始 ---
|
||||
# =================================================================
|
||||
|
||||
# --- 新增:设置 trap 来捕获 SIGINT ---
|
||||
trap handle_sigint SIGINT
|
||||
|
||||
mkdir -p "${TMP_DIR}"
|
||||
|
||||
# 解析命令行参数
|
||||
while [[ "$#" -gt 0 ]]; do
|
||||
case "$1" in
|
||||
-e|--executable) EXECUTE_MODE=true; shift ;;
|
||||
@ -155,6 +172,7 @@ while [[ "$#" -gt 0 ]]; do
|
||||
shift
|
||||
while [[ "$#" -gt 0 && ! "$1" =~ ^- ]]; do TEST_SETS+=("$1"); shift; done
|
||||
;;
|
||||
-pt) if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then PERF_RUN_COUNT="$2"; shift 2; else echo "错误: -pt 需要一个正整数参数。" >&2; exit 1; fi ;;
|
||||
-sct) if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then SYSYC_TIMEOUT="$2"; shift 2; else echo "错误: -sct 需要一个正整数参数。" >&2; exit 1; fi ;;
|
||||
-lct) if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then LLC_TIMEOUT="$2"; shift 2; else echo "错误: -lct 需要一个正整数参数。" >&2; exit 1; fi ;;
|
||||
-gct) if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then GCC_TIMEOUT="$2"; shift 2; else echo "错误: -gct 需要一个正整数参数。" >&2; exit 1; fi ;;
|
||||
@ -179,10 +197,14 @@ SET_MAP[p]="performance"
|
||||
SEARCH_PATHS=()
|
||||
if [ ${#TEST_SETS[@]} -eq 0 ] || [[ " ${TEST_SETS[@]} " =~ " all " ]]; then
|
||||
SEARCH_PATHS+=("${TESTDATA_DIR}")
|
||||
if [ -d "${TESTDATA_DIR}/performance" ]; then PERFORMANCE_MODE=true; fi
|
||||
else
|
||||
for set in "${TEST_SETS[@]}"; do
|
||||
if [[ -v SET_MAP[$set] ]]; then
|
||||
SEARCH_PATHS+=("${TESTDATA_DIR}/${SET_MAP[$set]}")
|
||||
if [[ "$set" == "p" ]]; then
|
||||
PERFORMANCE_MODE=true
|
||||
fi
|
||||
else
|
||||
echo -e "\e[33m警告: 未知的测试集 '$set',已忽略。\e[0m"
|
||||
fi
|
||||
@ -212,6 +234,9 @@ else
|
||||
fi
|
||||
echo "运行模式: ${RUN_MODE_INFO}"
|
||||
echo "${TIMEOUT_INFO}"
|
||||
if ${PERFORMANCE_MODE} && ([ ${EXECUTE_MODE} = true ] || [ ${IR_EXECUTE_MODE} = true ]) && [ ${PERF_RUN_COUNT} -gt 1 ]; then
|
||||
echo "性能测试运行次数: ${PERF_RUN_COUNT}"
|
||||
fi
|
||||
if ${EXECUTE_MODE} || ${IR_EXECUTE_MODE}; then
|
||||
echo "失败输出最大行数: ${MAX_OUTPUT_LINES}"
|
||||
echo "失败输出最大字符数: ${MAX_OUTPUT_CHARS}"
|
||||
@ -225,6 +250,11 @@ if [ -z "$sy_files" ]; then
|
||||
fi
|
||||
TOTAL_CASES=$(echo "$sy_files" | wc -w)
|
||||
|
||||
PERFORMANCE_CSV_FILE="${TMP_DIR}/performance_time.csv"
|
||||
if ${PERFORMANCE_MODE}; then
|
||||
echo "Case,Time_String,Time_Seconds" > "${PERFORMANCE_CSV_FILE}"
|
||||
fi
|
||||
|
||||
while IFS= read -r sy_file; do
|
||||
is_passed=0 # 0 表示失败, 1 表示通过
|
||||
|
||||
@ -234,11 +264,13 @@ while IFS= read -r sy_file; do
|
||||
assembly_file_S="${TMP_DIR}/${output_base_name}_sysyc_S.s"
|
||||
executable_file_S="${TMP_DIR}/${output_base_name}_sysyc_S"
|
||||
output_actual_file_S="${TMP_DIR}/${output_base_name}_sysyc_S.actual_out"
|
||||
stderr_file_S="${TMP_DIR}/${output_base_name}_sysyc_S.stderr"
|
||||
|
||||
ir_file="${TMP_DIR}/${output_base_name}_sysyc_ir.ll"
|
||||
assembly_file_from_ir="${TMP_DIR}/${output_base_name}_from_ir.s"
|
||||
executable_file_from_ir="${TMP_DIR}/${output_base_name}_from_ir"
|
||||
output_actual_file_from_ir="${TMP_DIR}/${output_base_name}_from_ir.actual_out"
|
||||
stderr_file_from_ir="${TMP_DIR}/${output_base_name}_from_ir.stderr"
|
||||
|
||||
input_file="${sy_file%.*}.in"
|
||||
output_reference_file="${sy_file%.*}.out"
|
||||
@ -249,165 +281,170 @@ while IFS= read -r sy_file; do
|
||||
if ${IR_EXECUTE_MODE}; then
|
||||
step_failed=0
|
||||
test_logic_passed=0
|
||||
total_time_us=0
|
||||
|
||||
echo " [1/4] 使用 sysyc 编译为 IR (超时 ${SYSYC_TIMEOUT}s)..."
|
||||
timeout -s KILL ${SYSYC_TIMEOUT} "${SYSYC}" -s ir "${sy_file}" -o "${ir_file}" ${OPTIMIZE_FLAG}
|
||||
SYSYC_STATUS=$?
|
||||
if [ $SYSYC_STATUS -ne 0 ]; then
|
||||
[ $SYSYC_STATUS -eq 124 ] && echo -e "\e[31m错误: SysY (IR) 编译超时\e[0m" || echo -e "\e[31m错误: SysY (IR) 编译失败,退出码: ${SYSYC_STATUS}\e[0m"
|
||||
step_failed=1
|
||||
fi
|
||||
timeout -s KILL ${SYSYC_TIMEOUT} "${SYSYC}" -s ir "${sy_file}" -o "${ir_file}" ${OPTIMIZE_FLAG}; if [ $? -ne 0 ]; then echo -e "\e[31m错误: SysY (IR) 编译失败或超时\e[0m"; step_failed=1; fi
|
||||
|
||||
if [ "$step_failed" -eq 0 ]; then
|
||||
echo " [2/4] 使用 llc-19 编译为汇编 (超时 ${LLC_TIMEOUT}s)..."
|
||||
timeout -s KILL ${LLC_TIMEOUT} "${LLC_CMD}" -march=riscv64 -mcpu=generic-rv64 -mattr=+m,+a,+f,+d,+c -filetype=asm "${ir_file}" -o "${assembly_file_from_ir}"
|
||||
LLC_STATUS=$?
|
||||
if [ $LLC_STATUS -ne 0 ]; then
|
||||
[ $LLC_STATUS -eq 124 ] && echo -e "\e[31m错误: llc-19 编译超时\e[0m" || echo -e "\e[31m错误: llc-19 编译失败,退出码: ${LLC_STATUS}\e[0m"
|
||||
step_failed=1
|
||||
fi
|
||||
timeout -s KILL ${LLC_TIMEOUT} ${LLC_CMD} -march=riscv64 -mcpu=generic-rv64 -mattr=+m,+a,+f,+d,+c -filetype=asm "${ir_file}" -o "${assembly_file_from_ir}"; if [ $? -ne 0 ]; then echo -e "\e[31m错误: llc-19 编译失败或超时\e[0m"; step_failed=1; fi
|
||||
fi
|
||||
|
||||
if [ "$step_failed" -eq 0 ]; then
|
||||
echo " [3/4] 使用 gcc 编译 (超时 ${GCC_TIMEOUT}s)..."
|
||||
timeout -s KILL ${GCC_TIMEOUT} "${GCC_RISCV64}" "${assembly_file_from_ir}" -o "${executable_file_from_ir}" -L"${LIB_DIR}" -lsysy_riscv -static
|
||||
GCC_STATUS=$?
|
||||
if [ $GCC_STATUS -ne 0 ]; then
|
||||
[ $GCC_STATUS -eq 124 ] && echo -e "\e[31m错误: GCC 编译超时\e[0m" || echo -e "\e[31m错误: GCC 编译失败,退出码: ${GCC_STATUS}\e[0m"
|
||||
step_failed=1
|
||||
fi
|
||||
timeout -s KILL ${GCC_TIMEOUT} "${GCC_RISCV64}" "${assembly_file_from_ir}" -o "${executable_file_from_ir}" -L"${LIB_DIR}" -lsysy_riscv -static; if [ $? -ne 0 ]; then echo -e "\e[31m错误: GCC 编译失败或超时\e[0m"; step_failed=1; fi
|
||||
fi
|
||||
|
||||
if [ "$step_failed" -eq 0 ]; then
|
||||
echo " [4/4] 正在执行 (超时 ${EXEC_TIMEOUT}s)..."
|
||||
exec_cmd="${QEMU_RISCV64} \"${executable_file_from_ir}\""
|
||||
[ -f "${input_file}" ] && exec_cmd+=" < \"${input_file}\""
|
||||
exec_cmd+=" > \"${output_actual_file_from_ir}\""
|
||||
current_run_failed=0
|
||||
for (( i=1; i<=PERF_RUN_COUNT; i++ )); do
|
||||
if [ ${PERF_RUN_COUNT} -gt 1 ]; then echo -n " 第 $i/${PERF_RUN_COUNT} 次运行... "; fi
|
||||
exec_cmd="${QEMU_RISCV64} \"${executable_file_from_ir}\""
|
||||
[ -f "${input_file}" ] && exec_cmd+=" < \"${input_file}\""
|
||||
exec_cmd+=" > \"${output_actual_file_from_ir}\" 2> \"${stderr_file_from_ir}\""
|
||||
eval "timeout -s KILL ${EXEC_TIMEOUT} ${exec_cmd}"
|
||||
ACTUAL_RETURN_CODE=$?
|
||||
|
||||
eval "timeout -s KILL ${EXEC_TIMEOUT} ${exec_cmd}"
|
||||
ACTUAL_RETURN_CODE=$?
|
||||
if [ "$ACTUAL_RETURN_CODE" -eq 124 ]; then echo -e "\e[31m超时\e[0m"; current_run_failed=1; break; fi
|
||||
if ${PERFORMANCE_MODE}; then
|
||||
TIME_LINE=$(grep "TOTAL:" "${stderr_file_from_ir}")
|
||||
if [ -n "$TIME_LINE" ]; then
|
||||
H=$(echo "$TIME_LINE" | sed -E 's/TOTAL: ([0-9]+)H-.*/\1/')
|
||||
M=$(echo "$TIME_LINE" | sed -E 's/.*-([0-9]+)M-.*/\1/')
|
||||
S=$(echo "$TIME_LINE" | sed -E 's/.*-([0-9]+)S-.*/\1/')
|
||||
US=$(echo "$TIME_LINE" | sed -E 's/.*-([0-9]+)us/\1/')
|
||||
run_time_us=$(( H * 3600000000 + M * 60000000 + S * 1000000 + US ))
|
||||
total_time_us=$(( total_time_us + run_time_us ))
|
||||
if [ ${PERF_RUN_COUNT} -gt 1 ]; then echo "耗时: ${run_time_us}us"; fi
|
||||
else
|
||||
echo -e "\e[31m未找到时间信息\e[0m"; current_run_failed=1; break
|
||||
fi
|
||||
fi
|
||||
done
|
||||
|
||||
if [ "$ACTUAL_RETURN_CODE" -eq 124 ]; then
|
||||
echo -e "\e[31m 执行超时: 运行超过 ${EXEC_TIMEOUT} 秒\e[0m"
|
||||
else
|
||||
if [ "$current_run_failed" -eq 0 ]; then
|
||||
test_logic_passed=1
|
||||
if [ -f "${output_reference_file}" ]; then
|
||||
LAST_LINE_TRIMMED=$(tail -n 1 "${output_reference_file}" | tr -d '[:space:]')
|
||||
test_logic_passed=1
|
||||
if [[ "$LAST_LINE_TRIMMED" =~ ^[-+]?[0-9]+$ ]]; then
|
||||
EXPECTED_RETURN_CODE="$LAST_LINE_TRIMMED"
|
||||
EXPECTED_STDOUT_FILE="${TMP_DIR}/${output_base_name}_from_ir.expected_stdout"
|
||||
head -n -1 "${output_reference_file}" > "${EXPECTED_STDOUT_FILE}"
|
||||
|
||||
if [ "$ACTUAL_RETURN_CODE" -eq "$EXPECTED_RETURN_CODE" ]; then
|
||||
echo -e "\e[32m 返回码测试成功: (${ACTUAL_RETURN_CODE}) 与期望值 (${EXPECTED_RETURN_CODE}) 匹配\e[0m"
|
||||
else
|
||||
echo -e "\e[31m 返回码测试失败: 期望: ${EXPECTED_RETURN_CODE}, 实际: ${ACTUAL_RETURN_CODE}\e[0m"
|
||||
test_logic_passed=0
|
||||
fi
|
||||
|
||||
if diff -q <(tr -d '[:space:]' < "${output_actual_file_from_ir}") <(tr -d '[:space:]' < "${EXPECTED_STDOUT_FILE}") >/dev/null 2>&1; then
|
||||
[ "$test_logic_passed" -eq 1 ] && echo -e "\e[32m 标准输出测试成功\e[0m"
|
||||
else
|
||||
echo -e "\e[31m 标准输出测试失败\e[0m"
|
||||
display_file_content "${EXPECTED_STDOUT_FILE}" " \e[36m---------- 期望输出 ----------\e[0m" "${MAX_OUTPUT_LINES}" "${MAX_OUTPUT_CHARS}"
|
||||
display_file_content "${output_actual_file_from_ir}" " \e[36m---------- 实际输出 ----------\e[0m" "${MAX_OUTPUT_LINES}" "${MAX_OUTPUT_CHARS}"
|
||||
test_logic_passed=0
|
||||
if [ "$ACTUAL_RETURN_CODE" -ne "$EXPECTED_RETURN_CODE" ]; then echo -e "\e[31m 返回码测试失败: 期望 ${EXPECTED_RETURN_CODE}, 实际 ${ACTUAL_RETURN_CODE}\e[0m"; test_logic_passed=0; fi
|
||||
if ! diff -q <(tr -d '[:space:]' < "${output_actual_file_from_ir}") <(tr -d '[:space:]' < "${EXPECTED_STDOUT_FILE}") >/dev/null 2>&1; then
|
||||
echo -e "\e[31m 标准输出测试失败\e[0m"; test_logic_passed=0
|
||||
display_file_content "${EXPECTED_STDOUT_FILE}" " \e[36m--- 期望输出 ---\e[0m" "${MAX_OUTPUT_LINES}" "${MAX_OUTPUT_CHARS}"
|
||||
display_file_content "${output_actual_file_from_ir}" " \e[36m--- 实际输出 ---\e[0m" "${MAX_OUTPUT_LINES}" "${MAX_OUTPUT_CHARS}"
|
||||
fi
|
||||
else
|
||||
if [ $ACTUAL_RETURN_CODE -ne 0 ]; then echo -e "\e[33m警告: 程序以非零状态 ${ACTUAL_RETURN_CODE} 退出 (纯输出比较模式)。\e[0m"; fi
|
||||
if diff -q <(tr -d '[:space:]' < "${output_actual_file_from_ir}") <(tr -d '[:space:]' < "${output_reference_file}") >/dev/null 2>&1; then
|
||||
echo -e "\e[32m 成功: 输出与参考输出匹配\e[0m"
|
||||
else
|
||||
echo -e "\e[31m 失败: 输出不匹配\e[0m"
|
||||
display_file_content "${output_reference_file}" " \e[36m---------- 期望输出 ----------\e[0m" "${MAX_OUTPUT_LINES}" "${MAX_OUTPUT_CHARS}"
|
||||
display_file_content "${output_actual_file_from_ir}" " \e[36m---------- 实际输出 ----------\e[0m" "${MAX_OUTPUT_LINES}" "${MAX_OUTPUT_CHARS}"
|
||||
test_logic_passed=0
|
||||
if ! diff -q <(tr -d '[:space:]' < "${output_actual_file_from_ir}") <(tr -d '[:space:]' < "${output_reference_file}") >/dev/null 2>&1; then
|
||||
echo -e "\e[31m 失败: 输出不匹配\e[0m"; test_logic_passed=0
|
||||
display_file_content "${output_reference_file}" " \e[36m--- 期望输出 ---\e[0m" "${MAX_OUTPUT_LINES}" "${MAX_OUTPUT_CHARS}"
|
||||
display_file_content "${output_actual_file_from_ir}" " \e[36m--- 实际输出 ---\e[0m" "${MAX_OUTPUT_LINES}" "${MAX_OUTPUT_CHARS}"
|
||||
fi
|
||||
fi
|
||||
else
|
||||
echo " 无参考输出文件。程序返回码: ${ACTUAL_RETURN_CODE}"
|
||||
test_logic_passed=1
|
||||
fi
|
||||
if [ "$test_logic_passed" -eq 1 ]; then echo -e "\e[32m 测试逻辑通过\e[0m"; fi
|
||||
fi
|
||||
fi
|
||||
[ "$step_failed" -eq 0 ] && [ "$test_logic_passed" -eq 1 ] && is_passed=1
|
||||
if [ "$step_failed" -eq 0 ] && [ "$test_logic_passed" -eq 1 ]; then is_passed=1; fi
|
||||
|
||||
if ${PERFORMANCE_MODE}; then
|
||||
avg_time_us=0
|
||||
if [ "$is_passed" -eq 1 ]; then
|
||||
avg_time_us=$(( total_time_us / PERF_RUN_COUNT ))
|
||||
fi
|
||||
S_AVG=$(( avg_time_us / 1000000 ))
|
||||
US_AVG=$(( avg_time_us % 1000000 ))
|
||||
TIME_STRING_AVG="${S_AVG}s${US_AVG}us"
|
||||
TOTAL_SECONDS_AVG=$(echo "scale=5; ${avg_time_us} / 1000000" | bc)
|
||||
echo "$(basename ${sy_file}),${TIME_STRING_AVG},${TOTAL_SECONDS_AVG}" >> "${PERFORMANCE_CSV_FILE}"
|
||||
fi
|
||||
|
||||
# --- 模式 2: 直接执行模式 (-e) ---
|
||||
elif ${EXECUTE_MODE}; then
|
||||
step_failed=0
|
||||
test_logic_passed=0
|
||||
total_time_us=0
|
||||
|
||||
echo " [1/3] 使用 sysyc 编译为汇编 (超时 ${SYSYC_TIMEOUT}s)..."
|
||||
timeout -s KILL ${SYSYC_TIMEOUT} "${SYSYC}" -S "${sy_file}" -o "${assembly_file_S}" ${OPTIMIZE_FLAG}
|
||||
SYSYC_STATUS=$?
|
||||
if [ $SYSYC_STATUS -ne 0 ]; then
|
||||
[ $SYSYC_STATUS -eq 124 ] && echo -e "\e[31m错误: SysY (汇编) 编译超时\e[0m" || echo -e "\e[31m错误: SysY (汇编) 编译失败,退出码: ${SYSYC_STATUS}\e[0m"
|
||||
step_failed=1
|
||||
fi
|
||||
timeout -s KILL ${SYSYC_TIMEOUT} "${SYSYC}" -S "${sy_file}" -o "${assembly_file_S}" ${OPTIMIZE_FLAG}; if [ $? -ne 0 ]; then echo -e "\e[31m错误: SysY (汇编) 编译失败或超时\e[0m"; step_failed=1; fi
|
||||
|
||||
if [ "$step_failed" -eq 0 ]; then
|
||||
echo " [2/3] 使用 gcc 编译 (超时 ${GCC_TIMEOUT}s)..."
|
||||
timeout -s KILL ${GCC_TIMEOUT} "${GCC_RISCV64}" "${assembly_file_S}" -o "${executable_file_S}" -L"${LIB_DIR}" -lsysy_riscv -static
|
||||
GCC_STATUS=$?
|
||||
if [ $GCC_STATUS -ne 0 ]; then
|
||||
[ $GCC_STATUS -eq 124 ] && echo -e "\e[31m错误: GCC 编译超时\e[0m" || echo -e "\e[31m错误: GCC 编译失败,退出码: ${GCC_STATUS}\e[0m"
|
||||
step_failed=1
|
||||
fi
|
||||
timeout -s KILL ${GCC_TIMEOUT} "${GCC_RISCV64}" "${assembly_file_S}" -o "${executable_file_S}" -L"${LIB_DIR}" -lsysy_riscv -static; if [ $? -ne 0 ]; then echo -e "\e[31m错误: GCC 编译失败或超时\e[0m"; step_failed=1; fi
|
||||
fi
|
||||
|
||||
if [ "$step_failed" -eq 0 ]; then
|
||||
echo " [3/3] 正在执行 (超时 ${EXEC_TIMEOUT}s)..."
|
||||
exec_cmd="${QEMU_RISCV64} \"${executable_file_S}\""
|
||||
[ -f "${input_file}" ] && exec_cmd+=" < \"${input_file}\""
|
||||
exec_cmd+=" > \"${output_actual_file_S}\""
|
||||
current_run_failed=0
|
||||
for (( i=1; i<=PERF_RUN_COUNT; i++ )); do
|
||||
if [ ${PERF_RUN_COUNT} -gt 1 ]; then echo -n " 第 $i/${PERF_RUN_COUNT} 次运行... "; fi
|
||||
exec_cmd="${QEMU_RISCV64} \"${executable_file_S}\""
|
||||
[ -f "${input_file}" ] && exec_cmd+=" < \"${input_file}\""
|
||||
exec_cmd+=" > \"${output_actual_file_S}\" 2> \"${stderr_file_S}\""
|
||||
eval "timeout -s KILL ${EXEC_TIMEOUT} ${exec_cmd}"
|
||||
ACTUAL_RETURN_CODE=$?
|
||||
|
||||
eval "timeout -s KILL ${EXEC_TIMEOUT} ${exec_cmd}"
|
||||
ACTUAL_RETURN_CODE=$?
|
||||
if [ "$ACTUAL_RETURN_CODE" -eq 124 ]; then echo -e "\e[31m超时\e[0m"; current_run_failed=1; break; fi
|
||||
if ${PERFORMANCE_MODE}; then
|
||||
TIME_LINE=$(grep "TOTAL:" "${stderr_file_S}")
|
||||
if [ -n "$TIME_LINE" ]; then
|
||||
H=$(echo "$TIME_LINE" | sed -E 's/TOTAL: ([0-9]+)H-.*/\1/')
|
||||
M=$(echo "$TIME_LINE" | sed -E 's/.*-([0-9]+)M-.*/\1/')
|
||||
S=$(echo "$TIME_LINE" | sed -E 's/.*-([0-9]+)S-.*/\1/')
|
||||
US=$(echo "$TIME_LINE" | sed -E 's/.*-([0-9]+)us/\1/')
|
||||
run_time_us=$(( H * 3600000000 + M * 60000000 + S * 1000000 + US ))
|
||||
total_time_us=$(( total_time_us + run_time_us ))
|
||||
if [ ${PERF_RUN_COUNT} -gt 1 ]; then echo "耗时: ${run_time_us}us"; fi
|
||||
else
|
||||
echo -e "\e[31m未找到时间信息\e[0m"; current_run_failed=1; break
|
||||
fi
|
||||
fi
|
||||
done
|
||||
|
||||
if [ "$ACTUAL_RETURN_CODE" -eq 124 ]; then
|
||||
echo -e "\e[31m 执行超时: 运行超过 ${EXEC_TIMEOUT} 秒\e[0m"
|
||||
else
|
||||
if [ "$current_run_failed" -eq 0 ]; then
|
||||
test_logic_passed=1
|
||||
if [ -f "${output_reference_file}" ]; then
|
||||
LAST_LINE_TRIMMED=$(tail -n 1 "${output_reference_file}" | tr -d '[:space:]')
|
||||
test_logic_passed=1
|
||||
if [[ "$LAST_LINE_TRIMMED" =~ ^[-+]?[0-9]+$ ]]; then
|
||||
EXPECTED_RETURN_CODE="$LAST_LINE_TRIMMED"
|
||||
EXPECTED_STDOUT_FILE="${TMP_DIR}/${output_base_name}_sysyc_S.expected_stdout"
|
||||
head -n -1 "${output_reference_file}" > "${EXPECTED_STDOUT_FILE}"
|
||||
|
||||
if [ "$ACTUAL_RETURN_CODE" -eq "$EXPECTED_RETURN_CODE" ]; then
|
||||
echo -e "\e[32m 返回码测试成功: (${ACTUAL_RETURN_CODE}) 与期望值 (${EXPECTED_RETURN_CODE}) 匹配\e[0m"
|
||||
else
|
||||
echo -e "\e[31m 返回码测试失败: 期望: ${EXPECTED_RETURN_CODE}, 实际: ${ACTUAL_RETURN_CODE}\e[0m"
|
||||
test_logic_passed=0
|
||||
fi
|
||||
|
||||
if diff -q <(tr -d '[:space:]' < "${output_actual_file_S}") <(tr -d '[:space:]' < "${EXPECTED_STDOUT_FILE}") >/dev/null 2>&1; then
|
||||
[ "$test_logic_passed" -eq 1 ] && echo -e "\e[32m 标准输出测试成功\e[0m"
|
||||
else
|
||||
echo -e "\e[31m 标准输出测试失败\e[0m"
|
||||
display_file_content "${EXPECTED_STDOUT_FILE}" " \e[36m---------- 期望输出 ----------\e[0m" "${MAX_OUTPUT_LINES}" "${MAX_OUTPUT_CHARS}"
|
||||
display_file_content "${output_actual_file_S}" " \e[36m---------- 实际输出 ----------\e[0m" "${MAX_OUTPUT_LINES}" "${MAX_OUTPUT_CHARS}"
|
||||
test_logic_passed=0
|
||||
if [ "$ACTUAL_RETURN_CODE" -ne "$EXPECTED_RETURN_CODE" ]; then echo -e "\e[31m 返回码测试失败: 期望 ${EXPECTED_RETURN_CODE}, 实际 ${ACTUAL_RETURN_CODE}\e[0m"; test_logic_passed=0; fi
|
||||
if ! diff -q <(tr -d '[:space:]' < "${output_actual_file_S}") <(tr -d '[:space:]' < "${EXPECTED_STDOUT_FILE}") >/dev/null 2>&1; then
|
||||
echo -e "\e[31m 标准输出测试失败\e[0m"; test_logic_passed=0
|
||||
display_file_content "${EXPECTED_STDOUT_FILE}" " \e[36m--- 期望输出 ---\e[0m" "${MAX_OUTPUT_LINES}" "${MAX_OUTPUT_CHARS}"
|
||||
display_file_content "${output_actual_file_S}" " \e[36m--- 实际输出 ---\e[0m" "${MAX_OUTPUT_LINES}" "${MAX_OUTPUT_CHARS}"
|
||||
fi
|
||||
else
|
||||
if [ $ACTUAL_RETURN_CODE -ne 0 ]; then echo -e "\e[33m警告: 程序以非零状态 ${ACTUAL_RETURN_CODE} 退出 (纯输出比较模式)。\e[0m"; fi
|
||||
if diff -q <(tr -d '[:space:]' < "${output_actual_file_S}") <(tr -d '[:space:]' < "${output_reference_file}") >/dev/null 2>&1; then
|
||||
echo -e "\e[32m 成功: 输出与参考输出匹配\e[0m"
|
||||
else
|
||||
echo -e "\e[31m 失败: 输出不匹配\e[0m"
|
||||
display_file_content "${output_reference_file}" " \e[36m---------- 期望输出 ----------\e[0m" "${MAX_OUTPUT_LINES}" "${MAX_OUTPUT_CHARS}"
|
||||
display_file_content "${output_actual_file_S}" " \e[36m---------- 实际输出 ----------\e[0m" "${MAX_OUTPUT_LINES}" "${MAX_OUTPUT_CHARS}"
|
||||
test_logic_passed=0
|
||||
if ! diff -q <(tr -d '[:space:]' < "${output_actual_file_S}") <(tr -d '[:space:]' < "${output_reference_file}") >/dev/null 2>&1; then
|
||||
echo -e "\e[31m 失败: 输出不匹配\e[0m"; test_logic_passed=0
|
||||
display_file_content "${output_reference_file}" " \e[36m--- 期望输出 ---\e[0m" "${MAX_OUTPUT_LINES}" "${MAX_OUTPUT_CHARS}"
|
||||
display_file_content "${output_actual_file_S}" " \e[36m--- 实际输出 ---\e[0m" "${MAX_OUTPUT_LINES}" "${MAX_OUTPUT_CHARS}"
|
||||
fi
|
||||
fi
|
||||
else
|
||||
echo " 无参考输出文件。程序返回码: ${ACTUAL_RETURN_CODE}"
|
||||
test_logic_passed=1
|
||||
fi
|
||||
if [ "$test_logic_passed" -eq 1 ]; then echo -e "\e[32m 测试逻辑通过\e[0m"; fi
|
||||
fi
|
||||
fi
|
||||
[ "$step_failed" -eq 0 ] && [ "$test_logic_passed" -eq 1 ] && is_passed=1
|
||||
if [ "$step_failed" -eq 0 ] && [ "$test_logic_passed" -eq 1 ]; then is_passed=1; fi
|
||||
|
||||
if ${PERFORMANCE_MODE}; then
|
||||
avg_time_us=0
|
||||
if [ "$is_passed" -eq 1 ]; then
|
||||
avg_time_us=$(( total_time_us / PERF_RUN_COUNT ))
|
||||
fi
|
||||
S_AVG=$(( avg_time_us / 1000000 ))
|
||||
US_AVG=$(( avg_time_us % 1000000 ))
|
||||
TIME_STRING_AVG="${S_AVG}s${US_AVG}us"
|
||||
TOTAL_SECONDS_AVG=$(echo "scale=5; ${avg_time_us} / 1000000" | bc)
|
||||
echo "$(basename ${sy_file}),${TIME_STRING_AVG},${TOTAL_SECONDS_AVG}" >> "${PERFORMANCE_CSV_FILE}"
|
||||
fi
|
||||
|
||||
# --- 模式 3: 默认编译模式 ---
|
||||
else
|
||||
|
||||
@ -103,7 +103,29 @@ void RISCv64ISel::select() {
|
||||
}
|
||||
}
|
||||
|
||||
if (optLevel > 0) {
|
||||
// 仅当函数满足特定条件时,才需要保存参数寄存器,应用更精细的过滤规则
|
||||
// 1. 函数包含call指令 (非叶子函数): 参数寄存器(a0-a7)是调用者保存的,
|
||||
// call指令可能会覆盖这些寄存器,因此必须保存。
|
||||
// 2. 函数包含alloca指令 (需要栈分配)。
|
||||
// 3. 函数的指令数量超过一个阈值(如20),意味着它是一个复杂的叶子函数,
|
||||
// 为安全起见,保存其参数。
|
||||
// 简单的叶子函数 (如min) 则可以跳过这个步骤进行优化。
|
||||
auto shouldSaveArgs = [](Function* func) {
|
||||
if (!func) return false;
|
||||
int instruction_count = 0;
|
||||
for (const auto& bb : func->getBasicBlocks()) {
|
||||
for (const auto& inst : bb->getInstructions()) {
|
||||
if (dynamic_cast<CallInst*>(inst.get()) || dynamic_cast<AllocaInst*>(inst.get())) {
|
||||
return true; // 发现call或alloca,立即返回true
|
||||
}
|
||||
instruction_count++;
|
||||
}
|
||||
}
|
||||
// 如果没有call或alloca,则检查指令数量
|
||||
return instruction_count > 45;
|
||||
};
|
||||
|
||||
if (optLevel > 0 && shouldSaveArgs(F)) {
|
||||
if (F && !F->getBasicBlocks().empty()) {
|
||||
// 定位到第一个MachineBasicBlock,也就是函数入口
|
||||
BasicBlock* first_ir_block = F->getBasicBlocks_NoRange().front().get();
|
||||
@ -129,11 +151,11 @@ void RISCv64ISel::select() {
|
||||
mv->addOperand(std::make_unique<RegOperand>(original_vreg));
|
||||
CurMBB->addInstruction(std::move(mv));
|
||||
|
||||
MFunc->addProtectedArgumentVReg(saved_vreg);
|
||||
// 4.【关键】更新vreg映射表,将arg的vreg指向新的、安全的vreg
|
||||
// 这样,后续所有对该参数的 getVReg(arg) 调用都会自动获得 saved_vreg,
|
||||
// 使得函数体内的代码都使用这个被保存过的值。
|
||||
vreg_map[arg] = saved_vreg;
|
||||
|
||||
int_arg_idx++;
|
||||
}
|
||||
// --- 处理浮点参数 ---
|
||||
@ -147,9 +169,8 @@ void RISCv64ISel::select() {
|
||||
fmv->addOperand(std::make_unique<RegOperand>(original_vreg));
|
||||
CurMBB->addInstruction(std::move(fmv));
|
||||
|
||||
// 同样更新映射
|
||||
MFunc->addProtectedArgumentVReg(saved_vreg);
|
||||
vreg_map[arg] = saved_vreg;
|
||||
|
||||
fp_arg_idx++;
|
||||
}
|
||||
// 对于栈传递的参数,则无需处理
|
||||
@ -557,6 +578,14 @@ void RISCv64ISel::selectNode(DAGNode* node) {
|
||||
CurMBB->addInstruction(std::move(instr));
|
||||
break;
|
||||
}
|
||||
case BinaryInst::kMulh: {
|
||||
auto instr = std::make_unique<MachineInstr>(RVOpcodes::MULH);
|
||||
instr->addOperand(std::make_unique<RegOperand>(dest_vreg));
|
||||
instr->addOperand(std::make_unique<RegOperand>(lhs_vreg));
|
||||
instr->addOperand(std::make_unique<RegOperand>(rhs_vreg));
|
||||
CurMBB->addInstruction(std::move(instr));
|
||||
break;
|
||||
}
|
||||
case Instruction::kDiv: {
|
||||
auto instr = std::make_unique<MachineInstr>(RVOpcodes::DIVW);
|
||||
instr->addOperand(std::make_unique<RegOperand>(dest_vreg));
|
||||
@ -668,6 +697,22 @@ void RISCv64ISel::selectNode(DAGNode* node) {
|
||||
CurMBB->addInstruction(std::move(xori));
|
||||
break;
|
||||
}
|
||||
case BinaryInst::kAnd: {
|
||||
auto instr = std::make_unique<MachineInstr>(RVOpcodes::AND);
|
||||
instr->addOperand(std::make_unique<RegOperand>(dest_vreg));
|
||||
instr->addOperand(std::make_unique<RegOperand>(lhs_vreg));
|
||||
instr->addOperand(std::make_unique<RegOperand>(rhs_vreg));
|
||||
CurMBB->addInstruction(std::move(instr));
|
||||
break;
|
||||
}
|
||||
case BinaryInst::kOr: {
|
||||
auto instr = std::make_unique<MachineInstr>(RVOpcodes::OR);
|
||||
instr->addOperand(std::make_unique<RegOperand>(dest_vreg));
|
||||
instr->addOperand(std::make_unique<RegOperand>(lhs_vreg));
|
||||
instr->addOperand(std::make_unique<RegOperand>(rhs_vreg));
|
||||
CurMBB->addInstruction(std::move(instr));
|
||||
break;
|
||||
}
|
||||
default:
|
||||
throw std::runtime_error("Unsupported binary instruction in ISel");
|
||||
}
|
||||
@ -1313,6 +1358,7 @@ void RISCv64ISel::selectNode(DAGNode* node) {
|
||||
auto gep = dynamic_cast<GetElementPtrInst*>(node->value);
|
||||
auto result_vreg = getVReg(gep);
|
||||
|
||||
if (optLevel == 0) {
|
||||
// --- Step 1: 获取基地址 (此部分逻辑正确,保持不变) ---
|
||||
auto base_ptr_node = node->operands[0];
|
||||
auto current_addr_vreg = getNewVReg(gep->getType());
|
||||
@ -1419,6 +1465,106 @@ void RISCv64ISel::selectNode(DAGNode* node) {
|
||||
final_mv->addOperand(std::make_unique<RegOperand>(current_addr_vreg));
|
||||
CurMBB->addInstruction(std::move(final_mv));
|
||||
break;
|
||||
} else {
|
||||
// 对于-O1时的处理逻辑
|
||||
// --- Step 1: 获取基地址 ---
|
||||
auto base_ptr_node = node->operands[0];
|
||||
auto base_ptr_val = base_ptr_node->value;
|
||||
|
||||
// last_step_addr_vreg 保存上一步计算的结果。
|
||||
// 它首先被初始化为GEP的初始基地址。
|
||||
unsigned last_step_addr_vreg;
|
||||
|
||||
if (auto alloca_base = dynamic_cast<AllocaInst*>(base_ptr_val)) {
|
||||
last_step_addr_vreg = getNewVReg(gep->getType());
|
||||
auto frame_addr_instr = std::make_unique<MachineInstr>(RVOpcodes::FRAME_ADDR);
|
||||
frame_addr_instr->addOperand(std::make_unique<RegOperand>(last_step_addr_vreg));
|
||||
frame_addr_instr->addOperand(std::make_unique<RegOperand>(getVReg(alloca_base)));
|
||||
CurMBB->addInstruction(std::move(frame_addr_instr));
|
||||
} else if (auto global_base = dynamic_cast<GlobalValue*>(base_ptr_val)) {
|
||||
last_step_addr_vreg = getNewVReg(gep->getType());
|
||||
auto la_instr = std::make_unique<MachineInstr>(RVOpcodes::LA);
|
||||
la_instr->addOperand(std::make_unique<RegOperand>(last_step_addr_vreg));
|
||||
la_instr->addOperand(std::make_unique<LabelOperand>(global_base->getName()));
|
||||
CurMBB->addInstruction(std::move(la_instr));
|
||||
} else {
|
||||
// 对于函数参数或来自其他指令的指针,直接获取其vreg。
|
||||
// 这个vreg必须被保护,不能在计算中被修改。
|
||||
last_step_addr_vreg = getVReg(base_ptr_val);
|
||||
}
|
||||
|
||||
// --- Step 2: 遵循LLVM GEP语义迭代计算地址 ---
|
||||
Type* current_type = gep->getBasePointer()->getType()->as<PointerType>()->getBaseType();
|
||||
|
||||
for (size_t i = 0; i < gep->getNumIndices(); ++i) {
|
||||
Value* indexValue = gep->getIndex(i);
|
||||
unsigned stride = getTypeSizeInBytes(current_type);
|
||||
|
||||
if (stride != 0) {
|
||||
// --- 为当前索引和步长生成偏移计算指令 ---
|
||||
auto offset_vreg = getNewVReg(Type::getIntType());
|
||||
|
||||
unsigned index_vreg;
|
||||
if (auto const_index = dynamic_cast<ConstantValue*>(indexValue)) {
|
||||
index_vreg = getNewVReg(Type::getIntType());
|
||||
auto li = std::make_unique<MachineInstr>(RVOpcodes::LI);
|
||||
li->addOperand(std::make_unique<RegOperand>(index_vreg));
|
||||
li->addOperand(std::make_unique<ImmOperand>(const_index->getInt()));
|
||||
CurMBB->addInstruction(std::move(li));
|
||||
} else {
|
||||
index_vreg = getVReg(indexValue);
|
||||
}
|
||||
|
||||
if (stride == 1) {
|
||||
auto mv = std::make_unique<MachineInstr>(RVOpcodes::MV);
|
||||
mv->addOperand(std::make_unique<RegOperand>(offset_vreg));
|
||||
mv->addOperand(std::make_unique<RegOperand>(index_vreg));
|
||||
CurMBB->addInstruction(std::move(mv));
|
||||
} else {
|
||||
auto size_vreg = getNewVReg(Type::getIntType());
|
||||
auto li_size = std::make_unique<MachineInstr>(RVOpcodes::LI);
|
||||
li_size->addOperand(std::make_unique<RegOperand>(size_vreg));
|
||||
li_size->addOperand(std::make_unique<ImmOperand>(stride));
|
||||
CurMBB->addInstruction(std::move(li_size));
|
||||
|
||||
auto mul = std::make_unique<MachineInstr>(RVOpcodes::MULW);
|
||||
mul->addOperand(std::make_unique<RegOperand>(offset_vreg));
|
||||
mul->addOperand(std::make_unique<RegOperand>(index_vreg));
|
||||
mul->addOperand(std::make_unique<RegOperand>(size_vreg));
|
||||
CurMBB->addInstruction(std::move(mul));
|
||||
}
|
||||
|
||||
// --- 关键修复点 ---
|
||||
// 创建一个新的vreg来保存本次加法的结果。
|
||||
unsigned current_step_addr_vreg = getNewVReg(gep->getType());
|
||||
|
||||
// 执行 add current_step, last_step, offset
|
||||
// 这确保了 last_step_addr_vreg (输入) 永远不会被直接修改。
|
||||
auto add = std::make_unique<MachineInstr>(RVOpcodes::ADD);
|
||||
add->addOperand(std::make_unique<RegOperand>(current_step_addr_vreg));
|
||||
add->addOperand(std::make_unique<RegOperand>(last_step_addr_vreg));
|
||||
add->addOperand(std::make_unique<RegOperand>(offset_vreg));
|
||||
CurMBB->addInstruction(std::move(add));
|
||||
|
||||
// 本次的结果成为下一次计算的输入。
|
||||
last_step_addr_vreg = current_step_addr_vreg;
|
||||
}
|
||||
|
||||
// --- 为下一次迭代更新类型 ---
|
||||
if (auto array_type = current_type->as<ArrayType>()) {
|
||||
current_type = array_type->getElementType();
|
||||
} else if (auto ptr_type = current_type->as<PointerType>()) {
|
||||
current_type = ptr_type->getBaseType();
|
||||
}
|
||||
}
|
||||
|
||||
// --- Step 3: 将最终计算出的地址存入GEP的目标虚拟寄存器 ---
|
||||
auto final_mv = std::make_unique<MachineInstr>(RVOpcodes::MV);
|
||||
final_mv->addOperand(std::make_unique<RegOperand>(result_vreg));
|
||||
final_mv->addOperand(std::make_unique<RegOperand>(last_step_addr_vreg));
|
||||
CurMBB->addInstruction(std::move(final_mv));
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
default:
|
||||
|
||||
@ -98,6 +98,7 @@ bool RISCv64RegAlloc::doAllocation() {
|
||||
precolorByCallingConvention();
|
||||
analyzeLiveness();
|
||||
build();
|
||||
protectCrossCallVRegs();
|
||||
makeWorklist();
|
||||
|
||||
while (!simplifyWorklist.empty() || !worklistMoves.empty() || !freezeWorklist.empty() || !spillWorklist.empty()) {
|
||||
@ -185,6 +186,57 @@ void RISCv64RegAlloc::precolorByCallingConvention() {
|
||||
}
|
||||
}
|
||||
|
||||
void RISCv64RegAlloc::protectCrossCallVRegs() {
|
||||
// 从ISel获取被标记为需要保护的参数副本vreg集合
|
||||
const auto& vregs_to_protect_potentially = MFunc->getProtectedArgumentVRegs();
|
||||
if (vregs_to_protect_potentially.empty()) {
|
||||
return; // 如果没有需要保护的vreg,直接返回
|
||||
}
|
||||
|
||||
// VRegSet live_across_call_vregs;
|
||||
// // 遍历所有指令,找出哪些被标记的vreg其生命周期确实跨越了call指令
|
||||
// for (const auto& mbb_ptr : MFunc->getBlocks()) {
|
||||
// for (const auto& instr_ptr : mbb_ptr->getInstructions()) {
|
||||
// if (instr_ptr->getOpcode() == RVOpcodes::CALL) {
|
||||
// const VRegSet& live_out_after_call = live_out_map.at(instr_ptr.get());
|
||||
// for (unsigned vreg : vregs_to_protect_potentially) {
|
||||
// if (live_out_after_call.count(vreg)) {
|
||||
// live_across_call_vregs.insert(vreg);
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
|
||||
// if (live_across_call_vregs.empty()) {
|
||||
// return; // 如果被标记的vreg没有一个跨越call,也无需操作
|
||||
// }
|
||||
|
||||
// if (DEEPDEBUG) {
|
||||
// std::cerr << "--- [FIX] Applying protection for argument vregs that live across calls: ";
|
||||
// for(unsigned v : live_across_call_vregs) std::cerr << regIdToString(v) << " ";
|
||||
// std::cerr << "\n";
|
||||
// }
|
||||
|
||||
// 获取所有调用者保存寄存器
|
||||
const auto& caller_saved_int = getCallerSavedIntRegs();
|
||||
const auto& caller_saved_fp = getCallerSavedFpRegs();
|
||||
const unsigned offset = static_cast<unsigned>(PhysicalReg::PHYS_REG_START_ID);
|
||||
|
||||
// 为每个确认跨越call的vreg,添加与所有调用者保存寄存器的冲突
|
||||
for (unsigned vreg : vregs_to_protect_potentially) {
|
||||
if (isFPVReg(vreg)) { // 如果是浮点vreg
|
||||
for (auto preg : caller_saved_fp) {
|
||||
addEdge(vreg, offset + static_cast<unsigned>(preg));
|
||||
}
|
||||
} else { // 如果是整数vreg
|
||||
for (auto preg : caller_saved_int) {
|
||||
addEdge(vreg, offset + static_cast<unsigned>(preg));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 初始化/重置所有数据结构
|
||||
void RISCv64RegAlloc::initialize() {
|
||||
initial.clear();
|
||||
@ -504,12 +556,20 @@ void RISCv64RegAlloc::coalesce() {
|
||||
unsigned y = getAlias(*use.begin());
|
||||
unsigned u, v;
|
||||
|
||||
// 进一步修正:标准化u和v的逻辑,必须同时考虑物理寄存器和已预着色的虚拟寄存器。
|
||||
// 目标是确保如果两个操作数中有一个是预着色的,它一定会被赋给 u。
|
||||
if (precolored.count(y) || coloredNodes.count(y)) {
|
||||
u = y; v = x;
|
||||
// 总是将待合并的虚拟寄存器赋给 v,将合并目标赋给 u。
|
||||
// 优先级: 物理寄存器 (precolored) > 已着色的虚拟寄存器 (coloredNodes) > 普通虚拟寄存器。
|
||||
if (precolored.count(y)) {
|
||||
u = y;
|
||||
v = x;
|
||||
} else if (precolored.count(x)) {
|
||||
u = x;
|
||||
v = y;
|
||||
} else if (coloredNodes.count(y)) {
|
||||
u = y;
|
||||
v = x;
|
||||
} else {
|
||||
u = x; v = y;
|
||||
u = x;
|
||||
v = y;
|
||||
}
|
||||
|
||||
// 防御性检查,处理物理寄存器之间的传送指令
|
||||
@ -529,6 +589,74 @@ void RISCv64RegAlloc::coalesce() {
|
||||
return;
|
||||
}
|
||||
|
||||
bool is_conflicting = false;
|
||||
// 检查1:u 和 v 在冲突图中是否直接相连
|
||||
if ((adjList.count(v) && adjList.at(v).count(u)) || (adjList.count(u) && adjList.at(u).count(v))) {
|
||||
if (DEEPERDEBUG) std::cerr << " -> [Check] Nodes interfere directly.\n";
|
||||
is_conflicting = true;
|
||||
}
|
||||
// 检查2:如果节点不直接相连,则检查是否存在间接的颜色冲突
|
||||
else {
|
||||
// 获取 u 和 v 的颜色(如果它们有的话)
|
||||
unsigned u_color_id = 0, v_color_id = 0;
|
||||
if (precolored.count(u)) {
|
||||
u_color_id = u;
|
||||
} else if (coloredNodes.count(u) || color_map.count(u)) { // color_map.count(u) 是更可靠的检查
|
||||
u_color_id = static_cast<unsigned>(PhysicalReg::PHYS_REG_START_ID) + static_cast<unsigned>(color_map.at(u));
|
||||
}
|
||||
|
||||
if (precolored.count(v)) {
|
||||
v_color_id = v;
|
||||
} else if (coloredNodes.count(v) || color_map.count(v)) {
|
||||
v_color_id = static_cast<unsigned>(PhysicalReg::PHYS_REG_START_ID) + static_cast<unsigned>(color_map.at(v));
|
||||
}
|
||||
|
||||
// 如果 u 有颜色,检查 v 是否与该颜色代表的物理寄存器冲突
|
||||
if (u_color_id != 0 && adjList.count(v) && adjList.at(v).count(u_color_id)) {
|
||||
if (DEEPERDEBUG) std::cerr << " -> [Check] Node " << regIdToString(v) << " interferes with the color of " << regIdToString(u) << " (" << regIdToString(u_color_id) << ").\n";
|
||||
is_conflicting = true;
|
||||
}
|
||||
// 如果 v 有颜色,检查 u 是否与该颜色代表的物理寄存器冲突
|
||||
else if (v_color_id != 0 && adjList.count(u) && adjList.at(u).count(v_color_id)) {
|
||||
if (DEEPERDEBUG) std::cerr << " -> [Check] Node " << regIdToString(u) << " interferes with the color of " << regIdToString(v) << " (" << regIdToString(v_color_id) << ").\n";
|
||||
is_conflicting = true;
|
||||
}
|
||||
}
|
||||
|
||||
if (is_conflicting) {
|
||||
if (DEEPERDEBUG) std::cerr << " -> Constrained (nodes interfere directly or via pre-coloring).\n";
|
||||
constrainedMoves.insert(move);
|
||||
addWorklist(u);
|
||||
addWorklist(v);
|
||||
return;
|
||||
}
|
||||
|
||||
bool u_is_colored = precolored.count(u) || coloredNodes.count(u);
|
||||
bool v_is_colored = precolored.count(v) || coloredNodes.count(v);
|
||||
|
||||
if (u_is_colored && v_is_colored) {
|
||||
PhysicalReg u_color = precolored.count(u)
|
||||
? static_cast<PhysicalReg>(u - static_cast<unsigned>(PhysicalReg::PHYS_REG_START_ID))
|
||||
: color_map.at(u);
|
||||
PhysicalReg v_color = precolored.count(v)
|
||||
? static_cast<PhysicalReg>(v - static_cast<unsigned>(PhysicalReg::PHYS_REG_START_ID))
|
||||
: color_map.at(v);
|
||||
|
||||
if (u_color != v_color) {
|
||||
if (DEEPERDEBUG) std::cerr << " -> Constrained (move between two different precolored nodes: "
|
||||
<< regToString(u_color) << " and " << regToString(v_color) << ").\n";
|
||||
constrainedMoves.insert(move);
|
||||
return;
|
||||
} else {
|
||||
if (DEEPERDEBUG) std::cerr << " -> Trivial coalesce (move between same precolored nodes).\n";
|
||||
coalescedMoves.insert(move);
|
||||
combine(u, v);
|
||||
addWorklist(u);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// 类型检查
|
||||
if (isFPVReg(u) != isFPVReg(v)) {
|
||||
if (DEEPERDEBUG) std::cerr << " -> Constrained (type mismatch: " << regIdToString(u) << " is "
|
||||
<< (isFPVReg(u) ? "float" : "int") << ", " << regIdToString(v) << " is "
|
||||
@ -539,25 +667,11 @@ void RISCv64RegAlloc::coalesce() {
|
||||
return;
|
||||
}
|
||||
|
||||
// 注意:如果v已经是u的邻居, pre_interfere 会为true。
|
||||
// 但如果v不在adjList中(例如v是预着色节点),我们需要检查u是否在v的邻居中。
|
||||
// 为了简化,我们假设adjList包含了所有虚拟寄存器。对于(Phys, Virt)对,冲突信息存储在Virt节点的邻接表中。
|
||||
bool pre_interfere = (adjList.count(v) && adjList.at(v).count(u)) || (adjList.count(u) && adjList.at(u).count(v));
|
||||
|
||||
if (pre_interfere) {
|
||||
if (DEEPERDEBUG) std::cerr << " -> Constrained (nodes already interfere).\n";
|
||||
constrainedMoves.insert(move);
|
||||
addWorklist(u);
|
||||
addWorklist(v);
|
||||
return;
|
||||
}
|
||||
|
||||
// 考虑物理寄存器和已预着色的虚拟寄存器
|
||||
// 启发式判断逻辑
|
||||
bool u_is_effectively_precolored = precolored.count(u) || coloredNodes.count(u);
|
||||
bool can_coalesce = false;
|
||||
|
||||
if (u_is_effectively_precolored) {
|
||||
// --- 场景1:u是物理寄存器或已预着色虚拟寄存器,使用 George 启发式 ---
|
||||
if (DEEPERDEBUG) std::cerr << " -> Trying George Heuristic (u is effectively precolored)...\n";
|
||||
|
||||
VRegSet neighbors_of_v = adjacent(v);
|
||||
@ -1227,11 +1341,7 @@ bool RISCv64RegAlloc::georgeHeuristic(unsigned t, unsigned u) {
|
||||
|
||||
int K = isFPVReg(t) ? K_fp : K_int;
|
||||
|
||||
// 缺陷 #2 修正: 移除了致命的 || precolored.count(u) 条件。
|
||||
// 在此函数的上下文中,u 总是预着色的物理寄存器ID,导致旧的条件永远为true,使整个启发式失效。
|
||||
// 正确的逻辑是检查:邻居t的度数是否小于K,或者t是否已经与u冲突。
|
||||
// return degree.at(t) < K || adjList.at(t).count(u);
|
||||
return degree.at(t) < K || !adjList.at(t).count(u);
|
||||
return degree.at(t) < K || adjList.at(t).count(u);
|
||||
}
|
||||
|
||||
void RISCv64RegAlloc::combine(unsigned u, unsigned v) {
|
||||
|
||||
@ -6,6 +6,7 @@
|
||||
|
||||
extern int DEBUG;
|
||||
extern int DEEPDEBUG;
|
||||
extern int optLevel;
|
||||
|
||||
namespace sysy {
|
||||
|
||||
|
||||
@ -326,12 +326,19 @@ public:
|
||||
void addBlock(std::unique_ptr<MachineBasicBlock> block) {
|
||||
blocks.push_back(std::move(block));
|
||||
}
|
||||
void addProtectedArgumentVReg(unsigned vreg) {
|
||||
protected_argument_vregs.insert(vreg);
|
||||
}
|
||||
const std::set<unsigned>& getProtectedArgumentVRegs() const {
|
||||
return protected_argument_vregs;
|
||||
}
|
||||
private:
|
||||
Function* F;
|
||||
RISCv64ISel* isel; // 指向创建它的ISel,用于获取vreg映射等信息
|
||||
std::string name;
|
||||
std::vector<std::unique_ptr<MachineBasicBlock>> blocks;
|
||||
StackFrameInfo frame_info;
|
||||
std::set<unsigned> protected_argument_vregs;
|
||||
};
|
||||
inline bool isMemoryOp(RVOpcodes opcode) {
|
||||
switch (opcode) {
|
||||
|
||||
@ -45,12 +45,11 @@ private:
|
||||
void rewriteProgram();
|
||||
bool doAllocation();
|
||||
void applyColoring();
|
||||
|
||||
void dumpState(const std::string &stage);
|
||||
|
||||
void precolorByCallingConvention();
|
||||
void protectCrossCallVRegs();
|
||||
|
||||
// --- 辅助函数 ---
|
||||
void dumpState(const std::string &stage);
|
||||
void getInstrUseDef(const MachineInstr* instr, VRegSet& use, VRegSet& def);
|
||||
void getInstrUseDef_Liveness(const MachineInstr *instr, VRegSet &use, VRegSet &def);
|
||||
void addEdge(unsigned u, unsigned v);
|
||||
|
||||
@ -1007,6 +1007,7 @@ class PhiInst : public Instruction {
|
||||
void replaceIncomingBlock(BasicBlock *oldBlock, BasicBlock *newBlock, Value *newValue);
|
||||
void refreshMap() {
|
||||
blk2val.clear();
|
||||
vsize = getNumOperands() / 2;
|
||||
for (unsigned i = 0; i < vsize; ++i) {
|
||||
blk2val[getIncomingBlock(i)] = getIncomingValue(i);
|
||||
}
|
||||
|
||||
@ -109,6 +109,34 @@ public:
|
||||
}
|
||||
|
||||
|
||||
// PHI指令消除相关方法
|
||||
static bool eliminateRedundantPhisInFunction(Function* func){
|
||||
bool changed = false;
|
||||
std::vector<Instruction *> toDelete;
|
||||
for (auto &bb : func->getBasicBlocks()) {
|
||||
for (auto &inst : bb->getInstructions()) {
|
||||
if (auto phi = dynamic_cast<PhiInst *>(inst.get())) {
|
||||
auto incoming = phi->getIncomingValues();
|
||||
if(DEBUG){
|
||||
std::cout << "Checking Phi: " << phi->getName() << " with " << incoming.size() << " incoming values." << std::endl;
|
||||
}
|
||||
if (incoming.size() == 1) {
|
||||
Value *singleVal = incoming[0].second;
|
||||
inst->replaceAllUsesWith(singleVal);
|
||||
toDelete.push_back(inst.get());
|
||||
}
|
||||
}
|
||||
else
|
||||
break; // 只处理Phi指令
|
||||
}
|
||||
}
|
||||
for (auto *phi : toDelete) {
|
||||
usedelete(phi);
|
||||
changed = true; // 标记为已更改
|
||||
}
|
||||
return changed; // 返回是否有删除发生
|
||||
}
|
||||
|
||||
//该实现参考了libdivide的算法
|
||||
static std::pair<int, int> computeMulhMagicNumbers(int divisor) {
|
||||
|
||||
|
||||
@ -757,7 +757,7 @@ void BinaryInst::print(std::ostream &os) const {
|
||||
auto lhs_hash = std::hash<const void*>{}(static_cast<const void*>(getLhs()));
|
||||
auto rhs_hash = std::hash<const void*>{}(static_cast<const void*>(getRhs()));
|
||||
size_t combined_hash = inst_hash ^ (lhs_hash << 1) ^ (rhs_hash << 2);
|
||||
std::string tmpName = "tmp_icmp_" + std::to_string(combined_hash % 1000000);
|
||||
std::string tmpName = "tmp_icmp_" + std::to_string(combined_hash % 1000000007);
|
||||
os << "%" << tmpName << " = " << getKindString() << " " << *getLhs()->getType() << " ";
|
||||
printOperand(os, getLhs());
|
||||
os << ", ";
|
||||
@ -772,7 +772,7 @@ void BinaryInst::print(std::ostream &os) const {
|
||||
auto lhs_hash = std::hash<const void*>{}(static_cast<const void*>(getLhs()));
|
||||
auto rhs_hash = std::hash<const void*>{}(static_cast<const void*>(getRhs()));
|
||||
size_t combined_hash = inst_hash ^ (lhs_hash << 1) ^ (rhs_hash << 2);
|
||||
std::string tmpName = "tmp_fcmp_" + std::to_string(combined_hash % 1000000);
|
||||
std::string tmpName = "tmp_fcmp_" + std::to_string(combined_hash % 1000000007);
|
||||
os << "%" << tmpName << " = " << getKindString() << " " << *getLhs()->getType() << " ";
|
||||
printOperand(os, getLhs());
|
||||
os << ", ";
|
||||
@ -834,7 +834,7 @@ void CondBrInst::print(std::ostream &os) const {
|
||||
if (condName.empty()) {
|
||||
// 使用条件值地址的哈希值作为唯一标识
|
||||
auto ptr_hash = std::hash<const void*>{}(static_cast<const void*>(condition));
|
||||
condName = "const_" + std::to_string(ptr_hash % 100000);
|
||||
condName = "const_" + std::to_string(ptr_hash % 1000000007);
|
||||
}
|
||||
|
||||
// 组合指令地址、条件地址和目标块地址的哈希来确保唯一性
|
||||
@ -843,7 +843,7 @@ void CondBrInst::print(std::ostream &os) const {
|
||||
auto then_hash = std::hash<const void*>{}(static_cast<const void*>(getThenBlock()));
|
||||
auto else_hash = std::hash<const void*>{}(static_cast<const void*>(getElseBlock()));
|
||||
size_t combined_hash = inst_hash ^ (cond_hash << 1) ^ (then_hash << 2) ^ (else_hash << 3);
|
||||
std::string uniqueSuffix = std::to_string(combined_hash % 1000000);
|
||||
std::string uniqueSuffix = std::to_string(combined_hash % 1000000007);
|
||||
|
||||
os << "%tmp_cond_" << condName << "_" << uniqueSuffix << " = icmp ne i32 ";
|
||||
printOperand(os, condition);
|
||||
|
||||
@ -74,6 +74,7 @@ void DCEContext::run(Function *func, AnalysisManager *AM, bool &changed) {
|
||||
}
|
||||
}
|
||||
}
|
||||
changed |= SysYIROptUtils::eliminateRedundantPhisInFunction(func); // 如果有活跃指令,则标记为已更改
|
||||
}
|
||||
|
||||
// 判断指令是否是"天然活跃"的实现
|
||||
|
||||
@ -39,7 +39,7 @@ bool GVN::runOnFunction(Function *func, AnalysisManager &AM) {
|
||||
}
|
||||
std::cout << "=== GVN completed for function: " << func->getName() << " ===" << std::endl;
|
||||
}
|
||||
|
||||
changed |= SysYIROptUtils::eliminateRedundantPhisInFunction(func);
|
||||
return changed;
|
||||
}
|
||||
|
||||
|
||||
@ -671,13 +671,13 @@ bool GlobalStrengthReductionContext::reduceDivision(BinaryInst *inst) {
|
||||
}
|
||||
|
||||
// x / c = x * magic_number (魔数乘法优化 - 使用libdivide算法)
|
||||
if (isConstantInt(rhs, constVal) && constVal > 1 && constVal != (uint32_t)(-1)) {
|
||||
// auto magicPair = computeMulhMagicNumbers(static_cast<int>(constVal));
|
||||
Value* magicResult = createMagicDivisionLibdivide(inst, static_cast<int>(constVal));
|
||||
replaceWithOptimized(inst, magicResult);
|
||||
divisionOptCount++;
|
||||
return true;
|
||||
}
|
||||
// if (isConstantInt(rhs, constVal) && constVal > 1 && constVal != (uint32_t)(-1)) {
|
||||
// // auto magicPair = computeMulhMagicNumbers(static_cast<int>(constVal));
|
||||
// Value* magicResult = createMagicDivisionLibdivide(inst, static_cast<int>(constVal));
|
||||
// replaceWithOptimized(inst, magicResult);
|
||||
// divisionOptCount++;
|
||||
// return true;
|
||||
// }
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -133,6 +133,7 @@ bool InductionVariableEliminationContext::run(Function* F, AnalysisManager& AM)
|
||||
printDebugInfo();
|
||||
}
|
||||
|
||||
modified |= SysYIROptUtils::eliminateRedundantPhisInFunction(F);
|
||||
return modified;
|
||||
}
|
||||
|
||||
|
||||
@ -661,9 +661,9 @@ bool StrengthReductionContext::replaceOriginalInstruction(StrengthReductionCandi
|
||||
|
||||
case StrengthReductionCandidate::DIVIDE_CONST: {
|
||||
// 任意常数除法
|
||||
builder->setPosition(candidate->containingBlock,
|
||||
candidate->containingBlock->findInstIterator(candidate->originalInst));
|
||||
replacementValue = generateConstantDivisionReplacement(candidate, builder);
|
||||
// builder->setPosition(candidate->containingBlock,
|
||||
// candidate->containingBlock->findInstIterator(candidate->originalInst));
|
||||
// replacementValue = generateConstantDivisionReplacement(candidate, builder);
|
||||
break;
|
||||
}
|
||||
|
||||
@ -683,17 +683,19 @@ bool StrengthReductionContext::replaceOriginalInstruction(StrengthReductionCandi
|
||||
);
|
||||
|
||||
// 检查原值是否为负数
|
||||
Value* zero = ConstantInteger::get(0);
|
||||
Value* isNegative = builder->createICmpLTInst(candidate->inductionVar, zero);
|
||||
Value* shift31condidata = builder->createBinaryInst(
|
||||
Instruction::Kind::kSra, candidate->inductionVar->getType(),
|
||||
candidate->inductionVar, ConstantInteger::get(31)
|
||||
);
|
||||
|
||||
// 如果为负数,需要调整结果
|
||||
Value* adjustment = ConstantInteger::get(candidate->multiplier);
|
||||
Value* adjustedTemp = builder->createAddInst(temp, adjustment);
|
||||
|
||||
// 使用条件分支来模拟select操作
|
||||
// 为简化起见,这里先用一个更复杂但可工作的方式
|
||||
// 实际应该创建条件分支,但这里先简化处理
|
||||
replacementValue = temp; // 简化版本,假设大多数情况下不是负数
|
||||
Value* adjustment = builder->createAndInst(shift31condidata, maskConstant);
|
||||
Value* adjustedTemp = builder->createAddInst(candidate->inductionVar, adjustment);
|
||||
Value* adjustedResult = builder->createBinaryInst(
|
||||
Instruction::Kind::kAnd, candidate->inductionVar->getType(),
|
||||
adjustedTemp, maskConstant
|
||||
);
|
||||
replacementValue = adjustedResult;
|
||||
} else {
|
||||
// 非负数的取模,直接使用位与
|
||||
replacementValue = builder->createBinaryInst(
|
||||
|
||||
@ -1357,9 +1357,8 @@ void SCCPContext::run(Function *func, AnalysisManager &AM) {
|
||||
bool changed_control_flow = SimplifyControlFlow(func);
|
||||
|
||||
// 如果任何一个阶段修改了 IR,标记分析结果为失效
|
||||
if (changed_constant_propagation || changed_control_flow) {
|
||||
// AM.invalidate(); // 假设有这样的方法来使所有分析结果失效
|
||||
}
|
||||
bool changed = changed_constant_propagation || changed_control_flow;
|
||||
changed |= SysYIROptUtils::eliminateRedundantPhisInFunction(func);
|
||||
}
|
||||
|
||||
// SCCP Pass methods
|
||||
|
||||
@ -181,19 +181,19 @@ void PassManager::runOptimizationPipeline(Module* moduleIR, IRBuilder* builderIR
|
||||
printPasses();
|
||||
}
|
||||
|
||||
// this->clearPasses();
|
||||
// this->addPass(&LoopStrengthReduction::ID);
|
||||
// this->run();
|
||||
this->clearPasses();
|
||||
this->addPass(&LoopStrengthReduction::ID);
|
||||
this->run();
|
||||
|
||||
if(DEBUG) {
|
||||
std::cout << "=== IR After Loop Normalization, and Strength Reduction Optimizations ===\n";
|
||||
printPasses();
|
||||
}
|
||||
|
||||
// // 全局强度削弱优化,包括代数优化和魔数除法
|
||||
// this->clearPasses();
|
||||
// this->addPass(&GlobalStrengthReduction::ID);
|
||||
// this->run();
|
||||
// 全局强度削弱优化,包括代数优化和魔数除法
|
||||
this->clearPasses();
|
||||
this->addPass(&GlobalStrengthReduction::ID);
|
||||
this->run();
|
||||
|
||||
if(DEBUG) {
|
||||
std::cout << "=== IR After Global Strength Reduction Optimizations ===\n";
|
||||
|
||||
Reference in New Issue
Block a user