[midend-reg2mem]增加reg2mem遍,应用未定义值,增加inst迭代器查找方法,通过编译且脚本运行通过率不变
This commit is contained in:
@ -28,7 +28,7 @@ add_executable(sysyc
|
||||
DCE.cpp
|
||||
AddressCalculationExpansion.cpp
|
||||
Mem2Reg.cpp
|
||||
# Reg2Mem.cpp
|
||||
Reg2Mem.cpp
|
||||
RISCv64Backend.cpp
|
||||
RISCv64ISel.cpp
|
||||
RISCv64RegAlloc.cpp
|
||||
|
||||
@ -55,7 +55,8 @@ void Mem2RegContext::run(Function *func, AnalysisManager *AM) {
|
||||
// 为每个可提升的 alloca 初始化其值栈
|
||||
for (auto alloca : promotableAllocas) {
|
||||
// 初始值通常是 undef 或 null,取决于 IR 类型系统
|
||||
allocaToValueStackMap[alloca].push(nullptr); // 压入一个初始的“未定义”值
|
||||
UndefinedValue *undefValue = UndefinedValue::get(alloca->getType()->as<PointerType>()->getBaseType());
|
||||
allocaToValueStackMap[alloca].push(undefValue); // 压入一个初始的“未定义”值
|
||||
}
|
||||
|
||||
// 从入口基本块开始,对支配树进行 DFS 遍历,进行变量重命名
|
||||
|
||||
@ -4,6 +4,7 @@
|
||||
#include "SysYIRPrinter.h"
|
||||
#include "DCE.h"
|
||||
#include "Mem2Reg.h"
|
||||
#include "Reg2Mem.h"
|
||||
#include "Pass.h"
|
||||
#include <iostream>
|
||||
#include <queue>
|
||||
@ -67,6 +68,10 @@ void PassManager::runOptimizationPipeline(Module* moduleIR, IRBuilder* builderIR
|
||||
this->addPass(&Mem2Reg::ID);
|
||||
this->run();
|
||||
|
||||
this->clearPasses();
|
||||
this->addPass(&Reg2Mem::ID);
|
||||
this->run();
|
||||
|
||||
if (DEBUG) std::cout << "--- Custom optimization sequence finished ---\n";
|
||||
}
|
||||
|
||||
|
||||
266
src/Reg2Mem.cpp
Normal file
266
src/Reg2Mem.cpp
Normal file
@ -0,0 +1,266 @@
|
||||
#include "Reg2Mem.h"
|
||||
#include "SysYIROptUtils.h" // 如果有的话
|
||||
|
||||
namespace sysy {
|
||||
|
||||
void *Reg2Mem::ID = (void *)&Reg2Mem::ID;
|
||||
|
||||
void Reg2MemContext::run(Function *func) {
|
||||
if (func->getBasicBlocks().empty()) {
|
||||
return;
|
||||
}
|
||||
|
||||
// 清空状态,确保每次运行都是新的
|
||||
valueToAllocaMap.clear();
|
||||
|
||||
// 阶段1: 识别并为 SSA Value 分配 AllocaInst
|
||||
allocateMemoryForSSAValues(func);
|
||||
|
||||
// 阶段2: 将 Phi 指令转换为 Load/Store 逻辑 (此阶段需要先于通用 Load/Store 插入)
|
||||
// 这样做是因为 Phi 指令的特殊性,它需要在前驱块的末尾插入 Store
|
||||
// 如果先处理通用 Load/Store,可能无法正确处理 Phi 的复杂性
|
||||
rewritePhis(func); // Phi 指令可能在 rewritePhis 中被删除或标记删除
|
||||
|
||||
// 阶段3: 将其他 SSA Value 的使用替换为 Load/Store
|
||||
insertLoadsAndStores(func);
|
||||
|
||||
// 阶段4: 清理(删除不再需要的 Phi 指令)
|
||||
cleanup(func);
|
||||
}
|
||||
|
||||
bool Reg2MemContext::isPromotableToMemory(Value *val) {
|
||||
// 参数和指令结果是 SSA 值
|
||||
if (dynamic_cast<Argument *>(val) || dynamic_cast<Instruction *>(val)) {
|
||||
// 如果值已经是指针类型,则通常不为其分配额外的内存,因为它已经是一个地址。
|
||||
// (除非我们想将其值也存储起来,这通常不用于 Reg2Mem)
|
||||
// Reg2Mem 关注的是将非指针值从寄存器语义转换为内存语义。
|
||||
if (val->getType()->isPointer()) {
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void Reg2MemContext::allocateMemoryForSSAValues(Function *func) {
|
||||
// AllocaInst 必须在函数的入口基本块中
|
||||
BasicBlock *entryBlock = func->getEntryBlock();
|
||||
if (!entryBlock) {
|
||||
return; // 函数可能没有入口块 (例如声明)
|
||||
}
|
||||
|
||||
// 1. 为函数参数分配内存
|
||||
builder->setPosition(entryBlock, entryBlock->begin()); // 确保在入口块的开始位置插入
|
||||
for (auto arg : func->getArguments()) {
|
||||
if (isPromotableToMemory(arg)) {
|
||||
// 参数的类型就是 AllocaInst 需要分配的类型
|
||||
AllocaInst *alloca = builder->createAllocaInst(arg->getType(), {}, arg->getName() + ".reg2mem");
|
||||
// 将参数值 store 到 alloca 中 (这是 Mem2Reg 逆转的关键一步)
|
||||
builder->createStoreInst(arg, alloca);
|
||||
valueToAllocaMap[arg] = alloca;
|
||||
|
||||
// 确保 alloca 位于入口块的顶部,但在所有参数的 store 指令之前
|
||||
// 通常 alloca 都在 entry block 的最开始
|
||||
// 这里我们只是创建,并让 builder 决定插入位置 (通常在当前插入点)
|
||||
// 如果需要严格控制顺序,可能需要手动 insert 到 instruction list
|
||||
}
|
||||
}
|
||||
|
||||
// 2. 为指令结果分配内存
|
||||
// 遍历所有基本块和指令,找出所有需要分配 Alloca 的指令结果
|
||||
for (auto &bb : func->getBasicBlocks()) {
|
||||
for (auto &inst : bb->getInstructions_Range()) {
|
||||
// 只有有结果的指令才可能需要分配内存
|
||||
// (例如 BinaryInst, CallInst, LoadInst, PhiInst 等)
|
||||
// StoreInst, BranchInst, ReturnInst 等没有结果的指令不需要
|
||||
if (inst.get()->getType()->isVoid()) { // 没有返回值的指令
|
||||
continue;
|
||||
}
|
||||
|
||||
if (isPromotableToMemory(inst.get())) {
|
||||
// 为指令的结果分配内存
|
||||
// AllocaInst 应该在入口块,而不是当前指令所在块
|
||||
// 这里我们只是创建,并稍后调整其位置
|
||||
// 通常的做法是在循环结束后统一将 alloca 放到 entryBlock 的顶部
|
||||
AllocaInst *alloca = builder->createAllocaInst(inst.get()->getType(), {}, inst->getName() + ".reg2mem");
|
||||
valueToAllocaMap[inst.get()] = alloca;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 统一将所有新创建的 AllocaInst 移到入口块的最前面,
|
||||
// 在参数的 AllocaInst 和 Store 指令之后。
|
||||
// 这部分可能需要根据你的 IR 结构来调整。
|
||||
// 假设 builder.createAllocaInst 默认在当前 builder position 插入。
|
||||
// 如果 builder 只能在当前位置插入,可能需要收集这些 alloca,然后在最后手动移动。
|
||||
// 更简单的方式是:在 builder 创建 alloca 时,将 position 设置到 entryBlock 的开头。
|
||||
builder->setPosition(entryBlock, entryBlock->begin());
|
||||
// 再次循环 valueToAllocaMap,如果 alloca 是新创建的,确保它在正确位置
|
||||
// 对于已经创建的 alloca,这里不需要重新创建
|
||||
for (auto const &[val, alloca_inst] : valueToAllocaMap) {
|
||||
// 假设 alloca_inst 还没有被插入或者需要移动到开头
|
||||
// 你的 builder 可能需要一个方法来将指令移动到特定位置
|
||||
// 如果 builder.createAllocaInst 总是插入到当前位置,那么需要在循环之前设置好 builder 的位置
|
||||
}
|
||||
// 再次设置 builder 位置到入口块的末尾,以便后续插入 Store 等指令
|
||||
// 由于消除了fallthrough所有入口块的末尾一定是一个 terminator
|
||||
// 所以可以安全地将位置设置到末尾的terminator。
|
||||
// 这将确保后续的 Store 指令插入到入口块的末尾。
|
||||
builder->setPosition(entryBlock, entryBlock->terminator());
|
||||
}
|
||||
|
||||
void Reg2MemContext::rewritePhis(Function *func) {
|
||||
std::vector<PhiInst *> phisToErase; // 收集要删除的 Phi
|
||||
|
||||
// 遍历所有基本块和其中的指令,查找 Phi 指令
|
||||
for (auto &bb : func->getBasicBlocks()) {
|
||||
// auto insts = bb->getInstructions(); // 复制一份,因为要修改
|
||||
for (auto instIter = bb->getInstructions().begin(); instIter != bb->getInstructions().end(); instIter++) {
|
||||
Instruction *inst = instIter->get();
|
||||
if (auto phiInst = dynamic_cast<PhiInst *>(inst)) {
|
||||
// 检查 Phi 指令是否是需要处理的 SSA 值
|
||||
if (valueToAllocaMap.count(phiInst)) {
|
||||
AllocaInst *alloca = valueToAllocaMap[phiInst];
|
||||
|
||||
// 1. 为 Phi 指令的每个入边,在前驱块的末尾插入 Store 指令
|
||||
// PhiInst 假设有 getIncomingValues() 和 getIncomingBlocks()
|
||||
for (unsigned i = 0; i < phiInst->getNumIncomingValues(); ++i) { // 假设 PhiInst 是通过操作数来管理入边的
|
||||
Value *incomingValue = phiInst->getValue(i); // 获取入值
|
||||
BasicBlock *incomingBlock = phiInst->getBlock(i); // 获取对应的入块
|
||||
|
||||
// 在入块的跳转指令之前插入 StoreInst
|
||||
// 需要找到 incomingBlock 的终结指令 (Terminator Instruction)
|
||||
// 并将 StoreInst 插入到它前面
|
||||
if (incomingBlock->terminator()->get()->isTerminator()) {
|
||||
builder->setPosition(incomingBlock, incomingBlock->terminator());
|
||||
} else {
|
||||
// 如果没有终结指令,插入到末尾
|
||||
builder->setPosition(incomingBlock, incomingBlock->end());
|
||||
}
|
||||
builder->createStoreInst(incomingValue, alloca);
|
||||
}
|
||||
|
||||
// 2. 在当前 Phi 所在基本块的开头,插入 Load 指令
|
||||
// 将 Load 指令插入到 Phi 指令之后,因为 Phi 指令即将被删除
|
||||
builder->setPosition(bb.get(), bb.get()->findInstIterator(phiInst));
|
||||
LoadInst *newLoad = builder->createLoadInst(alloca);
|
||||
|
||||
// 3. 将 Phi 指令的所有用途替换为新的 Load 指令
|
||||
phiInst->replaceAllUsesWith(newLoad);
|
||||
|
||||
// 标记 Phi 指令待删除
|
||||
phisToErase.push_back(phiInst);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 实际删除 Phi 指令
|
||||
for (auto phi : phisToErase) {
|
||||
if (phi && phi->getParent()) {
|
||||
SysYIROptUtils::usedelete(phi); // 清理 use-def 链
|
||||
phi->getParent()->removeInst(phi); // 从基本块中删除
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Reg2MemContext::insertLoadsAndStores(Function *func) {
|
||||
// 收集所有需要替换的 uses,避免在迭代时修改 use 链表
|
||||
std::vector<std::pair<Use *, LoadInst *>> usesToReplace;
|
||||
std::vector<Instruction *> instsToStore; // 收集需要插入 Store 的指令
|
||||
|
||||
// 遍历所有基本块和指令
|
||||
for (auto &bb : func->getBasicBlocks()) {
|
||||
for (auto instIter = bb->getInstructions().begin(); instIter != bb->getInstructions().end(); instIter++) {
|
||||
Instruction *inst = instIter->get();
|
||||
|
||||
// 如果指令有结果且我们为其分配了 alloca (Phi 已在 rewritePhis 处理)
|
||||
// 并且其类型不是 void
|
||||
if (!inst->getType()->isVoid() && valueToAllocaMap.count(inst)) {
|
||||
// 在指令之后插入 Store 指令
|
||||
// StoreInst 应该插入到当前指令之后
|
||||
builder->setPosition(bb.get(), bb.get()->findInstIterator(inst));
|
||||
builder->createStoreInst(inst, valueToAllocaMap[inst]);
|
||||
}
|
||||
|
||||
// 处理指令的操作数:如果操作数是一个 SSA 值,且为其分配了 alloca
|
||||
// (并且这个操作数不是 Phi Inst 的 incoming value,因为 Phi 的 incoming value 已经在 rewritePhis 中处理了)
|
||||
// 注意:Phi Inst 的操作数是特殊的,它们表示来自不同前驱块的值。
|
||||
// 这里的处理主要是针对非 Phi 指令的操作数。
|
||||
for (auto use = inst->getUses().begin(); use != inst->getUses().end(); ++use) {
|
||||
// 如果当前 use 的 Value 是一个 Instruction 或 Argument
|
||||
Value *operand = use->get()->getValue();
|
||||
if (isPromotableToMemory(operand) && valueToAllocaMap.count(operand)) {
|
||||
// 确保这个 operand 不是一个即将被删除的 Phi 指令
|
||||
// (在 rewritePhis 阶段,Phi 已经被处理并可能被标记删除)
|
||||
// 或者检查 use 的 user 不是 PhiInst
|
||||
if (dynamic_cast<PhiInst *>(inst)) {
|
||||
continue; // Phi 的操作数已在 rewritePhis 中处理
|
||||
}
|
||||
|
||||
AllocaInst *alloca = valueToAllocaMap[operand];
|
||||
|
||||
// 在使用点之前插入 Load 指令
|
||||
// LoadInst 应该插入到使用它的指令之前
|
||||
builder->setPosition(bb.get(), bb.get()->findInstIterator(inst));
|
||||
LoadInst *newLoad = builder->createLoadInst(alloca);
|
||||
|
||||
// 记录要替换的 use
|
||||
usesToReplace.push_back({use->get(), newLoad});
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 执行所有替换操作
|
||||
for (auto &pair : usesToReplace) {
|
||||
pair.first->setValue(pair.second); // 替换 use 的 Value
|
||||
}
|
||||
}
|
||||
|
||||
void Reg2MemContext::cleanup(Function *func) {
|
||||
// 此时,所有原始的 Phi 指令应该已经被删除。
|
||||
// 如果有其他需要删除的临时指令,可以在这里处理。
|
||||
// 通常,Reg2Mem 的清理比 Mem2Reg 简单,因为主要是在插入指令。
|
||||
// 这里可以作为一个占位符,以防未来有其他清理需求。
|
||||
}
|
||||
|
||||
bool Reg2Mem::runOnFunction(Function *F, AnalysisManager &AM) {
|
||||
// 记录初始指令数量
|
||||
size_t initial_inst_count = 0;
|
||||
for (auto &bb : F->getBasicBlocks()) {
|
||||
initial_inst_count += bb->getInstructions().size();
|
||||
}
|
||||
|
||||
Reg2MemContext ctx(builder); // 假设 builder 是一个全局或可访问的 IRBuilder 实例
|
||||
ctx.run(F);
|
||||
|
||||
// 记录最终指令数量
|
||||
size_t final_inst_count = 0;
|
||||
for (auto &bb : F->getBasicBlocks()) {
|
||||
final_inst_count += bb->getInstructions().size();
|
||||
}
|
||||
// TODO: 添加更精确的变化检测逻辑,例如在run函数中维护changed状态
|
||||
bool changed = (initial_inst_count != final_inst_count); // 粗略判断是否改变
|
||||
|
||||
if (changed) {
|
||||
// Reg2Mem 会显著改变 IR 结构,特别是数据流。
|
||||
// 它会插入大量的 Load/Store 指令,改变 Value 的来源。
|
||||
// 这会使几乎所有数据流分析失效。
|
||||
// 例如:
|
||||
// AM.invalidateAnalysis(&DominatorTreeAnalysisPass::ID, F); // 如果基本块结构改变,可能失效
|
||||
// AM.invalidateAnalysis(&LivenessAnalysisPass::ID, F); // 活跃性分析肯定失效
|
||||
// AM.invalidateAnalysis(&DCEPass::ID, F); // 可能产生新的死代码
|
||||
// ... 其他所有数据流分析
|
||||
}
|
||||
return changed;
|
||||
}
|
||||
|
||||
void Reg2Mem::getAnalysisUsage(std::set<void *> &analysisDependencies, std::set<void *> &analysisInvalidations) const {
|
||||
// Reg2Mem 通常不需要特定的分析作为依赖,因为它主要是一个转换。
|
||||
// 但它会使许多分析失效。
|
||||
analysisInvalidations.insert(&LivenessAnalysisPass::ID); // 例如
|
||||
analysisInvalidations.insert(&DominatorTreeAnalysisPass::ID);
|
||||
}
|
||||
|
||||
} // namespace sysy
|
||||
@ -525,6 +525,10 @@ public:
|
||||
iterator begin() { return instructions.begin(); }
|
||||
iterator end() { return instructions.end(); }
|
||||
iterator terminator() { return std::prev(end()); }
|
||||
iterator findInstIterator(Instruction *inst) {
|
||||
return std::find_if(instructions.begin(), instructions.end(),
|
||||
[inst](const std::unique_ptr<Instruction> &i) { return i.get() == inst; });
|
||||
} ///< 查找指定指令的迭代器
|
||||
bool hasSuccessor(BasicBlock *block) const {
|
||||
return std::find(successors.begin(), successors.end(), block) != successors.end();
|
||||
} ///< 判断是否有后继块
|
||||
|
||||
59
src/include/Reg2Mem.h
Normal file
59
src/include/Reg2Mem.h
Normal file
@ -0,0 +1,59 @@
|
||||
#pragma once
|
||||
|
||||
#include "IR.h"
|
||||
#include "IRBuilder.h" // 你的 IR Builder
|
||||
#include "Liveness.h"
|
||||
#include "Dom.h"
|
||||
#include "Pass.h" // 你的 Pass 框架基类
|
||||
#include <iostream> // 调试用
|
||||
#include <map> // 用于 Value 到 AllocaInst 的映射
|
||||
#include <set> // 可能用于其他辅助集合
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
namespace sysy {
|
||||
|
||||
class Reg2MemContext {
|
||||
public:
|
||||
Reg2MemContext(IRBuilder *b) : builder(b) {}
|
||||
|
||||
// 运行 Reg2Mem 优化
|
||||
void run(Function *func);
|
||||
|
||||
private:
|
||||
IRBuilder *builder; // IR 构建器
|
||||
|
||||
// 存储 SSA Value 到对应的 AllocaInst 的映射
|
||||
// 只有那些需要被"溢出"到内存的 SSA 值才会被记录在这里
|
||||
std::map<Value *, AllocaInst *> valueToAllocaMap;
|
||||
|
||||
// 辅助函数:
|
||||
// 1. 识别并为 SSA Value 分配 AllocaInst
|
||||
void allocateMemoryForSSAValues(Function *func);
|
||||
|
||||
// 2. 将 SSA 值的使用替换为 Load/Store
|
||||
void insertLoadsAndStores(Function *func);
|
||||
|
||||
// 3. 处理 Phi 指令,将其转换为 Load/Store
|
||||
void rewritePhis(Function *func);
|
||||
|
||||
// 4. 清理 (例如,可能删除不再需要的 Phi 指令)
|
||||
void cleanup(Function *func);
|
||||
|
||||
// 判断一个 Value 是否是 AllocaInst 可以为其分配内存的目标
|
||||
// 通常指非指针类型的Instruction结果和Argument
|
||||
bool isPromotableToMemory(Value *val);
|
||||
};
|
||||
|
||||
class Reg2Mem : public OptimizationPass {
|
||||
private:
|
||||
IRBuilder *builder; ///< IR构建器,用于插入指令
|
||||
public:
|
||||
static void *ID; ///< Pass的唯一标识符
|
||||
Reg2Mem() : OptimizationPass("Reg2Mem", Pass::Granularity::Function), builder(builder) {}
|
||||
bool runOnFunction(Function *F, AnalysisManager &AM) override;
|
||||
void getAnalysisUsage(std::set<void *> &analysisDependencies, std::set<void *> &analysisInvalidations) const override;
|
||||
void *getPassID() const override { return &ID; } ///< 获取 Pass ID
|
||||
};
|
||||
|
||||
} // namespace sysy
|
||||
Reference in New Issue
Block a user