Merge branch 'backend' into midend
This commit is contained in:
@ -57,11 +57,22 @@ bool AddressCalculationExpansion::run() {
|
||||
}
|
||||
}
|
||||
} else if (GlobalValue* globalValue = dynamic_cast<GlobalValue*>(basePointer)) {
|
||||
std::cerr << "Warning: GlobalValue dimension handling needs explicit implementation for GEP expansion. Skipping GEP for: ";
|
||||
SysYPrinter::printValue(globalValue);
|
||||
std::cerr << "\n";
|
||||
++it;
|
||||
continue;
|
||||
// 遍历 GlobalValue 的所有维度操作数
|
||||
for (const auto& use_ptr : globalValue->getDims()) {
|
||||
Value* dimValue = use_ptr->getValue();
|
||||
// 将维度值转换为常量整数
|
||||
if (ConstantInteger* constVal = dynamic_cast<ConstantInteger*>(dimValue)) {
|
||||
dims.push_back(constVal->getInt());
|
||||
} else {
|
||||
// 如果维度不是常量整数,则无法处理。
|
||||
// 根据 IR.h 中 GlobalValue 的构造函数,这种情况不应发生,但作为安全检查是好的。
|
||||
std::cerr << "Warning: GlobalValue dimension is not a constant integer. Skipping GEP expansion for: ";
|
||||
SysYPrinter::printValue(globalValue);
|
||||
std::cerr << "\n";
|
||||
dims.clear(); // 清空已收集的部分维度信息
|
||||
break;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
std::cerr << "Warning: Base pointer is not AllocaInst/GlobalValue or its array dimensions cannot be determined for GEP expansion. Skipping GEP for: ";
|
||||
SysYPrinter::printValue(basePointer);
|
||||
|
||||
@ -18,7 +18,7 @@ bool isMemoryOp(RVOpcodes opcode) {
|
||||
|
||||
RISCv64AsmPrinter::RISCv64AsmPrinter(MachineFunction* mfunc) : MFunc(mfunc) {}
|
||||
|
||||
void RISCv64AsmPrinter::run(std::ostream& os) {
|
||||
void RISCv64AsmPrinter::run(std::ostream& os, bool debug) {
|
||||
OS = &os;
|
||||
|
||||
*OS << ".globl " << MFunc->getName() << "\n";
|
||||
@ -27,7 +27,7 @@ void RISCv64AsmPrinter::run(std::ostream& os) {
|
||||
printPrologue();
|
||||
|
||||
for (auto& mbb : MFunc->getBlocks()) {
|
||||
printBasicBlock(mbb.get());
|
||||
printBasicBlock(mbb.get(), debug);
|
||||
}
|
||||
}
|
||||
|
||||
@ -42,7 +42,7 @@ void RISCv64AsmPrinter::printPrologue() {
|
||||
*OS << " addi sp, sp, -" << aligned_stack_size << "\n";
|
||||
*OS << " sd ra, " << (aligned_stack_size - 8) << "(sp)\n";
|
||||
*OS << " sd s0, " << (aligned_stack_size - 16) << "(sp)\n";
|
||||
*OS << " mv s0, sp\n";
|
||||
*OS << " addi s0, sp, " << aligned_stack_size << "\n";
|
||||
}
|
||||
|
||||
// 忠实还原保存函数入口参数的逻辑
|
||||
@ -73,24 +73,31 @@ void RISCv64AsmPrinter::printEpilogue() {
|
||||
}
|
||||
}
|
||||
|
||||
void RISCv64AsmPrinter::printBasicBlock(MachineBasicBlock* mbb) {
|
||||
void RISCv64AsmPrinter::printBasicBlock(MachineBasicBlock* mbb, bool debug) {
|
||||
if (!mbb->getName().empty()) {
|
||||
*OS << mbb->getName() << ":\n";
|
||||
}
|
||||
for (auto& instr : mbb->getInstructions()) {
|
||||
printInstruction(instr.get());
|
||||
printInstruction(instr.get(), debug);
|
||||
}
|
||||
}
|
||||
|
||||
void RISCv64AsmPrinter::printInstruction(MachineInstr* instr) {
|
||||
void RISCv64AsmPrinter::printInstruction(MachineInstr* instr, bool debug) {
|
||||
auto opcode = instr->getOpcode();
|
||||
if (opcode == RVOpcodes::RET) {
|
||||
printEpilogue();
|
||||
}
|
||||
if (opcode != RVOpcodes::LABEL) {
|
||||
*OS << " ";
|
||||
|
||||
if (opcode == RVOpcodes::LABEL) {
|
||||
// 标签直接打印,不加缩进
|
||||
printOperand(instr->getOperands()[0].get());
|
||||
*OS << ":\n";
|
||||
return; // 处理完毕,直接返回
|
||||
}
|
||||
|
||||
// 对于所有非标签指令,先打印缩进
|
||||
*OS << " ";
|
||||
|
||||
switch (opcode) {
|
||||
case RVOpcodes::ADD: *OS << "add "; break; case RVOpcodes::ADDI: *OS << "addi "; break;
|
||||
case RVOpcodes::ADDW: *OS << "addw "; break; case RVOpcodes::ADDIW: *OS << "addiw "; break;
|
||||
@ -126,13 +133,21 @@ void RISCv64AsmPrinter::printInstruction(MachineInstr* instr) {
|
||||
case RVOpcodes::SNEZ: *OS << "snez "; break;
|
||||
case RVOpcodes::CALL: *OS << "call "; break;
|
||||
case RVOpcodes::LABEL:
|
||||
printOperand(instr->getOperands()[0].get());
|
||||
*OS << ":";
|
||||
// printOperand(instr->getOperands()[0].get());
|
||||
// *OS << ":";
|
||||
break;
|
||||
case RVOpcodes::FRAME_LOAD:
|
||||
// It should have been eliminated by RegAlloc
|
||||
if (!debug) throw std::runtime_error("FRAME pseudo-instruction not eliminated before AsmPrinter");
|
||||
*OS << "frame_load "; break;
|
||||
case RVOpcodes::FRAME_STORE:
|
||||
// These should have been eliminated by RegAlloc
|
||||
throw std::runtime_error("FRAME pseudo-instruction not eliminated before AsmPrinter");
|
||||
// It should have been eliminated by RegAlloc
|
||||
if (!debug) throw std::runtime_error("FRAME pseudo-instruction not eliminated before AsmPrinter");
|
||||
*OS << "frame_store "; break;
|
||||
case RVOpcodes::FRAME_ADDR:
|
||||
// It should have been eliminated by RegAlloc
|
||||
if (!debug) throw std::runtime_error("FRAME pseudo-instruction not eliminated before AsmPrinter");
|
||||
*OS << "frame_addr "; break;
|
||||
default:
|
||||
throw std::runtime_error("Unknown opcode in AsmPrinter");
|
||||
}
|
||||
|
||||
@ -61,6 +61,10 @@ std::string RISCv64CodeGen::function_gen(Function* func) {
|
||||
RISCv64ISel isel;
|
||||
std::unique_ptr<MachineFunction> mfunc = isel.runOnFunction(func);
|
||||
|
||||
std::stringstream ss1;
|
||||
RISCv64AsmPrinter printer1(mfunc.get());
|
||||
printer1.run(ss1, true);
|
||||
|
||||
// 阶段 2: 指令调度 (Instruction Scheduling)
|
||||
PreRA_Scheduler scheduler;
|
||||
scheduler.runOnMachineFunction(mfunc.get());
|
||||
@ -81,7 +85,7 @@ std::string RISCv64CodeGen::function_gen(Function* func) {
|
||||
std::stringstream ss;
|
||||
RISCv64AsmPrinter printer(mfunc.get());
|
||||
printer.run(ss);
|
||||
|
||||
if (DEBUG) ss << ss1.str(); // 将指令选择阶段的结果也包含在最终输出中
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
|
||||
@ -4,6 +4,7 @@
|
||||
#include <functional>
|
||||
#include <cmath> // For std::fabs
|
||||
#include <limits> // For std::numeric_limits
|
||||
#include <iostream>
|
||||
|
||||
namespace sysy {
|
||||
|
||||
@ -82,6 +83,10 @@ void RISCv64ISel::selectBasicBlock(BasicBlock* bb) {
|
||||
CurMBB = bb_map.at(bb);
|
||||
auto dag = build_dag(bb);
|
||||
|
||||
if (DEBUG) { // 使用 DEBUG 宏或变量来控制是否打印
|
||||
print_dag(dag, bb->getName());
|
||||
}
|
||||
|
||||
std::map<Value*, DAGNode*> value_to_node;
|
||||
for(const auto& node : dag) {
|
||||
if (node->value) {
|
||||
@ -92,6 +97,10 @@ void RISCv64ISel::selectBasicBlock(BasicBlock* bb) {
|
||||
std::set<DAGNode*> selected_nodes;
|
||||
std::function<void(DAGNode*)> select_recursive =
|
||||
[&](DAGNode* node) {
|
||||
if (DEEPDEBUG) {
|
||||
std::cout << "[DEEPDEBUG] select_recursive: Visiting node with kind: " << node->kind
|
||||
<< " (Value: " << (node->value ? node->value->getName() : "null") << ")" << std::endl;
|
||||
}
|
||||
if (!node || selected_nodes.count(node)) return;
|
||||
for (auto operand : node->operands) {
|
||||
select_recursive(operand);
|
||||
@ -118,24 +127,37 @@ void RISCv64ISel::selectBasicBlock(BasicBlock* bb) {
|
||||
}
|
||||
}
|
||||
|
||||
// 核心函数:为DAG节点选择并生成MachineInstr (忠实移植版)
|
||||
// 核心函数:为DAG节点选择并生成MachineInstr (已修复和增强的完整版本)
|
||||
void RISCv64ISel::selectNode(DAGNode* node) {
|
||||
// 调用者(select_recursive)已经保证了操作数节点会先于当前节点被选择。
|
||||
// 因此,这里我们只处理当前节点。
|
||||
|
||||
switch (node->kind) {
|
||||
// [V2优点] 采纳“延迟物化”(Late Materialization)思想。
|
||||
// 这两个节点仅作为标记,不直接生成指令。它们的目的是在DAG中保留类型信息。
|
||||
// 加载其值的责任,被转移给了使用它们的父节点(如STORE, BINARY等)。
|
||||
// 这修复了之前版本中“使用未初始化虚拟寄存器”的根本性bug。
|
||||
case DAGNode::CONSTANT:
|
||||
case DAGNode::ALLOCA_ADDR:
|
||||
if (node->value) getVReg(node->value);
|
||||
if (node->value) {
|
||||
// 确保它有一个关联的虚拟寄存器即可,不生成代码。
|
||||
getVReg(node->value);
|
||||
}
|
||||
break;
|
||||
|
||||
case DAGNode::LOAD: {
|
||||
auto dest_vreg = getVReg(node->value);
|
||||
Value* ptr_val = node->operands[0]->value;
|
||||
|
||||
// [V1设计保留] 对于从栈变量加载,继续使用伪指令 FRAME_LOAD。
|
||||
// 这种设计将栈帧布局的具体计算推迟到后续的 `eliminateFrameIndices` 阶段,保持了模块化。
|
||||
if (auto alloca = dynamic_cast<AllocaInst*>(ptr_val)) {
|
||||
auto instr = std::make_unique<MachineInstr>(RVOpcodes::FRAME_LOAD);
|
||||
instr->addOperand(std::make_unique<RegOperand>(dest_vreg));
|
||||
instr->addOperand(std::make_unique<RegOperand>(getVReg(alloca)));
|
||||
CurMBB->addInstruction(std::move(instr));
|
||||
} else if (auto global = dynamic_cast<GlobalValue*>(ptr_val)) {
|
||||
// 对于全局变量,先用 la 加载其地址,再用 lw 加载其值。
|
||||
auto addr_vreg = getNewVReg();
|
||||
auto la = std::make_unique<MachineInstr>(RVOpcodes::LA);
|
||||
la->addOperand(std::make_unique<RegOperand>(addr_vreg));
|
||||
@ -150,6 +172,7 @@ void RISCv64ISel::selectNode(DAGNode* node) {
|
||||
));
|
||||
CurMBB->addInstruction(std::move(lw));
|
||||
} else {
|
||||
// 对于已经在虚拟寄存器中的指针地址,直接通过该地址加载。
|
||||
auto ptr_vreg = getVReg(ptr_val);
|
||||
auto lw = std::make_unique<MachineInstr>(RVOpcodes::LW);
|
||||
lw->addOperand(std::make_unique<RegOperand>(dest_vreg));
|
||||
@ -166,7 +189,13 @@ void RISCv64ISel::selectNode(DAGNode* node) {
|
||||
Value* val_to_store = node->operands[0]->value;
|
||||
Value* ptr_val = node->operands[1]->value;
|
||||
|
||||
// [V2优点] 在STORE节点内部负责加载作为源的常量。
|
||||
// 如果要存储的值是一个常量,就在这里生成 `li` 指令加载它。
|
||||
if (auto val_const = dynamic_cast<ConstantValue*>(val_to_store)) {
|
||||
if (DEBUG) {
|
||||
std::cout << "[DEBUG] selectNode-BINARY: Found constant operand with value " << val_const->getInt()
|
||||
<< ". Generating LI instruction." << std::endl;
|
||||
}
|
||||
auto li = std::make_unique<MachineInstr>(RVOpcodes::LI);
|
||||
li->addOperand(std::make_unique<RegOperand>(getVReg(val_const)));
|
||||
li->addOperand(std::make_unique<ImmOperand>(val_const->getInt()));
|
||||
@ -174,13 +203,15 @@ void RISCv64ISel::selectNode(DAGNode* node) {
|
||||
}
|
||||
auto val_vreg = getVReg(val_to_store);
|
||||
|
||||
// [V1设计保留] 同样,对于向栈变量的存储,使用 FRAME_STORE 伪指令。
|
||||
if (auto alloca = dynamic_cast<AllocaInst*>(ptr_val)) {
|
||||
auto instr = std::make_unique<MachineInstr>(RVOpcodes::FRAME_STORE);
|
||||
instr->addOperand(std::make_unique<RegOperand>(val_vreg));
|
||||
instr->addOperand(std::make_unique<RegOperand>(getVReg(alloca)));
|
||||
CurMBB->addInstruction(std::move(instr));
|
||||
} else if (auto global = dynamic_cast<GlobalValue*>(ptr_val)) {
|
||||
auto addr_vreg = getNewVReg();
|
||||
// 向全局变量存储。
|
||||
auto addr_vreg = getNewVReg();
|
||||
auto la = std::make_unique<MachineInstr>(RVOpcodes::LA);
|
||||
la->addOperand(std::make_unique<RegOperand>(addr_vreg));
|
||||
la->addOperand(std::make_unique<LabelOperand>(global->getName()));
|
||||
@ -194,6 +225,7 @@ void RISCv64ISel::selectNode(DAGNode* node) {
|
||||
));
|
||||
CurMBB->addInstruction(std::move(sw));
|
||||
} else {
|
||||
// 向一个指针(存储在虚拟寄存器中)指向的地址存储。
|
||||
auto ptr_vreg = getVReg(ptr_val);
|
||||
auto sw = std::make_unique<MachineInstr>(RVOpcodes::SW);
|
||||
sw->addOperand(std::make_unique<RegOperand>(val_vreg));
|
||||
@ -210,37 +242,108 @@ void RISCv64ISel::selectNode(DAGNode* node) {
|
||||
auto bin = dynamic_cast<BinaryInst*>(node->value);
|
||||
Value* lhs = bin->getLhs();
|
||||
Value* rhs = bin->getRhs();
|
||||
|
||||
if (bin->getKind() == BinaryInst::kAdd) {
|
||||
Value* base = nullptr;
|
||||
Value* offset = nullptr;
|
||||
|
||||
// [修改] 扩展基地址的判断,使其可以识别 AllocaInst 或 GlobalValue
|
||||
if (dynamic_cast<AllocaInst*>(lhs) || dynamic_cast<GlobalValue*>(lhs)) {
|
||||
base = lhs;
|
||||
offset = rhs;
|
||||
} else if (dynamic_cast<AllocaInst*>(rhs) || dynamic_cast<GlobalValue*>(rhs)) {
|
||||
base = rhs;
|
||||
offset = lhs;
|
||||
}
|
||||
|
||||
// 如果成功匹配到地址计算模式
|
||||
if (base) {
|
||||
// 1. 先为偏移量加载常量(如果它是常量的话)
|
||||
if (auto const_offset = dynamic_cast<ConstantValue*>(offset)) {
|
||||
auto li = std::make_unique<MachineInstr>(RVOpcodes::LI);
|
||||
li->addOperand(std::make_unique<RegOperand>(getVReg(const_offset)));
|
||||
li->addOperand(std::make_unique<ImmOperand>(const_offset->getInt()));
|
||||
CurMBB->addInstruction(std::move(li));
|
||||
}
|
||||
|
||||
// 2. [修改] 根据基地址的类型,生成不同的指令来获取基地址
|
||||
auto base_addr_vreg = getNewVReg(); // 创建一个新的临时vreg来存放基地址
|
||||
|
||||
// 情况一:基地址是局部栈变量
|
||||
if (auto alloca_base = dynamic_cast<AllocaInst*>(base)) {
|
||||
auto frame_addr_instr = std::make_unique<MachineInstr>(RVOpcodes::FRAME_ADDR);
|
||||
frame_addr_instr->addOperand(std::make_unique<RegOperand>(base_addr_vreg));
|
||||
frame_addr_instr->addOperand(std::make_unique<RegOperand>(getVReg(alloca_base)));
|
||||
CurMBB->addInstruction(std::move(frame_addr_instr));
|
||||
}
|
||||
// 情况二:基地址是全局变量
|
||||
else if (auto global_base = dynamic_cast<GlobalValue*>(base)) {
|
||||
auto la_instr = std::make_unique<MachineInstr>(RVOpcodes::LA);
|
||||
la_instr->addOperand(std::make_unique<RegOperand>(base_addr_vreg));
|
||||
la_instr->addOperand(std::make_unique<LabelOperand>(global_base->getName()));
|
||||
CurMBB->addInstruction(std::move(la_instr));
|
||||
}
|
||||
|
||||
// 3. 生成真正的add指令,计算最终地址(这部分逻辑保持不变)
|
||||
auto final_addr_vreg = getVReg(bin); // 这是整个二元运算的结果vreg
|
||||
auto offset_vreg = getVReg(offset);
|
||||
auto add_instr = std::make_unique<MachineInstr>(RVOpcodes::ADD); // 指针运算是64位
|
||||
add_instr->addOperand(std::make_unique<RegOperand>(final_addr_vreg));
|
||||
add_instr->addOperand(std::make_unique<RegOperand>(base_addr_vreg));
|
||||
add_instr->addOperand(std::make_unique<RegOperand>(offset_vreg));
|
||||
CurMBB->addInstruction(std::move(add_instr));
|
||||
|
||||
return; // 地址计算处理完毕,直接返回
|
||||
}
|
||||
}
|
||||
|
||||
// [V2优点] 在BINARY节点内部按需加载常量操作数。
|
||||
auto load_val_if_const = [&](Value* val) {
|
||||
if (auto c = dynamic_cast<ConstantValue*>(val)) {
|
||||
if (DEBUG) {
|
||||
std::cout << "[DEBUG] selectNode-BINARY: Found constant operand with value " << c->getInt()
|
||||
<< ". Generating LI instruction." << std::endl;
|
||||
}
|
||||
auto li = std::make_unique<MachineInstr>(RVOpcodes::LI);
|
||||
li->addOperand(std::make_unique<RegOperand>(getVReg(c)));
|
||||
li->addOperand(std::make_unique<ImmOperand>(c->getInt()));
|
||||
CurMBB->addInstruction(std::move(li));
|
||||
}
|
||||
};
|
||||
load_val_if_const(lhs);
|
||||
load_val_if_const(rhs);
|
||||
|
||||
auto dest_vreg = getVReg(bin);
|
||||
auto lhs_vreg = getVReg(lhs);
|
||||
auto rhs_vreg = getVReg(rhs);
|
||||
|
||||
if (bin->getKind() == BinaryInst::kAdd) {
|
||||
if (auto rhs_const = dynamic_cast<ConstantValue*>(rhs)) {
|
||||
if (rhs_const->getInt() >= -2048 && rhs_const->getInt() < 2048) {
|
||||
auto instr = std::make_unique<MachineInstr>(RVOpcodes::ADDIW);
|
||||
instr->addOperand(std::make_unique<RegOperand>(dest_vreg));
|
||||
instr->addOperand(std::make_unique<RegOperand>(lhs_vreg));
|
||||
instr->addOperand(std::make_unique<ImmOperand>(rhs_const->getInt()));
|
||||
CurMBB->addInstruction(std::move(instr));
|
||||
return;
|
||||
}
|
||||
// 检查是否能应用立即数优化。
|
||||
bool rhs_is_imm_opt = false;
|
||||
if (auto rhs_const = dynamic_cast<ConstantValue*>(rhs)) {
|
||||
if (bin->getKind() == BinaryInst::kAdd && rhs_const->getInt() >= -2048 && rhs_const->getInt() < 2048) {
|
||||
rhs_is_imm_opt = true;
|
||||
}
|
||||
}
|
||||
|
||||
// 仅在不能作为立即数操作数时才需要提前加载。
|
||||
load_val_if_const(lhs);
|
||||
if (!rhs_is_imm_opt) {
|
||||
load_val_if_const(rhs);
|
||||
}
|
||||
|
||||
auto dest_vreg = getVReg(bin);
|
||||
auto lhs_vreg = getVReg(lhs);
|
||||
|
||||
// [V2优点] 融合 ADDIW 优化。
|
||||
if (rhs_is_imm_opt) {
|
||||
auto rhs_const = dynamic_cast<ConstantValue*>(rhs);
|
||||
auto instr = std::make_unique<MachineInstr>(RVOpcodes::ADDIW);
|
||||
instr->addOperand(std::make_unique<RegOperand>(dest_vreg));
|
||||
instr->addOperand(std::make_unique<RegOperand>(lhs_vreg));
|
||||
instr->addOperand(std::make_unique<ImmOperand>(rhs_const->getInt()));
|
||||
CurMBB->addInstruction(std::move(instr));
|
||||
return; // 指令已生成,直接返回。
|
||||
}
|
||||
|
||||
auto rhs_vreg = getVReg(rhs);
|
||||
|
||||
switch (bin->getKind()) {
|
||||
case BinaryInst::kAdd: {
|
||||
// 区分指针运算(64位)和整数运算(32位)。
|
||||
RVOpcodes opcode = (lhs->getType()->isPointer() || rhs->getType()->isPointer()) ? RVOpcodes::ADD : RVOpcodes::ADDW;
|
||||
auto instr = std::make_unique<MachineInstr>(opcode);
|
||||
instr->addOperand(std::make_unique<RegOperand>(dest_vreg));
|
||||
@ -281,7 +384,7 @@ void RISCv64ISel::selectNode(DAGNode* node) {
|
||||
CurMBB->addInstruction(std::move(instr));
|
||||
break;
|
||||
}
|
||||
case BinaryInst::kICmpEQ: {
|
||||
case BinaryInst::kICmpEQ: { // 等于 (a == b) -> (subw; seqz)
|
||||
auto sub = std::make_unique<MachineInstr>(RVOpcodes::SUBW);
|
||||
sub->addOperand(std::make_unique<RegOperand>(dest_vreg));
|
||||
sub->addOperand(std::make_unique<RegOperand>(lhs_vreg));
|
||||
@ -294,7 +397,7 @@ void RISCv64ISel::selectNode(DAGNode* node) {
|
||||
CurMBB->addInstruction(std::move(seqz));
|
||||
break;
|
||||
}
|
||||
case BinaryInst::kICmpNE: {
|
||||
case BinaryInst::kICmpNE: { // 不等于 (a != b) -> (subw; snez)
|
||||
auto sub = std::make_unique<MachineInstr>(RVOpcodes::SUBW);
|
||||
sub->addOperand(std::make_unique<RegOperand>(dest_vreg));
|
||||
sub->addOperand(std::make_unique<RegOperand>(lhs_vreg));
|
||||
@ -307,7 +410,7 @@ void RISCv64ISel::selectNode(DAGNode* node) {
|
||||
CurMBB->addInstruction(std::move(snez));
|
||||
break;
|
||||
}
|
||||
case BinaryInst::kICmpLT: {
|
||||
case BinaryInst::kICmpLT: { // 小于 (a < b) -> slt
|
||||
auto instr = std::make_unique<MachineInstr>(RVOpcodes::SLT);
|
||||
instr->addOperand(std::make_unique<RegOperand>(dest_vreg));
|
||||
instr->addOperand(std::make_unique<RegOperand>(lhs_vreg));
|
||||
@ -315,7 +418,7 @@ void RISCv64ISel::selectNode(DAGNode* node) {
|
||||
CurMBB->addInstruction(std::move(instr));
|
||||
break;
|
||||
}
|
||||
case BinaryInst::kICmpGT: {
|
||||
case BinaryInst::kICmpGT: { // 大于 (a > b) -> (b < a) -> slt
|
||||
auto instr = std::make_unique<MachineInstr>(RVOpcodes::SLT);
|
||||
instr->addOperand(std::make_unique<RegOperand>(dest_vreg));
|
||||
instr->addOperand(std::make_unique<RegOperand>(rhs_vreg));
|
||||
@ -323,7 +426,7 @@ void RISCv64ISel::selectNode(DAGNode* node) {
|
||||
CurMBB->addInstruction(std::move(instr));
|
||||
break;
|
||||
}
|
||||
case BinaryInst::kICmpLE: {
|
||||
case BinaryInst::kICmpLE: { // 小于等于 (a <= b) -> !(b < a) -> (slt; xori)
|
||||
auto slt = std::make_unique<MachineInstr>(RVOpcodes::SLT);
|
||||
slt->addOperand(std::make_unique<RegOperand>(dest_vreg));
|
||||
slt->addOperand(std::make_unique<RegOperand>(rhs_vreg));
|
||||
@ -337,7 +440,7 @@ void RISCv64ISel::selectNode(DAGNode* node) {
|
||||
CurMBB->addInstruction(std::move(xori));
|
||||
break;
|
||||
}
|
||||
case BinaryInst::kICmpGE: {
|
||||
case BinaryInst::kICmpGE: { // 大于等于 (a >= b) -> !(a < b) -> (slt; xori)
|
||||
auto slt = std::make_unique<MachineInstr>(RVOpcodes::SLT);
|
||||
slt->addOperand(std::make_unique<RegOperand>(dest_vreg));
|
||||
slt->addOperand(std::make_unique<RegOperand>(lhs_vreg));
|
||||
@ -363,7 +466,7 @@ void RISCv64ISel::selectNode(DAGNode* node) {
|
||||
auto src_vreg = getVReg(unary->getOperand());
|
||||
|
||||
switch (unary->getKind()) {
|
||||
case UnaryInst::kNeg: {
|
||||
case UnaryInst::kNeg: { // 取负: 0 - src
|
||||
auto instr = std::make_unique<MachineInstr>(RVOpcodes::SUBW);
|
||||
instr->addOperand(std::make_unique<RegOperand>(dest_vreg));
|
||||
instr->addOperand(std::make_unique<RegOperand>(PhysicalReg::ZERO));
|
||||
@ -371,7 +474,7 @@ void RISCv64ISel::selectNode(DAGNode* node) {
|
||||
CurMBB->addInstruction(std::move(instr));
|
||||
break;
|
||||
}
|
||||
case UnaryInst::kNot: {
|
||||
case UnaryInst::kNot: { // 逻辑非: src == 0 ? 1 : 0
|
||||
auto instr = std::make_unique<MachineInstr>(RVOpcodes::SEQZ);
|
||||
instr->addOperand(std::make_unique<RegOperand>(dest_vreg));
|
||||
instr->addOperand(std::make_unique<RegOperand>(src_vreg));
|
||||
@ -386,7 +489,10 @@ void RISCv64ISel::selectNode(DAGNode* node) {
|
||||
|
||||
case DAGNode::CALL: {
|
||||
auto call = dynamic_cast<CallInst*>(node->value);
|
||||
for (size_t i = 0; i < node->operands.size() && i < 8; ++i) {
|
||||
// 处理函数参数,放入a0-a7物理寄存器
|
||||
size_t num_operands = node->operands.size();
|
||||
size_t reg_arg_count = std::min(num_operands, (size_t)8);
|
||||
for (size_t i = 0; i < reg_arg_count; ++i) {
|
||||
DAGNode* arg_node = node->operands[i];
|
||||
auto arg_preg = static_cast<PhysicalReg>(static_cast<int>(PhysicalReg::A0) + i);
|
||||
|
||||
@ -405,11 +511,64 @@ void RISCv64ISel::selectNode(DAGNode* node) {
|
||||
CurMBB->addInstruction(std::move(mv));
|
||||
}
|
||||
}
|
||||
if (num_operands > 8) {
|
||||
size_t stack_arg_count = num_operands - 8;
|
||||
int stack_space = stack_arg_count * 8; // RV64中每个参数槽位8字节
|
||||
|
||||
// 2a. 在栈上分配空间
|
||||
auto alloc_instr = std::make_unique<MachineInstr>(RVOpcodes::ADDI);
|
||||
alloc_instr->addOperand(std::make_unique<RegOperand>(PhysicalReg::SP));
|
||||
alloc_instr->addOperand(std::make_unique<RegOperand>(PhysicalReg::SP));
|
||||
alloc_instr->addOperand(std::make_unique<ImmOperand>(-stack_space));
|
||||
CurMBB->addInstruction(std::move(alloc_instr));
|
||||
|
||||
// 2b. 存储每个栈参数
|
||||
for (size_t i = 8; i < num_operands; ++i) {
|
||||
DAGNode* arg_node = node->operands[i];
|
||||
unsigned src_vreg;
|
||||
|
||||
// 准备源寄存器
|
||||
if (arg_node->kind == DAGNode::CONSTANT) {
|
||||
// 如果是常量,先加载到临时寄存器
|
||||
src_vreg = getNewVReg();
|
||||
auto const_val = dynamic_cast<ConstantValue*>(arg_node->value);
|
||||
auto li = std::make_unique<MachineInstr>(RVOpcodes::LI);
|
||||
li->addOperand(std::make_unique<RegOperand>(src_vreg));
|
||||
li->addOperand(std::make_unique<ImmOperand>(const_val->getInt()));
|
||||
CurMBB->addInstruction(std::move(li));
|
||||
} else {
|
||||
src_vreg = getVReg(arg_node->value);
|
||||
}
|
||||
|
||||
// 计算在栈上的偏移量
|
||||
int offset = (i - 8) * 8;
|
||||
|
||||
// 生成 sd 指令
|
||||
auto sd_instr = std::make_unique<MachineInstr>(RVOpcodes::SD);
|
||||
sd_instr->addOperand(std::make_unique<RegOperand>(src_vreg));
|
||||
sd_instr->addOperand(std::make_unique<MemOperand>(
|
||||
std::make_unique<RegOperand>(PhysicalReg::SP),
|
||||
std::make_unique<ImmOperand>(offset)
|
||||
));
|
||||
CurMBB->addInstruction(std::move(sd_instr));
|
||||
}
|
||||
}
|
||||
|
||||
auto call_instr = std::make_unique<MachineInstr>(RVOpcodes::CALL);
|
||||
call_instr->addOperand(std::make_unique<LabelOperand>(call->getCallee()->getName()));
|
||||
CurMBB->addInstruction(std::move(call_instr));
|
||||
|
||||
if (num_operands > 8) {
|
||||
size_t stack_arg_count = num_operands - 8;
|
||||
int stack_space = stack_arg_count * 8;
|
||||
|
||||
auto dealloc_instr = std::make_unique<MachineInstr>(RVOpcodes::ADDI);
|
||||
dealloc_instr->addOperand(std::make_unique<RegOperand>(PhysicalReg::SP));
|
||||
dealloc_instr->addOperand(std::make_unique<RegOperand>(PhysicalReg::SP));
|
||||
dealloc_instr->addOperand(std::make_unique<ImmOperand>(stack_space));
|
||||
CurMBB->addInstruction(std::move(dealloc_instr));
|
||||
}
|
||||
// 处理返回值,从a0移动到目标虚拟寄存器
|
||||
if (!call->getType()->isVoid()) {
|
||||
auto mv_instr = std::make_unique<MachineInstr>(RVOpcodes::MV);
|
||||
mv_instr->addOperand(std::make_unique<RegOperand>(getVReg(call)));
|
||||
@ -423,6 +582,7 @@ void RISCv64ISel::selectNode(DAGNode* node) {
|
||||
auto ret_inst_ir = dynamic_cast<ReturnInst*>(node->value);
|
||||
if (ret_inst_ir && ret_inst_ir->hasReturnValue()) {
|
||||
Value* ret_val = ret_inst_ir->getReturnValue();
|
||||
// [V2优点] 在RETURN节点内加载常量返回值
|
||||
if (auto const_val = dynamic_cast<ConstantValue*>(ret_val)) {
|
||||
auto li_instr = std::make_unique<MachineInstr>(RVOpcodes::LI);
|
||||
li_instr->addOperand(std::make_unique<RegOperand>(PhysicalReg::A0));
|
||||
@ -435,36 +595,121 @@ void RISCv64ISel::selectNode(DAGNode* node) {
|
||||
CurMBB->addInstruction(std::move(mv_instr));
|
||||
}
|
||||
}
|
||||
// [V1设计保留] 函数尾声(epilogue)不由RETURN节点生成,
|
||||
// 而是由后续的AsmPrinter或其它Pass统一处理,这是一种常见且有效的模块化设计。
|
||||
auto ret_mi = std::make_unique<MachineInstr>(RVOpcodes::RET);
|
||||
CurMBB->addInstruction(std::move(ret_mi));
|
||||
break;
|
||||
}
|
||||
|
||||
case DAGNode::BRANCH: {
|
||||
if (auto cond_br = dynamic_cast<CondBrInst*>(node->value)) {
|
||||
// 处理条件分支
|
||||
if (auto cond_br = dynamic_cast<CondBrInst*>(node->value)) {
|
||||
Value* condition = cond_br->getCondition();
|
||||
auto then_bb_name = cond_br->getThenBlock()->getName();
|
||||
auto else_bb_name = cond_br->getElseBlock()->getName();
|
||||
|
||||
// [优化] 检查分支条件是否为编译期常量
|
||||
if (auto const_cond = dynamic_cast<ConstantValue*>(condition)) {
|
||||
// 如果条件是常量,直接生成一个无条件跳转J,而不是BNE
|
||||
if (const_cond->getInt() != 0) { // 条件为 true
|
||||
auto j_instr = std::make_unique<MachineInstr>(RVOpcodes::J);
|
||||
j_instr->addOperand(std::make_unique<LabelOperand>(then_bb_name));
|
||||
CurMBB->addInstruction(std::move(j_instr));
|
||||
} else { // 条件为 false
|
||||
auto j_instr = std::make_unique<MachineInstr>(RVOpcodes::J);
|
||||
j_instr->addOperand(std::make_unique<LabelOperand>(else_bb_name));
|
||||
CurMBB->addInstruction(std::move(j_instr));
|
||||
}
|
||||
}
|
||||
// 如果条件不是常量,则执行标准流程
|
||||
else {
|
||||
// [修复] 为条件变量生成加载指令(如果它是常量的话,尽管上面已经处理了)
|
||||
// 这一步是为了逻辑完整,以防有其他类型的常量没有被捕获
|
||||
if (auto const_val = dynamic_cast<ConstantValue*>(condition)) {
|
||||
auto li = std::make_unique<MachineInstr>(RVOpcodes::LI);
|
||||
li->addOperand(std::make_unique<RegOperand>(getVReg(const_val)));
|
||||
li->addOperand(std::make_unique<ImmOperand>(const_val->getInt()));
|
||||
CurMBB->addInstruction(std::move(li));
|
||||
}
|
||||
|
||||
auto cond_vreg = getVReg(condition);
|
||||
|
||||
// 生成 bne cond, zero, then_label (如果cond不为0,则跳转到then)
|
||||
auto br_instr = std::make_unique<MachineInstr>(RVOpcodes::BNE);
|
||||
br_instr->addOperand(std::make_unique<RegOperand>(getVReg(cond_br->getCondition())));
|
||||
br_instr->addOperand(std::make_unique<RegOperand>(cond_vreg));
|
||||
br_instr->addOperand(std::make_unique<RegOperand>(PhysicalReg::ZERO));
|
||||
br_instr->addOperand(std::make_unique<LabelOperand>(cond_br->getThenBlock()->getName()));
|
||||
br_instr->addOperand(std::make_unique<LabelOperand>(then_bb_name));
|
||||
CurMBB->addInstruction(std::move(br_instr));
|
||||
} else if (auto uncond_br = dynamic_cast<UncondBrInst*>(node->value)) {
|
||||
|
||||
// 为else分支生成无条件跳转 (后续Pass可以优化掉不必要的跳转)
|
||||
auto j_instr = std::make_unique<MachineInstr>(RVOpcodes::J);
|
||||
j_instr->addOperand(std::make_unique<LabelOperand>(uncond_br->getBlock()->getName()));
|
||||
j_instr->addOperand(std::make_unique<LabelOperand>(else_bb_name));
|
||||
CurMBB->addInstruction(std::move(j_instr));
|
||||
}
|
||||
break;
|
||||
}
|
||||
// 处理无条件分支
|
||||
else if (auto uncond_br = dynamic_cast<UncondBrInst*>(node->value)) {
|
||||
auto j_instr = std::make_unique<MachineInstr>(RVOpcodes::J);
|
||||
j_instr->addOperand(std::make_unique<LabelOperand>(uncond_br->getBlock()->getName()));
|
||||
CurMBB->addInstruction(std::move(j_instr));
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
case DAGNode::MEMSET: {
|
||||
// [V1设计保留] Memset的核心展开逻辑在虚拟寄存器层面是正确的,无需修改。
|
||||
// 之前的bug是由于其输入(地址、值、大小)的虚拟寄存器未被正确初始化。
|
||||
// 在修复了CONSTANT/ALLOCA_ADDR的加载问题后,此处的逻辑现在可以正常工作。
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << "[DEBUG] selectNode-MEMSET: Processing MEMSET node." << std::endl;
|
||||
}
|
||||
auto memset = dynamic_cast<MemsetInst*>(node->value);
|
||||
Value* val_to_set = memset->getValue();
|
||||
Value* size_to_set = memset->getSize();
|
||||
Value* ptr_val = memset->getPointer();
|
||||
auto dest_addr_vreg = getVReg(ptr_val);
|
||||
|
||||
if (auto const_val = dynamic_cast<ConstantValue*>(val_to_set)) {
|
||||
if (DEBUG) {
|
||||
std::cout << "[DEBUG] selectNode-MEMSET: Found constant 'value' operand (" << const_val->getInt() << "). Generating LI." << std::endl;
|
||||
}
|
||||
auto li = std::make_unique<MachineInstr>(RVOpcodes::LI);
|
||||
li->addOperand(std::make_unique<RegOperand>(getVReg(const_val)));
|
||||
li->addOperand(std::make_unique<ImmOperand>(const_val->getInt()));
|
||||
CurMBB->addInstruction(std::move(li));
|
||||
}
|
||||
if (auto const_size = dynamic_cast<ConstantValue*>(size_to_set)) {
|
||||
if (DEBUG) {
|
||||
std::cout << "[DEBUG] selectNode-MEMSET: Found constant 'size' operand (" << const_size->getInt() << "). Generating LI." << std::endl;
|
||||
}
|
||||
auto li = std::make_unique<MachineInstr>(RVOpcodes::LI);
|
||||
li->addOperand(std::make_unique<RegOperand>(getVReg(const_size)));
|
||||
li->addOperand(std::make_unique<ImmOperand>(const_size->getInt()));
|
||||
CurMBB->addInstruction(std::move(li));
|
||||
}
|
||||
if (auto alloca = dynamic_cast<AllocaInst*>(ptr_val)) {
|
||||
if (DEBUG) {
|
||||
std::cout << "[DEBUG] selectNode-MEMSET: Found 'pointer' operand is an AllocaInst. Generating FRAME_ADDR." << std::endl;
|
||||
}
|
||||
// 生成新的伪指令来获取栈地址
|
||||
auto instr = std::make_unique<MachineInstr>(RVOpcodes::FRAME_ADDR);
|
||||
instr->addOperand(std::make_unique<RegOperand>(dest_addr_vreg)); // 目标虚拟寄存器
|
||||
instr->addOperand(std::make_unique<RegOperand>(getVReg(alloca))); // 源AllocaInst
|
||||
CurMBB->addInstruction(std::move(instr));
|
||||
}
|
||||
auto r_dest_addr = getVReg(memset->getPointer());
|
||||
auto r_num_bytes = getVReg(memset->getSize());
|
||||
auto r_value_byte = getVReg(memset->getValue());
|
||||
|
||||
// 为memset内部逻辑创建新的临时虚拟寄存器
|
||||
auto r_counter = getNewVReg();
|
||||
auto r_end_addr = getNewVReg();
|
||||
auto r_current_addr = getNewVReg();
|
||||
auto r_temp_val = getNewVReg();
|
||||
|
||||
// 定义一系列lambda表达式来简化指令创建
|
||||
auto add_instr = [&](RVOpcodes op, unsigned rd, unsigned rs1, unsigned rs2) {
|
||||
auto i = std::make_unique<MachineInstr>(op);
|
||||
i->addOperand(std::make_unique<RegOperand>(rd));
|
||||
@ -503,12 +748,14 @@ void RISCv64ISel::selectNode(DAGNode* node) {
|
||||
CurMBB->addInstruction(std::move(i));
|
||||
};
|
||||
|
||||
// 生成唯一的循环标签
|
||||
int unique_id = this->local_label_counter++;
|
||||
std::string loop_start_label = MFunc->getName() + "_memset_loop_start_" + std::to_string(unique_id);
|
||||
std::string loop_end_label = MFunc->getName() + "_memset_loop_end_" + std::to_string(unique_id);
|
||||
std::string remainder_label = MFunc->getName() + "_memset_remainder_" + std::to_string(unique_id);
|
||||
std::string done_label = MFunc->getName() + "_memset_done_" + std::to_string(unique_id);
|
||||
|
||||
// 构造64位的填充值
|
||||
addi_instr(RVOpcodes::ANDI, r_temp_val, r_value_byte, 255);
|
||||
addi_instr(RVOpcodes::SLLI, r_value_byte, r_temp_val, 8);
|
||||
add_instr(RVOpcodes::OR, r_temp_val, r_temp_val, r_value_byte);
|
||||
@ -516,6 +763,8 @@ void RISCv64ISel::selectNode(DAGNode* node) {
|
||||
add_instr(RVOpcodes::OR, r_temp_val, r_temp_val, r_value_byte);
|
||||
addi_instr(RVOpcodes::SLLI, r_value_byte, r_temp_val, 32);
|
||||
add_instr(RVOpcodes::OR, r_temp_val, r_temp_val, r_value_byte);
|
||||
|
||||
// 计算循环边界
|
||||
add_instr(RVOpcodes::ADD, r_end_addr, r_dest_addr, r_num_bytes);
|
||||
auto mv = std::make_unique<MachineInstr>(RVOpcodes::MV);
|
||||
mv->addOperand(std::make_unique<RegOperand>(r_current_addr));
|
||||
@ -523,17 +772,22 @@ void RISCv64ISel::selectNode(DAGNode* node) {
|
||||
CurMBB->addInstruction(std::move(mv));
|
||||
addi_instr(RVOpcodes::ANDI, r_counter, r_num_bytes, -8);
|
||||
add_instr(RVOpcodes::ADD, r_counter, r_dest_addr, r_counter);
|
||||
|
||||
// 8字节主循环
|
||||
label_instr(loop_start_label);
|
||||
branch_instr(RVOpcodes::BGEU, r_current_addr, r_counter, loop_end_label);
|
||||
store_instr(RVOpcodes::SD, r_temp_val, r_current_addr, 0);
|
||||
addi_instr(RVOpcodes::ADDI, r_current_addr, r_current_addr, 8);
|
||||
jump_instr(loop_start_label);
|
||||
|
||||
// 1字节收尾循环
|
||||
label_instr(loop_end_label);
|
||||
label_instr(remainder_label);
|
||||
branch_instr(RVOpcodes::BGEU, r_current_addr, r_end_addr, done_label);
|
||||
store_instr(RVOpcodes::SB, r_temp_val, r_current_addr, 0);
|
||||
addi_instr(RVOpcodes::ADDI, r_current_addr, r_current_addr, 1);
|
||||
jump_instr(remainder_label);
|
||||
|
||||
label_instr(done_label);
|
||||
break;
|
||||
}
|
||||
@ -590,6 +844,12 @@ std::vector<std::unique_ptr<RISCv64ISel::DAGNode>> RISCv64ISel::build_dag(BasicB
|
||||
memset_node->operands.push_back(get_operand_node(memset->getBegin(), value_to_node, nodes_storage));
|
||||
memset_node->operands.push_back(get_operand_node(memset->getSize(), value_to_node, nodes_storage));
|
||||
memset_node->operands.push_back(get_operand_node(memset->getValue(), value_to_node, nodes_storage));
|
||||
if (DEBUG) {
|
||||
std::cout << "[DEBUG] build_dag: Created MEMSET node for: " << memset->getName() << std::endl;
|
||||
for (size_t i = 0; i < memset_node->operands.size(); ++i) {
|
||||
std::cout << " -> Operand " << i << " has kind: " << memset_node->operands[i]->kind << std::endl;
|
||||
}
|
||||
}
|
||||
} else if (auto load = dynamic_cast<LoadInst*>(inst)) {
|
||||
auto load_node = create_node(DAGNode::LOAD, load, value_to_node, nodes_storage);
|
||||
load_node->operands.push_back(get_operand_node(load->getPointer(), value_to_node, nodes_storage));
|
||||
@ -632,4 +892,98 @@ std::vector<std::unique_ptr<RISCv64ISel::DAGNode>> RISCv64ISel::build_dag(BasicB
|
||||
return nodes_storage;
|
||||
}
|
||||
|
||||
// [新] 打印DAG图以供调试的辅助函数
|
||||
void RISCv64ISel::print_dag(const std::vector<std::unique_ptr<DAGNode>>& dag, const std::string& bb_name) {
|
||||
// 检查是否有DEBUG宏或者全局变量,避免在非调试模式下打印
|
||||
// if (!DEBUG) return;
|
||||
|
||||
std::cerr << "=== DAG for Basic Block: " << bb_name << " ===\n";
|
||||
std::set<DAGNode*> visited;
|
||||
|
||||
// 为节点分配临时ID,方便阅读
|
||||
std::map<DAGNode*, int> node_to_id;
|
||||
int current_id = 0;
|
||||
for (const auto& node_ptr : dag) {
|
||||
node_to_id[node_ptr.get()] = current_id++;
|
||||
}
|
||||
|
||||
// 将NodeKind枚举转换为字符串的辅助函数
|
||||
auto get_kind_string = [](DAGNode::NodeKind kind) {
|
||||
switch (kind) {
|
||||
case DAGNode::CONSTANT: return "CONSTANT";
|
||||
case DAGNode::LOAD: return "LOAD";
|
||||
case DAGNode::STORE: return "STORE";
|
||||
case DAGNode::BINARY: return "BINARY";
|
||||
case DAGNode::CALL: return "CALL";
|
||||
case DAGNode::RETURN: return "RETURN";
|
||||
case DAGNode::BRANCH: return "BRANCH";
|
||||
case DAGNode::ALLOCA_ADDR: return "ALLOCA_ADDR";
|
||||
case DAGNode::UNARY: return "UNARY";
|
||||
case DAGNode::MEMSET: return "MEMSET";
|
||||
default: return "UNKNOWN";
|
||||
}
|
||||
};
|
||||
|
||||
// 递归打印节点的lambda表达式
|
||||
std::function<void(DAGNode*, int)> print_node =
|
||||
[&](DAGNode* node, int indent) {
|
||||
if (!node) return;
|
||||
|
||||
std::string current_indent(indent, ' ');
|
||||
int node_id = node_to_id.count(node) ? node_to_id[node] : -1;
|
||||
|
||||
std::cerr << current_indent << "Node#" << node_id << ": " << get_kind_string(node->kind);
|
||||
|
||||
// 尝试打印关联的虚拟寄存器
|
||||
if (node->value && vreg_map.count(node->value)) {
|
||||
std::cerr << " (vreg: %vreg" << vreg_map.at(node->value) << ")";
|
||||
}
|
||||
|
||||
// 打印关联的IR Value信息
|
||||
if (node->value) {
|
||||
std::cerr << " [";
|
||||
if (auto inst = dynamic_cast<Instruction*>(node->value)) {
|
||||
std::cerr << inst->getKindString();
|
||||
if (!inst->getName().empty()) {
|
||||
std::cerr << "(" << inst->getName() << ")";
|
||||
}
|
||||
} else if (auto constant = dynamic_cast<ConstantValue*>(node->value)) {
|
||||
std::cerr << "Const(" << constant->getInt() << ")";
|
||||
} else if (auto global = dynamic_cast<GlobalValue*>(node->value)) {
|
||||
std::cerr << "Global(" << global->getName() << ")";
|
||||
} else if (auto alloca = dynamic_cast<AllocaInst*>(node->value)) {
|
||||
std::cerr << "Alloca(" << alloca->getName() << ")";
|
||||
}
|
||||
std::cerr << "]";
|
||||
}
|
||||
std::cerr << "\n";
|
||||
|
||||
if (visited.count(node)) {
|
||||
std::cerr << current_indent << " (已打印过子节点)\n";
|
||||
return;
|
||||
}
|
||||
visited.insert(node);
|
||||
|
||||
if (!node->operands.empty()) {
|
||||
std::cerr << current_indent << " Operands:\n";
|
||||
for (auto operand : node->operands) {
|
||||
print_node(operand, indent + 4);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// 从根节点(没有用户的节点,或有副作用的节点)开始打印
|
||||
for (const auto& node_ptr : dag) {
|
||||
if (node_ptr->users.empty() ||
|
||||
node_ptr->kind == DAGNode::STORE ||
|
||||
node_ptr->kind == DAGNode::RETURN ||
|
||||
node_ptr->kind == DAGNode::BRANCH ||
|
||||
node_ptr->kind == DAGNode::MEMSET)
|
||||
{
|
||||
print_node(node_ptr.get(), 0);
|
||||
}
|
||||
}
|
||||
std::cerr << "======================================\n\n";
|
||||
}
|
||||
|
||||
} // namespace sysy
|
||||
@ -27,7 +27,8 @@ void RISCv64RegAlloc::run() {
|
||||
|
||||
void RISCv64RegAlloc::eliminateFrameIndices() {
|
||||
StackFrameInfo& frame_info = MFunc->getFrameInfo();
|
||||
int current_offset = 0;
|
||||
int current_offset = 20; // 这里写20是为了在$s0和第一个变量之间留出20字节的安全区,
|
||||
// 以防止一些函数调用方面的恶性bug。
|
||||
Function* F = MFunc->getFunc();
|
||||
RISCv64ISel* isel = MFunc->getISel();
|
||||
|
||||
@ -94,6 +95,18 @@ void RISCv64RegAlloc::eliminateFrameIndices() {
|
||||
std::make_unique<RegOperand>(addr_vreg),
|
||||
std::make_unique<ImmOperand>(0)));
|
||||
new_instructions.push_back(std::move(sw));
|
||||
} else if (instr_ptr->getOpcode() == RVOpcodes::FRAME_ADDR) { // [新] 处理FRAME_ADDR
|
||||
auto& operands = instr_ptr->getOperands();
|
||||
unsigned dest_vreg = static_cast<RegOperand*>(operands[0].get())->getVRegNum();
|
||||
unsigned alloca_vreg = static_cast<RegOperand*>(operands[1].get())->getVRegNum();
|
||||
int offset = frame_info.alloca_offsets.at(alloca_vreg);
|
||||
|
||||
// 将 `frame_addr rd, rs` 展开为 `addi rd, s0, offset`
|
||||
auto addi = std::make_unique<MachineInstr>(RVOpcodes::ADDI);
|
||||
addi->addOperand(std::make_unique<RegOperand>(dest_vreg));
|
||||
addi->addOperand(std::make_unique<RegOperand>(PhysicalReg::S0)); // 基地址是帧指针 s0
|
||||
addi->addOperand(std::make_unique<ImmOperand>(offset));
|
||||
new_instructions.push_back(std::move(addi));
|
||||
} else {
|
||||
new_instructions.push_back(std::move(instr_ptr));
|
||||
}
|
||||
|
||||
@ -4,20 +4,23 @@
|
||||
#include "RISCv64LLIR.h"
|
||||
#include <iostream>
|
||||
|
||||
extern int DEBUG;
|
||||
extern int DEEPDEBUG;
|
||||
|
||||
namespace sysy {
|
||||
|
||||
class RISCv64AsmPrinter {
|
||||
public:
|
||||
RISCv64AsmPrinter(MachineFunction* mfunc);
|
||||
// 主入口
|
||||
void run(std::ostream& os);
|
||||
void run(std::ostream& os, bool debug = false);
|
||||
|
||||
private:
|
||||
// 打印各个部分
|
||||
void printPrologue();
|
||||
void printEpilogue();
|
||||
void printBasicBlock(MachineBasicBlock* mbb);
|
||||
void printInstruction(MachineInstr* instr);
|
||||
void printBasicBlock(MachineBasicBlock* mbb, bool debug = false);
|
||||
void printInstruction(MachineInstr* instr, bool debug = false);
|
||||
|
||||
// 辅助函数
|
||||
std::string regToString(PhysicalReg reg);
|
||||
|
||||
@ -4,6 +4,9 @@
|
||||
#include "IR.h"
|
||||
#include <string>
|
||||
|
||||
extern int DEBUG;
|
||||
extern int DEEPDEBUG;
|
||||
|
||||
namespace sysy {
|
||||
|
||||
// RISCv64CodeGen 现在是一个高层驱动器
|
||||
|
||||
@ -3,6 +3,9 @@
|
||||
|
||||
#include "RISCv64LLIR.h"
|
||||
|
||||
extern int DEBUG;
|
||||
extern int DEEPDEBUG;
|
||||
|
||||
namespace sysy {
|
||||
|
||||
class RISCv64ISel {
|
||||
@ -31,6 +34,8 @@ private:
|
||||
DAGNode* get_operand_node(Value* val_ir, std::map<Value*, DAGNode*>&, std::vector<std::unique_ptr<DAGNode>>&);
|
||||
DAGNode* create_node(int kind, Value* val, std::map<Value*, DAGNode*>&, std::vector<std::unique_ptr<DAGNode>>&);
|
||||
|
||||
void print_dag(const std::vector<std::unique_ptr<DAGNode>>& dag, const std::string& bb_name);
|
||||
|
||||
// 状态
|
||||
Function* F; // 当前处理的高层IR函数
|
||||
std::unique_ptr<MachineFunction> MFunc; // 正在构建的底层LLIR函数
|
||||
|
||||
@ -46,6 +46,7 @@ enum class RVOpcodes {
|
||||
// 新增伪指令,用于解耦栈帧处理
|
||||
FRAME_LOAD, // 从栈帧加载 (AllocaInst)
|
||||
FRAME_STORE, // 保存到栈帧 (AllocaInst)
|
||||
FRAME_ADDR, // [新] 获取栈帧变量的地址
|
||||
};
|
||||
|
||||
class MachineOperand;
|
||||
|
||||
@ -216,7 +216,7 @@ int main(int argc, char **argv) {
|
||||
// 设置 DEBUG 模式(如果指定了 'asmd')
|
||||
if (argStopAfter == "asmd") {
|
||||
DEBUG = 1;
|
||||
// DEEPDEBUG = 1;
|
||||
DEEPDEBUG = 1;
|
||||
}
|
||||
sysy::RISCv64CodeGen codegen(moduleIR); // 传入优化后的 moduleIR
|
||||
string asmCode = codegen.code_gen();
|
||||
|
||||
227
test_script/runit-riscv64-single.sh
Normal file
227
test_script/runit-riscv64-single.sh
Normal file
@ -0,0 +1,227 @@
|
||||
#!/bin/bash
|
||||
|
||||
# runit-riscv64-single.sh - 用于在 RISC-V 虚拟机内部测试单个或少量 .s 文件的脚本
|
||||
# 模仿 runit-riscv64.sh 的功能,但以具体文件路径作为输入。
|
||||
|
||||
# --- 配置区 ---
|
||||
# 假设此脚本位于项目根目录 (例如 /home/ubuntu/debug)
|
||||
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" &>/dev/null && pwd)"
|
||||
LIB_DIR="${SCRIPT_DIR}/lib"
|
||||
TMP_DIR="${SCRIPT_DIR}/tmp" # 临时可执行文件将存放在这里
|
||||
TESTDATA_DIR="${SCRIPT_DIR}/testdata" # 用于查找 .in/.out 文件
|
||||
|
||||
# 定义编译器
|
||||
GCC_NATIVE="gcc" # VM 内部的原生 gcc
|
||||
|
||||
# --- 初始化变量 ---
|
||||
GCC_TIMEOUT=10 # gcc 编译超时 (秒)
|
||||
EXEC_TIMEOUT=5 # 程序自动化执行超时 (秒)
|
||||
MAX_OUTPUT_LINES=50 # 对比失败时显示的最大行数
|
||||
S_FILES=() # 存储用户提供的 .s 文件列表
|
||||
PASSED_CASES=0
|
||||
FAILED_CASES_LIST=""
|
||||
|
||||
# --- 函数定义 ---
|
||||
show_help() {
|
||||
echo "用法: $0 [文件1.s] [文件2.s] ... [选项]"
|
||||
echo "在 VM 内部编译并测试指定的 .s 文件。"
|
||||
echo ""
|
||||
echo "如果找到对应的 .in/.out 文件,则进行自动化测试。否则,进入交互模式。"
|
||||
echo ""
|
||||
echo "选项:"
|
||||
echo " -ct N 设置 gcc 编译超时为 N 秒 (默认: 10)。"
|
||||
echo " -t N 设置程序自动化执行超时为 N 秒 (默认: 5)。"
|
||||
echo " -ml N, --max-lines N 当输出对比失败时,最多显示 N 行内容 (默认: 50)。"
|
||||
echo " -h, --help 显示此帮助信息并退出。"
|
||||
}
|
||||
|
||||
# 显示文件内容并根据行数截断的函数
|
||||
display_file_content() {
|
||||
local file_path="$1"
|
||||
local title="$2"
|
||||
local max_lines="$3"
|
||||
|
||||
if [ ! -f "$file_path" ]; then
|
||||
return
|
||||
fi
|
||||
|
||||
echo -e "$title"
|
||||
local line_count
|
||||
line_count=$(wc -l < "$file_path")
|
||||
|
||||
if [ "$line_count" -gt "$max_lines" ]; then
|
||||
head -n "$max_lines" "$file_path"
|
||||
echo -e "\e[33m[... 输出已截断,共 ${line_count} 行 ...]\e[0m"
|
||||
else
|
||||
cat "$file_path"
|
||||
fi
|
||||
}
|
||||
|
||||
# --- 参数解析 ---
|
||||
# 从参数中分离出 .s 文件和选项
|
||||
for arg in "$@"; do
|
||||
case "$arg" in
|
||||
-ct|-t|-ml|--max-lines)
|
||||
# 选项和其值将在下一个循环中处理
|
||||
;;
|
||||
-h|--help)
|
||||
show_help
|
||||
exit 0
|
||||
;;
|
||||
-*)
|
||||
# 检查是否是带值的选项
|
||||
if ! [[ ${args_processed+x} ]]; then
|
||||
args_processed=true # 标记已处理过参数
|
||||
while [[ "$#" -gt 0 ]]; do
|
||||
case "$1" in
|
||||
-ct) if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then GCC_TIMEOUT="$2"; shift; else echo "错误: -ct 需要一个正整数参数。" >&2; exit 1; fi ;;
|
||||
-t) if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then EXEC_TIMEOUT="$2"; shift; else echo "错误: -t 需要一个正整数参数。" >&2; exit 1; fi ;;
|
||||
-ml|--max-lines) if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then MAX_OUTPUT_LINES="$2"; shift; else echo "错误: --max-lines 需要一个正整数参数。" >&2; exit 1; fi ;;
|
||||
*.s) S_FILES+=("$1") ;;
|
||||
*) if ! [[ "$1" =~ ^[0-9]+$ ]]; then echo "未知选项或无效文件: $1"; show_help; exit 1; fi ;;
|
||||
esac
|
||||
shift
|
||||
done
|
||||
fi
|
||||
;;
|
||||
*.s)
|
||||
if [[ -f "$arg" ]]; then
|
||||
S_FILES+=("$arg")
|
||||
else
|
||||
echo "警告: 文件不存在,已忽略: $arg"
|
||||
fi
|
||||
;;
|
||||
esac
|
||||
done
|
||||
|
||||
# --- 主逻辑开始 ---
|
||||
if [ ${#S_FILES[@]} -eq 0 ]; then
|
||||
echo "错误: 未提供任何 .s 文件作为输入。"
|
||||
show_help
|
||||
exit 1
|
||||
fi
|
||||
|
||||
mkdir -p "${TMP_DIR}"
|
||||
TOTAL_CASES=${#S_FILES[@]}
|
||||
|
||||
echo "SysY VM 内单例测试运行器启动..."
|
||||
echo "超时设置: gcc=${GCC_TIMEOUT}s, 运行=${EXEC_TIMEOUT}s"
|
||||
echo "失败输出最大行数: ${MAX_OUTPUT_LINES}"
|
||||
echo ""
|
||||
|
||||
for s_file in "${S_FILES[@]}"; do
|
||||
is_passed=1
|
||||
|
||||
# 从 .s 文件名反向推导原始测试用例路径
|
||||
base_name_from_s_file=$(basename "$s_file" .s)
|
||||
original_test_name_underscored=$(echo "$base_name_from_s_file" | sed 's/_sysyc_riscv64$//')
|
||||
category=$(echo "$original_test_name_underscored" | cut -d'_' -f1)
|
||||
test_file_base=$(echo "$original_test_name_underscored" | cut -d'_' -f2-)
|
||||
original_relative_path="${category}/${test_file_base}"
|
||||
|
||||
executable_file="${TMP_DIR}/${base_name_from_s_file}"
|
||||
input_file="${TESTDATA_DIR}/${original_relative_path}.in"
|
||||
output_reference_file="${TESTDATA_DIR}/${original_relative_path}.out"
|
||||
output_actual_file="${TMP_DIR}/${base_name_from_s_file}.actual_out"
|
||||
|
||||
echo "======================================================================"
|
||||
echo "正在处理: ${s_file}"
|
||||
echo " (关联测试用例: ${original_relative_path}.sy)"
|
||||
|
||||
# 步骤 1: GCC 编译
|
||||
echo " 使用 gcc 编译 (超时 ${GCC_TIMEOUT}s)..."
|
||||
timeout -s KILL ${GCC_TIMEOUT} "${GCC_NATIVE}" "${s_file}" -o "${executable_file}" -L"${LIB_DIR}" -lsysy_riscv -static -g
|
||||
if [ $? -ne 0 ]; then
|
||||
echo -e "\e[31m错误: GCC 编译失败或超时。\e[0m"
|
||||
is_passed=0
|
||||
fi
|
||||
|
||||
# 步骤 2: 执行与测试
|
||||
if [ "$is_passed" -eq 1 ]; then
|
||||
# 检查是自动化测试还是交互模式
|
||||
if [ -f "${input_file}" ] || [ -f "${output_reference_file}" ]; then
|
||||
# --- 自动化测试模式 ---
|
||||
echo " 检测到 .in/.out 文件,进入自动化测试模式..."
|
||||
echo " 正在执行 (超时 ${EXEC_TIMEOUT}s)..."
|
||||
|
||||
exec_cmd="\"${executable_file}\""
|
||||
[ -f "${input_file}" ] && exec_cmd+=" < \"${input_file}\""
|
||||
exec_cmd+=" > \"${output_actual_file}\""
|
||||
|
||||
eval "timeout -s KILL ${EXEC_TIMEOUT} ${exec_cmd}"
|
||||
ACTUAL_RETURN_CODE=$?
|
||||
|
||||
if [ "$ACTUAL_RETURN_CODE" -eq 124 ]; then
|
||||
echo -e "\e[31m 执行超时。\e[0m"
|
||||
is_passed=0
|
||||
else
|
||||
if [ -f "${output_reference_file}" ]; then
|
||||
LAST_LINE_TRIMMED=$(tail -n 1 "${output_reference_file}" | tr -d '[:space:]')
|
||||
if [[ "$LAST_LINE_TRIMMED" =~ ^[-+]?[0-9]+$ ]]; then
|
||||
EXPECTED_RETURN_CODE="$LAST_LINE_TRIMMED"
|
||||
EXPECTED_STDOUT_FILE="${TMP_DIR}/${base_name_from_s_file}.expected_stdout"
|
||||
head -n -1 "${output_reference_file}" > "${EXPECTED_STDOUT_FILE}"
|
||||
if [ "$ACTUAL_RETURN_CODE" -ne "$EXPECTED_RETURN_CODE" ]; then echo -e "\e[31m 返回码测试失败: 期望 ${EXPECTED_RETURN_CODE}, 实际 ${ACTUAL_RETURN_CODE}\e[0m"; is_passed=0; fi
|
||||
if ! diff -q <(sed ':a;N;$!ba;s/\n*$//' "${output_actual_file}") <(sed ':a;N;$!ba;s/\n*$//' "${EXPECTED_STDOUT_FILE}") >/dev/null 2>&1; then
|
||||
echo -e "\e[31m 标准输出测试失败。\e[0m"; is_passed=0
|
||||
display_file_content "${EXPECTED_STDOUT_FILE}" " \e[36m--- 期望输出 ---\e[0m" "${MAX_OUTPUT_LINES}"
|
||||
display_file_content "${output_actual_file}" " \e[36m--- 实际输出 ---\e[0m" "${MAX_OUTPUT_LINES}"
|
||||
echo -e " \e[36m----------------\e[0m"
|
||||
fi
|
||||
else
|
||||
if ! diff -q <(sed ':a;N;$!ba;s/\n*$//' "${output_actual_file}") <(sed ':a;N;$!ba;s/\n*$//' "${output_reference_file}") >/dev/null 2>&1; then
|
||||
echo -e "\e[32m 标准输出测试成功。\e[0m"
|
||||
else
|
||||
echo -e "\e[31m 标准输出测试失败。\e[0m"; is_passed=0
|
||||
display_file_content "${output_reference_file}" " \e[36m--- 期望输出 ---\e[0m" "${MAX_OUTPUT_LINES}"
|
||||
display_file_content "${output_actual_file}" " \e[36m--- 实际输出 ---\e[0m" "${MAX_OUTPUT_LINES}"
|
||||
echo -e " \e[36m----------------\e[0m"
|
||||
fi
|
||||
fi
|
||||
else
|
||||
echo " 无参考输出文件。程序返回码: ${ACTUAL_RETURN_CODE}"
|
||||
fi
|
||||
fi
|
||||
else
|
||||
# --- 交互模式 ---
|
||||
echo -e "\e[33m"
|
||||
echo " **********************************************************"
|
||||
echo " ** 未找到 .in 或 .out 文件,进入交互模式。 **"
|
||||
echo " ** 程序即将运行,你可以直接在终端中输入。 **"
|
||||
echo " ** 按下 Ctrl+D (EOF) 或以其他方式结束程序以继续。 **"
|
||||
echo " **********************************************************"
|
||||
echo -e "\e[0m"
|
||||
"${executable_file}"
|
||||
INTERACTIVE_RET_CODE=$?
|
||||
echo -e "\e[33m\n 交互模式执行完毕,程序返回码: ${INTERACTIVE_RET_CODE}\e[0m"
|
||||
echo " 注意: 交互模式的结果未经验证。"
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ "$is_passed" -eq 1 ]; then
|
||||
echo -e "\e[32m状态: 通过\e[0m"
|
||||
((PASSED_CASES++))
|
||||
else
|
||||
echo -e "\e[31m状态: 失败\e[0m"
|
||||
FAILED_CASES_LIST+="${original_relative_path}.sy\n"
|
||||
fi
|
||||
done
|
||||
|
||||
# --- 打印最终总结 ---
|
||||
echo "======================================================================"
|
||||
echo "所有测试完成"
|
||||
echo "测试通过率: [${PASSED_CASES}/${TOTAL_CASES}]"
|
||||
|
||||
if [ -n "$FAILED_CASES_LIST" ]; then
|
||||
echo ""
|
||||
echo -e "\e[31m未通过的测例:\e[0m"
|
||||
echo -e "${FAILED_CASES_LIST}"
|
||||
fi
|
||||
|
||||
echo "======================================================================"
|
||||
|
||||
if [ "$PASSED_CASES" -eq "$TOTAL_CASES" ]; then
|
||||
exit 0
|
||||
else
|
||||
exit 1
|
||||
fi
|
||||
@ -1,16 +1,8 @@
|
||||
#!/bin/bash
|
||||
|
||||
# run_vm_tests.sh - 用于在 RISC-V 虚拟机内部汇编、链接和测试 SysY 程序的脚本
|
||||
# runit-riscv64.sh - 用于在 RISC-V 虚拟机内部汇编、链接和测试 SysY 程序的脚本
|
||||
# 此脚本应位于您的项目根目录 (例如 /home/ubuntu/debug)
|
||||
# 假设当前运行环境已经是 RISC-V 64 位架构,可以直接执行编译后的程序。
|
||||
# 脚本的目录结构应该为:
|
||||
# .
|
||||
# ├── runit.sh
|
||||
# ├── lib
|
||||
# │ └── libsysy_riscv.a
|
||||
# └── testdata
|
||||
# ├── functional
|
||||
# └── performance
|
||||
|
||||
# 定义相对于脚本位置的目录
|
||||
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" &>/dev/null && pwd)"
|
||||
@ -22,30 +14,47 @@ TESTDATA_DIR="${SCRIPT_DIR}/testdata"
|
||||
GCC_NATIVE="gcc" # VM 内部的 gcc
|
||||
|
||||
# --- 新增功能: 初始化变量 ---
|
||||
TIMEOUT_SECONDS=5 # 默认运行时超时时间为 5 秒
|
||||
COMPILE_TIMEOUT_SECONDS=10 # 默认编译超时时间为 10 秒
|
||||
GCC_TIMEOUT=10 # 默认 gcc 编译超时 (秒)
|
||||
EXEC_TIMEOUT=5 # 默认运行时超时 (秒)
|
||||
MAX_OUTPUT_LINES=50 # 对比失败时显示的最大行数
|
||||
TOTAL_CASES=0
|
||||
PASSED_CASES=0
|
||||
FAILED_CASES_LIST="" # 用于存储未通过的测例列表
|
||||
|
||||
# 显示帮助信息的函数
|
||||
show_help() {
|
||||
echo "用法: $0 [选项]"
|
||||
echo "此脚本用于在 RISC-V 虚拟机内部,对之前生成的 .s 汇编文件进行汇编、链接和测试。"
|
||||
echo "假设当前运行环境已经是 RISC-V 64 位架构,可以直接执行编译后的程序。"
|
||||
echo "测试会按文件名升序进行。"
|
||||
echo ""
|
||||
echo "选项:"
|
||||
echo " -c, --clean 清理 'tmp' 目录下的所有生成文件。"
|
||||
echo " -t, --timeout N 设置每个测试用例的运行时超时为 N 秒 (默认: 5)。"
|
||||
echo " -ct, --compile-timeout M 设置 gcc 编译的超时时间为 M 秒 (默认: 10)。"
|
||||
echo " -ct M 设置 gcc 编译的超时时间为 M 秒 (默认: 10)。"
|
||||
echo " -t N 设置每个测试用例的运行时超时为 N 秒 (默认: 5)。"
|
||||
echo " -ml N, --max-lines N 当输出对比失败时,最多显示 N 行内容 (默认: 50)。"
|
||||
echo " -h, --help 显示此帮助信息并退出。"
|
||||
echo ""
|
||||
echo "执行步骤:"
|
||||
echo "1. 遍历 'tmp/' 目录下的所有 .s 汇编文件。"
|
||||
echo "2. 在指定的超时时间内使用 VM 内部的 gcc 将 .s 文件汇编并链接为可执行文件。"
|
||||
echo "3. 在指定的超时时间内运行编译后的可执行文件。"
|
||||
echo "4. 根据对应的 .out 文件内容进行返回值和/或标准输出的比较。"
|
||||
echo "5. 输出比较时会忽略行尾多余的换行符。"
|
||||
echo "6. 所有测试结束后,报告总通过率。"
|
||||
}
|
||||
|
||||
# 显示文件内容并根据行数截断的函数
|
||||
display_file_content() {
|
||||
local file_path="$1"
|
||||
local title="$2"
|
||||
local max_lines="$3"
|
||||
|
||||
if [ ! -f "$file_path" ]; then
|
||||
return
|
||||
fi
|
||||
|
||||
echo -e "$title"
|
||||
local line_count
|
||||
line_count=$(wc -l < "$file_path")
|
||||
|
||||
if [ "$line_count" -gt "$max_lines" ]; then
|
||||
head -n "$max_lines" "$file_path"
|
||||
echo -e "\e[33m[... 输出已截断,共 ${line_count} 行 ...]\e[0m"
|
||||
else
|
||||
cat "$file_path"
|
||||
fi
|
||||
}
|
||||
|
||||
# 清理临时文件的函数
|
||||
@ -69,23 +78,14 @@ while [[ "$#" -gt 0 ]]; do
|
||||
clean_tmp
|
||||
exit 0
|
||||
;;
|
||||
-t|--timeout)
|
||||
if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then
|
||||
TIMEOUT_SECONDS="$2"
|
||||
shift # 移过参数值
|
||||
else
|
||||
echo "错误: --timeout 需要一个正整数参数。" >&2
|
||||
exit 1
|
||||
fi
|
||||
-t)
|
||||
if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then EXEC_TIMEOUT="$2"; shift; else echo "错误: -t 需要一个正整数参数。" >&2; exit 1; fi
|
||||
;;
|
||||
-ct|--compile-timeout)
|
||||
if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then
|
||||
COMPILE_TIMEOUT_SECONDS="$2"
|
||||
shift # 移过参数值
|
||||
else
|
||||
echo "错误: --compile-timeout 需要一个正整数参数。" >&2
|
||||
exit 1
|
||||
fi
|
||||
-ct)
|
||||
if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then GCC_TIMEOUT="$2"; shift; else echo "错误: -ct 需要一个正整数参数。" >&2; exit 1; fi
|
||||
;;
|
||||
-ml|--max-lines)
|
||||
if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then MAX_OUTPUT_LINES="$2"; shift; else echo "错误: --max-lines 需要一个正整数参数。" >&2; exit 1; fi
|
||||
;;
|
||||
-h|--help)
|
||||
show_help
|
||||
@ -101,32 +101,27 @@ while [[ "$#" -gt 0 ]]; do
|
||||
done
|
||||
|
||||
echo "SysY VM 内部测试运行器启动..."
|
||||
echo "编译超时设置为: ${COMPILE_TIMEOUT_SECONDS} 秒"
|
||||
echo "运行时超时设置为: ${TIMEOUT_SECONDS} 秒"
|
||||
echo "GCC 编译超时设置为: ${GCC_TIMEOUT} 秒"
|
||||
echo "运行时超时设置为: ${EXEC_TIMEOUT} 秒"
|
||||
echo "失败输出最大行数: ${MAX_OUTPUT_LINES}"
|
||||
echo "汇编文件目录: ${TMP_DIR}"
|
||||
echo "库文件目录: ${LIB_DIR}"
|
||||
echo "测试数据目录: ${TESTDATA_DIR}"
|
||||
echo ""
|
||||
|
||||
# 查找 tmp 目录下的所有 .s 汇编文件
|
||||
s_files=$(find "${TMP_DIR}" -maxdepth 1 -name "*.s")
|
||||
# 查找 tmp 目录下的所有 .s 汇编文件并排序
|
||||
s_files=$(find "${TMP_DIR}" -maxdepth 1 -name "*.s" | sort -V)
|
||||
TOTAL_CASES=$(echo "$s_files" | wc -w)
|
||||
|
||||
# 遍历找到的每个 .s 文件
|
||||
echo "$s_files" | while read s_file; do
|
||||
# --- 新增功能: 初始化用例通过状态 ---
|
||||
# 使用 here-string (<<<) 避免子 shell 问题
|
||||
while IFS= read -r s_file; do
|
||||
is_passed=1 # 1 表示通过, 0 表示失败
|
||||
|
||||
# 从 .s 文件名中提取原始的测试用例名称部分
|
||||
base_name_from_s_file=$(basename "$s_file" .s)
|
||||
original_test_name_underscored=$(echo "$base_name_from_s_file" | sed 's/_sysyc_riscv64$//')
|
||||
|
||||
# 将 `original_test_name_underscored` 分割成类别和文件名
|
||||
category=$(echo "$original_test_name_underscored" | cut -d'_' -f1)
|
||||
test_file_base=$(echo "$original_test_name_underscored" | cut -d'_' -f2-)
|
||||
original_relative_path="${category}/${test_file_base}"
|
||||
|
||||
# 定义可执行文件、输入文件、参考输出文件和实际输出文件的路径
|
||||
executable_file="${TMP_DIR}/${base_name_from_s_file}"
|
||||
input_file="${TESTDATA_DIR}/${original_relative_path}.in"
|
||||
output_reference_file="${TESTDATA_DIR}/${original_relative_path}.out"
|
||||
@ -136,42 +131,43 @@ echo "$s_files" | while read s_file; do
|
||||
echo " 对应的测试用例路径: ${original_relative_path}"
|
||||
|
||||
# 步骤 1: 使用 VM 内部的 gcc 编译 .s 到可执行文件
|
||||
echo " 使用 gcc 汇编并链接 (超时 ${COMPILE_TIMEOUT_SECONDS}s)..."
|
||||
# --- 修改点: 为 gcc 增加 timeout ---
|
||||
timeout ${COMPILE_TIMEOUT_SECONDS} "${GCC_NATIVE}" "${s_file}" -o "${executable_file}" -L"${LIB_DIR}" -lsysy_riscv -static -g
|
||||
echo " 使用 gcc 汇编并链接 (超时 ${GCC_TIMEOUT}s)..."
|
||||
timeout -s KILL ${GCC_TIMEOUT} "${GCC_NATIVE}" "${s_file}" -o "${executable_file}" -L"${LIB_DIR}" -lsysy_riscv -static -g
|
||||
GCC_STATUS=$?
|
||||
if [ $GCC_STATUS -eq 124 ]; then
|
||||
echo -e "\e[31m错误: GCC 编译/链接 ${s_file} 超时 (超过 ${COMPILE_TIMEOUT_SECONDS} 秒)\e[0m"
|
||||
echo -e "\e[31m错误: GCC 编译/链接 ${s_file} 超时\e[0m"
|
||||
is_passed=0
|
||||
elif [ $GCC_STATUS -ne 0 ]; then
|
||||
echo -e "\e[31m错误: GCC 汇编/链接 ${s_file} 失败,退出码: ${GCC_STATUS}\e[0m"
|
||||
is_passed=0
|
||||
else
|
||||
fi
|
||||
|
||||
# 步骤 2: 只有当编译成功时才执行
|
||||
if [ "$is_passed" -eq 1 ]; then
|
||||
echo " 生成的可执行文件: ${executable_file}"
|
||||
echo " 正在执行 (超时 ${TIMEOUT_SECONDS}s): \"${executable_file}\""
|
||||
echo " 正在执行 (超时 ${EXEC_TIMEOUT}s)..."
|
||||
|
||||
# 步骤 2: 执行编译后的文件并比较/报告结果
|
||||
if [ -f "${output_reference_file}" ]; then
|
||||
LAST_LINE_TRIMMED=$(tail -n 1 "${output_reference_file}" | tr -d '[:space:]')
|
||||
|
||||
if [[ "$LAST_LINE_TRIMMED" =~ ^[-+]?[0-9]+$ ]]; then
|
||||
EXPECTED_RETURN_CODE="$LAST_LINE_TRIMMED"
|
||||
EXPECTED_STDOUT_FILE="${TMP_DIR}/${base_name_from_s_file}.expected_stdout"
|
||||
head -n -1 "${output_reference_file}" > "${EXPECTED_STDOUT_FILE}"
|
||||
echo " 检测到 .out 文件同时包含标准输出和期望的返回码。"
|
||||
echo " 期望返回码: ${EXPECTED_RETURN_CODE}"
|
||||
exec_cmd="\"${executable_file}\""
|
||||
if [ -f "${input_file}" ]; then
|
||||
exec_cmd+=" < \"${input_file}\""
|
||||
fi
|
||||
exec_cmd+=" > \"${output_actual_file}\""
|
||||
|
||||
eval "timeout -s KILL ${EXEC_TIMEOUT} ${exec_cmd}"
|
||||
ACTUAL_RETURN_CODE=$?
|
||||
|
||||
if [ -f "${input_file}" ]; then
|
||||
timeout ${TIMEOUT_SECONDS} "${executable_file}" < "${input_file}" > "${output_actual_file}"
|
||||
else
|
||||
timeout ${TIMEOUT_SECONDS} "${executable_file}" > "${output_actual_file}"
|
||||
fi
|
||||
ACTUAL_RETURN_CODE=$?
|
||||
if [ "$ACTUAL_RETURN_CODE" -eq 124 ]; then
|
||||
echo -e "\e[31m 执行超时: ${original_relative_path}.sy 运行超过 ${EXEC_TIMEOUT} 秒\e[0m"
|
||||
is_passed=0
|
||||
else
|
||||
if [ -f "${output_reference_file}" ]; then
|
||||
LAST_LINE_TRIMMED=$(tail -n 1 "${output_reference_file}" | tr -d '[:space:]')
|
||||
|
||||
if [[ "$LAST_LINE_TRIMMED" =~ ^[-+]?[0-9]+$ ]]; then
|
||||
EXPECTED_RETURN_CODE="$LAST_LINE_TRIMMED"
|
||||
EXPECTED_STDOUT_FILE="${TMP_DIR}/${base_name_from_s_file}.expected_stdout"
|
||||
head -n -1 "${output_reference_file}" > "${EXPECTED_STDOUT_FILE}"
|
||||
|
||||
if [ "$ACTUAL_RETURN_CODE" -eq 124 ]; then
|
||||
echo -e "\e[31m 执行超时: ${original_relative_path}.sy 运行超过 ${TIMEOUT_SECONDS} 秒\e[0m"
|
||||
is_passed=0
|
||||
else
|
||||
if [ "$ACTUAL_RETURN_CODE" -eq "$EXPECTED_RETURN_CODE" ]; then
|
||||
echo -e "\e[32m 返回码测试成功: (${ACTUAL_RETURN_CODE}) 与期望值 (${EXPECTED_RETURN_CODE}) 匹配\e[0m"
|
||||
else
|
||||
@ -179,65 +175,51 @@ echo "$s_files" | while read s_file; do
|
||||
is_passed=0
|
||||
fi
|
||||
|
||||
if diff -q <(sed ':a;N;$!ba;s/\n*$//' "${output_actual_file}") <(sed ':a;N;$!ba;s/\n*$//' "${EXPECTED_STDOUT_FILE}") >/dev/null 2>&1; then
|
||||
echo -e "\e[32m 标准输出测试成功\e[0m"
|
||||
else
|
||||
if ! diff -q <(sed ':a;N;$!ba;s/\n*$//' "${output_actual_file}") <(sed ':a;N;$!ba;s/\n*$//' "${EXPECTED_STDOUT_FILE}") >/dev/null 2>&1; then
|
||||
echo -e "\e[31m 标准输出测试失败\e[0m"
|
||||
echo " 差异:"
|
||||
diff "${output_actual_file}" "${EXPECTED_STDOUT_FILE}"
|
||||
is_passed=0
|
||||
display_file_content "${EXPECTED_STDOUT_FILE}" " \e[36m---------- 期望输出 ----------\e[0m" "${MAX_OUTPUT_LINES}"
|
||||
display_file_content "${output_actual_file}" " \e[36m---------- 实际输出 ----------\e[0m" "${MAX_OUTPUT_LINES}"
|
||||
echo -e " \e[36m------------------------------\e[0m"
|
||||
fi
|
||||
fi
|
||||
else
|
||||
echo " 检测到 .out 文件为纯标准输出参考。"
|
||||
if [ -f "${input_file}" ]; then
|
||||
timeout ${TIMEOUT_SECONDS} "${executable_file}" < "${input_file}" > "${output_actual_file}"
|
||||
else
|
||||
timeout ${TIMEOUT_SECONDS} "${executable_file}" > "${output_actual_file}"
|
||||
fi
|
||||
EXEC_STATUS=$?
|
||||
|
||||
if [ $EXEC_STATUS -eq 124 ]; then
|
||||
echo -e "\e[31m 执行超时: ${original_relative_path}.sy 运行超过 ${TIMEOUT_SECONDS} 秒\e[0m"
|
||||
is_passed=0
|
||||
else
|
||||
if [ $EXEC_STATUS -ne 0 ]; then
|
||||
echo -e "\e[33m警告: 程序以非零状态 ${EXEC_STATUS} 退出 (纯输出比较模式)。\e[0m"
|
||||
if [ $ACTUAL_RETURN_CODE -ne 0 ]; then
|
||||
echo -e "\e[33m警告: 程序以非零状态 ${ACTUAL_RETURN_CODE} 退出 (纯输出比较模式)。\e[0m"
|
||||
fi
|
||||
if diff -q <(sed ':a;N;$!ba;s/\n*$//' "${output_actual_file}") <(sed ':a;N;$!ba;s/\n*$//' "${output_reference_file}") >/dev/null 2>&1; then
|
||||
if ! diff -q <(sed ':a;N;$!ba;s/\n*$//' "${output_actual_file}") <(sed ':a;N;$!ba;s/\n*$//' "${output_reference_file}") >/dev/null 2>&1; then
|
||||
echo -e "\e[32m 成功: 输出与参考输出匹配\e[0m"
|
||||
else
|
||||
echo -e "\e[31m 失败: 输出不匹配\e[0m"
|
||||
echo " 差异:"
|
||||
diff "${output_actual_file}" "${output_reference_file}"
|
||||
is_passed=0
|
||||
display_file_content "${output_reference_file}" " \e[36m---------- 期望输出 ----------\e[0m" "${MAX_OUTPUT_LINES}"
|
||||
display_file_content "${output_actual_file}" " \e[36m---------- 实际输出 ----------\e[0m" "${MAX_OUTPUT_LINES}"
|
||||
echo -e " \e[36m------------------------------\e[0m"
|
||||
fi
|
||||
fi
|
||||
fi
|
||||
else
|
||||
echo " 未找到 .out 文件。正在运行并报告返回码。"
|
||||
timeout ${TIMEOUT_SECONDS} "${executable_file}"
|
||||
EXEC_STATUS=$?
|
||||
if [ $EXEC_STATUS -eq 124 ]; then
|
||||
echo -e "\e[31m 执行超时: ${original_relative_path}.sy 运行超过 ${TIMEOUT_SECONDS} 秒\e[0m"
|
||||
is_passed=0
|
||||
else
|
||||
echo " ${original_relative_path}.sy 的返回码: ${EXEC_STATUS}"
|
||||
echo " 无参考输出文件。程序返回码: ${ACTUAL_RETURN_CODE}"
|
||||
fi
|
||||
fi
|
||||
fi
|
||||
|
||||
# --- 新增功能: 更新通过用例计数 ---
|
||||
if [ "$is_passed" -eq 1 ]; then
|
||||
((PASSED_CASES++))
|
||||
else
|
||||
FAILED_CASES_LIST+="${original_relative_path}.sy\n"
|
||||
fi
|
||||
echo "" # 为测试用例之间添加一个空行
|
||||
done
|
||||
echo ""
|
||||
done <<< "$s_files"
|
||||
|
||||
# --- 新增功能: 打印最终总结 ---
|
||||
echo "========================================"
|
||||
echo "测试完成"
|
||||
echo "测试通过率: [${PASSED_CASES}/${TOTAL_CASES}]"
|
||||
|
||||
if [ -n "$FAILED_CASES_LIST" ]; then
|
||||
echo ""
|
||||
echo -e "\e[31m未通过的测例:\e[0m"
|
||||
echo -e "${FAILED_CASES_LIST}"
|
||||
fi
|
||||
|
||||
echo "========================================"
|
||||
|
||||
if [ "$PASSED_CASES" -eq "$TOTAL_CASES" ]; then
|
||||
|
||||
270
test_script/runit-single.sh
Normal file
270
test_script/runit-single.sh
Normal file
@ -0,0 +1,270 @@
|
||||
#!/bin/bash
|
||||
|
||||
# runit-single.sh - 用于编译和测试单个或少量 SysY 程序的脚本
|
||||
# 模仿 runit.sh 的功能,但以具体文件路径作为输入。
|
||||
|
||||
# --- 配置区 ---
|
||||
# 请根据你的环境修改这些路径
|
||||
# 假设此脚本位于你的项目根目录或一个脚本目录中
|
||||
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" &>/dev/null && pwd)"
|
||||
# 默认寻找项目根目录下的 build 和 lib
|
||||
BUILD_BIN_DIR="${SCRIPT_DIR}/../build/bin"
|
||||
LIB_DIR="${SCRIPT_DIR}/../lib"
|
||||
# 临时文件会存储在脚本所在目录的 tmp 子目录中
|
||||
TMP_DIR="${SCRIPT_DIR}/tmp"
|
||||
|
||||
# 定义编译器和模拟器
|
||||
SYSYC="${BUILD_BIN_DIR}/sysyc"
|
||||
GCC_RISCV64="riscv64-linux-gnu-gcc"
|
||||
QEMU_RISCV64="qemu-riscv64"
|
||||
|
||||
# --- 初始化变量 ---
|
||||
EXECUTE_MODE=false
|
||||
SYSYC_TIMEOUT=10 # sysyc 编译超时 (秒)
|
||||
GCC_TIMEOUT=10 # gcc 编译超时 (秒)
|
||||
EXEC_TIMEOUT=5 # qemu 自动化执行超时 (秒)
|
||||
MAX_OUTPUT_LINES=50 # 对比失败时显示的最大行数
|
||||
SY_FILES=() # 存储用户提供的 .sy 文件列表
|
||||
PASSED_CASES=0
|
||||
FAILED_CASES_LIST=""
|
||||
|
||||
# --- 函数定义 ---
|
||||
show_help() {
|
||||
echo "用法: $0 [文件1.sy] [文件2.sy] ... [选项]"
|
||||
echo "编译并测试指定的 .sy 文件。"
|
||||
echo ""
|
||||
echo "如果找到对应的 .in/.out 文件,则进行自动化测试。否则,进入交互模式。"
|
||||
echo ""
|
||||
echo "选项:"
|
||||
echo " -e, --executable 编译为可执行文件并运行测试 (必须)。"
|
||||
echo " -sct N 设置 sysyc 编译超时为 N 秒 (默认: 10)。"
|
||||
echo " -gct N 设置 gcc 交叉编译超时为 N 秒 (默认: 10)。"
|
||||
echo " -et N 设置 qemu 自动化执行超时为 N 秒 (默认: 5)。"
|
||||
echo " -ml N, --max-lines N 当输出对比失败时,最多显示 N 行内容 (默认: 50)。"
|
||||
echo " -h, --help 显示此帮助信息并退出。"
|
||||
}
|
||||
|
||||
# --- 新增功能: 显示文件内容并根据行数截断 ---
|
||||
display_file_content() {
|
||||
local file_path="$1"
|
||||
local title="$2"
|
||||
local max_lines="$3"
|
||||
|
||||
if [ ! -f "$file_path" ]; then
|
||||
return
|
||||
fi
|
||||
|
||||
echo -e "$title"
|
||||
local line_count
|
||||
line_count=$(wc -l < "$file_path")
|
||||
|
||||
if [ "$line_count" -gt "$max_lines" ]; then
|
||||
head -n "$max_lines" "$file_path"
|
||||
echo -e "\e[33m[... 输出已截断,共 ${line_count} 行 ...]\e[0m"
|
||||
else
|
||||
cat "$file_path"
|
||||
fi
|
||||
}
|
||||
|
||||
|
||||
# --- 参数解析 ---
|
||||
# 从参数中分离出 .sy 文件和选项
|
||||
for arg in "$@"; do
|
||||
case "$arg" in
|
||||
-e|--executable)
|
||||
EXECUTE_MODE=true
|
||||
;;
|
||||
-sct|-gct|-et|-ml|--max-lines)
|
||||
# 选项和其值将在下一个循环中处理
|
||||
;;
|
||||
-h|--help)
|
||||
show_help
|
||||
exit 0
|
||||
;;
|
||||
-*)
|
||||
# 检查是否是带值的选项
|
||||
if ! [[ ${args_processed+x} ]]; then
|
||||
args_processed=true # 标记已处理过参数
|
||||
# 重新处理所有参数
|
||||
while [[ "$#" -gt 0 ]]; do
|
||||
case "$1" in
|
||||
-sct) if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then SYSYC_TIMEOUT="$2"; shift; else echo "错误: -sct 需要一个正整数参数。" >&2; exit 1; fi ;;
|
||||
-gct) if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then GCC_TIMEOUT="$2"; shift; else echo "错误: -gct 需要一个正整数参数。" >&2; exit 1; fi ;;
|
||||
-et) if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then EXEC_TIMEOUT="$2"; shift; else echo "错误: -et 需要一个正整数参数。" >&2; exit 1; fi ;;
|
||||
-ml|--max-lines) if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then MAX_OUTPUT_LINES="$2"; shift; else echo "错误: --max-lines 需要一个正整数参数。" >&2; exit 1; fi ;;
|
||||
*.sy) SY_FILES+=("$1") ;;
|
||||
-e|--executable) ;; # 已在外部处理
|
||||
*) if ! [[ "$1" =~ ^[0-9]+$ ]]; then echo "未知选项或无效文件: $1"; show_help; exit 1; fi ;;
|
||||
esac
|
||||
shift
|
||||
done
|
||||
fi
|
||||
;;
|
||||
*.sy)
|
||||
if [[ -f "$arg" ]]; then
|
||||
SY_FILES+=("$arg")
|
||||
else
|
||||
echo "警告: 文件不存在,已忽略: $arg"
|
||||
fi
|
||||
;;
|
||||
esac
|
||||
done
|
||||
|
||||
# --- 主逻辑开始 ---
|
||||
if ! ${EXECUTE_MODE}; then
|
||||
echo "错误: 请提供 -e 或 --executable 选项来运行测试。"
|
||||
show_help
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ ${#SY_FILES[@]} -eq 0 ]; then
|
||||
echo "错误: 未提供任何 .sy 文件作为输入。"
|
||||
show_help
|
||||
exit 1
|
||||
fi
|
||||
|
||||
mkdir -p "${TMP_DIR}"
|
||||
TOTAL_CASES=${#SY_FILES[@]}
|
||||
|
||||
echo "SysY 单例测试运行器启动..."
|
||||
echo "超时设置: sysyc=${SYSYC_TIMEOUT}s, gcc=${GCC_TIMEOUT}s, qemu=${EXEC_TIMEOUT}s"
|
||||
echo "失败输出最大行数: ${MAX_OUTPUT_LINES}"
|
||||
echo ""
|
||||
|
||||
for sy_file in "${SY_FILES[@]}"; do
|
||||
is_passed=1
|
||||
base_name=$(basename "${sy_file}" .sy)
|
||||
source_dir=$(dirname "${sy_file}")
|
||||
|
||||
ir_file="${TMP_DIR}/${base_name}_sysyc_riscv64.ll"
|
||||
assembly_file="${TMP_DIR}/${base_name}.s"
|
||||
executable_file="${TMP_DIR}/${base_name}"
|
||||
input_file="${source_dir}/${base_name}.in"
|
||||
output_reference_file="${source_dir}/${base_name}.out"
|
||||
output_actual_file="${TMP_DIR}/${base_name}.actual_out"
|
||||
|
||||
echo "======================================================================"
|
||||
echo "正在处理: ${sy_file}"
|
||||
|
||||
# 步骤 1: sysyc 编译
|
||||
echo " 使用 sysyc 编译 (超时 ${SYSYC_TIMEOUT}s)..."
|
||||
timeout -s KILL ${SYSYC_TIMEOUT} "${SYSYC}" -s ir "${sy_file}" > "${ir_file}"
|
||||
SYSYC_STATUS=$?
|
||||
if [ $SYSYC_STATUS -eq 124 ]; then
|
||||
echo -e "\e[31m错误: SysY 编译 ${sy_file} IR超时\e[0m"
|
||||
is_passed=0
|
||||
elif [ $SYSYC_STATUS -ne 0 ]; then
|
||||
echo -e "\e[31m错误: SysY 编译 ${sy_file} IR失败,退出码: ${SYSYC_STATUS}\e[0m"
|
||||
is_passed=0
|
||||
fi
|
||||
timeout -s KILL ${SYSYC_TIMEOUT} "${SYSYC}" -S "${sy_file}" -o "${assembly_file}"
|
||||
if [ $? -ne 0 ]; then
|
||||
echo -e "\e[31m错误: SysY 编译失败或超时。\e[0m"
|
||||
is_passed=0
|
||||
fi
|
||||
|
||||
# 步骤 2: GCC 编译
|
||||
if [ "$is_passed" -eq 1 ]; then
|
||||
echo " 使用 gcc 编译 (超时 ${GCC_TIMEOUT}s)..."
|
||||
timeout -s KILL ${GCC_TIMEOUT} "${GCC_RISCV64}" "${assembly_file}" -o "${executable_file}" -L"${LIB_DIR}" -lsysy_riscv -static
|
||||
if [ $? -ne 0 ]; then
|
||||
echo -e "\e[31m错误: GCC 编译失败或超时。\e[0m"
|
||||
is_passed=0
|
||||
fi
|
||||
fi
|
||||
|
||||
# 步骤 3: 执行与测试
|
||||
if [ "$is_passed" -eq 1 ]; then
|
||||
# 检查是自动化测试还是交互模式
|
||||
if [ -f "${input_file}" ] || [ -f "${output_reference_file}" ]; then
|
||||
# --- 自动化测试模式 ---
|
||||
echo " 检测到 .in/.out 文件,进入自动化测试模式..."
|
||||
echo " 正在执行 (超时 ${EXEC_TIMEOUT}s)..."
|
||||
|
||||
exec_cmd="${QEMU_RISCV64} \"${executable_file}\""
|
||||
[ -f "${input_file}" ] && exec_cmd+=" < \"${input_file}\""
|
||||
exec_cmd+=" > \"${output_actual_file}\""
|
||||
|
||||
eval "timeout -s KILL ${EXEC_TIMEOUT} ${exec_cmd}"
|
||||
ACTUAL_RETURN_CODE=$?
|
||||
|
||||
if [ "$ACTUAL_RETURN_CODE" -eq 124 ]; then
|
||||
echo -e "\e[31m 执行超时。\e[0m"
|
||||
is_passed=0
|
||||
else
|
||||
if [ -f "${output_reference_file}" ]; then
|
||||
# 此处逻辑与 runit.sh 相同
|
||||
LAST_LINE_TRIMMED=$(tail -n 1 "${output_reference_file}" | tr -d '[:space:]')
|
||||
if [[ "$LAST_LINE_TRIMMED" =~ ^[-+]?[0-9]+$ ]]; then
|
||||
EXPECTED_RETURN_CODE="$LAST_LINE_TRIMMED"
|
||||
EXPECTED_STDOUT_FILE="${TMP_DIR}/${base_name}.expected_stdout"
|
||||
head -n -1 "${output_reference_file}" > "${EXPECTED_STDOUT_FILE}"
|
||||
if [ "$ACTUAL_RETURN_CODE" -ne "$EXPECTED_RETURN_CODE" ]; then echo -e "\e[31m 返回码测试失败: 期望 ${EXPECTED_RETURN_CODE}, 实际 ${ACTUAL_RETURN_CODE}\e[0m"; is_passed=0; fi
|
||||
if ! diff -q <(sed ':a;N;$!ba;s/\n*$//' "${output_actual_file}") <(sed ':a;N;$!ba;s/\n*$//' "${EXPECTED_STDOUT_FILE}") >/dev/null 2>&1; then
|
||||
echo -e "\e[31m 标准输出测试失败。\e[0m"
|
||||
is_passed=0
|
||||
# --- 本次修改点: 使用新函数显示输出 ---
|
||||
display_file_content "${EXPECTED_STDOUT_FILE}" " \e[36m--- 期望输出 ---\e[0m" "${MAX_OUTPUT_LINES}"
|
||||
display_file_content "${output_actual_file}" " \e[36m--- 实际输出 ---\e[0m" "${MAX_OUTPUT_LINES}"
|
||||
echo -e " \e[36m----------------\e[0m"
|
||||
fi
|
||||
else
|
||||
if ! diff -q <(sed ':a;N;$!ba;s/\n*$//' "${output_actual_file}") <(sed ':a;N;$!ba;s/\n*$//' "${output_reference_file}") >/dev/null 2>&1; then
|
||||
echo -e "\e[32m 标准输出测试成功。\e[0m"
|
||||
else
|
||||
echo -e "\e[31m 标准输出测试失败。\e[0m"
|
||||
is_passed=0
|
||||
# --- 本次修改点: 使用新函数显示输出 ---
|
||||
display_file_content "${output_reference_file}" " \e[36m--- 期望输出 ---\e[0m" "${MAX_OUTPUT_LINES}"
|
||||
display_file_content "${output_actual_file}" " \e[36m--- 实际输出 ---\e[0m" "${MAX_OUTPUT_LINES}"
|
||||
echo -e " \e[36m----------------\e[0m"
|
||||
fi
|
||||
fi
|
||||
else
|
||||
echo " 无参考输出文件。程序返回码: ${ACTUAL_RETURN_CODE}"
|
||||
fi
|
||||
fi
|
||||
else
|
||||
# --- 交互模式 ---
|
||||
echo -e "\e[33m"
|
||||
echo " **********************************************************"
|
||||
echo " ** 未找到 .in 或 .out 文件,进入交互模式。 **"
|
||||
echo " ** 程序即将运行,你可以直接在终端中输入。 **"
|
||||
echo " ** 按下 Ctrl+D (EOF) 或以其他方式结束程序以继续。 **"
|
||||
echo " **********************************************************"
|
||||
echo -e "\e[0m"
|
||||
"${QEMU_RISCV64}" "${executable_file}"
|
||||
INTERACTIVE_RET_CODE=$?
|
||||
echo -e "\e[33m\n 交互模式执行完毕,程序返回码: ${INTERACTIVE_RET_CODE}\e[0m"
|
||||
# 交互模式无法自动判断对错,默认算通过,但会提示
|
||||
echo " 注意: 交互模式的结果未经验证。"
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ "$is_passed" -eq 1 ]; then
|
||||
echo -e "\e[32m状态: 通过\e[0m"
|
||||
((PASSED_CASES++))
|
||||
else
|
||||
echo -e "\e[31m状态: 失败\e[0m"
|
||||
FAILED_CASES_LIST+="${sy_file}\n"
|
||||
fi
|
||||
done
|
||||
|
||||
# --- 打印最终总结 ---
|
||||
echo "======================================================================"
|
||||
echo "所有测试完成"
|
||||
echo "测试通过率: [${PASSED_CASES}/${TOTAL_CASES}]"
|
||||
|
||||
if [ -n "$FAILED_CASES_LIST" ]; then
|
||||
echo ""
|
||||
echo -e "\e[31m未通过的测例:\e[0m"
|
||||
echo -e "${FAILED_CASES_LIST}"
|
||||
fi
|
||||
|
||||
echo "======================================================================"
|
||||
|
||||
if [ "$PASSED_CASES" -eq "$TOTAL_CASES" ]; then
|
||||
exit 0
|
||||
else
|
||||
exit 1
|
||||
fi
|
||||
@ -21,6 +21,7 @@ EXECUTE_MODE=false
|
||||
SYSYC_TIMEOUT=10 # sysyc 编译超时 (秒)
|
||||
GCC_TIMEOUT=10 # gcc 编译超时 (秒)
|
||||
EXEC_TIMEOUT=5 # qemu 执行超时 (秒)
|
||||
MAX_OUTPUT_LINES=50 # 对比失败时显示的最大行数
|
||||
TOTAL_CASES=0
|
||||
PASSED_CASES=0
|
||||
FAILED_CASES_LIST="" # 用于存储未通过的测例列表
|
||||
@ -36,9 +37,32 @@ show_help() {
|
||||
echo " -sct N 设置 sysyc 编译超时为 N 秒 (默认: 10)。"
|
||||
echo " -gct N 设置 gcc 交叉编译超时为 N 秒 (默认: 10)。"
|
||||
echo " -et N 设置 qemu 执行超时为 N 秒 (默认: 5)。"
|
||||
echo " -ml N, --max-lines N 当输出对比失败时,最多显示 N 行内容 (默认: 50)。"
|
||||
echo " -h, --help 显示此帮助信息并退出。"
|
||||
}
|
||||
|
||||
# 显示文件内容并根据行数截断的函数
|
||||
display_file_content() {
|
||||
local file_path="$1"
|
||||
local title="$2"
|
||||
local max_lines="$3"
|
||||
|
||||
if [ ! -f "$file_path" ]; then
|
||||
return
|
||||
fi
|
||||
|
||||
echo -e "$title"
|
||||
local line_count
|
||||
line_count=$(wc -l < "$file_path")
|
||||
|
||||
if [ "$line_count" -gt "$max_lines" ]; then
|
||||
head -n "$max_lines" "$file_path"
|
||||
echo -e "\e[33m[... 输出已截断,共 ${line_count} 行 ...]\e[0m"
|
||||
else
|
||||
cat "$file_path"
|
||||
fi
|
||||
}
|
||||
|
||||
# 清理临时文件的函数
|
||||
clean_tmp() {
|
||||
echo "正在清理临时目录: ${TMP_DIR}"
|
||||
@ -67,6 +91,9 @@ while [[ "$#" -gt 0 ]]; do
|
||||
-et)
|
||||
if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then EXEC_TIMEOUT="$2"; shift; else echo "错误: -et 需要一个正整数参数。" >&2; exit 1; fi
|
||||
;;
|
||||
-ml|--max-lines)
|
||||
if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then MAX_OUTPUT_LINES="$2"; shift; else echo "错误: --max-lines 需要一个正整数参数。" >&2; exit 1; fi
|
||||
;;
|
||||
-h|--help)
|
||||
show_help
|
||||
exit 0
|
||||
@ -86,6 +113,7 @@ echo "临时目录: ${TMP_DIR}"
|
||||
echo "执行模式: ${EXECUTE_MODE}"
|
||||
if ${EXECUTE_MODE}; then
|
||||
echo "超时设置: sysyc=${SYSYC_TIMEOUT}s, gcc=${GCC_TIMEOUT}s, qemu=${EXEC_TIMEOUT}s"
|
||||
echo "失败输出最大行数: ${MAX_OUTPUT_LINES}"
|
||||
fi
|
||||
echo ""
|
||||
|
||||
@ -93,8 +121,7 @@ echo ""
|
||||
sy_files=$(find "${TESTDATA_DIR}" -name "*.sy" | sort -V)
|
||||
TOTAL_CASES=$(echo "$sy_files" | wc -w)
|
||||
|
||||
# --- 本次修复: 使用 here-string (<<<) 代替管道 (|) 来避免子 shell 问题 ---
|
||||
# 这样可以确保循环内的 PASSED_CASES 变量修改在循环结束后依然有效
|
||||
# --- 修复: 使用 here-string (<<<) 代替管道 (|) 来避免子 shell 问题 ---
|
||||
while IFS= read -r sy_file; do
|
||||
is_passed=1 # 1 表示通过, 0 表示失败
|
||||
|
||||
@ -111,7 +138,7 @@ while IFS= read -r sy_file; do
|
||||
|
||||
# 步骤 1: 使用 sysyc 编译 .sy 到 .s
|
||||
echo " 使用 sysyc 编译 (超时 ${SYSYC_TIMEOUT}s)..."
|
||||
timeout ${SYSYC_TIMEOUT} "${SYSYC}" -S "${sy_file}" -o "${assembly_file}"
|
||||
timeout -s KILL ${SYSYC_TIMEOUT} "${SYSYC}" -S "${sy_file}" -o "${assembly_file}"
|
||||
SYSYC_STATUS=$?
|
||||
if [ $SYSYC_STATUS -eq 124 ]; then
|
||||
echo -e "\e[31m错误: SysY 编译 ${sy_file} 超时\e[0m"
|
||||
@ -125,7 +152,7 @@ while IFS= read -r sy_file; do
|
||||
if ${EXECUTE_MODE} && [ "$is_passed" -eq 1 ]; then
|
||||
# 步骤 2: 使用 riscv64-linux-gnu-gcc 编译 .s 到可执行文件
|
||||
echo " 使用 gcc 编译 (超时 ${GCC_TIMEOUT}s)..."
|
||||
timeout ${GCC_TIMEOUT} "${GCC_RISCV64}" "${assembly_file}" -o "${executable_file}" -L"${LIB_DIR}" -lsysy_riscv -static
|
||||
timeout -s KILL ${GCC_TIMEOUT} "${GCC_RISCV64}" "${assembly_file}" -o "${executable_file}" -L"${LIB_DIR}" -lsysy_riscv -static
|
||||
GCC_STATUS=$?
|
||||
if [ $GCC_STATUS -eq 124 ]; then
|
||||
echo -e "\e[31m错误: GCC 编译 ${assembly_file} 超时\e[0m"
|
||||
@ -136,11 +163,9 @@ while IFS= read -r sy_file; do
|
||||
fi
|
||||
elif ! ${EXECUTE_MODE}; then
|
||||
echo " 跳过执行模式。仅生成汇编文件。"
|
||||
# 如果只编译不执行,只要编译成功就算通过
|
||||
if [ "$is_passed" -eq 1 ]; then
|
||||
((PASSED_CASES++))
|
||||
else
|
||||
# --- 本次修改点 ---
|
||||
FAILED_CASES_LIST+="${relative_path_no_ext}.sy\n"
|
||||
fi
|
||||
echo ""
|
||||
@ -151,22 +176,19 @@ while IFS= read -r sy_file; do
|
||||
if [ "$is_passed" -eq 1 ]; then
|
||||
echo " 正在执行 (超时 ${EXEC_TIMEOUT}s)..."
|
||||
|
||||
# 准备执行命令
|
||||
exec_cmd="${QEMU_RISCV64} \"${executable_file}\""
|
||||
if [ -f "${input_file}" ]; then
|
||||
exec_cmd+=" < \"${input_file}\""
|
||||
fi
|
||||
exec_cmd+=" > \"${output_actual_file}\""
|
||||
|
||||
# 执行并捕获返回码
|
||||
eval "timeout ${EXEC_TIMEOUT} ${exec_cmd}"
|
||||
eval "timeout -s KILL ${EXEC_TIMEOUT} ${exec_cmd}"
|
||||
ACTUAL_RETURN_CODE=$?
|
||||
|
||||
if [ "$ACTUAL_RETURN_CODE" -eq 124 ]; then
|
||||
echo -e "\e[31m 执行超时: ${sy_file} 运行超过 ${EXEC_TIMEOUT} 秒\e[0m"
|
||||
is_passed=0
|
||||
else
|
||||
# 检查是否存在 .out 文件以进行比较
|
||||
if [ -f "${output_reference_file}" ]; then
|
||||
LAST_LINE_TRIMMED=$(tail -n 1 "${output_reference_file}" | tr -d '[:space:]')
|
||||
|
||||
@ -175,70 +197,54 @@ while IFS= read -r sy_file; do
|
||||
EXPECTED_STDOUT_FILE="${TMP_DIR}/${output_base_name}_sysyc_riscv64.expected_stdout"
|
||||
head -n -1 "${output_reference_file}" > "${EXPECTED_STDOUT_FILE}"
|
||||
|
||||
# 比较返回码
|
||||
if [ "$ACTUAL_RETURN_CODE" -eq "$EXPECTED_RETURN_CODE" ]; then
|
||||
echo -e "\e[32m 返回码测试成功: (${ACTUAL_RETURN_CODE}) 与期望值 (${EXPECTED_RETURN_CODE}) 匹配\e[0m"
|
||||
else
|
||||
echo -e "\e[31m 返回码测试失败: 期望: ${EXPECTED_RETURN_CODE}, 实际: ${ACTUAL_RETURN_CODE}\e[0m"
|
||||
is_passed=0
|
||||
fi
|
||||
# 比较标准输出
|
||||
if diff -q <(sed ':a;N;$!ba;s/\n*$//' "${output_actual_file}") <(sed ':a;N;$!ba;s/\n*$//' "${EXPECTED_STDOUT_FILE}") >/dev/null 2>&1; then
|
||||
echo -e "\e[32m 标准输出测试成功\e[0m"
|
||||
else
|
||||
if ! diff -q <(sed ':a;N;$!ba;s/\n*$//' "${output_actual_file}") <(sed ':a;N;$!ba;s/\n*$//' "${EXPECTED_STDOUT_FILE}") >/dev/null 2>&1; then
|
||||
echo -e "\e[31m 标准输出测试失败\e[0m"
|
||||
is_passed=0
|
||||
echo -e " \e[36m---------- 期望输出 ----------\e[0m"
|
||||
cat "${EXPECTED_STDOUT_FILE}"
|
||||
echo -e " \e[36m---------- 实际输出 ----------\e[0m"
|
||||
cat "${output_actual_file}"
|
||||
display_file_content "${EXPECTED_STDOUT_FILE}" " \e[36m---------- 期望输出 ----------\e[0m" "${MAX_OUTPUT_LINES}"
|
||||
display_file_content "${output_actual_file}" " \e[36m---------- 实际输出 ----------\e[0m" "${MAX_OUTPUT_LINES}"
|
||||
echo -e " \e[36m------------------------------\e[0m"
|
||||
fi
|
||||
else
|
||||
# 纯标准输出比较
|
||||
if [ $ACTUAL_RETURN_CODE -ne 0 ]; then
|
||||
echo -e "\e[33m警告: 程序以非零状态 ${ACTUAL_RETURN_CODE} 退出 (纯输出比较模式)。\e[0m"
|
||||
fi
|
||||
if diff -q <(sed ':a;N;$!ba;s/\n*$//' "${output_actual_file}") <(sed ':a;N;$!ba;s/\n*$//' "${output_reference_file}") >/dev/null 2>&1; then
|
||||
if ! diff -q <(sed ':a;N;$!ba;s/\n*$//' "${output_actual_file}") <(sed ':a;N;$!ba;s/\n*$//' "${output_reference_file}") >/dev/null 2>&1; then
|
||||
echo -e "\e[32m 成功: 输出与参考输出匹配\e[0m"
|
||||
else
|
||||
echo -e "\e[31m 失败: 输出不匹配\e[0m"
|
||||
is_passed=0
|
||||
echo -e " \e[36m---------- 期望输出 ----------\e[0m"
|
||||
cat "${output_reference_file}"
|
||||
echo -e " \e[36m---------- 实际输出 ----------\e[0m"
|
||||
cat "${output_actual_file}"
|
||||
display_file_content "${output_reference_file}" " \e[36m---------- 期望输出 ----------\e[0m" "${MAX_OUTPUT_LINES}"
|
||||
display_file_content "${output_actual_file}" " \e[36m---------- 实际输出 ----------\e[0m" "${MAX_OUTPUT_LINES}"
|
||||
echo -e " \e[36m------------------------------\e[0m"
|
||||
fi
|
||||
fi
|
||||
else
|
||||
# 没有 .out 文件,只报告返回码
|
||||
echo " 无参考输出文件。程序返回码: ${ACTUAL_RETURN_CODE}"
|
||||
fi
|
||||
fi
|
||||
fi
|
||||
|
||||
# 更新通过用例计数
|
||||
# --- 本次修改点 ---
|
||||
if [ "$is_passed" -eq 1 ]; then
|
||||
((PASSED_CASES++))
|
||||
else
|
||||
# 将失败的用例名称添加到列表中
|
||||
FAILED_CASES_LIST+="${relative_path_no_ext}.sy\n"
|
||||
fi
|
||||
echo "" # 添加空行以提高可读性
|
||||
echo ""
|
||||
done <<< "$sy_files"
|
||||
|
||||
# --- 新增功能: 打印最终总结 ---
|
||||
echo "========================================"
|
||||
echo "测试完成"
|
||||
echo "测试通过率: [${PASSED_CASES}/${TOTAL_CASES}]"
|
||||
|
||||
# --- 本次修改点: 打印未通过的测例列表 ---
|
||||
if [ -n "$FAILED_CASES_LIST" ]; then
|
||||
echo ""
|
||||
echo -e "\e[31m未通过的测例:\e[0m"
|
||||
# 使用 -e 来解释换行符 \n
|
||||
echo -e "${FAILED_CASES_LIST}"
|
||||
fi
|
||||
|
||||
|
||||
Reference in New Issue
Block a user