[Optimize]对PostRA指令调度进行容器/算法/缓存优化

This commit is contained in:
2025-07-30 10:28:06 +08:00
parent 42dce9820b
commit 860ebcd447
2 changed files with 381 additions and 328 deletions

View File

@ -1,8 +1,8 @@
#include "PostRA_Scheduler.h"
#include <set>
#include <map>
#include <vector>
#include <algorithm>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#define MAX_SCHEDULING_BLOCK_SIZE 10000 // 限制调度块大小,避免过大导致性能问题
namespace sysy {
@ -10,374 +10,407 @@ namespace sysy {
char PostRA_Scheduler::ID = 0;
// 检查指令是否是加载指令 (LW, LD)
bool isLoadInstr(MachineInstr* instr) {
RVOpcodes opcode = instr->getOpcode();
return opcode == RVOpcodes::LW || opcode == RVOpcodes::LD ||
opcode == RVOpcodes::LH || opcode == RVOpcodes::LB ||
opcode == RVOpcodes::LHU || opcode == RVOpcodes::LBU ||
opcode == RVOpcodes::LWU;
bool isLoadInstr(MachineInstr *instr) {
RVOpcodes opcode = instr->getOpcode();
return opcode == RVOpcodes::LW || opcode == RVOpcodes::LD ||
opcode == RVOpcodes::LH || opcode == RVOpcodes::LB ||
opcode == RVOpcodes::LHU || opcode == RVOpcodes::LBU ||
opcode == RVOpcodes::LWU;
}
// 检查指令是否是存储指令 (SW, SD)
bool isStoreInstr(MachineInstr* instr) {
RVOpcodes opcode = instr->getOpcode();
return opcode == RVOpcodes::SW || opcode == RVOpcodes::SD ||
opcode == RVOpcodes::SH || opcode == RVOpcodes::SB;
bool isStoreInstr(MachineInstr *instr) {
RVOpcodes opcode = instr->getOpcode();
return opcode == RVOpcodes::SW || opcode == RVOpcodes::SD ||
opcode == RVOpcodes::SH || opcode == RVOpcodes::SB;
}
// 检查指令是否为控制流指令
bool isControlFlowInstr(MachineInstr* instr) {
RVOpcodes opcode = instr->getOpcode();
return opcode == RVOpcodes::RET || opcode == RVOpcodes::J ||
opcode == RVOpcodes::BEQ || opcode == RVOpcodes::BNE ||
opcode == RVOpcodes::BLT || opcode == RVOpcodes::BGE ||
opcode == RVOpcodes::BLTU || opcode == RVOpcodes::BGEU ||
opcode == RVOpcodes::CALL;
bool isControlFlowInstr(MachineInstr *instr) {
RVOpcodes opcode = instr->getOpcode();
return opcode == RVOpcodes::RET || opcode == RVOpcodes::J ||
opcode == RVOpcodes::BEQ || opcode == RVOpcodes::BNE ||
opcode == RVOpcodes::BLT || opcode == RVOpcodes::BGE ||
opcode == RVOpcodes::BLTU || opcode == RVOpcodes::BGEU ||
opcode == RVOpcodes::CALL;
}
// 获取指令定义的寄存器 - 修复版本
std::set<PhysicalReg> getDefinedRegisters(MachineInstr* instr) {
std::set<PhysicalReg> defined_regs;
RVOpcodes opcode = instr->getOpcode();
// 特殊处理CALL指令
if (opcode == RVOpcodes::CALL) {
// CALL指令可能定义返回值寄存器
if (!instr->getOperands().empty() &&
instr->getOperands().front()->getKind() == MachineOperand::KIND_REG) {
auto reg_op = static_cast<RegOperand*>(instr->getOperands().front().get());
if (!reg_op->isVirtual()) {
defined_regs.insert(reg_op->getPReg());
}
}
return defined_regs;
}
// 存储指令不定义寄存器
if (isStoreInstr(instr)) {
return defined_regs;
}
// 分支指令不定义寄存器
if (opcode == RVOpcodes::BEQ || opcode == RVOpcodes::BNE ||
opcode == RVOpcodes::BLT || opcode == RVOpcodes::BGE ||
opcode == RVOpcodes::BLTU || opcode == RVOpcodes::BGEU ||
opcode == RVOpcodes::J || opcode == RVOpcodes::RET) {
return defined_regs;
}
// 对于其他指令,第一个寄存器操作数通常是定义的
if (!instr->getOperands().empty() &&
// 预计算指令信息的缓存
static std::unordered_map<MachineInstr *, InstrRegInfo> instr_info_cache;
// 获取指令定义的寄存器 - 优化版本
std::unordered_set<PhysicalReg> getDefinedRegisters(MachineInstr *instr) {
std::unordered_set<PhysicalReg> defined_regs;
RVOpcodes opcode = instr->getOpcode();
// 特殊处理CALL指令
if (opcode == RVOpcodes::CALL) {
// CALL指令可能定义返回值寄存器
if (!instr->getOperands().empty() &&
instr->getOperands().front()->getKind() == MachineOperand::KIND_REG) {
auto reg_op = static_cast<RegOperand*>(instr->getOperands().front().get());
if (!reg_op->isVirtual()) {
defined_regs.insert(reg_op->getPReg());
}
auto reg_op =
static_cast<RegOperand *>(instr->getOperands().front().get());
if (!reg_op->isVirtual()) {
defined_regs.insert(reg_op->getPReg());
}
}
return defined_regs;
}
// 存储指令不定义寄存器
if (isStoreInstr(instr)) {
return defined_regs;
}
// 分支指令不定义寄存器
if (opcode == RVOpcodes::BEQ || opcode == RVOpcodes::BNE ||
opcode == RVOpcodes::BLT || opcode == RVOpcodes::BGE ||
opcode == RVOpcodes::BLTU || opcode == RVOpcodes::BGEU ||
opcode == RVOpcodes::J || opcode == RVOpcodes::RET) {
return defined_regs;
}
// 对于其他指令,第一个寄存器操作数通常是定义的
if (!instr->getOperands().empty() &&
instr->getOperands().front()->getKind() == MachineOperand::KIND_REG) {
auto reg_op = static_cast<RegOperand *>(instr->getOperands().front().get());
if (!reg_op->isVirtual()) {
defined_regs.insert(reg_op->getPReg());
}
}
return defined_regs;
}
// 获取指令使用的寄存器 - 修复版本
std::set<PhysicalReg> getUsedRegisters(MachineInstr* instr) {
std::set<PhysicalReg> used_regs;
RVOpcodes opcode = instr->getOpcode();
// 特殊处理CALL指令
if (opcode == RVOpcodes::CALL) {
bool first_reg_skipped = false;
for (const auto& op : instr->getOperands()) {
if (op->getKind() == MachineOperand::KIND_REG) {
if (!first_reg_skipped) {
first_reg_skipped = true;
continue; // 跳过返回值寄存器
}
auto reg_op = static_cast<RegOperand*>(op.get());
if (!reg_op->isVirtual()) {
used_regs.insert(reg_op->getPReg());
}
}
// 获取指令使用的寄存器 - 优化版本
std::unordered_set<PhysicalReg> getUsedRegisters(MachineInstr *instr) {
std::unordered_set<PhysicalReg> used_regs;
RVOpcodes opcode = instr->getOpcode();
// 特殊处理CALL指令
if (opcode == RVOpcodes::CALL) {
bool first_reg_skipped = false;
for (const auto &op : instr->getOperands()) {
if (op->getKind() == MachineOperand::KIND_REG) {
if (!first_reg_skipped) {
first_reg_skipped = true;
continue; // 跳过返回值寄存器
}
return used_regs;
}
// 对于存储指令,所有寄存器操作数都是使用的
if (isStoreInstr(instr)) {
for (const auto& op : instr->getOperands()) {
if (op->getKind() == MachineOperand::KIND_REG) {
auto reg_op = static_cast<RegOperand*>(op.get());
if (!reg_op->isVirtual()) {
used_regs.insert(reg_op->getPReg());
}
} else if (op->getKind() == MachineOperand::KIND_MEM) {
auto mem_op = static_cast<MemOperand*>(op.get());
if (!mem_op->getBase()->isVirtual()) {
used_regs.insert(mem_op->getBase()->getPReg());
}
}
}
return used_regs;
}
// 对于分支指令,所有寄存器操作数都是使用的
if (opcode == RVOpcodes::BEQ || opcode == RVOpcodes::BNE ||
opcode == RVOpcodes::BLT || opcode == RVOpcodes::BGE ||
opcode == RVOpcodes::BLTU || opcode == RVOpcodes::BGEU) {
for (const auto& op : instr->getOperands()) {
if (op->getKind() == MachineOperand::KIND_REG) {
auto reg_op = static_cast<RegOperand*>(op.get());
if (!reg_op->isVirtual()) {
used_regs.insert(reg_op->getPReg());
}
}
}
return used_regs;
}
// 对于其他指令,除了第一个寄存器操作数(通常是定义),其余都是使用的
bool first_reg = true;
for (const auto& op : instr->getOperands()) {
if (op->getKind() == MachineOperand::KIND_REG) {
if (first_reg) {
first_reg = false;
continue; // 跳过第一个寄存器(定义)
}
auto reg_op = static_cast<RegOperand*>(op.get());
if (!reg_op->isVirtual()) {
used_regs.insert(reg_op->getPReg());
}
} else if (op->getKind() == MachineOperand::KIND_MEM) {
auto mem_op = static_cast<MemOperand*>(op.get());
if (!mem_op->getBase()->isVirtual()) {
used_regs.insert(mem_op->getBase()->getPReg());
}
auto reg_op = static_cast<RegOperand *>(op.get());
if (!reg_op->isVirtual()) {
used_regs.insert(reg_op->getPReg());
}
}
}
return used_regs;
}
// 对于存储指令,所有寄存器操作数都是使用的
if (isStoreInstr(instr)) {
for (const auto &op : instr->getOperands()) {
if (op->getKind() == MachineOperand::KIND_REG) {
auto reg_op = static_cast<RegOperand *>(op.get());
if (!reg_op->isVirtual()) {
used_regs.insert(reg_op->getPReg());
}
} else if (op->getKind() == MachineOperand::KIND_MEM) {
auto mem_op = static_cast<MemOperand *>(op.get());
if (!mem_op->getBase()->isVirtual()) {
used_regs.insert(mem_op->getBase()->getPReg());
}
}
}
return used_regs;
}
// 对于分支指令,所有寄存器操作数都是使用的
if (opcode == RVOpcodes::BEQ || opcode == RVOpcodes::BNE ||
opcode == RVOpcodes::BLT || opcode == RVOpcodes::BGE ||
opcode == RVOpcodes::BLTU || opcode == RVOpcodes::BGEU) {
for (const auto &op : instr->getOperands()) {
if (op->getKind() == MachineOperand::KIND_REG) {
auto reg_op = static_cast<RegOperand *>(op.get());
if (!reg_op->isVirtual()) {
used_regs.insert(reg_op->getPReg());
}
}
}
return used_regs;
}
// 对于其他指令,除了第一个寄存器操作数(通常是定义),其余都是使用的
bool first_reg = true;
for (const auto &op : instr->getOperands()) {
if (op->getKind() == MachineOperand::KIND_REG) {
if (first_reg) {
first_reg = false;
continue; // 跳过第一个寄存器(定义)
}
auto reg_op = static_cast<RegOperand *>(op.get());
if (!reg_op->isVirtual()) {
used_regs.insert(reg_op->getPReg());
}
} else if (op->getKind() == MachineOperand::KIND_MEM) {
auto mem_op = static_cast<MemOperand *>(op.get());
if (!mem_op->getBase()->isVirtual()) {
used_regs.insert(mem_op->getBase()->getPReg());
}
}
}
return used_regs;
}
// 获取内存访问的基址和偏移
struct MemoryAccess {
PhysicalReg base_reg;
int64_t offset;
bool valid;
MemoryAccess() : valid(false) {}
MemoryAccess(PhysicalReg base, int64_t off) : base_reg(base), offset(off), valid(true) {}
};
MemoryAccess getMemoryAccess(MachineInstr* instr) {
if (!isLoadInstr(instr) && !isStoreInstr(instr)) {
return MemoryAccess();
}
// 查找内存操作数
for (const auto& op : instr->getOperands()) {
if (op->getKind() == MachineOperand::KIND_MEM) {
auto mem_op = static_cast<MemOperand*>(op.get());
if (!mem_op->getBase()->isVirtual()) {
return MemoryAccess(mem_op->getBase()->getPReg(), mem_op->getOffset()->getValue());
}
}
}
MemoryAccess getMemoryAccess(MachineInstr *instr) {
if (!isLoadInstr(instr) && !isStoreInstr(instr)) {
return MemoryAccess();
}
// 查找内存操作数
for (const auto &op : instr->getOperands()) {
if (op->getKind() == MachineOperand::KIND_MEM) {
auto mem_op = static_cast<MemOperand *>(op.get());
if (!mem_op->getBase()->isVirtual()) {
return MemoryAccess(mem_op->getBase()->getPReg(),
mem_op->getOffset()->getValue());
}
}
}
return MemoryAccess();
}
// 检查内存依赖 - 加强版本
bool hasMemoryDependency(MachineInstr* instr1, MachineInstr* instr2) {
// 如果都不是内存指令,没有内存依赖
if (!isLoadInstr(instr1) && !isStoreInstr(instr1) &&
!isLoadInstr(instr2) && !isStoreInstr(instr2)) {
return false;
}
MemoryAccess mem1 = getMemoryAccess(instr1);
MemoryAccess mem2 = getMemoryAccess(instr2);
if (!mem1.valid || !mem2.valid) {
// 如果无法确定内存访问模式,保守地认为存在依赖
return true;
}
// 如果访问相同的内存位置
if (mem1.base_reg == mem2.base_reg && mem1.offset == mem2.offset) {
// Store->Load: RAW依赖
// Load->Store: WAR依赖
// Store->Store: WAW依赖
return isStoreInstr(instr1) || isStoreInstr(instr2);
}
// 不同内存位置通常没有依赖,但为了安全起见,
// 如果涉及store指令我们需要更保守
if (isStoreInstr(instr1) && isLoadInstr(instr2)) {
// 保守处理不同store和load之间可能有别名
return false; // 这里可以根据需要调整策略
}
// 预计算指令信息
InstrRegInfo &getInstrInfo(MachineInstr *instr) {
auto it = instr_info_cache.find(instr);
if (it != instr_info_cache.end()) {
return it->second;
}
InstrRegInfo &info = instr_info_cache[instr];
info.defined_regs = getDefinedRegisters(instr);
info.used_regs = getUsedRegisters(instr);
info.is_load = isLoadInstr(instr);
info.is_store = isStoreInstr(instr);
info.is_control_flow = isControlFlowInstr(instr);
info.mem_access = getMemoryAccess(instr);
return info;
}
// 检查内存依赖 - 优化版本
bool hasMemoryDependency(const InstrRegInfo &info1, const InstrRegInfo &info2) {
// 如果都不是内存指令,没有内存依赖
if (!info1.is_load && !info1.is_store && !info2.is_load && !info2.is_store) {
return false;
}
const MemoryAccess &mem1 = info1.mem_access;
const MemoryAccess &mem2 = info2.mem_access;
if (!mem1.valid || !mem2.valid) {
// 如果无法确定内存访问模式,保守地认为存在依赖
return true;
}
// 如果访问相同的内存位置
if (mem1.base_reg == mem2.base_reg && mem1.offset == mem2.offset) {
// Store->Load: RAW依赖
// Load->Store: WAR依赖
// Store->Store: WAW依赖
return info1.is_store || info2.is_store;
}
// 不同内存位置通常没有依赖,但为了安全起见,
// 如果涉及store指令我们需要更保守
if (info1.is_store && info2.is_load) {
// 保守处理不同store和load之间可能有别名
return false; // 这里可以根据需要调整策略
}
return false;
}
// 检查两个指令之间是否存在依赖关系 - 修复版本
bool hasDependency(MachineInstr* instr1, MachineInstr* instr2) {
// 检查RAW依赖instr1定义的寄存器是否被instr2使用
auto defined_regs1 = getDefinedRegisters(instr1);
auto used_regs2 = getUsedRegisters(instr2);
for (const auto& reg : defined_regs1) {
if (used_regs2.find(reg) != used_regs2.end()) {
return true; // RAW依赖 - instr2读取instr1写入的值
}
// 检查两个指令之间是否存在依赖关系 - 优化版本
bool hasDependency(MachineInstr *instr1, MachineInstr *instr2) {
const InstrRegInfo &info1 = getInstrInfo(instr1);
const InstrRegInfo &info2 = getInstrInfo(instr2);
// 检查RAW依赖instr1定义的寄存器是否被instr2使用
for (const auto &reg : info1.defined_regs) {
if (info2.used_regs.find(reg) != info2.used_regs.end()) {
return true; // RAW依赖 - instr2读取instr1写入的值
}
// 检查WAR依赖instr1使用的寄存器是否被instr2定义
auto used_regs1 = getUsedRegisters(instr1);
auto defined_regs2 = getDefinedRegisters(instr2);
for (const auto& reg : used_regs1) {
if (defined_regs2.find(reg) != defined_regs2.end()) {
return true; // WAR依赖 - instr2覆盖instr1需要的值
}
}
// 检查WAR依赖instr1使用的寄存器是否被instr2定义
for (const auto &reg : info1.used_regs) {
if (info2.defined_regs.find(reg) != info2.defined_regs.end()) {
return true; // WAR依赖 - instr2覆盖instr1需要的值
}
// 检查WAW依赖两个指令定义相同寄存器
for (const auto& reg : defined_regs1) {
if (defined_regs2.find(reg) != defined_regs2.end()) {
return true; // WAW依赖 - 两条指令写入同一寄存器
}
}
// 检查WAW依赖两个指令定义相同寄存器
for (const auto &reg : info1.defined_regs) {
if (info2.defined_regs.find(reg) != info2.defined_regs.end()) {
return true; // WAW依赖 - 两条指令写入同一寄存器
}
// 检查内存依赖
if (hasMemoryDependency(instr1, instr2)) {
return true;
}
}
// 检查内存依赖
if (hasMemoryDependency(info1, info2)) {
return true;
}
return false;
}
// 检查是否可以安全地将instr1和instr2交换位置 - 优化版本
bool canSwapInstructions(MachineInstr *instr1, MachineInstr *instr2) {
const InstrRegInfo &info1 = getInstrInfo(instr1);
const InstrRegInfo &info2 = getInstrInfo(instr2);
// 不能移动控制流指令
if (info1.is_control_flow || info2.is_control_flow) {
return false;
}
// 检查双向依赖关系
return !hasDependency(instr1, instr2) && !hasDependency(instr2, instr1);
}
// 检查是否可以安全地将instr1和instr2交换位置
bool canSwapInstructions(MachineInstr* instr1, MachineInstr* instr2) {
// 不能移动控制流指令
if (isControlFlowInstr(instr1) || isControlFlowInstr(instr2)) {
return false;
}
// 检查双向依赖关系
return !hasDependency(instr1, instr2) && !hasDependency(instr2, instr1);
}
// 新增:验证调度结果的正确性 - 优化版本
void validateSchedule(const std::vector<MachineInstr *> &instr_list) {
for (int i = 0; i < (int)instr_list.size(); i++) {
for (int j = i + 1; j < (int)instr_list.size(); j++) {
MachineInstr *earlier = instr_list[i];
MachineInstr *later = instr_list[j];
// 新增:验证调度结果的正确性
void validateSchedule(const std::vector<MachineInstr*>& instr_list) {
for (int i = 0; i < (int)instr_list.size(); i++) {
for (int j = i + 1; j < (int)instr_list.size(); j++) {
MachineInstr* earlier = instr_list[i];
MachineInstr* later = instr_list[j];
// 检查是否存在被违反的依赖关系
auto defined_regs = getDefinedRegisters(earlier);
auto used_regs = getUsedRegisters(later);
// 检查RAW依赖
for (const auto& reg : defined_regs) {
if (used_regs.find(reg) != used_regs.end()) {
// 这是正常的依赖关系earlier应该在later之前
continue;
}
}
// 检查内存依赖
if (hasMemoryDependency(earlier, later)) {
MemoryAccess mem1 = getMemoryAccess(earlier);
MemoryAccess mem2 = getMemoryAccess(later);
if (mem1.valid && mem2.valid &&
mem1.base_reg == mem2.base_reg && mem1.offset == mem2.offset) {
if (isStoreInstr(earlier) && isLoadInstr(later)) {
// Store->Load依赖顺序正确
continue;
}
}
}
const InstrRegInfo &info_earlier = getInstrInfo(earlier);
const InstrRegInfo &info_later = getInstrInfo(later);
// 检查是否存在被违反的依赖关系
// 检查RAW依赖
for (const auto &reg : info_earlier.defined_regs) {
if (info_later.used_regs.find(reg) != info_later.used_regs.end()) {
// 这是正常的依赖关系earlier应该在later之前
continue;
}
}
}
}
// 在基本块内对指令进行调度优化 - 完全重写版本
void scheduleBlock(MachineBasicBlock* mbb) {
auto& instructions = mbb->getInstructions();
if (instructions.size() <= 1) return;
if (instructions.size() > MAX_SCHEDULING_BLOCK_SIZE) {
return; // 跳过超大块,防止卡住
}
std::vector<MachineInstr*> instr_list;
for (auto& instr : instructions) {
instr_list.push_back(instr.get());
}
// 使用更严格的调度策略,避免破坏依赖关系
bool changed = true;
int max_iterations = 10; // 限制迭代次数避免死循环
int iteration = 0;
while (changed && iteration < max_iterations) {
changed = false;
iteration++;
for (int i = 0; i < (int)instr_list.size() - 1; i++) {
MachineInstr* instr1 = instr_list[i];
MachineInstr* instr2 = instr_list[i + 1];
// 只进行非常保守的优化
bool should_swap = false;
// 策略1: 将load指令提前减少load-use延迟
if (isLoadInstr(instr2) && !isLoadInstr(instr1) && !isStoreInstr(instr1)) {
should_swap = canSwapInstructions(instr1, instr2);
}
// 策略2: 将非关键store指令延后为其他指令让路
else if (isStoreInstr(instr1) && !isLoadInstr(instr2) && !isStoreInstr(instr2)) {
should_swap = canSwapInstructions(instr1, instr2);
}
if (should_swap) {
std::swap(instr_list[i], instr_list[i + 1]);
changed = true;
// 调试输出
// std::cout << "Swapped instructions at positions " << i << " and " << (i+1) << std::endl;
}
// 检查内存依赖
if (hasMemoryDependency(info_earlier, info_later)) {
const MemoryAccess &mem1 = info_earlier.mem_access;
const MemoryAccess &mem2 = info_later.mem_access;
if (mem1.valid && mem2.valid && mem1.base_reg == mem2.base_reg &&
mem1.offset == mem2.offset) {
if (info_earlier.is_store && info_later.is_load) {
// Store->Load依赖顺序正确
continue;
}
}
}
}
// 验证调度结果的正确性
validateSchedule(instr_list);
// 将调度后的指令顺序写回
std::map<MachineInstr*, std::unique_ptr<MachineInstr>> instr_map;
for (auto& instr : instructions) {
instr_map[instr.get()] = std::move(instr);
}
instructions.clear();
for (auto instr : instr_list) {
instructions.push_back(std::move(instr_map[instr]));
}
}
}
bool PostRA_Scheduler::runOnFunction(Function *F, AnalysisManager& AM) {
// 这个函数在IR级别运行但我们需要在机器指令级别运行
// 所以我们返回false表示没有对IR进行修改
return false;
// 在基本块内对指令进行调度优化 - 优化版本
void scheduleBlock(MachineBasicBlock *mbb) {
auto &instructions = mbb->getInstructions();
if (instructions.size() <= 1)
return;
if (instructions.size() > MAX_SCHEDULING_BLOCK_SIZE) {
return; // 跳过超大块,防止卡住
}
// 清理缓存,避免无效指针
instr_info_cache.clear();
std::vector<MachineInstr *> instr_list;
instr_list.reserve(instructions.size()); // 预分配容量
for (auto &instr : instructions) {
instr_list.push_back(instr.get());
}
// 预计算所有指令的信息
for (auto *instr : instr_list) {
getInstrInfo(instr);
}
// 使用更严格的调度策略,避免破坏依赖关系
bool changed = true;
int max_iterations = 10; // 限制迭代次数避免死循环
int iteration = 0;
while (changed && iteration < max_iterations) {
changed = false;
iteration++;
for (int i = 0; i < (int)instr_list.size() - 1; i++) {
MachineInstr *instr1 = instr_list[i];
MachineInstr *instr2 = instr_list[i + 1];
const InstrRegInfo &info1 = getInstrInfo(instr1);
const InstrRegInfo &info2 = getInstrInfo(instr2);
// 只进行非常保守的优化
bool should_swap = false;
// 策略1: 将load指令提前减少load-use延迟
if (info2.is_load && !info1.is_load && !info1.is_store) {
should_swap = canSwapInstructions(instr1, instr2);
}
// 策略2: 将非关键store指令延后为其他指令让路
else if (info1.is_store && !info2.is_load && !info2.is_store) {
should_swap = canSwapInstructions(instr1, instr2);
}
if (should_swap) {
std::swap(instr_list[i], instr_list[i + 1]);
changed = true;
// 调试输出
// std::cout << "Swapped instructions at positions " << i << " and " <<
// (i+1) << std::endl;
}
}
}
// 验证调度结果的正确性
validateSchedule(instr_list);
// 将调度后的指令顺序写回
std::unordered_map<MachineInstr *, std::unique_ptr<MachineInstr>> instr_map;
instr_map.reserve(instructions.size()); // 预分配容量
for (auto &instr : instructions) {
instr_map[instr.get()] = std::move(instr);
}
instructions.clear();
instructions.reserve(instr_list.size()); // 预分配容量
for (auto instr : instr_list) {
instructions.push_back(std::move(instr_map[instr]));
}
}
bool PostRA_Scheduler::runOnFunction(Function *F, AnalysisManager &AM) {
// 这个函数在IR级别运行但我们需要在机器指令级别运行
// 所以我们返回false表示没有对IR进行修改
return false;
}
void PostRA_Scheduler::runOnMachineFunction(MachineFunction *mfunc) {
// std::cout << "Running Post-RA Local Scheduler... " << std::endl;
// 遍历每个机器基本块
for (auto& mbb : mfunc->getBlocks()) {
scheduleBlock(mbb.get());
}
// std::cout << "Running Post-RA Local Scheduler... " << std::endl;
// 遍历每个机器基本块
for (auto &mbb : mfunc->getBlocks()) {
scheduleBlock(mbb.get());
}
// 清理全局缓存
instr_info_cache.clear();
}
} // namespace sysy

View File

@ -12,6 +12,26 @@ namespace sysy {
* * 主要目标是优化寄存器分配器插入的spill/fill代码(lw/sw)
* 尝试将加载指令提前,以隐藏其访存延迟。
*/
struct MemoryAccess {
PhysicalReg base_reg;
int64_t offset;
bool valid;
MemoryAccess() : valid(false) {}
MemoryAccess(PhysicalReg base, int64_t off) : base_reg(base), offset(off), valid(true) {}
};
struct InstrRegInfo {
std::unordered_set<PhysicalReg> defined_regs;
std::unordered_set<PhysicalReg> used_regs;
bool is_load;
bool is_store;
bool is_control_flow;
MemoryAccess mem_access;
InstrRegInfo() : is_load(false), is_store(false), is_control_flow(false) {}
};
class PostRA_Scheduler : public Pass {
public:
static char ID;