[midend]活跃变量分析,CFG优化遍重写。还未跑通,暂存
This commit is contained in:
706
src/CFGOptPass.cpp
Normal file
706
src/CFGOptPass.cpp
Normal file
@ -0,0 +1,706 @@
|
||||
#include "CFGOptPass.h" // 包含新的 CFG 优化遍的头文件
|
||||
#include "Dom.h" // CFG修改会使支配树失效,包含头文件
|
||||
#include "IR.h"
|
||||
#include "IRBuilder.h"
|
||||
#include "Liveness.h" // CFG修改会使活跃变量分析失效,包含头文件
|
||||
#include "SysYIROptUtils.h" // 包含您提供的 SysYIROptUtils
|
||||
#include <cassert>
|
||||
#include <iostream>
|
||||
#include <list>
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <queue> // For SysYDelNoPreBLock
|
||||
#include <string>
|
||||
|
||||
namespace sysy {
|
||||
|
||||
char CFGOptimizationPass::ID = 0; // 初始化静态 ID
|
||||
|
||||
// 声明分析依赖和失效
|
||||
void CFGOptimizationPass::getAnalysisUsage(std::set<void *> &analysisDependencies,
|
||||
std::set<void *> &analysisInvalidations) const {
|
||||
// CFG 优化会改变控制流图,因此会使大部分数据流分析失效。
|
||||
// 特别是支配树和活跃变量分析。
|
||||
analysisInvalidations.insert(&DominatorTreeAnalysisPass::ID);
|
||||
analysisInvalidations.insert(&LivenessAnalysisPass::ID);
|
||||
// TODO: 如果有其他分析(如数据流分析)也可能失效,需要在此处添加
|
||||
}
|
||||
|
||||
// ======================================================================
|
||||
// 静态 CFG 优化辅助函数的实现
|
||||
// 大部分代码直接从您提供的 SysYIRCFGOpt.cpp 复制过来
|
||||
// 并根据新的 PhiInst 定义调整了 Phi 节点处理逻辑
|
||||
// ======================================================================
|
||||
|
||||
bool CFGOptimizationPass::SysYDelInstAfterBr(Function *func) {
|
||||
bool changed = false;
|
||||
// 使用迭代器安全的遍历,因为可能会删除指令
|
||||
for (auto &basicBlock : func->getBasicBlocks()) {
|
||||
if (!basicBlock)
|
||||
continue; // 确保基本块有效
|
||||
|
||||
bool terminatorFound = false;
|
||||
auto terminatorIter = basicBlock->getInstructions().end(); // 迭代器指向终止指令
|
||||
|
||||
// 查找终止指令并标记其后的指令进行删除
|
||||
for (auto iter = basicBlock->getInstructions().begin(); iter != basicBlock->getInstructions().end(); ++iter) {
|
||||
if (terminatorFound) {
|
||||
// 如果已经找到终止指令,则当前指令是无用指令删除指令
|
||||
SysYIROptUtils::usedelete(iter->get());
|
||||
} else if ((*iter)->isTerminator()) {
|
||||
terminatorFound = true;
|
||||
terminatorIter = iter;
|
||||
}
|
||||
}
|
||||
|
||||
// 删除终止指令后的所有指令
|
||||
if (terminatorFound) {
|
||||
auto currentIter = std::next(terminatorIter); // 从终止指令的下一个开始删除
|
||||
while (currentIter != basicBlock->getInstructions().end()) {
|
||||
changed = true;
|
||||
currentIter = basicBlock->getInstructions().erase(currentIter);
|
||||
}
|
||||
}
|
||||
|
||||
// 更新前驱后继关系:由于可能删除了旧的终止指令并改变了控制流
|
||||
// 最好是先清除旧的关系,然后根据最新的终止指令重新建立关系
|
||||
if (terminatorFound) {
|
||||
Instruction *currentTerminator =
|
||||
basicBlock->getInstructions().empty() ? nullptr : basicBlock->getInstructions().back().get();
|
||||
if (!currentTerminator || !currentTerminator->isTerminator()) {
|
||||
// 这是一种错误情况,块应该总是以终止指令结束
|
||||
// 或者说,如果删除了唯一的终止指令,那么块就没有后继了,需要后续优化来修复
|
||||
// 暂时跳过更新,让其他优化(如 SysYAddReturn)来处理
|
||||
continue;
|
||||
}
|
||||
|
||||
// 清除旧的后继关系
|
||||
// 注意:这里需要复制一份后继列表,因为在循环中修改原列表会使迭代器失效
|
||||
std::vector<BasicBlock *> oldSuccessors(basicBlock->getSuccessors().begin(), basicBlock->getSuccessors().end());
|
||||
for (BasicBlock *succ : oldSuccessors) {
|
||||
if (succ) {
|
||||
succ->removePredecessor(basicBlock.get());
|
||||
basicBlock->removeSuccessor(succ);
|
||||
}
|
||||
}
|
||||
|
||||
// 根据最新的终止指令重新建立新的后继关系
|
||||
if (currentTerminator->isUnconditional()) {
|
||||
BasicBlock *branchBlock = dynamic_cast<BasicBlock *>(currentTerminator->getOperand(0));
|
||||
if (branchBlock) {
|
||||
basicBlock->addSuccessor(branchBlock);
|
||||
branchBlock->addPredecessor(basicBlock.get());
|
||||
}
|
||||
} else if (currentTerminator->isConditional()) {
|
||||
BasicBlock *thenBlock = dynamic_cast<BasicBlock *>(currentTerminator->getOperand(1));
|
||||
BasicBlock *elseBlock = dynamic_cast<BasicBlock *>(currentTerminator->getOperand(2));
|
||||
if (thenBlock) {
|
||||
basicBlock->addSuccessor(thenBlock);
|
||||
thenBlock->addPredecessor(basicBlock.get());
|
||||
}
|
||||
if (elseBlock && thenBlock != elseBlock) { // 避免重复添加相同后继
|
||||
basicBlock->addSuccessor(elseBlock);
|
||||
elseBlock->addPredecessor(basicBlock.get());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return changed;
|
||||
}
|
||||
|
||||
bool CFGOptimizationPass::SysYBlockMerge(Function *func) {
|
||||
bool changed = false;
|
||||
|
||||
// 使用迭代器安全的循环来遍历和删除
|
||||
for (auto blockiter = func->getBasicBlocks().begin(); blockiter != func->getBasicBlocks().end();) {
|
||||
BasicBlock *currentBlock = blockiter->get();
|
||||
if (!currentBlock) { // 防止空指针
|
||||
++blockiter;
|
||||
continue;
|
||||
}
|
||||
|
||||
// 入口块不能被合并到前一个块(它没有前一个块),但可以作为目标块被合并
|
||||
if (currentBlock == func->getEntryBlock() && currentBlock->getNumPredecessors() == 0) {
|
||||
++blockiter;
|
||||
continue;
|
||||
}
|
||||
|
||||
// 如果当前块只有一个后继块
|
||||
if (currentBlock->getNumSuccessors() == 1) {
|
||||
BasicBlock *nextBlock = currentBlock->getSuccessors()[0];
|
||||
if (!nextBlock) { // 后继块无效
|
||||
++blockiter;
|
||||
continue;
|
||||
}
|
||||
|
||||
// 且后继块只有一个前驱块(这是合并的条件之一)
|
||||
if (nextBlock->getNumPredecessors() == 1 && nextBlock->getPredecessors()[0] == currentBlock) {
|
||||
// std::cout << "merge block: " << currentBlock->getName() << " with " << nextBlock->getName() << std::endl;
|
||||
|
||||
// 删除 currentBlock 最后的 br 指令
|
||||
if (!currentBlock->getInstructions().empty()) {
|
||||
Instruction *lastInst = currentBlock->getInstructions().back().get();
|
||||
if (lastInst->isTerminator()) {
|
||||
SysYIROptUtils::usedelete(lastInst);
|
||||
// 从指令列表中移除
|
||||
currentBlock->getInstructions().pop_back();
|
||||
}
|
||||
}
|
||||
|
||||
// 处理 Phi 指令:
|
||||
// 如果 nextBlock 包含 Phi 指令,需要将这些 Phi 指令的操作数进行处理
|
||||
// 因为 nextBlock 的唯一前驱是 currentBlock,这些 Phi 指令在合并后变得多余。
|
||||
// 它们的值可以直接替换为来自 currentBlock 的值。
|
||||
// 然后删除这些 Phi 指令。
|
||||
auto nextBlockInstIter = nextBlock->getInstructions().begin();
|
||||
while (nextBlockInstIter != nextBlock->getInstructions().end()) {
|
||||
if ((*nextBlockInstIter)->isPhi()) {
|
||||
PhiInst *phi = dynamic_cast<PhiInst *>(nextBlockInstIter->get());
|
||||
if (phi) {
|
||||
// 找到 Phi 对应 currentBlock 的传入值
|
||||
Value *incomingVal = phi->getvalfromBlk(currentBlock);
|
||||
if (incomingVal) {
|
||||
phi->replaceAllUsesWith(incomingVal); // 替换所有使用
|
||||
SysYIROptUtils::usedelete(phi); // 删除 phi 指令
|
||||
nextBlockInstIter = nextBlock->getInstructions().erase(nextBlockInstIter);
|
||||
changed = true;
|
||||
continue; // 继续检查下一个指令
|
||||
}
|
||||
}
|
||||
} else {
|
||||
break; // Phi 指令总是在基本块的开头
|
||||
}
|
||||
++nextBlockInstIter;
|
||||
}
|
||||
|
||||
// 将 nextBlock 的指令移动到 currentBlock
|
||||
for (auto institer = nextBlock->begin(); institer != nextBlock->end();) {
|
||||
institer->get()->setParent(currentBlock);
|
||||
currentBlock->getInstructions().emplace_back(institer->release()); // 移动 unique_ptr
|
||||
institer = nextBlock->getInstructions().erase(institer);
|
||||
}
|
||||
|
||||
// 合并参数 (如果 nextBlock 有 Arguments)
|
||||
for (auto &argm : nextBlock->getArguments()) {
|
||||
argm->setParent(currentBlock); // 更新父指针
|
||||
currentBlock->insertArgument(argm); // 将参数插入到 currentBlock
|
||||
}
|
||||
nextBlock->getArguments().clear(); // 清空 nextBlock 的参数列表
|
||||
|
||||
// 更新前驱后继关系
|
||||
// 清理 nextBlock 与 currentBlock 之间的关系
|
||||
currentBlock->removeSuccessor(nextBlock);
|
||||
nextBlock->removePredecessor(currentBlock);
|
||||
|
||||
// 将 nextBlock 的所有后继转移到 currentBlock
|
||||
std::vector<BasicBlock *> nextBlockSuccessors(nextBlock->getSuccessors().begin(),
|
||||
nextBlock->getSuccessors().end());
|
||||
for (BasicBlock *succ : nextBlockSuccessors) {
|
||||
if (succ) {
|
||||
currentBlock->addSuccessor(succ);
|
||||
succ->replacePredecessor(nextBlock, currentBlock); // 更新后继块的前驱
|
||||
nextBlock->removeSuccessor(succ); // 从 nextBlock 移除,避免重复处理
|
||||
}
|
||||
}
|
||||
|
||||
// 从函数中删除 nextBlock
|
||||
func->removeBasicBlock(nextBlock);
|
||||
changed = true;
|
||||
// 保持 blockiter 不变,以便在下一次循环中重新检查当前的 currentBlock
|
||||
// 因为它的新后继可能现在又满足合并条件了
|
||||
} else {
|
||||
++blockiter; // 不满足合并条件,移动到下一个块
|
||||
}
|
||||
} else {
|
||||
++blockiter; // 不满足合并条件,移动到下一个块
|
||||
}
|
||||
}
|
||||
return changed;
|
||||
}
|
||||
|
||||
bool CFGOptimizationPass::SysYDelNoPreBLock(Function *func) {
|
||||
bool changed = false;
|
||||
|
||||
// 标记所有块为不可达
|
||||
for (auto &block_ptr : func->getBasicBlocks()) {
|
||||
if (block_ptr)
|
||||
block_ptr->setreachableFalse();
|
||||
}
|
||||
|
||||
// 从入口块开始进行可达性分析 (BFS)
|
||||
BasicBlock *entryBlock = func->getEntryBlock();
|
||||
if (!entryBlock)
|
||||
return false; // 没有入口块,则无需处理
|
||||
|
||||
entryBlock->setreachableTrue();
|
||||
std::queue<BasicBlock *> blockqueue;
|
||||
blockqueue.push(entryBlock);
|
||||
while (!blockqueue.empty()) {
|
||||
BasicBlock *block = blockqueue.front();
|
||||
blockqueue.pop();
|
||||
if (block) {
|
||||
for (auto &succ : block->getSuccessors()) {
|
||||
if (succ && !succ->getreachable()) {
|
||||
succ->setreachableTrue();
|
||||
blockqueue.push(succ);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 遍历所有块,删除不可达块
|
||||
|
||||
for (auto blockIter = func->getBasicBlocks_NoRange().begin(); blockIter != func->getBasicBlocks_NoRange().end();) {
|
||||
BasicBlock *currentBlock = blockIter->get();
|
||||
if (!currentBlock) {
|
||||
// 如果当前块是空指针,直接跳过
|
||||
blockIter = func->getBasicBlocks_NoRange().erase(blockIter);
|
||||
changed = true;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (!currentBlock->getreachable()) {
|
||||
// 入口块不可删除
|
||||
if (currentBlock == func->getEntryBlock()) {
|
||||
++blockIter;
|
||||
continue;
|
||||
}
|
||||
|
||||
// 删除不可达基本块内的所有指令
|
||||
// 由于 usedelete 会从父块中移除指令,这里直接遍历并调用即可
|
||||
auto instsToProcess = currentBlock->getInstructions(); // 复制一份,避免迭代器失效
|
||||
for (auto &iterInst_ptr : instsToProcess) {
|
||||
if (iterInst_ptr)
|
||||
SysYIROptUtils::usedelete(iterInst_ptr.get());
|
||||
}
|
||||
|
||||
// 处理 Phi 指令:移除指向该不可达块的 Phi 操作数
|
||||
// 遍历所有后继块的 Phi 指令,移除与 currentBlock 相关的传入值
|
||||
std::vector<BasicBlock *> successorsCopy(currentBlock->getSuccessors().begin(),
|
||||
currentBlock->getSuccessors().end());
|
||||
for (BasicBlock *succblock : successorsCopy) {
|
||||
if (!succblock)
|
||||
continue;
|
||||
// 遍历后继块的指令,只处理 Phi 指令(它们在块的开头)
|
||||
for (auto &phiinst_ptr : succblock->getInstructions()) {
|
||||
if (phiinst_ptr->getKind() != Instruction::kPhi) {
|
||||
break; // Phi 指令都在块的开头
|
||||
}
|
||||
PhiInst *phi = dynamic_cast<PhiInst *>(phiinst_ptr.get());
|
||||
if (phi) {
|
||||
// 使用 PhiInst 的 delBlk 方法来移除与当前被删除块相关的传入值
|
||||
phi->delBlk(currentBlock);
|
||||
}
|
||||
}
|
||||
// 更新后继块的前驱列表 (非常重要,因为 currentBlock 要被删除了)
|
||||
succblock->removePredecessor(currentBlock);
|
||||
}
|
||||
// 清空 currentBlock 的后继,因为它将不复存在
|
||||
currentBlock->clearPredecessors(); // 清空前驱列表
|
||||
currentBlock->clearSuccessors(); // 清空后继列表
|
||||
|
||||
// 从函数中删除基本块
|
||||
blockIter = func->getBasicBlocks_NoRange().erase(blockIter);
|
||||
changed = true;
|
||||
} else {
|
||||
++blockIter;
|
||||
}
|
||||
}
|
||||
return changed;
|
||||
}
|
||||
|
||||
bool CFGOptimizationPass::SysYDelEmptyBlock(Function *func, IRBuilder *pBuilder) {
|
||||
bool changed = false;
|
||||
|
||||
// 收集所有“空”基本块(没有实际指令,或只有Phi和UncondBr)及其目标
|
||||
// map: 空块 -> 其唯一后继 (如果存在)
|
||||
std::map<BasicBlock *, BasicBlock *> EmptyBlocksMap;
|
||||
|
||||
// 第一次遍历:识别空块及其跳转目标
|
||||
for (auto &basicBlock_ptr : func->getBasicBlocks()) {
|
||||
BasicBlock *basicBlock = basicBlock_ptr.get();
|
||||
if (!basicBlock)
|
||||
continue;
|
||||
|
||||
// 判断是否是空块:没有指令或者只有 Phi 和一个终止指令
|
||||
bool isEmptyCandidate = true;
|
||||
Instruction *terminatorInst = nullptr;
|
||||
|
||||
if (basicBlock->getNumInstructions() == 0) {
|
||||
isEmptyCandidate = true; // 完全空块
|
||||
} else {
|
||||
// 检查除了最后一个指令之外是不是只有phi指令
|
||||
for(auto &inst_ptr : basicBlock->getInstructions()) {
|
||||
Instruction *inst = inst_ptr.get();
|
||||
if (!inst->isPhi() && !inst->isTerminator()) {
|
||||
isEmptyCandidate = false; // 有其他类型的指令
|
||||
break;
|
||||
}
|
||||
}
|
||||
// for (size_t i = 0; i < basicBlock->getNumInstructions(); ++i) {
|
||||
// Instruction *inst = basicBlock->getInstructions()[i].get();
|
||||
// if (inst->isTerminator()) {
|
||||
// terminatorInst = inst;
|
||||
// // 如果终止指令不是最后一个,那这个块有问题
|
||||
// if (i != basicBlock->getNumInstructions() - 1) {
|
||||
// isEmptyCandidate = false;
|
||||
// break;
|
||||
// }
|
||||
// } else if (!inst->isPhi()) { // 除了 phi 和终止指令,还有其他指令
|
||||
// isEmptyCandidate = false;
|
||||
// break;
|
||||
// }
|
||||
// }
|
||||
}
|
||||
|
||||
if (isEmptyCandidate) {
|
||||
if (terminatorInst && terminatorInst->isUnconditional()) {
|
||||
if (basicBlock->getNumSuccessors() == 1) { // 只有一条无条件跳转
|
||||
EmptyBlocksMap[basicBlock] = dynamic_cast<BasicBlock *>(terminatorInst->getOperand(0));
|
||||
}
|
||||
} else if (!terminatorInst && basicBlock->getNumSuccessors() == 1) {
|
||||
// 可能是完全空块,但没有终止指令,只有一个后继(需要IRBuilder补全)
|
||||
// 这种情况下,它也构成空块链的一部分
|
||||
EmptyBlocksMap[basicBlock] = basicBlock->getSuccessors().front();
|
||||
}
|
||||
// 如果是条件分支,不认为是“空块链”的中间节点
|
||||
}
|
||||
}
|
||||
|
||||
// 第二次遍历:更新前驱的跳转目标,跳过空块链
|
||||
for (auto &basicBlock_ptr : func->getBasicBlocks()) {
|
||||
BasicBlock *basicBlock = basicBlock_ptr.get();
|
||||
if (!basicBlock)
|
||||
continue;
|
||||
|
||||
// EntryBlock 不参与空块链的删除,但可以重定向其内部跳转
|
||||
if (basicBlock == func->getEntryBlock() && EmptyBlocksMap.count(basicBlock)) {
|
||||
// 如果入口块本身是空块,处理其跳转目标
|
||||
Instruction *lastInst =
|
||||
basicBlock->getInstructions().empty() ? nullptr : basicBlock->getInstructions().back().get();
|
||||
if (lastInst && lastInst->isUnconditional()) {
|
||||
BasicBlock *oldTargetBlock = dynamic_cast<BasicBlock *>(lastInst->getOperand(0));
|
||||
BasicBlock *currentTargetBlock = oldTargetBlock;
|
||||
while (EmptyBlocksMap.count(currentTargetBlock)) {
|
||||
currentTargetBlock = EmptyBlocksMap[currentTargetBlock];
|
||||
}
|
||||
if (currentTargetBlock != oldTargetBlock) {
|
||||
changed = true;
|
||||
// 更新前驱后继关系
|
||||
basicBlock->removeSuccessor(oldTargetBlock);
|
||||
oldTargetBlock->removePredecessor(basicBlock);
|
||||
|
||||
lastInst->replaceOperand(0, currentTargetBlock);
|
||||
basicBlock->addSuccessor(currentTargetBlock);
|
||||
currentTargetBlock->addPredecessor(basicBlock);
|
||||
|
||||
// 处理 Phi 指令:将被跳过的空块替换为 currentBlock
|
||||
for (auto &InstInNew_ptr : currentTargetBlock->getInstructions()) {
|
||||
if (InstInNew_ptr->isPhi()) {
|
||||
PhiInst *phi = dynamic_cast<PhiInst *>(InstInNew_ptr.get());
|
||||
if (phi) {
|
||||
// 使用 replaceold2new 替换 phi 传入的基本块
|
||||
phi->replaceold2new(oldTargetBlock, basicBlock);
|
||||
}
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
||||
// 确保块有终止指令,如果没有,添加一个(防止后续处理崩溃)
|
||||
// 这种情况通常发生在IR生成时没有为完全空的块插入跳转,或者前面优化删除了终止指令
|
||||
if (basicBlock->getNumInstructions() == 0 || !basicBlock->getInstructions().back()->isTerminator()) {
|
||||
if (basicBlock->getNumSuccessors() == 1) {
|
||||
pBuilder->setPosition(basicBlock, basicBlock->end());
|
||||
pBuilder->createUncondBrInst(basicBlock->getSuccessors()[0], {});
|
||||
changed = true; // 添加了指令,所以有变化
|
||||
}
|
||||
}
|
||||
|
||||
auto lastInst = basicBlock->getInstructions().end();
|
||||
if (lastInst == basicBlock->getInstructions().begin()) { // 块是空的
|
||||
continue;
|
||||
}
|
||||
--lastInst; // 指向最后一个指令
|
||||
|
||||
if ((*lastInst)->isUnconditional()) {
|
||||
BasicBlock *oldTargetBlock = dynamic_cast<BasicBlock *>((*lastInst)->getOperand(0));
|
||||
BasicBlock *currentTargetBlock = oldTargetBlock;
|
||||
|
||||
// 沿空块链查找最终目标
|
||||
while (EmptyBlocksMap.count(currentTargetBlock) && currentTargetBlock != func->getEntryBlock()) {
|
||||
// 防止无限循环或将EntryBlock也视为空块
|
||||
currentTargetBlock = EmptyBlocksMap[currentTargetBlock];
|
||||
}
|
||||
|
||||
if (currentTargetBlock != oldTargetBlock) { // 如果目标改变了
|
||||
changed = true;
|
||||
// 更新前驱后继关系
|
||||
basicBlock->removeSuccessor(oldTargetBlock);
|
||||
oldTargetBlock->removePredecessor(basicBlock);
|
||||
|
||||
(*lastInst)->replaceOperand(0, currentTargetBlock);
|
||||
basicBlock->addSuccessor(currentTargetBlock);
|
||||
currentTargetBlock->addPredecessor(basicBlock);
|
||||
|
||||
// 更新 Phi 指令:将被跳过的空块替换为 currentBlock
|
||||
for (auto &InstInNew_ptr : currentTargetBlock->getInstructions()) {
|
||||
if (InstInNew_ptr->isPhi()) {
|
||||
PhiInst *phi = dynamic_cast<PhiInst *>(InstInNew_ptr.get());
|
||||
if (phi) {
|
||||
// 使用 replaceold2new 替换 phi 传入的基本块
|
||||
phi->replaceold2new(oldTargetBlock, basicBlock);
|
||||
}
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
} else if ((*lastInst)->isConditional()) {
|
||||
BasicBlock *oldThenBlock = dynamic_cast<BasicBlock *>((*lastInst)->getOperand(1));
|
||||
BasicBlock *oldElseBlock = dynamic_cast<BasicBlock *>((*lastInst)->getOperand(2));
|
||||
|
||||
BasicBlock *currentThenBlock = oldThenBlock;
|
||||
BasicBlock *currentElseBlock = oldElseBlock;
|
||||
|
||||
// 沿空块链查找最终目标
|
||||
while (EmptyBlocksMap.count(currentThenBlock) && currentThenBlock != func->getEntryBlock()) {
|
||||
currentThenBlock = EmptyBlocksMap[currentThenBlock];
|
||||
}
|
||||
while (EmptyBlocksMap.count(currentElseBlock) && currentElseBlock != func->getEntryBlock()) {
|
||||
currentElseBlock = EmptyBlocksMap[currentElseBlock];
|
||||
}
|
||||
|
||||
bool thenChanged = (currentThenBlock != oldThenBlock);
|
||||
bool elseChanged = (currentElseBlock != oldElseBlock);
|
||||
|
||||
if (thenChanged || elseChanged) {
|
||||
changed = true;
|
||||
// 更新前驱后继关系和 Phi 指令
|
||||
if (thenChanged) {
|
||||
basicBlock->removeSuccessor(oldThenBlock);
|
||||
oldThenBlock->removePredecessor(basicBlock);
|
||||
(*lastInst)->replaceOperand(1, currentThenBlock);
|
||||
basicBlock->addSuccessor(currentThenBlock);
|
||||
currentThenBlock->addPredecessor(basicBlock);
|
||||
|
||||
for (auto &InstInNew_ptr : currentThenBlock->getInstructions()) {
|
||||
if (InstInNew_ptr->isPhi()) {
|
||||
PhiInst *phi = dynamic_cast<PhiInst *>(InstInNew_ptr.get());
|
||||
if (phi)
|
||||
phi->replaceold2new(oldThenBlock, basicBlock);
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (elseChanged) {
|
||||
basicBlock->removeSuccessor(oldElseBlock);
|
||||
oldElseBlock->removePredecessor(basicBlock);
|
||||
(*lastInst)->replaceOperand(2, currentElseBlock);
|
||||
basicBlock->addSuccessor(currentElseBlock);
|
||||
currentElseBlock->addPredecessor(basicBlock);
|
||||
|
||||
for (auto &InstInNew_ptr : currentElseBlock->getInstructions()) {
|
||||
if (InstInNew_ptr->isPhi()) {
|
||||
PhiInst *phi = dynamic_cast<PhiInst *>(InstInNew_ptr.get());
|
||||
if (phi)
|
||||
phi->replaceold2new(oldElseBlock, basicBlock);
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 处理 then 和 else 分支合并的情况
|
||||
if (currentThenBlock == currentElseBlock) {
|
||||
SysYIROptUtils::usedelete(lastInst->get());
|
||||
basicBlock->getInstructions().erase(lastInst);
|
||||
pBuilder->setPosition(basicBlock, basicBlock->end());
|
||||
pBuilder->createUncondBrInst(currentThenBlock, {});
|
||||
changed = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 第三次遍历:删除所有识别出来的空块
|
||||
for (auto iter = func->getBasicBlocks_NoRange().begin(); iter != func->getBasicBlocks_NoRange().end();) {
|
||||
BasicBlock *currentBlock = iter->get();
|
||||
if (!currentBlock) {
|
||||
iter = func->getBasicBlocks_NoRange().erase(iter);
|
||||
changed = true;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (EmptyBlocksMap.count(currentBlock)) {
|
||||
// EntryBlock 不能被删除
|
||||
if (currentBlock == func->getEntryBlock()) {
|
||||
++iter;
|
||||
continue;
|
||||
}
|
||||
|
||||
// 删除空块内的所有指令
|
||||
auto instsToProcess = currentBlock->getInstructions(); // 复制一份
|
||||
for (auto &iterInst_ptr : instsToProcess) {
|
||||
if (iterInst_ptr)
|
||||
SysYIROptUtils::usedelete(iterInst_ptr.get());
|
||||
}
|
||||
|
||||
// 更新其后继的前驱关系(如果之前没有完全清除,但由于 replaceold2new 已经处理了大部分)
|
||||
// 这里主要为了确保被删除块的所有后继都移除了它作为前驱
|
||||
std::vector<BasicBlock *> succsCopy(currentBlock->getSuccessors().begin(), currentBlock->getSuccessors().end());
|
||||
for (BasicBlock *succ : succsCopy) {
|
||||
if (succ)
|
||||
succ->removePredecessor(currentBlock);
|
||||
}
|
||||
// 清空其自身的前驱和后继
|
||||
currentBlock->getPredecessors().clear();
|
||||
currentBlock->getSuccessors().clear();
|
||||
|
||||
// 从函数中删除基本块
|
||||
iter = func->getBasicBlocks_NoRange().erase(iter); // erase 会返回下一个有效迭代器
|
||||
changed = true;
|
||||
} else {
|
||||
++iter;
|
||||
}
|
||||
}
|
||||
return changed;
|
||||
}
|
||||
|
||||
bool CFGOptimizationPass::SysYAddReturn(Function *func, IRBuilder *pBuilder) {
|
||||
bool changed = false;
|
||||
// 使用新的迭代器方式遍历
|
||||
for (auto &block_ptr : func->getBasicBlocks()) {
|
||||
BasicBlock *block = block_ptr.get();
|
||||
if (!block)
|
||||
continue; // 确保基本块有效
|
||||
|
||||
// 如果基本块没有后继(即是出口块)
|
||||
if (block->getNumSuccessors() == 0) {
|
||||
// 检查最后一个指令是否是返回指令
|
||||
if (block->getNumInstructions() == 0 || !block->getInstructions().back()->isReturn()) {
|
||||
changed = true;
|
||||
pBuilder->setPosition(block, block->end());
|
||||
if (func->getReturnType()->isInt()) {
|
||||
pBuilder->createReturnInst(ConstantInteger::get(0));
|
||||
} else if (func->getReturnType()->isFloat()) {
|
||||
pBuilder->createReturnInst(ConstantFloating::get(0.0F));
|
||||
} else { // Void 类型
|
||||
pBuilder->createReturnInst();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return changed;
|
||||
}
|
||||
|
||||
bool CFGOptimizationPass::SysYCondBr2Br(Function *func, IRBuilder *pBuilder) {
|
||||
bool changed = false;
|
||||
|
||||
for (auto &basicblock_ptr : func->getBasicBlocks()) {
|
||||
BasicBlock *basicblock = basicblock_ptr.get();
|
||||
if (!basicblock || basicblock->getNumInstructions() == 0)
|
||||
continue;
|
||||
|
||||
auto lastInstIter = basicblock->getInstructions().end();
|
||||
--lastInstIter; // 指向最后一个指令
|
||||
|
||||
if ((*lastInstIter)->isConditional()) {
|
||||
Value *condOperand = (*lastInstIter)->getOperand(0);
|
||||
ConstantValue *constOperand = dynamic_cast<ConstantValue *>(condOperand);
|
||||
|
||||
if (constOperand != nullptr) { // 条件操作数是常量
|
||||
changed = true;
|
||||
|
||||
BasicBlock *thenBlock = dynamic_cast<BasicBlock *>((*lastInstIter)->getOperand(1));
|
||||
BasicBlock *elseBlock = dynamic_cast<BasicBlock *>((*lastInstIter)->getOperand(2));
|
||||
|
||||
// 删除旧的条件分支指令
|
||||
SysYIROptUtils::usedelete(lastInstIter->get());
|
||||
basicblock->getInstructions().erase(lastInstIter);
|
||||
|
||||
BasicBlock *targetBlock = nullptr;
|
||||
BasicBlock *prunedBlock = nullptr; // 被剪枝的路径的块
|
||||
|
||||
bool isTrue = false;
|
||||
if (constOperand->isFloat()) {
|
||||
isTrue = (constOperand->getFloat() != 0.0F);
|
||||
} else { // 整数
|
||||
isTrue = (constOperand->getInt() != 0);
|
||||
}
|
||||
|
||||
if (isTrue) {
|
||||
targetBlock = thenBlock;
|
||||
prunedBlock = elseBlock;
|
||||
} else {
|
||||
targetBlock = elseBlock;
|
||||
prunedBlock = thenBlock;
|
||||
}
|
||||
|
||||
// 创建无条件跳转指令
|
||||
pBuilder->setPosition(basicblock, basicblock->end());
|
||||
pBuilder->createUncondBrInst(targetBlock, {});
|
||||
|
||||
// 更新前驱后继关系
|
||||
// 移除被剪枝的路径
|
||||
if (prunedBlock && basicblock->hasSuccessor(prunedBlock)) {
|
||||
basicblock->removeSuccessor(prunedBlock);
|
||||
prunedBlock->removePredecessor(basicblock);
|
||||
|
||||
// 移除被剪枝路径上的 Phi 指令操作数
|
||||
for (auto &phiinst_ptr : prunedBlock->getInstructions()) {
|
||||
if (phiinst_ptr->getKind() != Instruction::kPhi) {
|
||||
break;
|
||||
}
|
||||
PhiInst *phi = dynamic_cast<PhiInst *>(phiinst_ptr.get());
|
||||
if (phi) {
|
||||
// 使用 PhiInst 的 delBlk 方法来移除与当前 basicblock 相关的传入值
|
||||
phi->delBlk(basicblock);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return changed;
|
||||
}
|
||||
|
||||
// ======================================================================
|
||||
// CFGOptimizationPass::runOnFunction 实现
|
||||
// ======================================================================
|
||||
|
||||
bool CFGOptimizationPass::runOnFunction(Function *F, AnalysisManager &AM) {
|
||||
bool changed = false;
|
||||
if (!F)
|
||||
return false;
|
||||
|
||||
// 创建一个临时的 IRBuilder 实例,用于在当前函数内创建指令
|
||||
IRBuilder builder(nullptr);
|
||||
// 迭代进行 CFG 优化,直到不再发生变化
|
||||
bool funcChangedThisIteration = true;
|
||||
while (funcChangedThisIteration) {
|
||||
funcChangedThisIteration = false; // 每次循环开始时重置为 false
|
||||
|
||||
// 这里的顺序很重要,某些优化依赖于其他优化(例如删除无前驱块)
|
||||
// 并且某些优化可能会为其他优化创造机会,所以需要循环直到稳定
|
||||
funcChangedThisIteration |= SysYCondBr2Br(F, &builder); // 条件分支转换为无条件分支
|
||||
funcChangedThisIteration |= SysYDelInstAfterBr(F); // 删除 br 后的无用指令
|
||||
funcChangedThisIteration |= SysYDelEmptyBlock(F, &builder); // 删除空块(可能涉及跳转目标更新)
|
||||
funcChangedThisIteration |= SysYDelNoPreBLock(F); // 删除无前驱块(不可达块)
|
||||
funcChangedThisIteration |= SysYBlockMerge(F); // 合并基本块
|
||||
funcChangedThisIteration |= SysYAddReturn(F, &builder); // 添加返回指令
|
||||
|
||||
// 如果本轮有任何变化,则继续下一次循环
|
||||
changed = changed || funcChangedThisIteration;
|
||||
}
|
||||
|
||||
// 如果函数有任何变化,返回 true
|
||||
return changed;
|
||||
}
|
||||
|
||||
} // namespace sysy
|
||||
145
src/Liveness.cpp
Normal file
145
src/Liveness.cpp
Normal file
@ -0,0 +1,145 @@
|
||||
#include "Liveness.h"
|
||||
#include <algorithm> // For std::set_union, std::set_difference
|
||||
#include <iostream>
|
||||
#include <queue> // Potentially for worklist, though not strictly needed for the iterative approach below
|
||||
|
||||
namespace sysy {
|
||||
|
||||
// 初始化静态 ID
|
||||
char LivenessAnalysisPass::ID = 0; // 任何唯一的地址都可以,这里用 0
|
||||
|
||||
// ==============================================================
|
||||
// LivenessAnalysisResult 结果类的实现
|
||||
// ==============================================================
|
||||
|
||||
LivenessAnalysisResult::LivenessAnalysisResult(Function *F) : AssociatedFunction(F) {
|
||||
// 构造时可以不计算,在分析遍运行里计算并填充
|
||||
}
|
||||
|
||||
const std::set<Value *> *LivenessAnalysisResult::getLiveIn(BasicBlock *BB) const {
|
||||
auto it = liveInSets.find(BB);
|
||||
if (it != liveInSets.end()) {
|
||||
return &(it->second);
|
||||
}
|
||||
// 返回一个空集合,表示未找到或不存在
|
||||
static const std::set<Value *> emptySet;
|
||||
return &emptySet;
|
||||
}
|
||||
|
||||
const std::set<Value *> *LivenessAnalysisResult::getLiveOut(BasicBlock *BB) const {
|
||||
auto it = liveOutSets.find(BB);
|
||||
if (it != liveOutSets.end()) {
|
||||
return &(it->second);
|
||||
}
|
||||
static const std::set<Value *> emptySet;
|
||||
return &emptySet;
|
||||
}
|
||||
|
||||
void LivenessAnalysisResult::computeDefUse(BasicBlock *BB, std::set<Value *> &def, std::set<Value *> &use) {
|
||||
def.clear();
|
||||
use.clear();
|
||||
|
||||
// 按照指令在块中的顺序遍历
|
||||
for (const auto &inst_ptr : BB->getInstructions()) {
|
||||
Instruction *inst = inst_ptr.get();
|
||||
|
||||
// 检查指令是否产生值 (Def)
|
||||
if (inst->hasValue()) { // 假设 Instruction 有 hasValue() 方法判断是否生成结果值
|
||||
// 如果这个值在此指令之前在块中被使用过,则它是一个 Use
|
||||
// 否则,它是 Def
|
||||
if (use.find(inst) == use.end()) { // 如果当前指令本身的值未被当前块内之前的指令使用
|
||||
def.insert(inst);
|
||||
}
|
||||
}
|
||||
|
||||
// 检查指令的操作数 (Use)
|
||||
for (Value *operand : inst->getOperands()) { // 假设 Instruction 有 getOperands() 返回 Value*
|
||||
// 只有当操作数是一个Instruction或Argument且未在当前块中被定义时,才算作 Use
|
||||
if (auto opInst = dynamic_cast<Instruction *>(operand)) {
|
||||
if (def.find(opInst) == def.end()) { // 如果操作数不是由当前块中之前的指令定义
|
||||
use.insert(opInst);
|
||||
}
|
||||
} else if (auto arg = dynamic_cast<Argument *>(operand)) {
|
||||
use.insert(arg);
|
||||
}
|
||||
// 常量和全局变量不计入 Def/Use 集合,因为它们不随控制流变化
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void LivenessAnalysisResult::computeLiveness(Function *F) {
|
||||
// 每次计算前清空旧结果
|
||||
liveInSets[F].clear();
|
||||
liveOutSets[F].clear();
|
||||
|
||||
// 初始化所有基本块的 LiveIn 和 LiveOut 集合为空
|
||||
for (const auto &bb_ptr : F->getBasicBlocks()) {
|
||||
BasicBlock *bb = bb_ptr.get();
|
||||
liveInSets[F][bb] = {};
|
||||
liveOutSets[F][bb] = {};
|
||||
}
|
||||
|
||||
bool changed = true;
|
||||
while (changed) {
|
||||
changed = false;
|
||||
|
||||
// 迭代所有基本块,通常逆序遍历(reverse post-order)可以加快收敛,
|
||||
// 但为了简化,这里直接遍历所有块。
|
||||
for (const auto &bb_ptr : F->getBasicBlocks()) {
|
||||
BasicBlock *bb = bb_ptr.get();
|
||||
|
||||
std::set<Value *> oldLiveIn = liveInSets[F][bb];
|
||||
std::set<Value *> oldLiveOut = liveOutSets[F][bb];
|
||||
|
||||
// 1. 计算 LiveOut(BB) = Union(LiveIn(Succ) for Succ in Successors(BB))
|
||||
std::set<Value *> newLiveOut;
|
||||
for (BasicBlock *succ : bb->getSuccessors()) {
|
||||
const std::set<Value *> *succLiveIn = getLiveIn(succ); // 递归获取后继的 LiveIn
|
||||
if (succLiveIn) {
|
||||
newLiveOut.insert(succLiveIn->begin(), succLiveIn->end());
|
||||
}
|
||||
}
|
||||
liveOutSets[F][bb] = newLiveOut;
|
||||
|
||||
// 2. 计算 LiveIn(BB) = Use(BB) Union (LiveOut(BB) - Def(BB))
|
||||
std::set<Value *> defSet, useSet;
|
||||
computeDefUse(bb, defSet, useSet); // 计算当前块的 Def 和 Use
|
||||
|
||||
std::set<Value *> liveOutMinusDef;
|
||||
std::set_difference(newLiveOut.begin(), newLiveOut.end(), defSet.begin(), defSet.end(),
|
||||
std::inserter(liveOutMinusDef, liveOutMinusDef.begin()));
|
||||
|
||||
std::set<Value *> newLiveIn = useSet;
|
||||
newLiveIn.insert(liveOutMinusDef.begin(), liveOutMinusDef.end());
|
||||
liveInSets[F][bb] = newLiveIn;
|
||||
|
||||
// 检查是否发生变化
|
||||
if (oldLiveIn != newLiveIn || oldLiveOut != newLiveOut) {
|
||||
changed = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// ==============================================================
|
||||
// LivenessAnalysisPass 的实现
|
||||
// ==============================================================
|
||||
|
||||
bool LivenessAnalysisPass::runOnFunction(Function *F, AnalysisManager &AM) {
|
||||
// 每次运行创建一个新的 LivenessAnalysisResult 对象来存储结果
|
||||
CurrentLivenessResult = std::make_unique<LivenessAnalysisResult>(F);
|
||||
|
||||
// 调用 LivenessAnalysisResult 内部的方法来计算分析结果
|
||||
// 这里的 computeLiveness 不需要 AM 参数,因为它自身不依赖其他分析。
|
||||
CurrentLivenessResult->computeLiveness(F);
|
||||
|
||||
// 分析遍通常不修改 IR,所以返回 false
|
||||
return false;
|
||||
}
|
||||
|
||||
std::unique_ptr<AnalysisResultBase> LivenessAnalysisPass::getResult() {
|
||||
// 返回计算好的 LivenessAnalysisResult 实例,所有权转移给 AnalysisManager
|
||||
return std::move(CurrentLivenessResult);
|
||||
}
|
||||
|
||||
} // namespace sysy
|
||||
40
src/include/CFGOptPass.h
Normal file
40
src/include/CFGOptPass.h
Normal file
@ -0,0 +1,40 @@
|
||||
#pragma once
|
||||
|
||||
#include "Pass.h" // 包含 Pass 框架
|
||||
#include "IR.h" // 包含 IR 定义
|
||||
#include "IRBuilder.h" // 包含 IRBuilder
|
||||
|
||||
namespace sysy {
|
||||
|
||||
// 前向声明 IRBuilder (如果在其他地方定义,确保路径正确)
|
||||
// class IRBuilder; // 如果IRBuilder不在IRBuilder.h中定义,需要前向声明
|
||||
|
||||
// CFG 优化遍
|
||||
class CFGOptimizationPass : public OptimizationPass {
|
||||
public:
|
||||
// 唯一的 Pass ID
|
||||
static char ID;
|
||||
|
||||
CFGOptimizationPass() : OptimizationPass("CFGOptimization", Pass::Granularity::Function) {}
|
||||
|
||||
// 实现 getPassID
|
||||
void* getPassID() const override { return &ID; }
|
||||
|
||||
// 声明分析依赖和失效
|
||||
void getAnalysisUsage(std::set<void*>& analysisDependencies, std::set<void*>& analysisInvalidations) const override;
|
||||
|
||||
// 运行优化,现在接受 AnalysisManager& AM 参数
|
||||
bool runOnFunction(Function* F, AnalysisManager& AM) override;
|
||||
|
||||
private:
|
||||
// 将原 SysYCFGOpt 中的静态方法移入或直接使用
|
||||
// 这些方法可以直接声明为静态成员函数,并在 runOnFunction 中调用
|
||||
static bool SysYDelInstAfterBr(Function *func);
|
||||
static bool SysYDelEmptyBlock(Function *func, IRBuilder* pBuilder);
|
||||
static bool SysYDelNoPreBLock(Function *func);
|
||||
static bool SysYBlockMerge(Function *func);
|
||||
static bool SysYAddReturn(Function *func, IRBuilder* pBuilder);
|
||||
static bool SysYCondBr2Br(Function *func, IRBuilder* pBuilder);
|
||||
};
|
||||
|
||||
} // namespace sysy
|
||||
72
src/include/Liveness.h
Normal file
72
src/include/Liveness.h
Normal file
@ -0,0 +1,72 @@
|
||||
#pragma once
|
||||
|
||||
#include "IR.h" // 包含 IR 定义
|
||||
#include "Pass.h" // 包含 Pass 框架
|
||||
#include <algorithm> // for std::set_union, std::set_difference
|
||||
#include <map>
|
||||
#include <set>
|
||||
#include <vector>
|
||||
|
||||
namespace sysy {
|
||||
|
||||
// 前向声明
|
||||
class Function;
|
||||
class BasicBlock;
|
||||
class Value;
|
||||
class Instruction;
|
||||
|
||||
// 活跃变量分析结果类
|
||||
// 它将包含 LiveIn 和 LiveOut 集合
|
||||
class LivenessAnalysisResult : public AnalysisResultBase {
|
||||
public:
|
||||
LivenessAnalysisResult(Function *F); // 构造函数,需要一个函数来关联结果
|
||||
|
||||
// 获取给定基本块的 LiveIn 集合
|
||||
const std::set<Value *> *getLiveIn(BasicBlock *BB) const;
|
||||
|
||||
// 获取给定基本块的 LiveOut 集合
|
||||
const std::set<Value *> *getLiveOut(BasicBlock *BB) const;
|
||||
|
||||
// 暴露内部数据结构,如果需要更直接的访问
|
||||
const std::map<BasicBlock *, std::set<Value *>> &getLiveInSets() const { return liveInSets; }
|
||||
const std::map<BasicBlock *, std::set<Value *>> &getLiveOutSets() const { return liveOutSets; }
|
||||
|
||||
// 核心计算方法,由 LivenessAnalysisPass 调用
|
||||
void computeLiveness(Function *F);
|
||||
|
||||
private:
|
||||
Function *AssociatedFunction; // 这个活跃变量分析是为哪个函数计算的
|
||||
std::map<BasicBlock *, std::set<Value *>> liveInSets;
|
||||
std::map<BasicBlock *, std::set<Value *>> liveOutSets;
|
||||
|
||||
// 辅助函数:计算基本块的 Def 和 Use 集合
|
||||
// Def: 块内定义,且定义在所有使用之前的值
|
||||
// Use: 块内使用,且使用在所有定义之前的值
|
||||
void computeDefUse(BasicBlock *BB, std::set<Value *> &def, std::set<Value *> &use);
|
||||
};
|
||||
|
||||
// 活跃变量分析遍
|
||||
class LivenessAnalysisPass : public AnalysisPass {
|
||||
public:
|
||||
// 唯一的 Pass ID
|
||||
static char ID; // LLVM 风格的唯一 ID
|
||||
|
||||
LivenessAnalysisPass() : AnalysisPass("LivenessAnalysis", Pass::Granularity::Function) {}
|
||||
|
||||
// 实现 getPassID
|
||||
void *getPassID() const override { return &ID; }
|
||||
|
||||
// 运行分析并返回结果。现在接受 AnalysisManager& AM 参数
|
||||
bool runOnFunction(Function *F, AnalysisManager &AM) override;
|
||||
|
||||
// 获取分析结果的指针。
|
||||
// 注意:AnalysisManager 将会调用此方法来获取结果并进行缓存。
|
||||
std::unique_ptr<AnalysisResultBase> getResult() override;
|
||||
|
||||
private:
|
||||
// 存储当前分析计算出的 LivenessAnalysisResult 实例
|
||||
// runOnFunction 每次调用都会创建新的 LivenessAnalysisResult 对象
|
||||
std::unique_ptr<LivenessAnalysisResult> CurrentLivenessResult;
|
||||
};
|
||||
|
||||
} // namespace sysy
|
||||
Reference in New Issue
Block a user