Compare commits

..

26 Commits

Author SHA1 Message Date
ba7c581da5 Merge branch 'backend' into deploy-20250804 2025-08-04 21:58:51 +08:00
f7f1cf2b41 [backend]浮点逻辑与gcc保持一致 2025-08-04 21:54:24 +08:00
881c2a9723 [backend]强化了线性扫描逻辑 2025-08-04 19:28:15 +08:00
b5f14d9385 [backend]在后端主函数中添加了调试逻辑 2025-08-04 18:17:09 +08:00
72b06c67ca [backend]为图着色引入保底修复 2025-08-04 18:13:09 +08:00
f4ba1df93b Merge branch 'backend' into deploy-20250804 2025-08-04 16:50:57 +08:00
4db3cc3fb5 Merge branch 'midend' into backend 2025-08-04 16:48:30 +08:00
17f1bed310 Merge branch 'backend-lag' into backend 2025-08-04 16:43:43 +08:00
b848ffca5a [midend]在生成IR时引进了简单的CSE(二元一元loadgep的cse) 2025-08-04 16:38:12 +08:00
603506d142 Merge branch 'backend' of gitee.com:lixuanwang/mysysy into backend 2025-08-04 16:34:22 +08:00
0179c13cf4 [backend]添加了一些工具函数 2025-08-04 16:32:54 +08:00
7e5f6800b7 [backend]修复寄存器分配算法死循环bug,89通过 2025-08-04 16:04:35 +08:00
64ba25a77e [backend]移除了冗余的keepalive伪指令 2025-08-04 14:11:27 +08:00
6dc74b173b [deploy]部署版本4 2025-08-04 02:42:55 +08:00
208d5528b5 Merge branch 'midend' into backend 2025-08-04 02:37:27 +08:00
a269366ac5 [backend]修复了较小全零全局数组未显示初始化导致未定义行为的问题 2025-08-04 02:31:18 +08:00
1b9a7a4827 [backend]修复了函数序言处理错误且与尾声栈不匹配的bug 2025-08-04 01:57:34 +08:00
b2c2f3289d [backend]修改了编译器后端 RISCv64ISel.cpp,在 kFtoI 的处理逻辑中,用一段指令序列模拟了正确的“向零取整”行为。95 h35 h37 h38通过。 2025-08-04 01:35:26 +08:00
0ecd47f0ac 修复IR打印器中浮点比较指令的类型错误,确保生成正确的LLVM IR代码 2025-08-04 01:35:26 +08:00
f24cc7ec88 [midend]修复replaceAllUsesWith中由于setOperand 间接调用 removeUse 或 addUse导致的迭代器失效问题 2025-08-04 00:59:39 +08:00
c8a8bf9a37 [backend]修复了溢出位置错误的问题 2025-08-03 23:28:38 +08:00
446a6a6fcb [midend]修复phi指令接口,优化遍适配 2025-08-03 22:18:00 +08:00
d8b004e5e5 [midend]修改use关系相关的函数,使其能自动的正确维护,修改了phi指令的各种接口 2025-08-03 22:16:40 +08:00
cd814de495 Merge commit 'e4ad23a1a594a9da6b96655d4256352d5f6d277d' into midend 2025-08-03 18:37:36 +08:00
58c8cd53f5 Merge branch 'midend' of gitee.com:lixuanwang/mysysy into midend 2025-08-03 17:26:38 +08:00
91f755959b [midend]修改中端流水线 2025-08-03 17:25:05 +08:00
541 changed files with 1331 additions and 707653 deletions

File diff suppressed because it is too large Load Diff

Binary file not shown.

Binary file not shown.

Binary file not shown.

File diff suppressed because one or more lines are too long

Binary file not shown.

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 346 KiB

View File

@ -1,169 +0,0 @@
这个头文件定义了一个用于生成中间表示IR的数据结构主要用于编译器前端将抽象语法树AST转换为中间代码。以下是文件中定义的主要类和功能的整理和解释
---
### **1. 类型系统Type System**
#### **1.1 `Type` 类**
- **作用**:表示所有基本标量类型(如 `int``float``void` 等)以及指针类型和函数类型。
- **成员**
- `Kind` 枚举:表示类型的种类(如 `kInt``kFloat``kPointer` 等)。
- `kind`:当前类型的种类。
- 构造函数:`Type(Kind kind)`,用于初始化类型。
- 静态方法:如 `getIntType()``getFloatType()` 等,用于获取特定类型的单例对象。
- 类型检查方法:如 `isInt()``isFloat()` 等,用于检查当前类型是否为某种类型。
- `getSize()`:获取类型的大小。
- `as<T>()`:将当前类型动态转换为派生类(如 `PointerType``FunctionType`)。
#### **1.2 `PointerType` 类**
- **作用**:表示指针类型,派生自 `Type`
- **成员**
- `baseType`:指针指向的基础类型。
- 静态方法:`get(Type *baseType)`,用于获取指向 `baseType` 的指针类型。
- `getBaseType()`:获取指针指向的基础类型。
#### **1.3 `FunctionType` 类**
- **作用**:表示函数类型,派生自 `Type`
- **成员**
- `returnType`:函数的返回类型。
- `paramTypes`:函数的参数类型列表。
- 静态方法:`get(Type *returnType, const std::vector<Type *> &paramTypes)`,用于获取函数类型。
- `getReturnType()`:获取函数的返回类型。
- `getParamTypes()`:获取函数的参数类型列表。
---
### **2. 中间表示IR**
#### **2.1 `Value` 类**
- **作用**:表示 IR 中的所有值(如指令、常量、参数等)。
- **成员**
- `Kind` 枚举:表示值的种类(如 `kAdd``kSub``kConstant` 等)。
- `kind`:当前值的种类。
- `type`:值的类型。
- `name`:值的名称。
- `uses`:值的用途列表(表示哪些指令使用了该值)。
- 构造函数:`Value(Kind kind, Type *type, const std::string &name)`
- 类型检查方法:如 `isInt()``isFloat()` 等。
- `getUses()`:获取值的用途列表。
- `replaceAllUsesWith(Value *value)`:将该值的所有用途替换为另一个值。
- `print(std::ostream &os)`:打印值的表示。
#### **2.2 `ConstantValue` 类**
- **作用**:表示编译时常量(如整数常量、浮点数常量)。
- **成员**
- `iScalar``fScalar`:分别存储整数和浮点数常量的值。
- 静态方法:`get(int value)``get(float value)`,用于获取常量值。
- `getInt()``getFloat()`:获取常量的值。
#### **2.3 `Argument` 类**
- **作用**:表示函数或基本块的参数。
- **成员**
- `block`:参数所属的基本块。
- `index`:参数的索引。
- 构造函数:`Argument(Type *type, BasicBlock *block, int index, const std::string &name)`
- `getParent()`:获取参数所属的基本块。
- `getIndex()`:获取参数的索引。
#### **2.4 `BasicBlock` 类**
- **作用**:表示基本块,包含一系列指令。
- **成员**
- `parent`:基本块所属的函数。
- `instructions`:基本块中的指令列表。
- `arguments`:基本块的参数列表。
- `successors``predecessors`:基本块的后继和前驱列表。
- 构造函数:`BasicBlock(Function *parent, const std::string &name)`
- `getParent()`:获取基本块所属的函数。
- `getInstructions()`:获取基本块中的指令列表。
- `createArgument()`:为基本块创建一个参数。
#### **2.5 `Instruction` 类**
- **作用**:表示 IR 中的指令,派生自 `User`
- **成员**
- `Kind` 枚举:表示指令的种类(如 `kAdd``kSub``kLoad` 等)。
- `kind`:当前指令的种类。
- `parent`:指令所属的基本块。
- 构造函数:`Instruction(Kind kind, Type *type, BasicBlock *parent, const std::string &name)`
- `getParent()`:获取指令所属的基本块。
- `getFunction()`:获取指令所属的函数。
- 指令分类方法:如 `isBinary()``isUnary()``isMemory()` 等。
#### **2.6 `User` 类**
- **作用**:表示使用其他值的指令或全局值,派生自 `Value`
- **成员**
- `operands`:指令的操作数列表。
- 构造函数:`User(Kind kind, Type *type, const std::string &name)`
- `getOperand(int index)`:获取指定索引的操作数。
- `addOperand(Value *value)`:添加一个操作数。
- `replaceOperand(int index, Value *value)`:替换指定索引的操作数。
#### **2.7 具体指令类**
- **`CallInst`**:表示函数调用指令。
- **`UnaryInst`**:表示一元操作指令(如取反、类型转换)。
- **`BinaryInst`**:表示二元操作指令(如加法、减法)。
- **`ReturnInst`**:表示返回指令。
- **`UncondBrInst`**:表示无条件跳转指令。
- **`CondBrInst`**:表示条件跳转指令。
- **`AllocaInst`**:表示栈内存分配指令。
- **`LoadInst`**:表示从内存加载值的指令。
- **`StoreInst`**:表示将值存储到内存的指令。
---
### **3. 模块和函数**
#### **3.1 `Function` 类**
- **作用**:表示函数,包含多个基本块。
- **成员**
- `parent`:函数所属的模块。
- `blocks`:函数中的基本块列表。
- 构造函数:`Function(Module *parent, Type *type, const std::string &name)`
- `getReturnType()`:获取函数的返回类型。
- `getParamTypes()`:获取函数的参数类型列表。
- `addBasicBlock()`:为函数添加一个基本块。
#### **3.2 `GlobalValue` 类**
- **作用**:表示全局变量或常量。
- **成员**
- `parent`:全局值所属的模块。
- `hasInit`:是否有初始化值。
- `isConst`:是否是常量。
- 构造函数:`GlobalValue(Module *parent, Type *type, const std::string &name, const std::vector<Value *> &dims, Value *init)`
- `init()`:获取全局值的初始化值。
#### **3.3 `Module` 类**
- **作用**:表示整个编译单元(如一个源文件)。
- **成员**
- `children`:模块中的所有值(如函数、全局变量)。
- `functions`:模块中的函数列表。
- `globals`:模块中的全局变量列表。
- `createFunction()`:创建一个函数。
- `createGlobalValue()`:创建一个全局变量。
- `getFunction()`:获取指定名称的函数。
- `getGlobalValue()`:获取指定名称的全局变量。
---
### **4. 工具类**
#### **4.1 `Use` 类**
- **作用**:表示值与其使用者之间的关系。
- **成员**
- `index`:值在使用者操作数列表中的索引。
- `user`:使用者。
- `value`:被使用的值。
- 构造函数:`Use(int index, User *user, Value *value)`
- `getValue()`:获取被使用的值。
#### **4.2 `range` 类**
- **作用**:封装迭代器对 `[begin, end)`,用于遍历容器。
- **成员**
- `begin()``end()`:返回范围的起始和结束迭代器。
- `size()`:返回范围的大小。
- `empty()`:判断范围是否为空。
---
### **5. 总结**
- **类型系统**`Type``PointerType``FunctionType` 用于表示 IR 中的类型。
- **中间表示**`Value``ConstantValue``Instruction` 等用于表示 IR 中的值和指令。
- **模块和函数**`Module``Function``GlobalValue` 用于组织 IR 的结构。
- **工具类**`Use``range` 用于辅助实现 IR 的数据结构和遍历。
这个头文件定义了一个完整的 IR 数据结构,适用于编译器前端将 AST 转换为中间代码,并支持后续的优化和目标代码生成。

View File

@ -1,156 +0,0 @@
`IRBuilder.h` 文件定义了一个 `IRBuilder`用于简化中间表示IR的构建过程。`IRBuilder` 提供了创建各种 IR 指令的便捷方法,并将这些指令插入到指定的基本块中。以下是对文件中主要内容的整理和解释:
---
### **1. `IRBuilder` 类的作用**
`IRBuilder` 是一个工具类用于在生成中间表示IR时简化指令的创建和插入操作。它的主要功能包括
- 提供创建各种 IR 指令的工厂方法。
- 将创建的指令插入到指定的基本块中。
- 支持在基本块的任意位置插入指令。
---
### **2. 主要成员**
#### **2.1 成员变量**
- **`block`**:当前操作的基本块。
- **`position`**:当前操作的插入位置(基本块中的迭代器)。
#### **2.2 构造函数**
- **默认构造函数**`IRBuilder()`
- **带参数的构造函数**
- `IRBuilder(BasicBlock *block)`:初始化 `IRBuilder`,并设置当前基本块和插入位置(默认在基本块末尾)。
- `IRBuilder(BasicBlock *block, BasicBlock::iterator position)`:初始化 `IRBuilder`,并设置当前基本块和插入位置。
#### **2.3 设置方法**
- **`setPosition(BasicBlock *block, BasicBlock::iterator position)`**:设置当前基本块和插入位置。
- **`setPosition(BasicBlock::iterator position)`**:设置当前插入位置。
#### **2.4 获取方法**
- **`getBasicBlock()`**:获取当前基本块。
- **`getPosition()`**:获取当前插入位置。
---
### **3. 指令创建方法**
`IRBuilder` 提供了多种工厂方法,用于创建不同类型的 IR 指令。这些方法会将创建的指令插入到当前基本块的指定位置。
#### **3.1 函数调用指令**
- **`createCallInst(Function *callee, const std::vector<Value *> &args, const std::string &name)`**
- 创建一个函数调用指令。
- 参数:
- `callee`:被调用的函数。
- `args`:函数参数列表。
- `name`:指令的名称(可选)。
- 返回:`CallInst*`
#### **3.2 一元操作指令**
- **`createUnaryInst(Instruction::Kind kind, Type *type, Value *operand, const std::string &name)`**
- 创建一个一元操作指令(如取反、类型转换)。
- 参数:
- `kind`:指令的类型(如 `kNeg``kFtoI` 等)。
- `type`:指令的结果类型。
- `operand`:操作数。
- `name`:指令的名称(可选)。
- 返回:`UnaryInst*`
- **具体一元操作指令**
- `createNegInst(Value *operand, const std::string &name)`:创建整数取反指令。
- `createNotInst(Value *operand, const std::string &name)`:创建逻辑取反指令。
- `createFtoIInst(Value *operand, const std::string &name)`:创建浮点数转整数指令。
- `createFNegInst(Value *operand, const std::string &name)`:创建浮点数取反指令。
- `createIToFInst(Value *operand, const std::string &name)`:创建整数转浮点数指令。
#### **3.3 二元操作指令**
- **`createBinaryInst(Instruction::Kind kind, Type *type, Value *lhs, Value *rhs, const std::string &name)`**
- 创建一个二元操作指令(如加法、减法)。
- 参数:
- `kind`:指令的类型(如 `kAdd``kSub` 等)。
- `type`:指令的结果类型。
- `lhs``rhs`:左操作数和右操作数。
- `name`:指令的名称(可选)。
- 返回:`BinaryInst*`
- **具体二元操作指令**
- 整数运算:
- `createAddInst(Value *lhs, Value *rhs, const std::string &name)`:创建整数加法指令。
- `createSubInst(Value *lhs, Value *rhs, const std::string &name)`:创建整数减法指令。
- `createMulInst(Value *lhs, Value *rhs, const std::string &name)`:创建整数乘法指令。
- `createDivInst(Value *lhs, Value *rhs, const std::string &name)`:创建整数除法指令。
- `createRemInst(Value *lhs, Value *rhs, const std::string &name)`:创建整数取余指令。
- 整数比较:
- `createICmpEQInst(Value *lhs, Value *rhs, const std::string &name)`:创建整数相等比较指令。
- `createICmpNEInst(Value *lhs, Value *rhs, const std::string &name)`:创建整数不等比较指令。
- `createICmpLTInst(Value *lhs, Value *rhs, const std::string &name)`:创建整数小于比较指令。
- `createICmpLEInst(Value *lhs, Value *rhs, const std::string &name)`:创建整数小于等于比较指令。
- `createICmpGTInst(Value *lhs, Value *rhs, const std::string &name)`:创建整数大于比较指令。
- `createICmpGEInst(Value *lhs, Value *rhs, const std::string &name)`:创建整数大于等于比较指令。
- 浮点数运算:
- `createFAddInst(Value *lhs, Value *rhs, const std::string &name)`:创建浮点数加法指令。
- `createFSubInst(Value *lhs, Value *rhs, const std::string &name)`:创建浮点数减法指令。
- `createFMulInst(Value *lhs, Value *rhs, const std::string &name)`:创建浮点数乘法指令。
- `createFDivInst(Value *lhs, Value *rhs, const std::string &name)`:创建浮点数除法指令。
- `createFRemInst(Value *lhs, Value *rhs, const std::string &name)`:创建浮点数取余指令。
- 浮点数比较:
- `createFCmpEQInst(Value *lhs, Value *rhs, const std::string &name)`:创建浮点数相等比较指令。
- `createFCmpNEInst(Value *lhs, Value *rhs, const std::string &name)`:创建浮点数不等比较指令。
- `createFCmpLTInst(Value *lhs, Value *rhs, const std::string &name)`:创建浮点数小于比较指令。
- `createFCmpLEInst(Value *lhs, Value *rhs, const std::string &name)`:创建浮点数小于等于比较指令。
- `createFCmpGTInst(Value *lhs, Value *rhs, const std::string &name)`:创建浮点数大于比较指令。
- `createFCmpGEInst(Value *lhs, Value *rhs, const std::string &name)`:创建浮点数大于等于比较指令。
#### **3.4 控制流指令**
- **`createReturnInst(Value *value)`**
- 创建返回指令。
- 参数:
- `value`:返回值(可选)。
- 返回:`ReturnInst*`
- **`createUncondBrInst(BasicBlock *block, std::vector<Value *> args)`**
- 创建无条件跳转指令。
- 参数:
- `block`:目标基本块。
- `args`:跳转参数(可选)。
- 返回:`UncondBrInst*`
- **`createCondBrInst(Value *condition, BasicBlock *thenBlock, BasicBlock *elseBlock, const std::vector<Value *> &thenArgs, const std::vector<Value *> &elseArgs)`**
- 创建条件跳转指令。
- 参数:
- `condition`:跳转条件。
- `thenBlock`:条件为真时的目标基本块。
- `elseBlock`:条件为假时的目标基本块。
- `thenArgs``elseArgs`:跳转参数(可选)。
- 返回:`CondBrInst*`
#### **3.5 内存操作指令**
- **`createAllocaInst(Type *type, const std::vector<Value *> &dims, const std::string &name)`**
- 创建栈内存分配指令。
- 参数:
- `type`:分配的类型。
- `dims`:数组维度(可选)。
- `name`:指令的名称(可选)。
- 返回:`AllocaInst*`
- **`createLoadInst(Value *pointer, const std::vector<Value *> &indices, const std::string &name)`**
- 创建加载指令。
- 参数:
- `pointer`:指针值。
- `indices`:数组索引(可选)。
- `name`:指令的名称(可选)。
- 返回:`LoadInst*`
- **`createStoreInst(Value *value, Value *pointer, const std::vector<Value *> &indices, const std::string &name)`**
- 创建存储指令。
- 参数:
- `value`:要存储的值。
- `pointer`:指针值。
- `indices`:数组索引(可选)。
- `name`:指令的名称(可选)。
- 返回:`StoreInst*`
---
### **4. 总结**
- `IRBuilder` 是一个用于简化 IR 构建的工具类,提供了创建各种 IR 指令的工厂方法。
- 通过 `IRBuilder`,可以方便地在指定基本块的任意位置插入指令。
- 该类的设计使得 IR 的生成更加模块化和易于维护。

View File

@ -1,121 +0,0 @@
这个 `IR.cpp` 文件实现了 `IR.h` 中定义的中间表示IR数据结构的功能。它包含了类型系统、值、指令、基本块、函数和模块的具体实现以及一些辅助函数用于打印 IR 的内容。以下是对文件中主要内容的整理和解释:
---
### **1. 辅助函数**
#### **1.1 `interleave` 函数**
- **作用**:用于在输出流中插入分隔符(如逗号)来打印容器中的元素。
- **示例**
```cpp
interleave(os, container, ", ");
```
#### **1.2 打印函数**
- **`printVarName`**:打印变量名,全局变量以 `@` 开头,局部变量以 `%` 开头。
- **`printBlockName`**:打印基本块名,以 `^` 开头。
- **`printFunctionName`**:打印函数名,以 `@` 开头。
- **`printOperand`**:打印操作数,如果是常量则直接打印值,否则打印变量名。
---
### **2. 类型系统**
#### **2.1 `Type` 类的实现**
- **静态方法**
- `getIntType()`、`getFloatType()`、`getVoidType()`、`getLabelType()`:返回对应类型的单例对象。
- `getPointerType(Type *baseType)`:返回指向 `baseType` 的指针类型。
- `getFunctionType(Type *returnType, const vector<Type *> &paramTypes)`:返回函数类型。
- **`getSize()`**:返回类型的大小(如 `int` 和 `float` 为 4 字节,指针为 8 字节)。
- **`print()`**:打印类型的表示。
#### **2.2 `PointerType` 类的实现**
- **静态方法**
- `get(Type *baseType)`:返回指向 `baseType` 的指针类型,使用 `std::map` 缓存已创建的指针类型。
- **`getBaseType()`**:返回指针指向的基础类型。
#### **2.3 `FunctionType` 类的实现**
- **静态方法**
- `get(Type *returnType, const vector<Type *> &paramTypes)`:返回函数类型,使用 `std::set` 缓存已创建的函数类型。
- **`getReturnType()`** 和 `getParamTypes()`:分别返回函数的返回类型和参数类型列表。
---
### **3. 值Value**
#### **3.1 `Value` 类的实现**
- **`replaceAllUsesWith(Value *value)`**:将该值的所有用途替换为另一个值。
- **`isConstant()`**:判断值是否为常量(包括常量值、全局值和函数)。
#### **3.2 `ConstantValue` 类的实现**
- **静态方法**
- `get(int value)``get(float value)`:返回整数或浮点数常量,使用 `std::map` 缓存已创建的常量。
- **`getInt()``getFloat()`**:返回常量的值。
- **`print()`**:打印常量的值。
#### **3.3 `Argument` 类的实现**
- **构造函数**:初始化参数的类型、所属基本块和索引。
- **`print()`**:打印参数的表示。
---
### **4. 基本块BasicBlock**
#### **4.1 `BasicBlock` 类的实现**
- **构造函数**:初始化基本块的名称和所属函数。
- **`print()`**:打印基本块的表示,包括参数和指令。
---
### **5. 指令Instruction**
#### **5.1 `Instruction` 类的实现**
- **构造函数**:初始化指令的类型、所属基本块和名称。
- **`print()`**:由具体指令类实现。
#### **5.2 具体指令类的实现**
- **`CallInst`**:表示函数调用指令。
- **`print()`**:打印函数调用的表示。
- **`UnaryInst`**:表示一元操作指令(如取反、类型转换)。
- **`print()`**:打印一元操作的表示。
- **`BinaryInst`**:表示二元操作指令(如加法、减法)。
- **`print()`**:打印二元操作的表示。
- **`ReturnInst`**:表示返回指令。
- **`print()`**:打印返回指令的表示。
- **`UncondBrInst`**:表示无条件跳转指令。
- **`print()`**:打印无条件跳转的表示。
- **`CondBrInst`**:表示条件跳转指令。
- **`print()`**:打印条件跳转的表示。
- **`AllocaInst`**:表示栈内存分配指令。
- **`print()`**:打印内存分配的表示。
- **`LoadInst`**:表示从内存加载值的指令。
- **`print()`**:打印加载指令的表示。
- **`StoreInst`**:表示将值存储到内存的指令。
- **`print()`**:打印存储指令的表示。
---
### **6. 函数Function**
#### **6.1 `Function` 类的实现**
- **构造函数**:初始化函数的名称、返回类型和参数类型。
- **`print()`**:打印函数的表示,包括基本块和指令。
---
### **7. 模块Module**
#### **7.1 `Module` 类的实现**
- **`print()`**:打印模块的表示,包括所有函数和全局变量。
---
### **8. 用户User**
#### **8.1 `User` 类的实现**
- **`setOperand(int index, Value *value)`**:设置指定索引的操作数。
- **`replaceOperand(int index, Value *value)`**:替换指定索引的操作数,并更新用途列表。
---
### **9. 总结**
- **类型系统**:实现了 `Type``PointerType``FunctionType`,用于表示 IR 中的类型。
- **值**:实现了 `Value``ConstantValue``Argument`,用于表示 IR 中的值和参数。
- **基本块**:实现了 `BasicBlock`,用于组织指令。
- **指令**:实现了多种具体指令类(如 `CallInst``BinaryInst` 等),用于表示 IR 中的操作。
- **函数和模块**:实现了 `Function``Module`,用于组织 IR 的结构。
- **打印功能**:通过 `print()` 方法,可以将 IR 的内容输出为可读的文本格式。
这个文件是编译器中间表示的核心实现能够将抽象语法树AST转换为中间代码并支持后续的优化和目标代码生成。

File diff suppressed because one or more lines are too long

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -5,6 +5,7 @@ add_library(riscv64_backend_lib STATIC
RISCv64ISel.cpp
RISCv64LLIR.cpp
RISCv64RegAlloc.cpp
RISCv64LinearScan.cpp
Handler/CalleeSavedHandler.cpp
Handler/LegalizeImmediates.cpp
Handler/PrologueEpilogueInsertion.cpp

View File

@ -105,16 +105,17 @@ void PrologueEpilogueInsertionPass::runOnMachineFunction(MachineFunction* mfunc)
// 4.4. 保存所有使用到的被调用者保存寄存器
int next_available_offset = -(16 + frame_info.locals_size + frame_info.spill_size);
for (const auto& reg : frame_info.callee_saved_regs_to_store) {
// 采用“先使用,后更新”逻辑
// 改为“先更新,后使用”逻辑
next_available_offset -= 8; // 先为当前寄存器分配下一个可用槽位
RVOpcodes store_op = isFPR(reg) ? RVOpcodes::FSD : RVOpcodes::SD;
auto save_cs_reg = std::make_unique<MachineInstr>(store_op);
save_cs_reg->addOperand(std::make_unique<RegOperand>(reg));
save_cs_reg->addOperand(std::make_unique<MemOperand>(
std::make_unique<RegOperand>(PhysicalReg::S0),
std::make_unique<ImmOperand>(next_available_offset) // 使用当前偏移
std::make_unique<ImmOperand>(next_available_offset) // 使用新计算出的正确偏移
));
prologue_instrs.push_back(std::move(save_cs_reg));
next_available_offset -= 8; // 为下一个寄存器准备偏移
// 不再需要在循环末尾递减
}
// 4.5. 将所有生成的序言指令一次性插入到函数入口
@ -131,6 +132,7 @@ void PrologueEpilogueInsertionPass::runOnMachineFunction(MachineFunction* mfunc)
// 5.1. 恢复被调用者保存寄存器
int next_available_offset_restore = -(16 + frame_info.locals_size + frame_info.spill_size);
for (const auto& reg : frame_info.callee_saved_regs_to_store) {
next_available_offset_restore -= 8; // 为下一个寄存器准备偏移
RVOpcodes load_op = isFPR(reg) ? RVOpcodes::FLD : RVOpcodes::LD;
auto restore_cs_reg = std::make_unique<MachineInstr>(load_op);
restore_cs_reg->addOperand(std::make_unique<RegOperand>(reg));
@ -139,7 +141,6 @@ void PrologueEpilogueInsertionPass::runOnMachineFunction(MachineFunction* mfunc)
std::make_unique<ImmOperand>(next_available_offset_restore) // 使用当前偏移
));
epilogue_instrs.push_back(std::move(restore_cs_reg));
next_available_offset_restore -= 8; // 为下一个寄存器准备偏移
}
// 5.2. 恢复 ra 和 s0

View File

@ -1,7 +1,8 @@
#include "RISCv64AsmPrinter.h"
#include "RISCv64ISel.h"
#include <stdexcept>
#include <sstream>
#include <iostream>
namespace sysy {
// 检查是否为内存加载/存储指令,以处理特殊的打印格式
@ -101,6 +102,7 @@ void RISCv64AsmPrinter::printInstruction(MachineInstr* instr, bool debug) {
case RVOpcodes::FLE_S: *OS << "fle.s "; break;
case RVOpcodes::FCVT_S_W: *OS << "fcvt.s.w "; break;
case RVOpcodes::FCVT_W_S: *OS << "fcvt.w.s "; break;
case RVOpcodes::FCVT_W_S_RTZ: *OS << "fcvt.w.s "; break;
case RVOpcodes::FMV_S: *OS << "fmv.s "; break;
case RVOpcodes::FMV_W_X: *OS << "fmv.w.x "; break;
case RVOpcodes::FMV_X_W: *OS << "fmv.x.w "; break;
@ -236,4 +238,30 @@ std::string RISCv64AsmPrinter::regToString(PhysicalReg reg) {
}
}
std::string RISCv64AsmPrinter::formatInstr(const MachineInstr* instr) {
if (!instr) return "(null instr)";
// 使用 stringstream 作为临时的输出目标
std::stringstream ss;
// 关键: 临时将类成员 'OS' 指向我们的 stringstream
std::ostream* old_os = this->OS;
this->OS = &ss;
// 修正: 调用正确的内部打印函数 printMachineInstr
printInstruction(const_cast<MachineInstr*>(instr), false);
// 恢复旧的 ostream 指针
this->OS = old_os;
// 获取stringstream的内容并做一些清理
std::string result = ss.str();
size_t endpos = result.find_last_not_of(" \t\n\r");
if (std::string::npos != endpos) {
result = result.substr(0, endpos + 1);
}
return result;
}
} // namespace sysy

View File

@ -1,10 +1,13 @@
#include "RISCv64Backend.h"
#include "RISCv64ISel.h"
#include "RISCv64RegAlloc.h"
#include "RISCv64LinearScan.h" // <--- 新增此行
#include "RISCv64AsmPrinter.h"
#include "RISCv64Passes.h"
#include <sstream>
#include <future> // <--- 新增此行
#include <chrono> // <--- 新增此行
#include <iostream> // <--- 新增此行,用于打印超时警告
namespace sysy {
// 顶层入口
@ -139,7 +142,29 @@ std::string RISCv64CodeGen::module_gen() {
ss << ".type " << global->getName() << ", @object\n";
ss << ".size " << global->getName() << ", " << total_size << "\n";
ss << global->getName() << ":\n";
printInitializer(ss, global->getInitValues());
bool is_all_zeros = true;
const auto& init_values = global->getInitValues();
if (init_values.getValues().empty()) {
is_all_zeros = true;
} else {
for (auto val : init_values.getValues()) {
if (auto const_val = dynamic_cast<ConstantValue*>(val)) {
if (!const_val->isZero()) {
is_all_zeros = false;
break;
}
} else {
is_all_zeros = false;
break;
}
}
}
if (is_all_zeros) {
ss << " .zero " << total_size << "\n";
} else {
// 对于有非零初始值的变量,保持原有的打印逻辑。
printInitializer(ss, global->getInitValues());
}
}
// b. 处理全局常量 (ConstantVariable)
@ -174,9 +199,6 @@ std::string RISCv64CodeGen::function_gen(Function* func) {
// === 完整的后端处理流水线 ===
// 阶段 1: 指令选择 (sysy::IR -> LLIR with virtual registers)
DEBUG = 0;
DEEPDEBUG = 0;
RISCv64ISel isel;
std::unique_ptr<MachineFunction> mfunc = isel.runOnFunction(func);
@ -184,9 +206,7 @@ std::string RISCv64CodeGen::function_gen(Function* func) {
std::stringstream ss_after_isel;
RISCv64AsmPrinter printer_isel(mfunc.get());
printer_isel.run(ss_after_isel, true);
if (DEBUG) {
std::cout << ss_after_isel.str();
}
if (DEBUG) {
std::cerr << "====== Intermediate Representation after Instruction Selection ======\n"
<< ss_after_isel.str();
@ -206,13 +226,13 @@ std::string RISCv64CodeGen::function_gen(Function* func) {
<< ss_after_eli.str();
}
// 阶段 2: 除法强度削弱优化 (Division Strength Reduction)
DivStrengthReduction div_strength_reduction;
div_strength_reduction.runOnMachineFunction(mfunc.get());
// // 阶段 2: 除法强度削弱优化 (Division Strength Reduction)
// DivStrengthReduction div_strength_reduction;
// div_strength_reduction.runOnMachineFunction(mfunc.get());
// 阶段 2.1: 指令调度 (Instruction Scheduling)
PreRA_Scheduler scheduler;
scheduler.runOnMachineFunction(mfunc.get());
// // 阶段 2.1: 指令调度 (Instruction Scheduling)
// PreRA_Scheduler scheduler;
// scheduler.runOnMachineFunction(mfunc.get());
// 阶段 3: 物理寄存器分配 (Register Allocation)
RISCv64RegAlloc reg_alloc(mfunc.get());
@ -232,9 +252,9 @@ std::string RISCv64CodeGen::function_gen(Function* func) {
mfunc->dumpStackFrameInfo(std::cerr);
}
// 阶段 4: 窥孔优化 (Peephole Optimization)
PeepholeOptimizer peephole;
peephole.runOnMachineFunction(mfunc.get());
// // 阶段 4: 窥孔优化 (Peephole Optimization)
// PeepholeOptimizer peephole;
// peephole.runOnMachineFunction(mfunc.get());
// 阶段 5: 局部指令调度 (Local Scheduling)
PostRA_Scheduler local_scheduler;
@ -254,7 +274,6 @@ std::string RISCv64CodeGen::function_gen(Function* func) {
printer.run(ss);
return ss.str();
}
} // namespace sysy

View File

@ -1,4 +1,5 @@
#include "RISCv64ISel.h"
#include "IR.h" // For GlobalValue
#include <stdexcept>
#include <set>
#include <functional>
@ -167,33 +168,6 @@ void RISCv64ISel::selectBasicBlock(BasicBlock* bb) {
select_recursive(node_to_select);
}
}
if (CurMBB == MFunc->getBlocks().front().get()) { // 只对入口块操作
auto keepalive = std::make_unique<MachineInstr>(RVOpcodes::PSEUDO_KEEPALIVE);
for (Argument* arg : F->getArguments()) {
keepalive->addOperand(std::make_unique<RegOperand>(getVReg(arg)));
}
auto& instrs = CurMBB->getInstructions();
auto insert_pos = instrs.end();
// 关键:检查基本块是否以一个“终止指令”结尾
if (!instrs.empty()) {
RVOpcodes last_op = instrs.back()->getOpcode();
// 扩充了判断条件,涵盖所有可能的终止指令
if (last_op == RVOpcodes::J || last_op == RVOpcodes::RET ||
last_op == RVOpcodes::BEQ || last_op == RVOpcodes::BNE ||
last_op == RVOpcodes::BLT || last_op == RVOpcodes::BGE ||
last_op == RVOpcodes::BLTU || last_op == RVOpcodes::BGEU)
{
// 如果是,插入点就在这个终止指令之前
insert_pos = std::prev(instrs.end());
}
}
// 在计算出的正确位置插入伪指令
instrs.insert(insert_pos, std::move(keepalive));
}
}
// 核心函数为DAG节点选择并生成MachineInstr (已修复和增强的完整版本)
@ -209,8 +183,12 @@ void RISCv64ISel::selectNode(DAGNode* node) {
case DAGNode::CONSTANT:
case DAGNode::ALLOCA_ADDR:
if (node->value) {
// 确保它有一个关联的虚拟寄存器即可,不生成代码。
getVReg(node->value);
// GlobalValue objects (global variables) should not get virtual registers
// since they represent memory addresses, not register-allocated values
if (dynamic_cast<GlobalValue*>(node->value) == nullptr) {
// 确保它有一个关联的虚拟寄存器即可,不生成代码。
getVReg(node->value);
}
}
break;
@ -767,8 +745,9 @@ void RISCv64ISel::selectNode(DAGNode* node) {
CurMBB->addInstruction(std::move(instr));
break;
}
case Instruction::kFtoI: { // 浮点 to 整数
auto instr = std::make_unique<MachineInstr>(RVOpcodes::FCVT_W_S);
case Instruction::kFtoI: { // 浮点 to 整数 (使用硬件指令进行向零截断)
// 直接生成一条带有 rtz 舍入模式的转换指令
auto instr = std::make_unique<MachineInstr>(RVOpcodes::FCVT_W_S_RTZ);
instr->addOperand(std::make_unique<RegOperand>(dest_vreg)); // 目标是整数vreg
instr->addOperand(std::make_unique<RegOperand>(src_vreg)); // 源是浮点vreg
CurMBB->addInstruction(std::move(instr));
@ -1152,10 +1131,11 @@ void RISCv64ISel::selectNode(DAGNode* node) {
auto r_value_byte = getVReg(memset->getValue());
// 为memset内部逻辑创建新的临时虚拟寄存器
auto r_counter = getNewVReg();
auto r_end_addr = getNewVReg();
auto r_current_addr = getNewVReg();
auto r_temp_val = getNewVReg();
Type* ptr_type = Type::getPointerType(Type::getIntType());
auto r_counter = getNewVReg(ptr_type);
auto r_end_addr = getNewVReg(ptr_type);
auto r_current_addr = getNewVReg(ptr_type);
auto r_temp_val = getNewVReg(Type::getIntType());
// 定义一系列lambda表达式来简化指令创建
auto add_instr = [&](RVOpcodes op, unsigned rd, unsigned rs1, unsigned rs2) {
@ -1246,7 +1226,7 @@ void RISCv64ISel::selectNode(DAGNode* node) {
// --- Step 1: 获取基地址 (此部分逻辑正确,保持不变) ---
auto base_ptr_node = node->operands[0];
auto current_addr_vreg = getNewVReg();
auto current_addr_vreg = getNewVReg(gep->getType());
if (auto alloca_base = dynamic_cast<AllocaInst*>(base_ptr_node->value)) {
auto frame_addr_instr = std::make_unique<MachineInstr>(RVOpcodes::FRAME_ADDR);
@ -1288,13 +1268,13 @@ void RISCv64ISel::selectNode(DAGNode* node) {
// 如果步长为0例如对一个void类型或空结构体索引则不产生任何偏移
if (stride != 0) {
// --- 为当前索引和步长生成偏移计算指令 ---
auto offset_vreg = getNewVReg();
auto offset_vreg = getNewVReg(Type::getIntType());
// 处理索引 - 区分常量与动态值
unsigned index_vreg;
if (auto const_index = dynamic_cast<ConstantValue*>(indexValue)) {
// 对于常量索引,直接创建新的虚拟寄存器
index_vreg = getNewVReg();
index_vreg = getNewVReg(Type::getIntType());
auto li = std::make_unique<MachineInstr>(RVOpcodes::LI);
li->addOperand(std::make_unique<RegOperand>(index_vreg));
li->addOperand(std::make_unique<ImmOperand>(const_index->getInt()));
@ -1312,7 +1292,7 @@ void RISCv64ISel::selectNode(DAGNode* node) {
CurMBB->addInstruction(std::move(mv));
} else {
// 步长不为1需要生成乘法指令
auto size_vreg = getNewVReg();
auto size_vreg = getNewVReg(Type::getIntType());
auto li_size = std::make_unique<MachineInstr>(RVOpcodes::LI);
li_size->addOperand(std::make_unique<RegOperand>(size_vreg));
li_size->addOperand(std::make_unique<ImmOperand>(stride));
@ -1659,4 +1639,8 @@ void RISCv64ISel::print_dag(const std::vector<std::unique_ptr<DAGNode>>& dag, co
std::cerr << "======================================\n\n";
}
unsigned int RISCv64ISel::getVRegCounter() const {
return vreg_counter;
}
} // namespace sysy

View File

@ -0,0 +1,517 @@
#include "RISCv64LinearScan.h"
#include "RISCv64LLIR.h"
#include "RISCv64ISel.h"
#include <iostream>
#include <set>
extern int DEBUG;
namespace sysy {
RISCv64LinearScan::RISCv64LinearScan(MachineFunction* mfunc)
: MFunc(mfunc),
ISel(mfunc->getISel()),
vreg_type_map(ISel->getVRegTypeMap()) {
// 初始化可用的物理寄存器池,与图着色版本保持一致
// 整数寄存器
allocable_int_regs = {
PhysicalReg::T0, PhysicalReg::T1, PhysicalReg::T2, PhysicalReg::T3, PhysicalReg::T4, /*T5保留作为大立即数加载寄存器*/ PhysicalReg::T6,
PhysicalReg::A0, PhysicalReg::A1, PhysicalReg::A2, PhysicalReg::A3, PhysicalReg::A4, PhysicalReg::A5, PhysicalReg::A6, PhysicalReg::A7,
PhysicalReg::S1, PhysicalReg::S2, PhysicalReg::S3, PhysicalReg::S4, PhysicalReg::S5, PhysicalReg::S6, PhysicalReg::S7,
PhysicalReg::S8, PhysicalReg::S9, PhysicalReg::S10, PhysicalReg::S11,
};
// 浮点寄存器
allocable_fp_regs = {
PhysicalReg::F0, PhysicalReg::F1, PhysicalReg::F2, PhysicalReg::F3, PhysicalReg::F4, PhysicalReg::F5, PhysicalReg::F6, PhysicalReg::F7,
PhysicalReg::F10, PhysicalReg::F11, PhysicalReg::F12, PhysicalReg::F13, PhysicalReg::F14, PhysicalReg::F15, PhysicalReg::F16, PhysicalReg::F17,
PhysicalReg::F8, PhysicalReg::F9, PhysicalReg::F18, PhysicalReg::F19, PhysicalReg::F20, PhysicalReg::F21, PhysicalReg::F22,
PhysicalReg::F23, PhysicalReg::F24, PhysicalReg::F25, PhysicalReg::F26, PhysicalReg::F27,
PhysicalReg::F28, PhysicalReg::F29, PhysicalReg::F30, PhysicalReg::F31,
};
// 新增识别所有通过寄存器传递的参数并建立vreg到物理寄存器(preg)的映射
// 这等同于图着色算法中的“预着色”步骤。
if (MFunc->getFunc()) {
int int_arg_idx = 0;
int fp_arg_idx = 0;
for (Argument* arg : MFunc->getFunc()->getArguments()) {
unsigned arg_vreg = ISel->getVReg(arg);
if (arg->getType()->isFloat()) {
if (fp_arg_idx < 8) { // fa0-fa7
auto preg = static_cast<PhysicalReg>(static_cast<int>(PhysicalReg::F10) + fp_arg_idx);
abi_vreg_map[arg_vreg] = preg;
fp_arg_idx++;
}
} else { // 整数或指针
if (int_arg_idx < 8) { // a0-a7
auto preg = static_cast<PhysicalReg>(static_cast<int>(PhysicalReg::A0) + int_arg_idx);
abi_vreg_map[arg_vreg] = preg;
int_arg_idx++;
}
}
}
}
}
void RISCv64LinearScan::run() {
if (DEBUG) std::cerr << "===== Running Linear Scan Register Allocation for function: " << MFunc->getName() << " =====\n";
bool changed = true;
while(changed) {
// 1. 准备阶段
linearizeBlocks();
computeLiveIntervals();
// 2. 执行线性扫描
changed = linearScan();
// 3. 如果有溢出,重写代码,然后下一轮重新开始
if (changed) {
rewriteProgram();
if (DEBUG) std::cerr << "--- Spilling detected, re-running linear scan ---\n";
}
}
// 4. 将最终分配结果应用到机器指令
applyAllocation();
// 5. 收集用到的被调用者保存寄存器
MFunc->getFrameInfo().vreg_to_preg_map = this->vreg_to_preg_map;
collectUsedCalleeSavedRegs();
if (DEBUG) std::cerr << "===== Finished Linear Scan Register Allocation =====\n\n";
}
// 步骤 1.1: 对基本块进行线性化,这里我们简单地按现有顺序排列
void RISCv64LinearScan::linearizeBlocks() {
linear_order_blocks.clear();
for (auto& mbb : MFunc->getBlocks()) {
linear_order_blocks.push_back(mbb.get());
}
}
// RISCv64LinearScan.cpp
void RISCv64LinearScan::computeLiveIntervals() {
instr_numbering.clear();
live_intervals.clear();
unhandled.clear();
// a. 对所有指令进行线性编号并记录CALL指令的位置
int num = 0;
std::set<int> call_locations;
for (auto* mbb : linear_order_blocks) {
for (auto& instr : mbb->getInstructions()) {
instr_numbering[instr.get()] = num;
if (instr->getOpcode() == RVOpcodes::CALL) {
call_locations.insert(num);
}
num += 2; // 指令编号间隔为2方便在溢出重写时插入指令
}
}
// b. 遍历所有指令记录每个vreg首次和末次出现的位置
std::map<unsigned, std::pair<int, int>> vreg_ranges; // vreg -> {first_instr_num, last_instr_num}
for (auto* mbb : linear_order_blocks) {
for (auto& instr_ptr : mbb->getInstructions()) {
const MachineInstr* instr = instr_ptr.get();
int instr_num = instr_numbering.at(instr);
std::set<unsigned> use, def;
getInstrUseDef(instr, use, def);
auto all_vregs = use;
all_vregs.insert(def.begin(), def.end());
for (unsigned vreg : all_vregs) {
if (vreg_ranges.find(vreg) == vreg_ranges.end()) {
vreg_ranges[vreg] = {instr_num, instr_num};
} else {
vreg_ranges[vreg].second = std::max(vreg_ranges[vreg].second, instr_num);
}
}
}
}
// c. 根据记录的边界创建LiveInterval对象并检查是否跨越CALL
for (auto const& [vreg, range] : vreg_ranges) {
live_intervals.emplace(vreg, LiveInterval(vreg));
auto& interval = live_intervals.at(vreg);
interval.start = range.first;
interval.end = range.second;
// 检查此区间是否跨越了任何CALL指令
auto it = call_locations.lower_bound(interval.start);
if (it != call_locations.end() && *it < interval.end) {
interval.crosses_call = true;
}
}
// d. 将所有计算出的活跃区间放入 unhandled 列表
for (auto& pair : live_intervals) {
unhandled.push_back(&pair.second);
}
std::sort(unhandled.begin(), unhandled.end(), [](const LiveInterval* a, const LiveInterval* b){
return a->start < b->start;
});
}
// RISCv64LinearScan.cpp
// 在类的定义中添加一个辅助函数来判断寄存器类型
bool isCalleeSaved(PhysicalReg preg) {
if (preg >= PhysicalReg::S1 && preg <= PhysicalReg::S11) return true;
if (preg == PhysicalReg::S0) return true; // s0 通常也作为被调用者保存
// 浮点寄存器
if (preg >= PhysicalReg::F8 && preg <= PhysicalReg::F9) return true;
if (preg >= PhysicalReg::F18 && preg <= PhysicalReg::F27) return true;
return false;
}
// 线性扫描主算法
bool RISCv64LinearScan::linearScan() {
active.clear();
spilled_vregs.clear();
vreg_to_preg_map.clear();
// 将寄存器池分为调用者保存和被调用者保存两类
std::set<PhysicalReg> free_caller_int_regs, free_callee_int_regs;
std::set<PhysicalReg> free_caller_fp_regs, free_callee_fp_regs;
for (auto preg : allocable_int_regs) {
if (isCalleeSaved(preg)) free_callee_int_regs.insert(preg);
else free_caller_int_regs.insert(preg);
}
for (auto preg : allocable_fp_regs) {
if (isCalleeSaved(preg)) free_callee_fp_regs.insert(preg);
else free_caller_fp_regs.insert(preg);
}
// 预处理ABI参数寄存器
vreg_to_preg_map.insert(abi_vreg_map.begin(), abi_vreg_map.end());
std::vector<LiveInterval*> normal_unhandled;
for(LiveInterval* interval : unhandled) {
if(abi_vreg_map.count(interval->vreg)) {
active.push_back(interval);
PhysicalReg preg = abi_vreg_map.at(interval->vreg);
if (isFPVReg(interval->vreg)) {
if(isCalleeSaved(preg)) free_callee_fp_regs.erase(preg); else free_caller_fp_regs.erase(preg);
} else {
if(isCalleeSaved(preg)) free_callee_int_regs.erase(preg); else free_caller_int_regs.erase(preg);
}
} else {
normal_unhandled.push_back(interval);
}
}
unhandled = normal_unhandled;
std::sort(active.begin(), active.end(), [](const LiveInterval* a, const LiveInterval* b){ return a->end < b->end; });
// 主循环
for (LiveInterval* current : unhandled) {
// a. 释放active列表中已结束的区间
std::vector<LiveInterval*> new_active;
for (LiveInterval* active_interval : active) {
if (active_interval->end < current->start) {
PhysicalReg preg = vreg_to_preg_map.at(active_interval->vreg);
if (isFPVReg(active_interval->vreg)) {
if(isCalleeSaved(preg)) free_callee_fp_regs.insert(preg); else free_caller_fp_regs.insert(preg);
} else {
if(isCalleeSaved(preg)) free_callee_int_regs.insert(preg); else free_caller_int_regs.insert(preg);
}
} else {
new_active.push_back(active_interval);
}
}
active = new_active;
// b. 约束化地为当前区间分配寄存器
bool is_fp = isFPVReg(current->vreg);
auto& free_caller = is_fp ? free_caller_fp_regs : free_caller_int_regs;
auto& free_callee = is_fp ? free_callee_fp_regs : free_callee_int_regs;
PhysicalReg allocated_preg = PhysicalReg::INVALID;
if (current->crosses_call) {
// 跨调用区间:必须使用被调用者保存寄存器
if (!free_callee.empty()) {
allocated_preg = *free_callee.begin();
free_callee.erase(allocated_preg);
}
} else {
// 非跨调用区间:优先使用调用者保存寄存器
if (!free_caller.empty()) {
allocated_preg = *free_caller.begin();
free_caller.erase(allocated_preg);
} else if (!free_callee.empty()) {
allocated_preg = *free_callee.begin();
free_callee.erase(allocated_preg);
}
}
if (allocated_preg != PhysicalReg::INVALID) {
vreg_to_preg_map[current->vreg] = allocated_preg;
active.push_back(current);
std::sort(active.begin(), active.end(), [](const LiveInterval* a, const LiveInterval* b){ return a->end < b->end; });
} else {
// c. 没有可用寄存器,需要溢出
spillAtInterval(current);
}
}
return !spilled_vregs.empty();
}
void RISCv64LinearScan::chooseRegForInterval(LiveInterval* current) {
bool is_fp = isFPVReg(current->vreg);
auto& free_regs = is_fp ? free_fp_regs : free_int_regs;
if (!free_regs.empty()) {
// 有可用寄存器
PhysicalReg preg = *free_regs.begin();
free_regs.erase(free_regs.begin());
vreg_to_preg_map[current->vreg] = preg;
active.push_back(current);
// 保持 active 列表按结束点排序
std::sort(active.begin(), active.end(), [](const LiveInterval* a, const LiveInterval* b){
return a->end < b->end;
});
} else {
// 没有可用寄存器,需要溢出
spillAtInterval(current);
}
}
void RISCv64LinearScan::spillAtInterval(LiveInterval* current) {
LiveInterval* spill_candidate = nullptr;
// 启发式溢出:
// 如果current需要callee-saved则从active中找一个占用callee-saved且结束最晚的区间比较
// 否则找active中结束最晚的区间
// 这里简化处理总是找active中结束最晚的区间
auto last_active = active.back();
if (last_active->end > current->end) {
// 溢出active中的区间
spill_candidate = last_active;
PhysicalReg preg = vreg_to_preg_map.at(spill_candidate->vreg);
vreg_to_preg_map[current->vreg] = preg; // 把换出的寄存器给current
// 更新active列表
active.pop_back();
active.push_back(current);
std::sort(active.begin(), active.end(), [](const LiveInterval* a, const LiveInterval* b){ return a->end < b->end; });
spilled_vregs.insert(spill_candidate->vreg);
} else {
// 溢出当前区间
spilled_vregs.insert(current->vreg);
}
}
// 步骤 3: 重写程序,插入溢出代码
void RISCv64LinearScan::rewriteProgram() {
StackFrameInfo& frame_info = MFunc->getFrameInfo();
int spill_offset = frame_info.locals_size; // 溢出区域接在局部变量之后
for (unsigned vreg : spilled_vregs) {
if (frame_info.spill_offsets.count(vreg)) continue; // 避免重复分配
int size = isFPVReg(vreg) ? 4 : (vreg_type_map.at(vreg)->isPointer() ? 8 : 4);
spill_offset += size;
spill_offset = (spill_offset + 7) & ~7; // 8字节对齐
frame_info.spill_offsets[vreg] = -(16 + spill_offset);
}
frame_info.spill_size = spill_offset - frame_info.locals_size;
for (auto& mbb : MFunc->getBlocks()) {
auto& instrs = mbb->getInstructions();
std::vector<std::unique_ptr<MachineInstr>> new_instrs;
for (auto it = instrs.begin(); it != instrs.end(); ++it) {
auto& instr = *it;
std::set<unsigned> use_vregs, def_vregs;
getInstrUseDef(instr.get(), use_vregs, def_vregs);
// 建立溢出vreg到新临时vreg的映射
std::map<unsigned, unsigned> use_remap;
std::map<unsigned, unsigned> def_remap;
// 1. 为所有溢出的USE创建LOAD指令和映射
for (unsigned old_vreg : use_vregs) {
if (spilled_vregs.count(old_vreg) && use_remap.find(old_vreg) == use_remap.end()) {
Type* type = vreg_type_map.at(old_vreg);
unsigned new_temp_vreg = ISel->getNewVReg(type);
use_remap[old_vreg] = new_temp_vreg;
RVOpcodes load_op = isFPVReg(old_vreg) ? RVOpcodes::FLW : (type->isPointer() ? RVOpcodes::LD : RVOpcodes::LW);
auto load = std::make_unique<MachineInstr>(load_op);
load->addOperand(std::make_unique<RegOperand>(new_temp_vreg));
load->addOperand(std::make_unique<MemOperand>(
std::make_unique<RegOperand>(PhysicalReg::S0),
std::make_unique<ImmOperand>(frame_info.spill_offsets.at(old_vreg))
));
new_instrs.push_back(std::move(load));
}
}
// 2. 为所有溢出的DEF创建映射
for (unsigned old_vreg : def_vregs) {
if (spilled_vregs.count(old_vreg) && def_remap.find(old_vreg) == def_remap.end()) {
Type* type = vreg_type_map.at(old_vreg);
unsigned new_temp_vreg = ISel->getNewVReg(type);
def_remap[old_vreg] = new_temp_vreg;
}
}
// 3. 基于角色精确地替换原指令中的操作数
auto opcode = instr->getOpcode();
auto& operands = instr->getOperands();
auto replace_reg_op = [](RegOperand* reg_op, const std::map<unsigned, unsigned>& remap) {
if (reg_op->isVirtual() && remap.count(reg_op->getVRegNum())) {
reg_op->setVRegNum(remap.at(reg_op->getVRegNum()));
}
};
if (op_info.count(opcode)) {
const auto& info = op_info.at(opcode);
// 替换 Defs
for (int idx : info.first) {
if (idx < operands.size() && operands[idx]->getKind() == MachineOperand::KIND_REG) {
replace_reg_op(static_cast<RegOperand*>(operands[idx].get()), def_remap);
}
}
// 替换 Uses
for (int idx : info.second) {
if (idx < operands.size()) {
if (operands[idx]->getKind() == MachineOperand::KIND_REG) {
replace_reg_op(static_cast<RegOperand*>(operands[idx].get()), use_remap);
} else if (operands[idx]->getKind() == MachineOperand::KIND_MEM) {
replace_reg_op(static_cast<MemOperand*>(operands[idx].get())->getBase(), use_remap);
}
}
}
} else if (opcode == RVOpcodes::CALL) {
// 特殊处理 CALL 指令
if (!operands.empty() && operands[0]->getKind() == MachineOperand::KIND_REG) {
replace_reg_op(static_cast<RegOperand*>(operands[0].get()), def_remap);
}
for (size_t i = 1; i < operands.size(); ++i) {
if (operands[i]->getKind() == MachineOperand::KIND_REG) {
replace_reg_op(static_cast<RegOperand*>(operands[i].get()), use_remap);
}
}
}
// 4. 将修改后的指令放入新列表
new_instrs.push_back(std::move(instr));
// 5. 为所有溢出的DEF创建STORE指令
for(const auto& pair : def_remap) {
unsigned old_vreg = pair.first;
unsigned new_temp_vreg = pair.second;
Type* type = vreg_type_map.at(old_vreg);
RVOpcodes store_op = isFPVReg(old_vreg) ? RVOpcodes::FSW : (type->isPointer() ? RVOpcodes::SD : RVOpcodes::SW);
auto store = std::make_unique<MachineInstr>(store_op);
store->addOperand(std::make_unique<RegOperand>(new_temp_vreg));
store->addOperand(std::make_unique<MemOperand>(
std::make_unique<RegOperand>(PhysicalReg::S0),
std::make_unique<ImmOperand>(frame_info.spill_offsets.at(old_vreg))
));
new_instrs.push_back(std::move(store));
}
}
instrs = std::move(new_instrs);
}
}
// 步骤 4: 应用最终分配结果
void RISCv64LinearScan::applyAllocation() {
for (auto& mbb : MFunc->getBlocks()) {
for (auto& instr_ptr : mbb->getInstructions()) {
for (auto& op_ptr : instr_ptr->getOperands()) {
if (op_ptr->getKind() == MachineOperand::KIND_REG) {
auto reg_op = static_cast<RegOperand*>(op_ptr.get());
if (reg_op->isVirtual()) {
unsigned vreg = reg_op->getVRegNum();
if (vreg_to_preg_map.count(vreg)) {
reg_op->setPReg(vreg_to_preg_map.at(vreg));
} else {
// 如果一个vreg最终没有颜色这通常意味着它是一个短生命周期的临时变量
// 在溢出重写中产生,但在下一轮分配前就被优化掉了。
// 或者是一个从未被使用的定义。
// 给他一个临时寄存器以防万一。
reg_op->setPReg(PhysicalReg::T5);
}
}
} else if (op_ptr->getKind() == MachineOperand::KIND_MEM) {
auto mem_op = static_cast<MemOperand*>(op_ptr.get());
auto reg_op = mem_op->getBase();
if (reg_op->isVirtual()) {
unsigned vreg = reg_op->getVRegNum();
if (vreg_to_preg_map.count(vreg)) {
reg_op->setPReg(vreg_to_preg_map.at(vreg));
} else {
reg_op->setPReg(PhysicalReg::T5);
}
}
}
}
}
}
}
void RISCv64LinearScan::getInstrUseDef(const MachineInstr* instr, std::set<unsigned>& use, std::set<unsigned>& def) {
// 这个函数与图着色版本中的 getInstrUseDef 逻辑完全相同,此处直接复用
auto opcode = instr->getOpcode();
const auto& operands = instr->getOperands();
// op_info 的定义已被移到函数外部的命名空间中
auto get_vreg_id_if_virtual = [&](const MachineOperand* op, std::set<unsigned>& s) {
if (op->getKind() == MachineOperand::KIND_REG) {
auto reg_op = static_cast<const RegOperand*>(op);
if (reg_op->isVirtual()) s.insert(reg_op->getVRegNum());
} else if (op->getKind() == MachineOperand::KIND_MEM) {
auto mem_op = static_cast<const MemOperand*>(op);
auto reg_op = mem_op->getBase();
if (reg_op->isVirtual()) s.insert(reg_op->getVRegNum());
}
};
if (op_info.count(opcode)) {
const auto& info = op_info.at(opcode);
for (int idx : info.first) if (idx < operands.size()) get_vreg_id_if_virtual(operands[idx].get(), def);
for (int idx : info.second) if (idx < operands.size()) get_vreg_id_if_virtual(operands[idx].get(), use);
// MemOperand 的基址寄存器总是一个 use
for (const auto& op : operands) if (op->getKind() == MachineOperand::KIND_MEM) get_vreg_id_if_virtual(op.get(), use);
} else if (opcode == RVOpcodes::CALL) {
// CALL指令的特殊处理
// 第一个操作数如果有是def返回值
if (!operands.empty() && operands[0]->getKind() == MachineOperand::KIND_REG) get_vreg_id_if_virtual(operands[0].get(), def);
// 后续的寄存器操作数是use参数
for (size_t i = 1; i < operands.size(); ++i) if (operands[i]->getKind() == MachineOperand::KIND_REG) get_vreg_id_if_virtual(operands[i].get(), use);
}
}
// 辅助函数: 判断是否为浮点vreg
bool RISCv64LinearScan::isFPVReg(unsigned vreg) const {
return vreg_type_map.count(vreg) && vreg_type_map.at(vreg)->isFloat();
}
// 辅助函数: 收集被使用的被调用者保存寄存器
void RISCv64LinearScan::collectUsedCalleeSavedRegs() {
StackFrameInfo& frame_info = MFunc->getFrameInfo();
frame_info.used_callee_saved_regs.clear();
const auto& callee_saved_int = getCalleeSavedIntRegs();
const auto& callee_saved_fp = getCalleeSavedFpRegs();
std::set<PhysicalReg> callee_saved_set(callee_saved_int.begin(), callee_saved_int.end());
callee_saved_set.insert(callee_saved_fp.begin(), callee_saved_fp.end());
callee_saved_set.insert(PhysicalReg::S0); // s0总是被用作帧指针
for(const auto& pair : vreg_to_preg_map) {
PhysicalReg preg = pair.second;
if(callee_saved_set.count(preg)) {
frame_info.used_callee_saved_regs.insert(preg);
}
}
}
} // namespace sysy

View File

@ -122,30 +122,6 @@ void RISCv64RegAlloc::precolorByCallingConvention() {
}
}
// // --- 部分2为CALL指令的返回值预着色 ---
// for (auto& mbb : MFunc->getBlocks()) {
// for (auto& instr : mbb->getInstructions()) {
// if (instr->getOpcode() == RVOpcodes::CALL) {
// if (!instr->getOperands().empty() &&
// instr->getOperands().front()->getKind() == MachineOperand::KIND_REG)
// {
// auto reg_op = static_cast<RegOperand*>(instr->getOperands().front().get());
// if (reg_op->isVirtual()) {
// unsigned ret_vreg = reg_op->getVRegNum();
// assert(vreg_to_value_map.count(ret_vreg) && "Return vreg not found!");
// Value* ret_val = vreg_to_value_map.at(ret_vreg);
// if (ret_val->getType()->isFloat()) {
// color_map[ret_vreg] = PhysicalReg::F10; // fa0
// } else {
// color_map[ret_vreg] = PhysicalReg::A0; // a0
// }
// }
// }
// }
// }
// }
// 将所有预着色的vreg视为已着色节点
for(const auto& pair : color_map) {
coloredNodes.insert(pair.first);
@ -402,14 +378,32 @@ void RISCv64RegAlloc::build() {
// --- 规则 3: Live_Out 集合内部的【虚拟寄存器】形成完全图 ---
// 使用更高效的遍历,避免重复调用 addEdge(A,B) 和 addEdge(B,A)
for (auto it1 = live_out.begin(); it1 != live_out.end(); ++it1) {
unsigned l1 = *it1;
// 只为虚拟寄存器 l1 添加边
if (precolored.count(l1)) continue;
// 添加限制以防止过度密集的图
const size_t MAX_LIVE_OUT_SIZE = 32; // 限制最大活跃变量数
if (live_out.size() > MAX_LIVE_OUT_SIZE) {
// 对于大量活跃变量,使用更保守的边添加策略
// 只添加必要的边,而不是完全图
for (auto it1 = live_out.begin(); it1 != live_out.end(); ++it1) {
unsigned l1 = *it1;
if (precolored.count(l1)) continue;
for (auto it2 = std::next(it1); it2 != live_out.end(); ++it2) {
unsigned l2 = *it2;
addEdge(l1, l2);
// 只添加与定义变量相关的边
for (unsigned d : def) {
if (d != l1 && !precolored.count(d)) {
addEdge(l1, d);
}
}
}
} else {
// 对于较小的集合,使用原来的完全图方法
for (auto it1 = live_out.begin(); it1 != live_out.end(); ++it1) {
unsigned l1 = *it1;
if (precolored.count(l1)) continue;
for (auto it2 = std::next(it1); it2 != live_out.end(); ++it2) {
unsigned l2 = *it2;
addEdge(l1, l2);
}
}
}
}
@ -656,7 +650,7 @@ void RISCv64RegAlloc::rewriteProgram() {
StackFrameInfo& frame_info = MFunc->getFrameInfo();
// 使用 EFI Pass 确定的 locals_end_offset 作为溢出分配的基准。
// locals_end_offset 本身是负数,代表局部变量区域的下边界地址。
int spill_current_offset = frame_info.locals_end_offset;
int spill_current_offset = frame_info.locals_end_offset - frame_info.spill_size;
// 保存溢出区域的起始点,用于最后计算总的 spill_size
const int spill_start_offset = frame_info.locals_end_offset;
@ -787,6 +781,11 @@ void RISCv64RegAlloc::rewriteProgram() {
std::make_unique<ImmOperand>(frame_info.spill_offsets.at(old_vreg))
));
new_instructions.push_back(std::move(store));
if (DEEPERDEBUG) {
std::cerr << "[Spill] Inserted spill store for %vreg" << old_vreg
<< " at offset " << frame_info.spill_offsets.at(old_vreg)
<< " with new temp vreg " << regIdToString(new_temp_vreg) << ".\n";
}
}
}
mbb->getInstructions() = std::move(new_instructions);
@ -1352,9 +1351,9 @@ void RISCv64RegAlloc::applyColoring() {
// 使用 setPReg 将虚拟寄存器转换为物理寄存器
reg_op->setPReg(color_map.at(vreg));
} else {
// 如果一个vreg在成功分配后仍然没有颜色这是一个错误
std::cerr << "FATAL: Virtual register %vreg" << vreg << " has no color after allocation!\n";
assert(false && "Virtual register has no color after allocation!");
// 如果一个vreg在成功分配后仍然没有颜色可能是紧急溢出
// std::cerr << "WARNING: Virtual register %vreg" << vreg << " has no color after allocation, treating as spilled\n";
// 在紧急溢出情况下,使用临时寄存器
reg_op->setPReg(PhysicalReg::T6);
}
}
@ -1366,7 +1365,7 @@ void RISCv64RegAlloc::applyColoring() {
if (color_map.count(vreg)) {
reg_op->setPReg(color_map.at(vreg));
} else {
assert(false && "Virtual register in memory operand has no color!");
// std::cerr << "WARNING: Virtual register in memory operand has no color, using T6\n";
reg_op->setPReg(PhysicalReg::T6);
}
}

View File

@ -20,6 +20,8 @@ public:
void setStream(std::ostream& os) { OS = &os; }
// 辅助函数
std::string regToString(PhysicalReg reg);
std::string formatInstr(const MachineInstr *instr);
private:
// 打印各个部分
void printBasicBlock(MachineBasicBlock* mbb, bool debug = false);

View File

@ -3,6 +3,12 @@
#include "RISCv64LLIR.h"
// Forward declarations
namespace sysy {
class GlobalValue;
class Value;
}
extern int DEBUG;
extern int DEEPDEBUG;
@ -16,8 +22,8 @@ public:
// 公开接口以便后续模块如RegAlloc可以查询或创建vreg
unsigned getVReg(Value* val);
unsigned getNewVReg() { return vreg_counter++; }
unsigned getNewVReg(Type* type);
unsigned getVRegCounter() const;
// 获取 vreg_map 的公共接口
const std::map<Value*, unsigned>& getVRegMap() const { return vreg_map; }
const std::map<unsigned, Value*>& getVRegValueMap() const { return vreg_to_value_map; }

View File

@ -41,6 +41,8 @@ enum class PhysicalReg {
// 假设 vreg_counter 不会达到这么大的值
PHYS_REG_START_ID = 1000000,
PHYS_REG_END_ID = PHYS_REG_START_ID + 320, // 预留足够的空间
INVALID, ///< 无效寄存器标记
};
// RISC-V 指令操作码枚举
@ -86,6 +88,7 @@ enum class RVOpcodes {
// 浮点转换
FCVT_S_W, // fcvt.s.w rd, rs1 (有符号整数 -> 单精度浮点)
FCVT_W_S, // fcvt.w.s rd, rs1 (单精度浮点 -> 有符号整数)
FCVT_W_S_RTZ, // fcvt.w.s rd, rs1, rtz (使用向零截断模式)
// 浮点传送/移动
FMV_S, // fmv.s rd, rs1 (浮点寄存器之间)

View File

@ -0,0 +1,104 @@
#ifndef RISCV64_LINEARSCAN_H
#define RISCV64_LINEARSCAN_H
#include "RISCv64LLIR.h"
#include "RISCv64ISel.h"
#include <vector>
#include <map>
#include <set>
#include <algorithm>
namespace sysy {
// 前向声明
class MachineBasicBlock;
class MachineFunction;
class RISCv64ISel;
/**
* @brief 表示一个虚拟寄存器的活跃区间。
* 包含起始和结束指令编号。为了简化,我们不处理有“洞”的区间。
*/
struct LiveInterval {
unsigned vreg = 0;
int start = -1;
int end = -1;
bool crosses_call = false;
LiveInterval(unsigned vreg) : vreg(vreg) {}
// 用于排序,按起始点从小到大
bool operator<(const LiveInterval& other) const {
return start < other.start;
}
};
class RISCv64LinearScan {
public:
RISCv64LinearScan(MachineFunction* mfunc);
void run();
private:
// --- 核心算法流程 ---
void linearizeBlocks();
void computeLiveIntervals();
bool linearScan();
void rewriteProgram();
void applyAllocation();
void chooseRegForInterval(LiveInterval* current);
void spillAtInterval(LiveInterval* current);
// --- 辅助函数 ---
void getInstrUseDef(const MachineInstr* instr, std::set<unsigned>& use, std::set<unsigned>& def);
bool isFPVReg(unsigned vreg) const;
void collectUsedCalleeSavedRegs();
MachineFunction* MFunc;
RISCv64ISel* ISel;
// --- 线性扫描数据结构 ---
std::vector<MachineBasicBlock*> linear_order_blocks;
std::map<const MachineInstr*, int> instr_numbering;
std::map<unsigned, LiveInterval> live_intervals;
std::vector<LiveInterval*> unhandled;
std::vector<LiveInterval*> active; // 活跃且已分配物理寄存器的区间
std::set<unsigned> spilled_vregs; // 记录在本轮被决定溢出的vreg
// --- 寄存器池和分配结果 ---
std::vector<PhysicalReg> allocable_int_regs;
std::vector<PhysicalReg> allocable_fp_regs;
std::set<PhysicalReg> free_int_regs;
std::set<PhysicalReg> free_fp_regs;
std::map<unsigned, PhysicalReg> vreg_to_preg_map;
std::map<unsigned, PhysicalReg> abi_vreg_map;
const std::map<unsigned, Type*>& vreg_type_map;
};
static const std::map<RVOpcodes, std::pair<std::vector<int>, std::vector<int>>> op_info = {
{RVOpcodes::ADD, {{0}, {1, 2}}}, {RVOpcodes::SUB, {{0}, {1, 2}}}, {RVOpcodes::MUL, {{0}, {1, 2}}},
{RVOpcodes::DIV, {{0}, {1, 2}}}, {RVOpcodes::REM, {{0}, {1, 2}}}, {RVOpcodes::ADDW, {{0}, {1, 2}}},
{RVOpcodes::SUBW, {{0}, {1, 2}}}, {RVOpcodes::MULW, {{0}, {1, 2}}}, {RVOpcodes::DIVW, {{0}, {1, 2}}},
{RVOpcodes::REMW, {{0}, {1, 2}}}, {RVOpcodes::SLT, {{0}, {1, 2}}}, {RVOpcodes::SLTU, {{0}, {1, 2}}},
{RVOpcodes::ADDI, {{0}, {1}}}, {RVOpcodes::ADDIW, {{0}, {1}}}, {RVOpcodes::XORI, {{0}, {1}}},
{RVOpcodes::SLTI, {{0}, {1}}}, {RVOpcodes::SLTIU, {{0}, {1}}}, {RVOpcodes::LB, {{0}, {}}},
{RVOpcodes::LH, {{0}, {}}}, {RVOpcodes::LW, {{0}, {}}}, {RVOpcodes::LD, {{0}, {}}},
{RVOpcodes::LBU, {{0}, {}}}, {RVOpcodes::LHU, {{0}, {}}}, {RVOpcodes::LWU, {{0}, {}}},
{RVOpcodes::FLW, {{0}, {}}}, {RVOpcodes::FLD, {{0}, {}}}, {RVOpcodes::SB, {{}, {0, 1}}},
{RVOpcodes::SH, {{}, {0, 1}}}, {RVOpcodes::SW, {{}, {0, 1}}}, {RVOpcodes::SD, {{}, {0, 1}}},
{RVOpcodes::FSW, {{}, {0, 1}}}, {RVOpcodes::FSD, {{}, {0, 1}}}, {RVOpcodes::BEQ, {{}, {0, 1}}},
{RVOpcodes::BNE, {{}, {0, 1}}}, {RVOpcodes::BLT, {{}, {0, 1}}}, {RVOpcodes::BGE, {{}, {0, 1}}},
{RVOpcodes::JALR, {{0}, {1}}}, {RVOpcodes::LI, {{0}, {}}}, {RVOpcodes::LA, {{0}, {}}},
{RVOpcodes::MV, {{0}, {1}}}, {RVOpcodes::SEQZ, {{0}, {1}}}, {RVOpcodes::SNEZ, {{0}, {1}}},
{RVOpcodes::RET, {{}, {}}}, {RVOpcodes::FADD_S, {{0}, {1, 2}}}, {RVOpcodes::FSUB_S, {{0}, {1, 2}}},
{RVOpcodes::FMUL_S, {{0}, {1, 2}}}, {RVOpcodes::FDIV_S, {{0}, {1, 2}}}, {RVOpcodes::FEQ_S, {{0}, {1, 2}}},
{RVOpcodes::FLT_S, {{0}, {1, 2}}}, {RVOpcodes::FLE_S, {{0}, {1, 2}}}, {RVOpcodes::FCVT_S_W, {{0}, {1}}},
{RVOpcodes::FCVT_W_S, {{0}, {1}}}, {RVOpcodes::FMV_S, {{0}, {1}}}, {RVOpcodes::FMV_W_X, {{0}, {1}}},
{RVOpcodes::FMV_X_W, {{0}, {1}}}, {RVOpcodes::FNEG_S, {{0}, {1}}}
};
} // namespace sysy
#endif // RISCV64_LINEARSCAN_H

View File

@ -202,6 +202,7 @@ class Use {
public:
unsigned getIndex() const { return index; } ///< 返回value在User操作数中的位置
void setIndex(int newIndex) { index = newIndex; } ///< 设置value在User操作数中的位置
User* getUser() const { return user; } ///< 返回使用者
Value* getValue() const { return value; } ///< 返回被使用的值
void setValue(Value *newValue) { value = newValue; } ///< 将被使用的值设置为newValue
@ -229,7 +230,14 @@ class Value {
std::list<std::shared_ptr<Use>>& getUses() { return uses; } ///< 获取使用关系列表
void addUse(const std::shared_ptr<Use> &use) { uses.push_back(use); } ///< 添加使用关系
void replaceAllUsesWith(Value *value); ///< 将原来使用该value的使用者全变为使用给定参数value并修改相应use关系
void removeUse(const std::shared_ptr<Use> &use) { uses.remove(use); } ///< 删除使用关系use
void removeUse(const std::shared_ptr<Use> &use) {
assert(use != nullptr && "Use cannot be null");
assert(use->getValue() == this && "Use being removed does NOT point to this Value!");
auto it = std::find(uses.begin(), uses.end(), use);
assert(it != uses.end() && "Use not found in Value's uses");
uses.remove(use);
} ///< 删除使用关系use
void removeAllUses();
};
/**
@ -633,21 +641,6 @@ class User : public Value {
explicit User(Type *type, const std::string &name = "") : Value(type, name) {}
public:
// ~User() override {
// // 当 User 对象被销毁时例如LoadInst 或 StoreInst 被删除时),
// // 它必须通知它所使用的所有 Value将对应的 Use 关系从它们的 uses 列表中移除。
// // 这样可以防止 Value 的 uses 列表中出现悬空的 Use 对象。
// for (const auto &use_ptr : operands) {
// // 确保 use_ptr 非空,并且其内部指向的 Value* 也非空
// // (虽然通常情况下不会为空,但为了健壮性考虑)
// if (use_ptr && use_ptr->getValue()) {
// use_ptr->getValue()->removeUse(use_ptr);
// }
// }
// // operands 向量本身是 std::vector<std::shared_ptr<Use>>
// // 在此析构函数结束后operands 向量会被销毁,其内部的 shared_ptr 也会被释放,
// // 如果 shared_ptr 引用计数降为0Use 对象本身也会被销毁。
// }
unsigned getNumOperands() const { return operands.size(); } ///< 获取操作数数量
auto operand_begin() const { return operands.begin(); } ///< 返回操作数列表的开头迭代器
auto operand_end() const { return operands.end(); } ///< 返回操作数列表的结尾迭代器
@ -657,11 +650,7 @@ class User : public Value {
operands.emplace_back(std::make_shared<Use>(operands.size(), this, value));
value->addUse(operands.back());
} ///< 增加操作数
void removeOperand(unsigned index) {
auto value = getOperand(index);
value->removeUse(operands[index]);
operands.erase(operands.begin() + index);
} ///< 移除操作数
void removeOperand(unsigned index);
template <typename ContainerT>
void addOperands(const ContainerT &newoperands) {
for (auto value : newoperands) {
@ -919,57 +908,54 @@ class PhiInst : public Instruction {
const std::string &name = "")
: Instruction(Kind::kPhi, type, parent, name), vsize(rhs.size()) {
assert(rhs.size() == Blocks.size() && "PhiInst: rhs and Blocks must have the same size");
for(size_t i = 0; i < rhs.size(); ++i) {
for(size_t i = 0; i < vsize; ++i) {
addOperand(rhs[i]);
addOperand(Blocks[i]);
blk2val[Blocks[i]] = rhs[i];
}
}
public:
Value* getValue(unsigned k) const {return getOperand(2 * k);} ///< 获取位置为k的值
BasicBlock* getBlock(unsigned k) const {return dynamic_cast<BasicBlock*>(getOperand(2 * k + 1));}
//增加llvm同名方法实现获取value和block
Value* getIncomingValue(unsigned k) const {return getOperand(2 * k);} ///< 获取位置为k的值
BasicBlock* getIncomingBlock(unsigned k) const {return dynamic_cast<BasicBlock*>(getOperand(2 * k + 1));}
Value* getIncomingValue(BasicBlock* blk) const {
return getvalfromBlk(blk);
} ///< 获取指定基本块的传入值
BasicBlock* getIncomingBlock(Value* val) const {
return getBlkfromVal(val);
} ///< 获取指定值的传入基本块
void replaceIncoming(BasicBlock *oldBlock, BasicBlock *newBlock, Value *newValue){
delBlk(oldBlock);
addIncoming(newValue, newBlock);
}
auto& getincomings() const {return blk2val;} ///< 获取所有的基本块和对应的值
Value* getvalfromBlk(BasicBlock* blk) const ;
BasicBlock* getBlkfromVal(Value* val) const ;
unsigned getNumIncomingValues() const { return vsize; } ///< 获取传入值的数量
Value *getIncomingValue(unsigned Idx) const { return getOperand(Idx * 2); } ///< 获取指定位置的传入值
BasicBlock *getIncomingBlock(unsigned Idx) const {return dynamic_cast<BasicBlock *>(getOperand(Idx * 2 + 1)); } ///< 获取指定位置的传入基本块
Value* getValfromBlk(BasicBlock* block);
BasicBlock* getBlkfromVal(Value* value);
void addIncoming(Value *value, BasicBlock *block) {
assert(value && block && "PhiInst: value and block must not be null");
assert(value && block && "PhiInst: value and block cannot be null");
addOperand(value);
addOperand(block);
blk2val[block] = value;
vsize++;
} ///< 添加传入值和对应的基本块
void removeIncoming(BasicBlock *block){
delBlk(block);
}
void delValue(Value* val);
void delBlk(BasicBlock* blk);
void replaceBlk(BasicBlock* newBlk, unsigned k);
void replaceold2new(BasicBlock* oldBlk, BasicBlock* newBlk);
void refreshB2VMap();
void removeIncoming(unsigned Idx) {
assert(Idx < vsize && "PhiInst: Index out of bounds");
auto blk = getIncomingBlock(Idx);
removeOperand(Idx * 2 + 1); // Remove block
removeOperand(Idx * 2); // Remove value
blk2val.erase(blk);
vsize--;
} ///< 移除指定位置的传入值和对应的基本块
// 移除指定的传入值或基本块
void removeIncomingValue(Value *value);
void removeIncomingBlock(BasicBlock *block);
// 设置指定位置的传入值或基本块
void setIncomingValue(unsigned Idx, Value *value);
void setIncomingBlock(unsigned Idx, BasicBlock *block);
// 替换指定位置的传入值或基本块(原理是删除再添加)保留旧块或者旧值
void replaceIncomingValue(Value *oldValue, Value *newValue);
void replaceIncomingBlock(BasicBlock *oldBlock, BasicBlock *newBlock);
// 替换指定位置的传入值或基本块(原理是删除再添加)
void replaceIncomingValue(Value *oldValue, Value *newValue, BasicBlock *newBlock);
void replaceIncomingBlock(BasicBlock *oldBlock, BasicBlock *newBlock, Value *newValue);
void refreshMap() {
blk2val.clear();
for (unsigned i = 0; i < vsize; ++i) {
blk2val[getIncomingBlock(i)] = getIncomingValue(i);
}
} ///< 刷新块到值的映射关系
auto getValues() { return make_range(std::next(operand_begin()), operand_end()); }
};

View File

@ -48,13 +48,6 @@ public:
}
}
}
// 清空 User 的 operands 向量。这会递减 User 持有的 shared_ptr<Use> 的引用计数。
// 当引用计数降为 0 时Use 对象本身将被销毁。
// User::operands.clear(); // 这个步骤会在 Instruction 的析构函数中自动完成,因为它是 vector 成员
// 或者我们可以在 User::removeOperand 方法中确保 Use 对象从 operands 中移除。
// 实际上,只要 Value::removeUse(use_ptr) 被调用了,
// 当 Instruction 所在的 unique_ptr 销毁时,它的 operands vector 也会被销毁。
// 所以这里不需要显式 clear()
}
static void usedelete(Instruction *inst) {
assert(inst && "Instruction to delete cannot be null.");
@ -92,7 +85,7 @@ public:
// 步骤3: 物理删除指令并返回下一个迭代器
return parentBlock->removeInst(inst_it);
}
}
// 判断是否是全局变量
static bool isGlobal(Value *val) {

View File

@ -86,7 +86,60 @@ private:
case LPAREN: case RPAREN: return 0; // Parentheses have lowest precedence for stack logic
default: return -1; // Unknown operator
}
}
};
struct ExpKey {
BinaryOp op; ///< 操作符
Value *left; ///< 左操作数
Value *right; ///< 右操作数
ExpKey(BinaryOp op, Value *left, Value *right) : op(op), left(left), right(right) {}
bool operator<(const ExpKey &other) const {
if (op != other.op)
return op < other.op; ///< 比较操作符
if (left != other.left)
return left < other.left; ///< 比较左操作
return right < other.right; ///< 比较右操作数
} ///< 重载小于运算符用于比较ExpKey
};
struct UnExpKey {
BinaryOp op; ///< 一元操作符
Value *operand; ///< 操作数
UnExpKey(BinaryOp op, Value *operand) : op(op), operand(operand) {}
bool operator<(const UnExpKey &other) const {
if (op != other.op)
return op < other.op; ///< 比较操作符
return operand < other.operand; ///< 比较操作数
} ///< 重载小于运算符用于比较UnExpKey
};
struct GEPKey {
Value *basePointer;
std::vector<Value *> indices;
// 为 std::map 定义比较运算符,使得 GEPKey 可以作为键
bool operator<(const GEPKey &other) const {
if (basePointer != other.basePointer) {
return basePointer < other.basePointer;
}
// 逐个比较索引,确保顺序一致
if (indices.size() != other.indices.size()) {
return indices.size() < other.indices.size();
}
for (size_t i = 0; i < indices.size(); ++i) {
if (indices[i] != other.indices[i]) {
return indices[i] < other.indices[i];
}
}
return false; // 如果 basePointer 和所有索引都相同,则认为相等
}
};
std::map<GEPKey, Value*> availableGEPs; ///< 用于存储 GEP 的缓存
std::map<ExpKey, Value*> availableBinaryExpressions;
std::map<UnExpKey, Value*> availableUnaryExpressions;
std::map<Value*, Value*> availableLoads;
public:
SysYIRGenerator() = default;
@ -167,6 +220,15 @@ public:
Value* computeExp(SysYParser::ExpContext *ctx, Type* targetType = nullptr);
Value* computeAddExp(SysYParser::AddExpContext *ctx, Type* targetType = nullptr);
void compute();
// 参数是发生 store 操作的目标地址/变量的 Value*
void invalidateExpressionsOnStore(Value* storedAddress);
// 清除因函数调用而失效的表达式缓存(保守策略)
void invalidateExpressionsOnCall();
// 在进入新的基本块时清空所有表达式缓存
void enterNewBasicBlock();
public:
// 获取GEP指令的地址
Value* getGEPAddressInst(Value* basePointer, const std::vector<Value*>& indices);

View File

@ -118,14 +118,46 @@ ArrayType *ArrayType::get(Type *elementType, unsigned numElements) {
return result.first->get();
}
// void Value::replaceAllUsesWith(Value *value) {
// for (auto &use : uses) {
// auto user = use->getUser();
// assert(user && "Use's user cannot be null");
// user->setOperand(use->getIndex(), value);
// }
// uses.clear();
// }
void Value::replaceAllUsesWith(Value *value) {
for (auto &use : uses) {
use->getUser()->setOperand(use->getIndex(), value);
// 1. 创建 uses 列表的副本进行迭代。
// 这样做是为了避免在迭代过程中,由于 setOperand 间接调用 removeUse 或 addUse
// 导致原列表被修改,从而引发迭代器失效问题。
std::list<std::shared_ptr<Use>> uses_copy = uses;
for (auto &use_ptr : uses_copy) { // 遍历副本
// 2. 检查 shared_ptr<Use> 本身是否为空。这是最常见的崩溃原因之一。
if (use_ptr == nullptr) {
std::cerr << "Warning: Encountered a null std::shared_ptr<Use> in Value::uses list. Skipping this entry." << std::endl;
// 在一个健康的 IR 中,这种情况不应该发生。如果经常出现,说明你的 Use 创建或管理有问题。
continue; // 跳过空的智能指针
}
// 3. 检查 Use 对象内部的 User* 是否为空。
User* user_val = use_ptr->getUser();
if (user_val == nullptr) {
std::cerr << "Warning: Use object (" << use_ptr.get() << ") has a null User* in replaceAllUsesWith. Skipping this entry. This indicates IR corruption." << std::endl;
// 同样,在一个健康的 IR 中Use 对象的 User* 不应该为空。
continue; // 跳过用户指针为空的 Use 对象
}
// 如果走到这里use_ptr 和 user_val 都是有效的,可以安全调用 setOperand
user_val->setOperand(use_ptr->getIndex(), value);
}
// 4. 处理完所有 use 之后,清空原始的 uses 列表。
// replaceAllUsesWith 的目的就是将所有使用关系从当前 Value 转移走,
// 所以最后清空列表是正确的。
uses.clear();
}
// Implementations for static members
std::unordered_map<ConstantValueKey, ConstantValue*, ConstantValueHash, ConstantValueEqual> ConstantValue::mConstantPool;
@ -182,377 +214,45 @@ auto Function::getCalleesWithNoExternalAndSelf() -> std::set<Function *> {
}
return result;
}
// 函数克隆,后续函数级优化(内联等)需要用到
Function * Function::clone(const std::string &suffix) const {
std::stringstream ss;
std::map<BasicBlock *, BasicBlock *> oldNewBlockMap;
IRBuilder builder;
auto newFunction = new Function(parent, type, name);
newFunction->getEntryBlock()->setName(blocks.front()->getName());
oldNewBlockMap.emplace(blocks.front().get(), newFunction->getEntryBlock());
auto oldBlockListIter = std::next(blocks.begin());
while (oldBlockListIter != blocks.end()) {
auto newBlock = newFunction->addBasicBlock(oldBlockListIter->get()->getName());
oldNewBlockMap.emplace(oldBlockListIter->get(), newBlock);
oldBlockListIter++;
}
for (const auto &oldNewBlockItem : oldNewBlockMap) {
auto oldBlock = oldNewBlockItem.first;
auto newBlock = oldNewBlockItem.second;
for (const auto &oldPred : oldBlock->getPredecessors()) {
newBlock->addPredecessor(oldNewBlockMap.at(oldPred));
}
for (const auto &oldSucc : oldBlock->getSuccessors()) {
newBlock->addSuccessor(oldNewBlockMap.at(oldSucc));
void Value::removeAllUses() {
while (!uses.empty()) {
auto use = uses.back();
uses.pop_back();
if (use && use->getUser()) {
auto user = use->getUser();
int index = use->getIndex();
user->removeOperand(index); ///< 从User中移除该操作数
} else {
// 如果use或user为null输出警告信息
assert(use != nullptr && "Use cannot be null");
assert(use->getUser() != nullptr && "Use's user cannot be null");
}
}
std::map<Value *, Value *> oldNewValueMap;
std::map<Value *, bool> isAddedToCreate;
std::map<Value *, bool> isCreated;
std::queue<Value *> toCreate;
for (const auto &oldBlock : blocks) {
for (const auto &inst : oldBlock->getInstructions()) {
isAddedToCreate.emplace(inst.get(), false);
isCreated.emplace(inst.get(), false);
}
}
for (const auto &oldBlock : blocks) {
for (const auto &inst : oldBlock->getInstructions()) {
for (const auto &valueUse : inst->getOperands()) {
auto value = valueUse->getValue();
if (oldNewValueMap.find(value) == oldNewValueMap.end()) {
auto oldAllocInst = dynamic_cast<AllocaInst *>(value);
if (oldAllocInst != nullptr) {
std::vector<Value *> dims;
// TODO: 这里的dims用type推断
// for (const auto &dim : oldAllocInst->getDims()) {
// dims.emplace_back(dim->getValue());
// }
ss << oldAllocInst->getName() << suffix;
auto newAllocInst =
new AllocaInst(oldAllocInst->getType(), oldNewBlockMap.at(oldAllocInst->getParent()), ss.str());
ss.str("");
oldNewValueMap.emplace(oldAllocInst, newAllocInst);
if (isAddedToCreate.find(oldAllocInst) == isAddedToCreate.end()) {
isAddedToCreate.emplace(oldAllocInst, true);
} else {
isAddedToCreate.at(oldAllocInst) = true;
}
if (isCreated.find(oldAllocInst) == isCreated.end()) {
isCreated.emplace(oldAllocInst, true);
} else {
isCreated.at(oldAllocInst) = true;
}
}
}
}
if (inst->getKind() == Instruction::kAlloca) {
if (oldNewValueMap.find(inst.get()) == oldNewValueMap.end()) {
auto oldAllocInst = dynamic_cast<AllocaInst *>(inst.get());
std::vector<Value *> dims;
// TODO: 这里的dims用type推断
// for (const auto &dim : oldAllocInst->getDims()) {
// dims.emplace_back(dim->getValue());
// }
ss << oldAllocInst->getName() << suffix;
auto newAllocInst =
new AllocaInst(oldAllocInst->getType(), oldNewBlockMap.at(oldAllocInst->getParent()), ss.str());
ss.str("");
oldNewValueMap.emplace(oldAllocInst, newAllocInst);
if (isAddedToCreate.find(oldAllocInst) == isAddedToCreate.end()) {
isAddedToCreate.emplace(oldAllocInst, true);
} else {
isAddedToCreate.at(oldAllocInst) = true;
}
if (isCreated.find(oldAllocInst) == isCreated.end()) {
isCreated.emplace(oldAllocInst, true);
} else {
isCreated.at(oldAllocInst) = true;
}
}
}
}
}
for (const auto &oldBlock : blocks) {
for (const auto &inst : oldBlock->getInstructions()) {
for (const auto &valueUse : inst->getOperands()) {
auto value = valueUse->getValue();
if (oldNewValueMap.find(value) == oldNewValueMap.end()) {
auto globalValue = dynamic_cast<GlobalValue *>(value);
auto constVariable = dynamic_cast<ConstantVariable *>(value);
auto constantValue = dynamic_cast<ConstantValue *>(value);
auto functionValue = dynamic_cast<Function *>(value);
if (globalValue != nullptr || constantValue != nullptr || constVariable != nullptr ||
functionValue != nullptr) {
if (functionValue == this) {
oldNewValueMap.emplace(value, newFunction);
} else {
oldNewValueMap.emplace(value, value);
}
isCreated.emplace(value, true);
isAddedToCreate.emplace(value, true);
}
}
}
}
}
for (const auto &oldBlock : blocks) {
for (const auto &inst : oldBlock->getInstructions()) {
if (inst->getKind() != Instruction::kAlloca) {
bool isReady = true;
for (const auto &use : inst->getOperands()) {
auto value = use->getValue();
if (dynamic_cast<BasicBlock *>(value) == nullptr && !isCreated.at(value)) {
isReady = false;
break;
}
}
if (isReady) {
toCreate.push(inst.get());
isAddedToCreate.at(inst.get()) = true;
}
}
}
}
while (!toCreate.empty()) {
auto inst = dynamic_cast<Instruction *>(toCreate.front());
toCreate.pop();
bool isReady = true;
for (const auto &valueUse : inst->getOperands()) {
auto value = dynamic_cast<Instruction *>(valueUse->getValue());
if (value != nullptr && !isCreated.at(value)) {
isReady = false;
break;
}
}
if (!isReady) {
toCreate.push(inst);
continue;
}
isCreated.at(inst) = true;
switch (inst->getKind()) {
case Instruction::kAdd:
case Instruction::kSub:
case Instruction::kMul:
case Instruction::kDiv:
case Instruction::kRem:
case Instruction::kICmpEQ:
case Instruction::kICmpNE:
case Instruction::kICmpLT:
case Instruction::kICmpGT:
case Instruction::kICmpLE:
case Instruction::kICmpGE:
case Instruction::kAnd:
case Instruction::kOr:
case Instruction::kFAdd:
case Instruction::kFSub:
case Instruction::kFMul:
case Instruction::kFDiv:
case Instruction::kFCmpEQ:
case Instruction::kFCmpNE:
case Instruction::kFCmpLT:
case Instruction::kFCmpGT:
case Instruction::kFCmpLE:
case Instruction::kFCmpGE: {
auto oldBinaryInst = dynamic_cast<BinaryInst *>(inst);
auto lhs = oldBinaryInst->getLhs();
auto rhs = oldBinaryInst->getRhs();
Value *newLhs;
Value *newRhs;
newLhs = oldNewValueMap[lhs];
newRhs = oldNewValueMap[rhs];
ss << oldBinaryInst->getName() << suffix;
auto newBinaryInst = new BinaryInst(oldBinaryInst->getKind(), oldBinaryInst->getType(), newLhs, newRhs,
oldNewBlockMap.at(oldBinaryInst->getParent()), ss.str());
ss.str("");
oldNewValueMap.emplace(oldBinaryInst, newBinaryInst);
break;
}
case Instruction::kNeg:
case Instruction::kNot:
case Instruction::kFNeg:
case Instruction::kFNot:
case Instruction::kItoF:
case Instruction::kFtoI: {
auto oldUnaryInst = dynamic_cast<UnaryInst *>(inst);
auto hs = oldUnaryInst->getOperand();
Value *newHs;
newHs = oldNewValueMap.at(hs);
ss << oldUnaryInst->getName() << suffix;
auto newUnaryInst = new UnaryInst(oldUnaryInst->getKind(), oldUnaryInst->getType(), newHs,
oldNewBlockMap.at(oldUnaryInst->getParent()), ss.str());
ss.str("");
oldNewValueMap.emplace(oldUnaryInst, newUnaryInst);
break;
}
case Instruction::kCall: {
auto oldCallInst = dynamic_cast<CallInst *>(inst);
std::vector<Value *> newArgumnts;
for (const auto &arg : oldCallInst->getArguments()) {
newArgumnts.emplace_back(oldNewValueMap.at(arg->getValue()));
}
ss << oldCallInst->getName() << suffix;
CallInst *newCallInst;
newCallInst =
new CallInst(oldCallInst->getCallee(), newArgumnts, oldNewBlockMap.at(oldCallInst->getParent()), ss.str());
ss.str("");
// if (oldCallInst->getCallee() != this) {
// newCallInst = new CallInst(oldCallInst->getCallee(), newArgumnts,
// oldNewBlockMap.at(oldCallInst->getParent()),
// oldCallInst->getName());
// } else {
// newCallInst = new CallInst(newFunction, newArgumnts, oldNewBlockMap.at(oldCallInst->getParent()),
// oldCallInst->getName());
// }
oldNewValueMap.emplace(oldCallInst, newCallInst);
break;
}
case Instruction::kCondBr: {
auto oldCondBrInst = dynamic_cast<CondBrInst *>(inst);
auto oldCond = oldCondBrInst->getCondition();
Value *newCond;
newCond = oldNewValueMap.at(oldCond);
auto newCondBrInst = new CondBrInst(newCond, oldNewBlockMap.at(oldCondBrInst->getThenBlock()),
oldNewBlockMap.at(oldCondBrInst->getElseBlock()),
oldNewBlockMap.at(oldCondBrInst->getParent()));
oldNewValueMap.emplace(oldCondBrInst, newCondBrInst);
break;
}
case Instruction::kBr: {
auto oldBrInst = dynamic_cast<UncondBrInst *>(inst);
auto newBrInst =
new UncondBrInst(oldNewBlockMap.at(oldBrInst->getBlock()), oldNewBlockMap.at(oldBrInst->getParent()));
oldNewValueMap.emplace(oldBrInst, newBrInst);
break;
}
case Instruction::kReturn: {
auto oldReturnInst = dynamic_cast<ReturnInst *>(inst);
auto oldRval = oldReturnInst->getReturnValue();
Value *newRval = nullptr;
if (oldRval != nullptr) {
newRval = oldNewValueMap.at(oldRval);
}
auto newReturnInst =
new ReturnInst(newRval, oldNewBlockMap.at(oldReturnInst->getParent()), oldReturnInst->getName());
oldNewValueMap.emplace(oldReturnInst, newReturnInst);
break;
}
case Instruction::kAlloca: {
assert(false);
}
case Instruction::kLoad: {
auto oldLoadInst = dynamic_cast<LoadInst *>(inst);
auto oldPointer = oldLoadInst->getPointer();
Value *newPointer;
newPointer = oldNewValueMap.at(oldPointer);
std::vector<Value *> newIndices;
// for (const auto &index : oldLoadInst->getIndices()) {
// newIndices.emplace_back(oldNewValueMap.at(index->getValue()));
// }
ss << oldLoadInst->getName() << suffix;
// TODO : 这里的newLoadInst的类型需要根据oldLoadInst的类型来推断
auto newLoadInst = new LoadInst(newPointer, oldNewBlockMap.at(oldLoadInst->getParent()), ss.str());
ss.str("");
oldNewValueMap.emplace(oldLoadInst, newLoadInst);
break;
}
case Instruction::kStore: {
auto oldStoreInst = dynamic_cast<StoreInst *>(inst);
auto oldPointer = oldStoreInst->getPointer();
auto oldValue = oldStoreInst->getValue();
Value *newPointer;
Value *newValue;
std::vector<Value *> newIndices;
newPointer = oldNewValueMap.at(oldPointer);
newValue = oldNewValueMap.at(oldValue);
// TODO: 这里的newIndices需要根据oldStoreInst的类型来推断
// for (const auto &index : oldStoreInst->getIndices()) {
// newIndices.emplace_back(oldNewValueMap.at(index->getValue()));
// }
auto newStoreInst = new StoreInst(newValue, newPointer,
oldNewBlockMap.at(oldStoreInst->getParent()), oldStoreInst->getName());
oldNewValueMap.emplace(oldStoreInst, newStoreInst);
break;
}
// TODO复制GEP指令
case Instruction::kMemset: {
auto oldMemsetInst = dynamic_cast<MemsetInst *>(inst);
auto oldPointer = oldMemsetInst->getPointer();
auto oldValue = oldMemsetInst->getValue();
Value *newPointer;
Value *newValue;
newPointer = oldNewValueMap.at(oldPointer);
newValue = oldNewValueMap.at(oldValue);
auto newMemsetInst = new MemsetInst(newPointer, oldMemsetInst->getBegin(), oldMemsetInst->getSize(), newValue,
oldNewBlockMap.at(oldMemsetInst->getParent()), oldMemsetInst->getName());
oldNewValueMap.emplace(oldMemsetInst, newMemsetInst);
break;
}
case Instruction::kInvalid:
case Instruction::kPhi: {
break;
}
default:
assert(false);
}
for (const auto &userUse : inst->getUses()) {
auto user = userUse->getUser();
if (!isAddedToCreate.at(user)) {
toCreate.push(user);
isAddedToCreate.at(user) = true;
}
}
}
for (const auto &oldBlock : blocks) {
auto newBlock = oldNewBlockMap.at(oldBlock.get());
builder.setPosition(newBlock, newBlock->end());
for (const auto &inst : oldBlock->getInstructions()) {
builder.insertInst(dynamic_cast<Instruction *>(oldNewValueMap.at(inst.get())));
}
}
// for (const auto &param : blocks.front()->getArguments()) {
// newFunction->getEntryBlock()->insertArgument(dynamic_cast<AllocaInst *>(oldNewValueMap.at(param)));
// }
for (const auto &arg : arguments) {
auto newArg = dynamic_cast<Argument *>(oldNewValueMap.at(arg));
if (newArg != nullptr) {
newFunction->insertArgument(newArg);
}
}
return newFunction;
uses.clear();
}
/**
* 设置操作数
*/
void User::setOperand(unsigned index, Value *value) {
assert(index < getNumOperands());
operands[index]->setValue(value);
value->addUse(operands[index]);
void User::setOperand(unsigned index, Value *newvalue) {
if (index >= operands.size()) {
std::cerr << "index=" << index << ", but mOperands max size=" << operands.size() << std::endl;
assert(index < operands.size());
}
std::shared_ptr<Use> olduse = operands[index];
Value *oldValue = olduse->getValue();
if (oldValue != newvalue) {
// 如果新值和旧值不同,先移除旧值的使用关系
oldValue->removeUse(olduse);
// 设置新的操作数
operands[index] = std::make_shared<Use>(index, this, newvalue);
newvalue->addUse(operands[index]);
}
else {
// 如果新值和旧值相同直接更新use的索引
operands[index]->setValue(newvalue);
}
}
/**
* 替换操作数
@ -565,29 +265,50 @@ void User::replaceOperand(unsigned index, Value *value) {
value->addUse(use);
}
/**
* 移除操作数
*/
void User::removeOperand(unsigned index) {
assert(index < getNumOperands() && "Index out of range in removeOperand");
std::shared_ptr<Use> useToRemove = operands.at(index);
Value *valueToRemove = useToRemove->getValue();
if(valueToRemove) {
if(valueToRemove == this) {
std::cerr << "Cannot remove operand that is the same as the User itself." << std::endl;
}
valueToRemove->removeUse(useToRemove);
}
operands.erase(operands.begin() + index);
unsigned newIndex = 0;
for(auto it = operands.begin(); it != operands.end(); ++it, ++newIndex) {
(*it)->setIndex(newIndex); // 更新剩余操作数的索引
}
}
/**
* phi相关函数
*/
Value* PhiInst::getvalfromBlk(BasicBlock* blk) const {
// refreshB2VMap();
Value* PhiInst::getValfromBlk(BasicBlock* blk) {
refreshMap();
if( blk2val.find(blk) != blk2val.end()) {
return blk2val.at(blk);
}
return nullptr;
}
BasicBlock* PhiInst::getBlkfromVal(Value* val) const {
BasicBlock* PhiInst::getBlkfromVal(Value* val) {
// 返回第一个值对应的基本块
for(unsigned i = 0; i < vsize; i++) {
if(getValue(i) == val) {
return getBlock(i);
if(getIncomingValue(i) == val) {
return getIncomingBlock(i);
}
}
return nullptr;
}
void PhiInst::delValue(Value* val){
void PhiInst::removeIncomingValue(Value* val){
//根据value删除对应的基本块和值
unsigned i = 0;
BasicBlock* blk = getBlkfromVal(val);
@ -595,62 +316,77 @@ void PhiInst::delValue(Value* val){
return; // 如果val没有对应的基本块直接返回
}
for(i = 0; i < vsize; i++) {
if(getValue(i) == val) {
if(getIncomingValue(i) == val) {
break;
}
}
removeOperand(2 * i + 1); // 删除blk
removeOperand(2 * i); // 删除val
vsize--;
blk2val.erase(blk); // 删除blk2val映射
removeIncoming(i);
}
void PhiInst::delBlk(BasicBlock* blk){
void PhiInst::removeIncomingBlock(BasicBlock* blk){
//根据Blk删除对应的基本块和值
unsigned i = 0;
Value* val = getvalfromBlk(blk);
Value* val = getValfromBlk(blk);
if(val == nullptr) {
return; // 如果blk没有对应的值直接返回
}
for(i = 0; i < vsize; i++) {
if(getBlock(i) == blk) {
if(getIncomingBlock(i) == blk) {
break;
}
}
removeOperand(2 * i + 1); // 删除blk
removeOperand(2 * i); // 删除val
vsize--;
blk2val.erase(blk); // 删除blk2val映射
removeIncoming(i);
}
void PhiInst::replaceBlk(BasicBlock* newBlk, unsigned k){
// refreshB2VMap();
BasicBlock* oldBlk = getBlock(k);
Value* val = blk2val.at(oldBlk);
if(newBlk == oldBlk || oldBlk == nullptr) {
return; // 如果新旧基本块相同,直接返回
}
// Value* val = blk2val.at(getBlock(k));
// 替换基本块
setOperand(2 * k + 1, newBlk);
// 替换blk2val映射
blk2val.erase(oldBlk);
blk2val.emplace(newBlk, val);
void PhiInst::setIncomingValue(unsigned k, Value* val) {
assert(k < vsize && "PhiInst: index out of range");
assert(val != nullptr && "PhiInst: value cannot be null");
refreshMap();
blk2val.erase(getIncomingBlock(k));
setOperand(2 * k, val);
blk2val[getIncomingBlock(k)] = val;
}
void PhiInst::replaceold2new(BasicBlock* oldBlk, BasicBlock* newBlk){
// refreshB2VMap();
Value* val = blk2val.at(oldBlk);
// 替换基本块
delBlk(oldBlk);
void PhiInst::setIncomingBlock(unsigned k, BasicBlock* blk) {
assert(k < vsize && "PhiInst: index out of range");
assert(blk != nullptr && "PhiInst: block cannot be null");
refreshMap();
auto oldVal = getIncomingValue(k);
blk2val.erase(getIncomingBlock(k));
setOperand(2 * k + 1, blk);
blk2val[blk] = oldVal;
}
void PhiInst::replaceIncomingValue(Value* newVal, Value* oldVal) {
refreshMap();
assert(blk2val.find(getBlkfromVal(oldVal)) != blk2val.end() && "PhiInst: oldVal not found in blk2val");
auto blk = getBlkfromVal(oldVal);
removeIncomingValue(oldVal);
addIncoming(newVal, blk);
}
void PhiInst::replaceIncomingBlock(BasicBlock* newBlk, BasicBlock* oldBlk) {
refreshMap();
assert(blk2val.find(oldBlk) != blk2val.end() && "PhiInst: oldBlk not found in blk2val");
auto val = blk2val[oldBlk];
removeIncomingBlock(oldBlk);
addIncoming(val, newBlk);
}
void PhiInst::refreshB2VMap(){
blk2val.clear();
for(unsigned i = 0; i < vsize; i++) {
blk2val.emplace(getBlock(i), getValue(i));
}
void PhiInst::replaceIncomingValue(Value *oldValue, Value *newValue, BasicBlock *newBlock) {
refreshMap();
assert(blk2val.find(getBlkfromVal(oldValue)) != blk2val.end() && "PhiInst: oldValue not found in blk2val");
auto oldBlock = getBlkfromVal(oldValue);
removeIncomingValue(oldValue);
addIncoming(newValue, newBlock);
}
void PhiInst::replaceIncomingBlock(BasicBlock *oldBlock, BasicBlock *newBlock, Value *newValue) {
refreshMap();
assert(blk2val.find(oldBlock) != blk2val.end() && "PhiInst: oldBlock not found in blk2val");
auto oldValue = blk2val[oldBlock];
removeIncomingBlock(oldBlock);
addIncoming(newValue, newBlock);
}
CallInst::CallInst(Function *callee, const std::vector<Value *> &args, BasicBlock *parent, const std::string &name)

View File

@ -148,8 +148,8 @@ void Reg2MemContext::rewritePhis(Function *func) {
// 1. 为 Phi 指令的每个入边,在前驱块的末尾插入 Store 指令
// PhiInst 假设有 getIncomingValues() 和 getIncomingBlocks()
for (unsigned i = 0; i < phiInst->getNumIncomingValues(); ++i) { // 假设 PhiInst 是通过操作数来管理入边的
Value *incomingValue = phiInst->getValue(i); // 获取入值
BasicBlock *incomingBlock = phiInst->getBlock(i); // 获取对应的入块
Value *incomingValue = phiInst->getIncomingValue(i); // 获取入值
BasicBlock *incomingBlock = phiInst->getIncomingBlock(i); // 获取对应的入块
// 在入块的跳转指令之前插入 StoreInst
// 需要找到 incomingBlock 的终结指令 (Terminator Instruction)

View File

@ -845,7 +845,7 @@ void SCCPContext::RemovePhiIncoming(BasicBlock *phiParentBB, BasicBlock *removed
for (Instruction *inst : insts_to_check) {
if (auto phi = dynamic_cast<PhiInst *>(inst)) {
phi->delBlk(removedPred);
phi->removeIncomingBlock(removedPred);
}
}
}

View File

@ -189,7 +189,7 @@ bool SysYCFGOptUtils::SysYDelNoPreBLock(Function *func) {
break;
}
// 将这个 Phi 节点中来自不可达前驱unreachableBlock的输入参数删除
dynamic_cast<PhiInst *>(phiInstPtr.get())->delBlk(unreachableBlock);
dynamic_cast<PhiInst *>(phiInstPtr.get())->removeIncomingBlock(unreachableBlock);
}
}
}
@ -311,7 +311,7 @@ bool SysYCFGOptUtils::SysYDelEmptyBlock(Function *func, IRBuilder *pBuilder) {
// 找到在空块链中导致 currentDefBlock 的那个前驱块
if (emptyBlockRedirectMap.count(incomingBlock) || incomingBlock == currentBlock) {
// 递归追溯该传入值
return getUltimateSourceValue(phi->getIncomingValue(incomingBlock), incomingBlock);
return getUltimateSourceValue(phi->getValfromBlk(incomingBlock), incomingBlock);
}
}
}
@ -354,7 +354,7 @@ bool SysYCFGOptUtils::SysYDelEmptyBlock(Function *func, IRBuilder *pBuilder) {
if (actualEmptyPredecessorOfS) {
// 获取 Phi 节点原本从 actualEmptyPredecessorOfS 接收的值
Value *valueFromEmptyPredecessor = phiInst->getIncomingValue(actualEmptyPredecessorOfS);
Value *valueFromEmptyPredecessor = phiInst->getValfromBlk(actualEmptyPredecessorOfS);
// 追溯这个值,找到它在非空块中的最终来源
// currentBlock 是 P
@ -364,12 +364,13 @@ bool SysYCFGOptUtils::SysYDelEmptyBlock(Function *func, IRBuilder *pBuilder) {
// 替换 Phi 节点的传入块和传入值
if (ultimateSourceValue) { // 确保成功追溯到有效来源
phiInst->replaceIncoming(actualEmptyPredecessorOfS, currentBlock, ultimateSourceValue);
// phiInst->replaceIncoming(actualEmptyPredecessorOfS, currentBlock, ultimateSourceValue);
phiInst->replaceIncomingBlock(actualEmptyPredecessorOfS, currentBlock, ultimateSourceValue);
} else {
assert(false && "[DelEmptyBlock] Unable to trace a valid source for Phi instruction");
// 无法追溯到有效来源,这可能是个错误或特殊情况
// 此时可能需要移除该 Phi 项,或者插入一个 undef 值
phiInst->removeIncoming(actualEmptyPredecessorOfS);
phiInst->getValfromBlk(actualEmptyPredecessorOfS);
}
}
} else {
@ -421,7 +422,7 @@ bool SysYCFGOptUtils::SysYDelEmptyBlock(Function *func, IRBuilder *pBuilder) {
if (actualEmptyPredecessorOfS) {
// 获取 Phi 节点原本从 actualEmptyPredecessorOfS 接收的值
Value *valueFromEmptyPredecessor = phiInst->getIncomingValue(actualEmptyPredecessorOfS);
Value *valueFromEmptyPredecessor = phiInst->getValfromBlk(actualEmptyPredecessorOfS);
// 追溯这个值,找到它在非空块中的最终来源
// currentBlock 是 P
@ -431,12 +432,13 @@ bool SysYCFGOptUtils::SysYDelEmptyBlock(Function *func, IRBuilder *pBuilder) {
// 替换 Phi 节点的传入块和传入值
if (ultimateSourceValue) { // 确保成功追溯到有效来源
phiInst->replaceIncoming(actualEmptyPredecessorOfS, currentBlock, ultimateSourceValue);
// phiInst->replaceIncoming(actualEmptyPredecessorOfS, currentBlock, ultimateSourceValue);
phiInst->replaceIncomingBlock(actualEmptyPredecessorOfS, currentBlock, ultimateSourceValue);
} else {
assert(false && "[DelEmptyBlock] Unable to trace a valid source for Phi instruction");
// 无法追溯到有效来源,这可能是个错误或特殊情况
// 此时可能需要移除该 Phi 项,或者插入一个 undef 值
phiInst->removeIncoming(actualEmptyPredecessorOfS);
phiInst->removeIncomingBlock(actualEmptyPredecessorOfS);
}
}
} else {
@ -481,7 +483,7 @@ bool SysYCFGOptUtils::SysYDelEmptyBlock(Function *func, IRBuilder *pBuilder) {
if (actualEmptyPredecessorOfS) {
// 获取 Phi 节点原本从 actualEmptyPredecessorOfS 接收的值
Value *valueFromEmptyPredecessor = phiInst->getIncomingValue(actualEmptyPredecessorOfS);
Value *valueFromEmptyPredecessor = phiInst->getValfromBlk(actualEmptyPredecessorOfS);
// 追溯这个值,找到它在非空块中的最终来源
// currentBlock 是 P
@ -491,12 +493,13 @@ bool SysYCFGOptUtils::SysYDelEmptyBlock(Function *func, IRBuilder *pBuilder) {
// 替换 Phi 节点的传入块和传入值
if (ultimateSourceValue) { // 确保成功追溯到有效来源
phiInst->replaceIncoming(actualEmptyPredecessorOfS, currentBlock, ultimateSourceValue);
// phiInst->replaceIncoming(actualEmptyPredecessorOfS, currentBlock, ultimateSourceValue);
phiInst->replaceIncomingBlock(actualEmptyPredecessorOfS, currentBlock, ultimateSourceValue);
} else {
assert(false && "[DelEmptyBlock] Unable to trace a valid source for Phi instruction");
// 无法追溯到有效来源,这可能是个错误或特殊情况
// 此时可能需要移除该 Phi 项,或者插入一个 undef 值
phiInst->removeIncoming(actualEmptyPredecessorOfS);
phiInst->removeIncomingBlock(actualEmptyPredecessorOfS);
}
}
} else {
@ -647,7 +650,7 @@ bool SysYCFGOptUtils::SysYCondBr2Br(Function *func, IRBuilder *pBuilder) {
break;
}
// 使用 delBlk 方法删除 basicblock.get() 对应的传入值
dynamic_cast<PhiInst *>(phiinst.get())->removeIncoming(basicblock.get());
dynamic_cast<PhiInst *>(phiinst.get())->removeIncomingBlock(basicblock.get());
}
} else { // cond为false或0
@ -665,7 +668,7 @@ bool SysYCFGOptUtils::SysYCondBr2Br(Function *func, IRBuilder *pBuilder) {
break;
}
// 使用 delBlk 方法删除 basicblock.get() 对应的传入值
dynamic_cast<PhiInst *>(phiinst.get())->removeIncoming(basicblock.get());
dynamic_cast<PhiInst *>(phiinst.get())->removeIncomingBlock(basicblock.get());
}
}
}

View File

@ -82,6 +82,10 @@ void PassManager::runOptimizationPipeline(Module* moduleIR, IRBuilder* builderIR
this->addPass(&SysYAddReturnPass::ID);
this->run();
this->clearPasses();
this->addPass(&BuildCFG::ID);
this->run();
if(DEBUG) {
std::cout << "=== IR After CFGOpt Optimizations ===\n";
printPasses();
@ -122,7 +126,9 @@ void PassManager::runOptimizationPipeline(Module* moduleIR, IRBuilder* builderIR
std::cout << "=== IR After Reg2Mem Optimizations ===\n";
printPasses();
}
this->clearPasses();
this->addPass(&BuildCFG::ID);
this->run();
if (DEBUG) std::cout << "--- Custom optimization sequence finished ---\n";
}
@ -137,6 +143,7 @@ void PassManager::runOptimizationPipeline(Module* moduleIR, IRBuilder* builderIR
SysYPrinter printer(moduleIR);
printer.printIR();
}
}
void PassManager::clearPasses() {

View File

@ -38,6 +38,116 @@ std::pair<long long, int> calculate_signed_magic(int d) {
return {m, k};
}
// 清除因函数调用而失效的表达式缓存(保守策略)
void SysYIRGenerator::invalidateExpressionsOnCall() {
availableBinaryExpressions.clear();
availableUnaryExpressions.clear();
availableLoads.clear();
availableGEPs.clear();
}
// 在进入新的基本块时清空所有表达式缓存
void SysYIRGenerator::enterNewBasicBlock() {
availableBinaryExpressions.clear();
availableUnaryExpressions.clear();
availableLoads.clear();
availableGEPs.clear();
}
// 清除因变量赋值而失效的表达式缓存
// @param storedAddress: store 指令的目标地址 (例如 AllocaInst* 或 GEPInst*)
void SysYIRGenerator::invalidateExpressionsOnStore(Value *storedAddress) {
// 遍历二元表达式缓存,移除受影响的条目
// 创建一个临时列表来存储要移除的键,避免在迭代时修改容器
std::vector<ExpKey> binaryKeysToRemove;
for (const auto &pair : availableBinaryExpressions) {
// 检查左操作数
// 如果左操作数是 LoadInst并且它从 storedAddress 加载
if (auto loadInst = dynamic_cast<LoadInst *>(pair.first.left)) {
if (loadInst->getPointer() == storedAddress) {
binaryKeysToRemove.push_back(pair.first);
continue; // 这个表达式已标记为移除,跳到下一个
}
}
// 如果左操作数本身就是被存储的地址 (例如,将一个地址值直接作为操作数,虽然不常见)
if (pair.first.left == storedAddress) {
binaryKeysToRemove.push_back(pair.first);
continue;
}
// 检查右操作数,逻辑同左操作数
if (auto loadInst = dynamic_cast<LoadInst *>(pair.first.right)) {
if (loadInst->getPointer() == storedAddress) {
binaryKeysToRemove.push_back(pair.first);
continue;
}
}
if (pair.first.right == storedAddress) {
binaryKeysToRemove.push_back(pair.first);
continue;
}
}
// 实际移除条目
for (const auto &key : binaryKeysToRemove) {
availableBinaryExpressions.erase(key);
}
// 遍历一元表达式缓存,移除受影响的条目
std::vector<UnExpKey> unaryKeysToRemove;
for (const auto &pair : availableUnaryExpressions) {
// 检查操作数
if (auto loadInst = dynamic_cast<LoadInst *>(pair.first.operand)) {
if (loadInst->getPointer() == storedAddress) {
unaryKeysToRemove.push_back(pair.first);
continue;
}
}
if (pair.first.operand == storedAddress) {
unaryKeysToRemove.push_back(pair.first);
continue;
}
}
// 实际移除条目
for (const auto &key : unaryKeysToRemove) {
availableUnaryExpressions.erase(key);
}
availableLoads.erase(storedAddress);
std::vector<GEPKey> gepKeysToRemove;
for (const auto &pair : availableGEPs) {
// 检查 GEP 的基指针是否受存储影响
if (auto loadInst = dynamic_cast<LoadInst *>(pair.first.basePointer)) {
if (loadInst->getPointer() == storedAddress) {
gepKeysToRemove.push_back(pair.first);
continue; // 标记此GEP为移除跳过后续检查
}
}
// 如果基指针本身就是存储的目标地址 (不常见,但可能)
if (pair.first.basePointer == storedAddress) {
gepKeysToRemove.push_back(pair.first);
continue;
}
// 检查 GEP 的每个索引是否受存储影响
for (const auto &indexVal : pair.first.indices) {
if (auto loadInst = dynamic_cast<LoadInst *>(indexVal)) {
if (loadInst->getPointer() == storedAddress) {
gepKeysToRemove.push_back(pair.first);
break; // 标记此GEP为移除并跳出内部循环
}
}
// 如果索引本身就是存储的目标地址
if (indexVal == storedAddress) {
gepKeysToRemove.push_back(pair.first);
break;
}
}
}
// 实际移除条目
for (const auto &key : gepKeysToRemove) {
availableGEPs.erase(key);
}
}
// std::vector<Value*> BinaryValueStack; ///< 用于存储value的栈
// std::vector<int> BinaryOpStack; ///< 用于存储二元表达式的操作符栈
@ -267,46 +377,56 @@ void SysYIRGenerator::compute() {
}
} else {
// 否则创建相应的IR指令
if (commonType == Type::getIntType()) {
switch (op) {
case BinaryOp::ADD: resultValue = builder.createAddInst(lhs, rhs); break;
case BinaryOp::SUB: resultValue = builder.createSubInst(lhs, rhs); break;
case BinaryOp::MUL: resultValue = builder.createMulInst(lhs, rhs); break;
case BinaryOp::DIV: {
ConstantInteger *rhsConst = dynamic_cast<ConstantInteger *>(rhs);
if (rhsConst) {
int divisor = rhsConst->getInt();
if (divisor > 0 && (divisor & (divisor - 1)) == 0) {
int shift = 0;
int temp = divisor;
while (temp > 1) {
temp >>= 1;
shift++;
ExpKey currentExpKey(static_cast<BinaryOp>(op), lhs, rhs);
auto it = availableBinaryExpressions.find(currentExpKey);
if (it != availableBinaryExpressions.end()) {
// 在缓存中找到,重用结果
resultValue = it->second;
} else {
if (commonType == Type::getIntType()) {
switch (op) {
case BinaryOp::ADD: resultValue = builder.createAddInst(lhs, rhs); break;
case BinaryOp::SUB: resultValue = builder.createSubInst(lhs, rhs); break;
case BinaryOp::MUL: resultValue = builder.createMulInst(lhs, rhs); break;
case BinaryOp::DIV: {
ConstantInteger *rhsConst = dynamic_cast<ConstantInteger *>(rhs);
if (rhsConst) {
int divisor = rhsConst->getInt();
if (divisor > 0 && (divisor & (divisor - 1)) == 0) {
int shift = 0;
int temp = divisor;
while (temp > 1) {
temp >>= 1;
shift++;
}
resultValue = builder.createSRAInst(lhs, ConstantInteger::get(shift));
} else {
resultValue = builder.createDivInst(lhs, rhs);
}
resultValue = builder.createSRAInst(lhs, ConstantInteger::get(shift));
} else {
resultValue = builder.createDivInst(lhs, rhs);
}
} else {
resultValue = builder.createDivInst(lhs, rhs);
break;
}
break;
}
case BinaryOp::MOD: resultValue = builder.createRemInst(lhs, rhs); break;
}
} else if (commonType == Type::getFloatType()) {
switch (op) {
case BinaryOp::ADD: resultValue = builder.createFAddInst(lhs, rhs); break;
case BinaryOp::SUB: resultValue = builder.createFSubInst(lhs, rhs); break;
case BinaryOp::MUL: resultValue = builder.createFMulInst(lhs, rhs); break;
case BinaryOp::DIV: resultValue = builder.createFDivInst(lhs, rhs); break;
case BinaryOp::MOD:
std::cerr << "Error: Modulo operator not supported for float types." << std::endl;
case BinaryOp::MOD: resultValue = builder.createRemInst(lhs, rhs); break;
}
} else if (commonType == Type::getFloatType()) {
switch (op) {
case BinaryOp::ADD: resultValue = builder.createFAddInst(lhs, rhs); break;
case BinaryOp::SUB: resultValue = builder.createFSubInst(lhs, rhs); break;
case BinaryOp::MUL: resultValue = builder.createFMulInst(lhs, rhs); break;
case BinaryOp::DIV: resultValue = builder.createFDivInst(lhs, rhs); break;
case BinaryOp::MOD:
std::cerr << "Error: Modulo operator not supported for float types." << std::endl;
return;
}
} else {
std::cerr << "Error: Unsupported type for binary instruction." << std::endl;
return;
}
} else {
std::cerr << "Error: Unsupported type for binary instruction." << std::endl;
return;
// 将新创建的指令结果添加到缓存
availableBinaryExpressions[currentExpKey] = resultValue;
}
}
break;
@ -358,36 +478,45 @@ void SysYIRGenerator::compute() {
return;
}
} else {
// 否则创建相应的IR指令
switch (op) {
case BinaryOp::PLUS:
resultValue = operand; // 一元加指令通常直接返回操作数
break;
case BinaryOp::NEG: {
if (commonType == sysy::Type::getIntType()) {
resultValue = builder.createNegInst(operand);
} else if (commonType == sysy::Type::getFloatType()) {
resultValue = builder.createFNegInst(operand);
} else {
std::cerr << "Error: Negation not supported for operand type." << std::endl;
return;
// 否则创建相应的IR指令 (在这里应用CSE)
UnExpKey currentUnExpKey(static_cast<BinaryOp>(op), operand);
auto it = availableUnaryExpressions.find(currentUnExpKey);
if (it != availableUnaryExpressions.end()) {
// 在缓存中找到,重用结果
resultValue = it->second;
} else {
switch (op) {
case BinaryOp::PLUS:
resultValue = operand; // 一元加指令通常直接返回操作数
break;
case BinaryOp::NEG: {
if (commonType == sysy::Type::getIntType()) {
resultValue = builder.createNegInst(operand);
} else if (commonType == sysy::Type::getFloatType()) {
resultValue = builder.createFNegInst(operand);
} else {
std::cerr << "Error: Negation not supported for operand type." << std::endl;
return;
}
break;
}
case BinaryOp::NOT:
// 逻辑非
if (commonType == sysy::Type::getIntType()) {
resultValue = builder.createNotInst(operand);
} else if (commonType == sysy::Type::getFloatType()) {
resultValue = builder.createFNotInst(operand);
} else {
std::cerr << "Error: Logical NOT not supported for operand type." << std::endl;
return;
}
break;
default:
std::cerr << "Error: Unknown unary operator for instructions: " << op << std::endl;
return;
}
break;
}
case BinaryOp::NOT:
// 逻辑非
if (commonType == sysy::Type::getIntType()) {
resultValue = builder.createNotInst(operand);
} else if (commonType == sysy::Type::getFloatType()) {
resultValue = builder.createFNotInst(operand);
} else {
std::cerr << "Error: Logical NOT not supported for operand type." << std::endl;
return;
}
break;
default:
std::cerr << "Error: Unknown unary operator for instructions: " << op << std::endl;
return;
// 将新创建的指令结果添加到缓存
availableUnaryExpressions[currentUnExpKey] = resultValue;
}
}
break;
@ -529,7 +658,19 @@ Value* SysYIRGenerator::getGEPAddressInst(Value* basePointer, const std::vector<
// `indices` 向量现在由调用方(如 visitLValue, visitVarDecl, visitAssignStmt负责完整准备
// 包括是否需要添加初始的 `0` 索引。
// 所以这里直接将其传递给 `builder.createGetElementPtrInst`。
return builder.createGetElementPtrInst(basePointer, indices);
GEPKey key = {basePointer, indices};
// 尝试从缓存中查找
auto it = availableGEPs.find(key);
if (it != availableGEPs.end()) {
return it->second; // 缓存命中,返回已有的 GEPInst*
}
// 缓存未命中,创建新的 GEPInst
Value* gepInst = builder.createGetElementPtrInst(basePointer, indices); // 假设 builder 提供了 createGEPInst 方法
availableGEPs[key] = gepInst; // 将新的 GEPInst* 加入缓存
return gepInst;
}
/*
@ -628,7 +769,13 @@ std::any SysYIRGenerator::visitConstDecl(SysYParser::ConstDeclContext *ctx) {
// 显式地为局部常量在栈上分配空间
// alloca 的类型将是指针指向常量类型,例如 `int*` 或 `int[2][3]*`
// 将alloca全部集中到entry中
auto entry = builder.getBasicBlock()->getParent()->getEntryBlock();
auto it = builder.getPosition();
auto nowblk = builder.getBasicBlock();
builder.setPosition(entry, entry->terminator());
AllocaInst *alloca = builder.createAllocaInst(Type::getPointerType(variableType), name);
builder.setPosition(nowblk, it);
ArrayValueTree *root = std::any_cast<ArrayValueTree *>(constDef->constInitVal()->accept(this));
ValueCounter values;
@ -785,8 +932,12 @@ std::any SysYIRGenerator::visitVarDecl(SysYParser::VarDeclContext *ctx) {
// 对于数组alloca 的类型将是指针指向数组类型,例如 `int[2][3]*`
// 对于标量alloca 的类型将是指针指向标量类型,例如 `int*`
AllocaInst* alloca =
builder.createAllocaInst(Type::getPointerType(variableType), name);
auto entry = builder.getBasicBlock()->getParent()->getEntryBlock();
auto it = builder.getPosition();
auto nowblk = builder.getBasicBlock();
builder.setPosition(entry, entry->terminator());
AllocaInst *alloca = builder.createAllocaInst(Type::getPointerType(variableType), name);
builder.setPosition(nowblk, it);
if (varDef->initVal() != nullptr) {
ValueCounter values;
@ -988,6 +1139,8 @@ std::any SysYIRGenerator::visitFuncType(SysYParser::FuncTypeContext *ctx) {
std::any SysYIRGenerator::visitFuncDef(SysYParser::FuncDefContext *ctx){
// 更新作用域
module->enterNewScope();
// 清除CSE缓存
enterNewBasicBlock();
auto name = ctx->Ident()->getText();
std::vector<Type *> paramActualTypes;
@ -1143,7 +1296,16 @@ std::any SysYIRGenerator::visitAssignStmt(SysYParser::AssignStmtContext *ctx) {
if (AllocaInst *alloc = dynamic_cast<AllocaInst *>(variable)) {
Type* allocatedType = alloc->getType()->as<PointerType>()->getBaseType();
if (allocatedType->isPointer()) {
gepBasePointer = builder.createLoadInst(alloc);
// 尝试从缓存中获取 builder.createLoadInst(alloc) 的结果
auto it = availableLoads.find(alloc);
if (it != availableLoads.end()) {
gepBasePointer = it->second; // 缓存命中,重用
} else {
gepBasePointer = builder.createLoadInst(alloc); // 缓存未命中,创建新的 LoadInst
availableLoads[alloc] = gepBasePointer; // 将结果加入缓存
}
// --- CSE 结束 ---
// gepBasePointer = builder.createLoadInst(alloc);
gepIndices = indices;
} else {
gepBasePointer = alloc;
@ -1207,7 +1369,7 @@ std::any SysYIRGenerator::visitAssignStmt(SysYParser::AssignStmtContext *ctx) {
}
builder.createStoreInst(RValue, LValue);
invalidateExpressionsOnStore(LValue);
return std::any();
}
@ -1244,6 +1406,8 @@ std::any SysYIRGenerator::visitIfStmt(SysYParser::IfStmtContext *ctx) {
labelstring.str("");
function->addBasicBlock(thenBlock);
builder.setPosition(thenBlock, thenBlock->end());
// CSE清除缓存
enterNewBasicBlock();
auto block = dynamic_cast<SysYParser::BlockStmtContext *>(ctx->stmt(0));
// 如果是块语句,直接访问
@ -1263,6 +1427,8 @@ std::any SysYIRGenerator::visitIfStmt(SysYParser::IfStmtContext *ctx) {
labelstring.str("");
function->addBasicBlock(elseBlock);
builder.setPosition(elseBlock, elseBlock->end());
// CSE清除缓存
enterNewBasicBlock();
block = dynamic_cast<SysYParser::BlockStmtContext *>(ctx->stmt(1));
if (block != nullptr) {
@ -1280,6 +1446,8 @@ std::any SysYIRGenerator::visitIfStmt(SysYParser::IfStmtContext *ctx) {
labelstring.str("");
function->addBasicBlock(exitBlock);
builder.setPosition(exitBlock, exitBlock->end());
// CSE清除缓存
enterNewBasicBlock();
} else {
builder.pushTrueBlock(thenBlock);
@ -1293,6 +1461,8 @@ std::any SysYIRGenerator::visitIfStmt(SysYParser::IfStmtContext *ctx) {
labelstring.str("");
function->addBasicBlock(thenBlock);
builder.setPosition(thenBlock, thenBlock->end());
// CSE清除缓存
enterNewBasicBlock();
auto block = dynamic_cast<SysYParser::BlockStmtContext *>(ctx->stmt(0));
if (block != nullptr) {
@ -1310,6 +1480,9 @@ std::any SysYIRGenerator::visitIfStmt(SysYParser::IfStmtContext *ctx) {
labelstring.str("");
function->addBasicBlock(exitBlock);
builder.setPosition(exitBlock, exitBlock->end());
// CSE清除缓存
enterNewBasicBlock();
}
return std::any();
}
@ -1327,6 +1500,8 @@ std::any SysYIRGenerator::visitWhileStmt(SysYParser::WhileStmtContext *ctx) {
builder.createUncondBrInst(headBlock);
BasicBlock::conectBlocks(curBlock, headBlock);
builder.setPosition(headBlock, headBlock->end());
// CSE清除缓存
enterNewBasicBlock();
BasicBlock* bodyBlock = new BasicBlock(function);
BasicBlock* exitBlock = new BasicBlock(function);
@ -1343,6 +1518,8 @@ std::any SysYIRGenerator::visitWhileStmt(SysYParser::WhileStmtContext *ctx) {
labelstring.str("");
function->addBasicBlock(bodyBlock);
builder.setPosition(bodyBlock, bodyBlock->end());
// CSE清除缓存
enterNewBasicBlock();
builder.pushBreakBlock(exitBlock);
builder.pushContinueBlock(headBlock);
@ -1367,6 +1544,8 @@ std::any SysYIRGenerator::visitWhileStmt(SysYParser::WhileStmtContext *ctx) {
labelstring.str("");
function->addBasicBlock(exitBlock);
builder.setPosition(exitBlock, exitBlock->end());
// CSE清除缓存
enterNewBasicBlock();
return std::any();
}
@ -1482,62 +1661,34 @@ std::any SysYIRGenerator::visitLValue(SysYParser::LValueContext *ctx) {
// 3. 处理可变变量 (AllocaInst/GlobalValue) 或带非常量索引的常量变量
// 这里区分标量访问和数组元素/子数组访问
Value *targetAddress = nullptr;
// 检查是否是访问标量变量本身没有索引且声明维度为0
if (dims.empty() && declaredNumDims == 0) {
// 对于标量变量,直接加载其值。
// variable 本身就是指向标量的指针 (e.g., int* %a)
if (dynamic_cast<AllocaInst*>(variable) || dynamic_cast<GlobalValue*>(variable)) {
value = builder.createLoadInst(variable);
targetAddress = variable;
} else {
// 如果走到这里且不是AllocaInst/GlobalValue但dims为空且declaredNumDims为0
// 且又不是ConstantVariable (前面已处理),则可能是错误情况。
assert(false && "Unhandled scalar variable type in LValue access.");
return static_cast<Value*>(nullptr);
}
} else {
// 访问数组元素或子数组(有索引,或变量本身是数组/多维指针)
Value* gepBasePointer = nullptr;
std::vector<Value*> gepIndices; // 准备传递给 getGEPAddressInst 的索引列表
// GEP 的基指针就是变量本身(它是一个指向内存的指针)
std::vector<Value*> gepIndices;
if (AllocaInst *alloc = dynamic_cast<AllocaInst *>(variable)) {
// 情况 A: 局部变量 (AllocaInst)
// 获取 AllocaInst 分配的内存的实际类型。
// 例如:对于 `int b[10][20];``allocatedType` 是 `[10 x [20 x i32]]`。
// 对于 `int b[][20]` 的函数参数,其 AllocaInst 存储的是一个指针,
// 此时 `allocatedType` 是 `[20 x i32]*`。
Type* allocatedType = alloc->getType()->as<PointerType>()->getBaseType();
if (allocatedType->isPointer()) {
// 如果 AllocaInst 分配的是一个指针类型 (例如,用于存储函数参数的指针,如 int b[][20] 中的 b)
// 即 `allocatedType` 是一个指向数组指针的指针 (e.g., [20 x i32]**)
// 那么 GEP 的基指针是加载这个指针变量的值。
gepBasePointer = builder.createLoadInst(alloc); // 加载出实际的指针值 (e.g., [20 x i32]*)
// 对于这种参数指针,用户提供的索引直接作用于它。不需要额外的 0。
gepBasePointer = builder.createLoadInst(alloc);
gepIndices = dims;
} else {
// 如果 AllocaInst 分配的是实际的数组数据 (例如int b[10][20] 中的 b)
// 那么 AllocaInst 本身就是 GEP 的基指针。
// 这里的 `alloc` 是指向数组的指针 (e.g., [10 x [20 x i32]]*)
gepBasePointer = alloc; // 类型是 [10 x [20 x i32]]*
// 对于这种完整的数组分配GEP 的第一个索引必须是 0用于“步过”整个数组。
gepBasePointer = alloc;
gepIndices.push_back(ConstantInteger::get(0));
gepIndices.insert(gepIndices.end(), dims.begin(), dims.end());
}
} else if (GlobalValue *glob = dynamic_cast<GlobalValue *>(variable)) {
// 情况 B: 全局变量 (GlobalValue)
// GlobalValue 总是指向全局数据的指针。
gepBasePointer = glob; // 类型是 [61 x [67 x i32]]*
// 对于全局数组GEP 的第一个索引必须是 0用于“步过”整个数组。
gepBasePointer = glob;
gepIndices.push_back(ConstantInteger::get(0));
gepIndices.insert(gepIndices.end(), dims.begin(), dims.end());
} else if (ConstantVariable *constV = dynamic_cast<ConstantVariable *>(variable)) {
// 情况 C: 常量变量 (ConstantVariable),如果它代表全局数组常量
// 假设 ConstantVariable 可以直接作为 GEP 的基指针。
gepBasePointer = constV;
// 对于常量数组,也需要 0 索引来“步过”整个数组。
// 这里可以进一步检查 constV->getType()->as<PointerType>()->getBaseType()->isArray()
// 但为了简洁,假设所有 ConstantVariable 作为 GEP 基指针时都需要此 0。
gepIndices.push_back(ConstantInteger::get(0));
gepIndices.insert(gepIndices.end(), dims.begin(), dims.end());
} else {
@ -1545,18 +1696,25 @@ std::any SysYIRGenerator::visitLValue(SysYParser::LValueContext *ctx) {
return static_cast<Value *>(nullptr);
}
// 现在调用 getGEPAddressInst传入正确准备的基指针和索引列表
Value *targetAddress = getGEPAddressInst(gepBasePointer, gepIndices);
targetAddress = getGEPAddressInst(gepBasePointer, gepIndices);
// 如果提供的索引数量少于声明的维度数量,则表示访问的是子数组,返回其地址
if (dims.size() < declaredNumDims) {
value = targetAddress;
}
// 如果提供的索引数量少于声明的维度数量,则表示访问的是子数组,返回其地址 (无需加载)
if (dims.size() < declaredNumDims) {
value = targetAddress;
} else {
// value = builder.createLoadInst(targetAddress);
auto it = availableLoads.find(targetAddress);
if (it != availableLoads.end()) {
value = it->second; // 缓存命中,重用已有的 LoadInst 结果
} else {
// 否则,表示访问的是最终的标量元素,加载其值
// 假设 createLoadInst 接受 Value* pointer
value = builder.createLoadInst(targetAddress);
// 缓存未命中,创建新的 LoadInst
value = builder.createLoadInst(targetAddress);
availableLoads[targetAddress] = value; // 将新的 LoadInst 结果加入缓存
}
}
return value;
}
@ -1676,6 +1834,7 @@ std::any SysYIRGenerator::visitUnaryExp(SysYParser::UnaryExpContext *ctx) {
visitPrimaryExp(ctx->primaryExp());
} else if (ctx->call() != nullptr) {
BinaryExpStack.push_back(std::any_cast<Value *>(visitCall(ctx->call())));BinaryExpLenStack.back()++;
invalidateExpressionsOnCall();
} else if (ctx->unaryOp() != nullptr) {
// 遇到一元操作符,将其压入 BinaryExpStack
auto opNode = dynamic_cast<antlr4::tree::TerminalNode*>(ctx->unaryOp()->children[0]);

View File

@ -299,7 +299,12 @@ void SysYPrinter::printInst(Instruction *pInst) {
// Types and operands
std::cout << " ";
printType(binInst->getType());
// For comparison operations, print operand types instead of result type
if (pInst->getKind() >= Kind::kICmpEQ && pInst->getKind() <= Kind::kFCmpGE) {
printType(binInst->getLhs()->getType());
} else {
printType(binInst->getType());
}
std::cout << " ";
printValue(binInst->getLhs());
std::cout << ", ";
@ -512,9 +517,9 @@ void SysYPrinter::printInst(Instruction *pInst) {
if (!firstPair) std::cout << ", ";
firstPair = false;
std::cout << "[ ";
printValue(phiInst->getValue(i));
printValue(phiInst->getIncomingValue(i));
std::cout << ", %";
printBlock(phiInst->getBlock(i));
printBlock(phiInst->getIncomingBlock(i));
std::cout << " ]";
}
std::cout << std::endl;

View File

@ -1 +0,0 @@
3

View File

@ -1,3 +0,0 @@
int main(){
return 3;
}

View File

@ -1 +0,0 @@
10

View File

@ -1,8 +0,0 @@
//test domain of global var define and local define
int a = 3;
int b = 5;
int main(){
int a = 5;
return a + b;
}

View File

@ -1 +0,0 @@
5

View File

@ -1,8 +0,0 @@
//test local var define
int main(){
int a, b0, _c;
a = 1;
b0 = 2;
_c = 3;
return b0 + _c;
}

View File

@ -1 +0,0 @@
0

View File

@ -1,4 +0,0 @@
int a[10][10];
int main(){
return 0;
}

View File

@ -1 +0,0 @@
14

View File

@ -1,9 +0,0 @@
//test array define
int main(){
int a[4][2] = {};
int b[4][2] = {1, 2, 3, 4, 5, 6, 7, 8};
int c[4][2] = {{1, 2}, {3, 4}, {5, 6}, {7, 8}};
int d[4][2] = {1, 2, {3}, {5}, 7 , 8};
int e[4][2] = {{d[2][1], c[2][1]}, {3, 4}, {5, 6}, {7, 8}};
return e[3][1] + e[0][0] + e[0][1] + a[2][0];
}

View File

@ -1 +0,0 @@
21

View File

@ -1,9 +0,0 @@
int main(){
const int a[4][2] = {{1, 2}, {3, 4}, {}, 7};
int b[4][2] = {};
int c[4][2] = {1, 2, 3, 4, 5, 6, 7, 8};
int d[3 + 1][2] = {1, 2, {3}, {5}, a[3][0], 8};
int e[4][2][1] = {{d[2][1], {c[2][1]}}, {3, 4}, {5, 6}, {7, 8}};
return e[3][1][0] + e[0][0][0] + e[0][1][0] + d[3][0];
}

View File

@ -1 +0,0 @@
5

View File

@ -1,6 +0,0 @@
//test const gloal var define
const int a = 10, b = 5;
int main(){
return b;
}

View File

@ -1 +0,0 @@
5

View File

@ -1,5 +0,0 @@
//test const local var define
int main(){
const int a = 10, b = 5;
return b;
}

View File

@ -1 +0,0 @@
4

View File

@ -1,5 +0,0 @@
const int a[5]={0,1,2,3,4};
int main(){
return a[4];
}

View File

@ -1 +0,0 @@
9

View File

@ -1,11 +0,0 @@
int a;
int func(int p){
p = p - 1;
return p;
}
int main(){
int b;
a = 10;
b = func(a);
return b;
}

View File

@ -1 +0,0 @@
4

View File

@ -1,8 +0,0 @@
int defn(){
return 4;
}
int main(){
int a=defn();
return a;
}

View File

@ -1 +0,0 @@
9

View File

@ -1,7 +0,0 @@
//test add
int main(){
int a, b;
a = 10;
b = -1;
return a + b;
}

View File

@ -1 +0,0 @@
15

View File

@ -1,5 +0,0 @@
//test addc
const int a = 10;
int main(){
return a + 5;
}

View File

@ -1 +0,0 @@
248

View File

@ -1,7 +0,0 @@
//test sub
const int a = 10;
int main(){
int b;
b = 2;
return b - a;
}

View File

@ -1 +0,0 @@
8

View File

@ -1,6 +0,0 @@
//test subc
int main(){
int a;
a = 10;
return a - 2;
}

View File

@ -1 +0,0 @@
50

View File

@ -1,7 +0,0 @@
//test mul
int main(){
int a, b;
a = 10;
b = 5;
return a * b;
}

View File

@ -1 +0,0 @@
25

View File

@ -1,5 +0,0 @@
//test mulc
const int a = 5;
int main(){
return a * 5;
}

View File

@ -1 +0,0 @@
2

View File

@ -1,7 +0,0 @@
//test div
int main(){
int a, b;
a = 10;
b = 5;
return a / b;
}

View File

@ -1 +0,0 @@
2

View File

@ -1,5 +0,0 @@
//test divc
const int a = 10;
int main(){
return a / 5;
}

View File

@ -1 +0,0 @@
3

View File

@ -1,6 +0,0 @@
//test mod
int main(){
int a;
a = 10;
return a / 3;
}

View File

@ -1 +0,0 @@
1

View File

@ -1,6 +0,0 @@
//test rem
int main(){
int a;
a = 10;
return a % 3;
}

View File

@ -1,2 +0,0 @@
-5
0

View File

@ -1,25 +0,0 @@
// test if-else-if
int ifElseIf() {
int a;
a = 5;
int b;
b = 10;
if(a == 6 || b == 0xb) {
return a;
}
else {
if (b == 10 && a == 1)
a = 25;
else if (b == 10 && a == -5)
a = a + 15;
else
a = -+a;
}
return a;
}
int main(){
putint(ifElseIf());
return 0;
}

View File

@ -1 +0,0 @@
25

View File

@ -1,18 +0,0 @@
// test if-if-else
int ififElse() {
int a;
a = 5;
int b;
b = 10;
if(a == 5)
if (b == 10)
a = 25;
else
a = a + 15;
return (a);
}
int main(){
return (ififElse());
}

View File

@ -1 +0,0 @@
25

View File

@ -1,18 +0,0 @@
// test if-{if-else}
int if_ifElse_() {
int a;
a = 5;
int b;
b = 10;
if(a == 5){
if (b == 10)
a = 25;
else
a = a + 15;
}
return (a);
}
int main(){
return (if_ifElse_());
}

View File

@ -1 +0,0 @@
25

View File

@ -1,18 +0,0 @@
// test if-{if}-else
int if_if_Else() {
int a;
a = 5;
int b;
b = 10;
if(a == 5){
if (b == 10)
a = 25;
}
else
a = a + 15;
return (a);
}
int main(){
return (if_if_Else());
}

View File

@ -1,2 +0,0 @@
88
0

View File

@ -1,31 +0,0 @@
int get_one(int a) {
return 1;
}
int deepWhileBr(int a, int b) {
int c;
c = a + b;
while (c < 75) {
int d;
d = 42;
if (c < 100) {
c = c + d;
if (c > 99) {
int e;
e = d * 2;
if (get_one(0) == 1) {
c = e * 2;
}
}
}
}
return (c);
}
int main() {
int p;
p = 2;
p = deepWhileBr(p, p);
putint(p);
return 0;
}

View File

@ -1 +0,0 @@
3

View File

@ -1,18 +0,0 @@
int doubleWhile() {
int i;
i = 5;
int j;
j = 7;
while (i < 100) {
i = i + 30;
while(j < 100){
j = j + 6;
}
j = j - 100;
}
return (j);
}
int main() {
return doubleWhile();
}

View File

@ -1 +0,0 @@
54

View File

@ -1,31 +0,0 @@
int FourWhile() {
int a;
a = 5;
int b;
int c;
b = 6;
c = 7;
int d;
d = 10;
while (a < 20) {
a = a + 3;
while(b < 10){
b = b + 1;
while(c == 7){
c = c - 1;
while(d < 20){
d = d + 3;
}
d = d - 1;
}
c = c + 1;
}
b = b - 2;
}
return (a + (b + d) + c);
}
int main() {
return FourWhile();
}

Some files were not shown because too many files have changed in this diff Show More