Compare commits

..

1 Commits

31 changed files with 1188 additions and 2700 deletions

View File

@ -60,7 +60,11 @@ display_file_content() {
# 清理临时文件的函数
clean_tmp() {
echo "正在清理临时目录: ${TMP_DIR}"
rm -rf "${TMP_DIR}"/*
rm -rf "${TMP_DIR}"/*.s \
"${TMP_DIR}"/*_sysyc_riscv64 \
"${TMP_DIR}"/*_sysyc_riscv64.actual_out \
"${TMP_DIR}"/*_sysyc_riscv64.expected_stdout \
"${TMP_DIR}"/*_sysyc_riscv64.o
echo "清理完成。"
}

View File

@ -21,7 +21,6 @@ QEMU_RISCV64="qemu-riscv64"
# --- 初始化变量 ---
EXECUTE_MODE=false
CLEAN_MODE=false
OPTIMIZE_FLAG="" # 用于存储 -O1 标志
SYSYC_TIMEOUT=10 # sysyc 编译超时 (秒)
GCC_TIMEOUT=10 # gcc 编译超时 (秒)
EXEC_TIMEOUT=5 # qemu 自动化执行超时 (秒)
@ -40,7 +39,6 @@ show_help() {
echo "选项:"
echo " -e, --executable 编译为可执行文件并运行测试 (必须)。"
echo " -c, --clean 清理 tmp 临时目录下的所有文件。"
echo " -O1 启用 sysyc 的 -O1 优化。"
echo " -sct N 设置 sysyc 编译超时为 N 秒 (默认: 10)。"
echo " -gct N 设置 gcc 交叉编译超时为 N 秒 (默认: 10)。"
echo " -et N 设置 qemu 自动化执行超时为 N 秒 (默认: 5)。"
@ -70,7 +68,7 @@ display_file_content() {
fi
}
# --- 参数解析 ---
# --- 本次修改点: 整个参数解析逻辑被重写 ---
# 使用标准的 while 循环来健壮地处理任意顺序的参数
while [[ "$#" -gt 0 ]]; do
case "$1" in
@ -82,10 +80,6 @@ while [[ "$#" -gt 0 ]]; do
CLEAN_MODE=true
shift # 消耗选项
;;
-O1)
OPTIMIZE_FLAG="-O1"
shift # 消耗选项
;;
-sct)
if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then SYSYC_TIMEOUT="$2"; shift 2; else echo "错误: -sct 需要一个正整数参数。" >&2; exit 1; fi
;;
@ -150,7 +144,6 @@ mkdir -p "${TMP_DIR}"
TOTAL_CASES=${#SY_FILES[@]}
echo "SysY 单例测试运行器启动..."
if [ -n "$OPTIMIZE_FLAG" ]; then echo "优化等级: ${OPTIMIZE_FLAG}"; fi
echo "超时设置: sysyc=${SYSYC_TIMEOUT}s, gcc=${GCC_TIMEOUT}s, qemu=${EXEC_TIMEOUT}s"
echo "失败输出最大行数: ${MAX_OUTPUT_LINES}"
echo ""
@ -171,21 +164,9 @@ for sy_file in "${SY_FILES[@]}"; do
echo "======================================================================"
echo "正在处理: ${sy_file}"
# --- 本次修改点: 拷贝源文件到 tmp 目录 ---
echo " 拷贝源文件到 ${TMP_DIR}..."
cp "${sy_file}" "${TMP_DIR}/$(basename "${sy_file}")"
if [ -f "${input_file}" ]; then
cp "${input_file}" "${TMP_DIR}/$(basename "${input_file}")"
fi
if [ -f "${output_reference_file}" ]; then
cp "${output_reference_file}" "${TMP_DIR}/$(basename "${output_reference_file}")"
fi
# 步骤 1: sysyc 编译
echo " 使用 sysyc 编译 (超时 ${SYSYC_TIMEOUT}s)..."
timeout -s KILL ${SYSYC_TIMEOUT} "${SYSYC}" -S "${sy_file}" ${OPTIMIZE_FLAG} -o "${assembly_file}"
timeout -s KILL ${SYSYC_TIMEOUT} "${SYSYC}" -s ir "${sy_file}" ${OPTIMIZE_FLAG} > "${ir_file}"
# timeout -s KILL ${SYSYC_TIMEOUT} "${SYSYC}" -s asmd "${sy_file}" > "${assembly_debug_file}" 2>&1
timeout -s KILL ${SYSYC_TIMEOUT} "${SYSYC}" -s ir "${sy_file}" > "${ir_file}"
SYSYC_STATUS=$?
if [ $SYSYC_STATUS -eq 124 ]; then
echo -e "\e[31m错误: SysY 编译 ${sy_file} IR超时\e[0m"
@ -194,10 +175,12 @@ for sy_file in "${SY_FILES[@]}"; do
echo -e "\e[31m错误: SysY 编译 ${sy_file} IR失败退出码: ${SYSYC_STATUS}\e[0m"
is_passed=0
fi
timeout -s KILL ${SYSYC_TIMEOUT} "${SYSYC}" -S "${sy_file}" -o "${assembly_file}"
if [ $? -ne 0 ]; then
echo -e "\e[31m错误: SysY 编译失败或超时。\e[0m"
is_passed=0
fi
# timeout -s KILL ${SYSYC_TIMEOUT} "${SYSYC}" -s asmd "${sy_file}" > "${assembly_debug_file}" 2>&1
# 步骤 2: GCC 编译
if [ "$is_passed" -eq 1 ]; then

View File

@ -16,8 +16,8 @@ SYSYC="${BUILD_BIN_DIR}/sysyc"
GCC_RISCV64="riscv64-linux-gnu-gcc"
QEMU_RISCV64="qemu-riscv64"
# --- 新增功能: 初始化变量 ---
EXECUTE_MODE=false
OPTIMIZE_FLAG="" # 用于存储 -O1 标志
SYSYC_TIMEOUT=10 # sysyc 编译超时 (秒)
GCC_TIMEOUT=10 # gcc 编译超时 (秒)
EXEC_TIMEOUT=5 # qemu 执行超时 (秒)
@ -35,7 +35,6 @@ show_help() {
echo "选项:"
echo " -e, --executable 编译为可执行文件并运行测试。"
echo " -c, --clean 清理 'tmp' 目录下的所有生成文件。"
echo " -O1 启用 sysyc 的 -O1 优化。"
echo " -set [f|h|p|all]... 指定要运行的测试集 (functional, h_functional, performance)。可多选,默认为 all。"
echo " -sct N 设置 sysyc 编译超时为 N 秒 (默认: 10)。"
echo " -gct N 设置 gcc 交叉编译超时为 N 秒 (默认: 10)。"
@ -86,12 +85,9 @@ while [[ "$#" -gt 0 ]]; do
clean_tmp
exit 0
;;
-O1)
OPTIMIZE_FLAG="-O1"
shift
;;
-set)
shift # 移过 '-set'
# 消耗所有后续参数直到遇到下一个选项
while [[ "$#" -gt 0 && ! "$1" =~ ^- ]]; do
TEST_SETS+=("$1")
shift
@ -129,6 +125,7 @@ SET_MAP[p]="performance"
SEARCH_PATHS=()
# 如果未指定测试集,或指定了 'all',则搜索所有目录
if [ ${#TEST_SETS[@]} -eq 0 ] || [[ " ${TEST_SETS[@]} " =~ " all " ]]; then
SEARCH_PATHS+=("${TESTDATA_DIR}")
else
@ -141,13 +138,13 @@ else
done
fi
# 如果没有有效的搜索路径,则退出
if [ ${#SEARCH_PATHS[@]} -eq 0 ]; then
echo -e "\e[31m错误: 没有找到有效的测试集目录,测试中止。\e[0m"
exit 1
fi
echo "SysY 测试运行器启动..."
if [ -n "$OPTIMIZE_FLAG" ]; then echo "优化等级: ${OPTIMIZE_FLAG}"; fi
echo "输入目录: ${SEARCH_PATHS[@]}"
echo "临时目录: ${TMP_DIR}"
echo "执行模式: ${EXECUTE_MODE}"
@ -157,6 +154,7 @@ if ${EXECUTE_MODE}; then
fi
echo ""
# 使用构建好的路径查找 .sy 文件并排序
sy_files=$(find "${SEARCH_PATHS[@]}" -name "*.sy" | sort -V)
if [ -z "$sy_files" ]; then
echo "在指定目录中未找到任何 .sy 文件。"
@ -164,6 +162,7 @@ if [ -z "$sy_files" ]; then
fi
TOTAL_CASES=$(echo "$sy_files" | wc -w)
# --- 修复: 使用 here-string (<<<) 代替管道 (|) 来避免子 shell 问题 ---
while IFS= read -r sy_file; do
is_passed=1 # 1 表示通过, 0 表示失败
@ -177,8 +176,10 @@ while IFS= read -r sy_file; do
output_actual_file="${TMP_DIR}/${output_base_name}_sysyc_riscv64.actual_out"
echo "正在处理: $(basename "$sy_file") (路径: ${relative_path_no_ext}.sy)"
# 步骤 1: 使用 sysyc 编译 .sy 到 .s
echo " 使用 sysyc 编译 (超时 ${SYSYC_TIMEOUT}s)..."
timeout -s KILL ${SYSYC_TIMEOUT} "${SYSYC}" -S "${sy_file}" -o "${assembly_file}" ${OPTIMIZE_FLAG}
timeout -s KILL ${SYSYC_TIMEOUT} "${SYSYC}" -S "${sy_file}" -o "${assembly_file}"
SYSYC_STATUS=$?
if [ $SYSYC_STATUS -eq 124 ]; then
echo -e "\e[31m错误: SysY 编译 ${sy_file} 超时\e[0m"
@ -188,7 +189,9 @@ while IFS= read -r sy_file; do
is_passed=0
fi
# 只有当 EXECUTE_MODE 为 true 且上一步成功时才继续
if ${EXECUTE_MODE} && [ "$is_passed" -eq 1 ]; then
# 步骤 2: 使用 riscv64-linux-gnu-gcc 编译 .s 到可执行文件
echo " 使用 gcc 编译 (超时 ${GCC_TIMEOUT}s)..."
timeout -s KILL ${GCC_TIMEOUT} "${GCC_RISCV64}" "${assembly_file}" -o "${executable_file}" -L"${LIB_DIR}" -lsysy_riscv -static
GCC_STATUS=$?
@ -210,6 +213,7 @@ while IFS= read -r sy_file; do
continue
fi
# 步骤 3, 4, 5: 只有当编译都成功时才执行
if [ "$is_passed" -eq 1 ]; then
echo " 正在执行 (超时 ${EXEC_TIMEOUT}s)..."

View File

@ -8,11 +8,9 @@ add_library(riscv64_backend_lib STATIC
Handler/CalleeSavedHandler.cpp
Handler/LegalizeImmediates.cpp
Handler/PrologueEpilogueInsertion.cpp
Handler/EliminateFrameIndices.cpp
Optimize/Peephole.cpp
Optimize/PostRA_Scheduler.cpp
Optimize/PreRA_Scheduler.cpp
Optimize/DivStrengthReduction.cpp
)
# 包含后端模块所需的头文件路径

View File

@ -8,6 +8,11 @@ namespace sysy {
char CalleeSavedHandler::ID = 0;
// 辅助函数,用于判断一个物理寄存器是否为浮点寄存器
static bool is_fp_reg(PhysicalReg reg) {
return reg >= PhysicalReg::F0 && reg <= PhysicalReg::F31;
}
bool CalleeSavedHandler::runOnFunction(Function *F, AnalysisManager& AM) {
// This pass works on MachineFunction level, not IR level
return false;
@ -15,37 +20,114 @@ bool CalleeSavedHandler::runOnFunction(Function *F, AnalysisManager& AM) {
void CalleeSavedHandler::runOnMachineFunction(MachineFunction* mfunc) {
StackFrameInfo& frame_info = mfunc->getFrameInfo();
const std::set<PhysicalReg>& used_callee_saved = frame_info.used_callee_saved_regs;
std::set<PhysicalReg> used_callee_saved;
// 1. 扫描所有指令找出被使用的callee-saved寄存器
// 这个Pass在RegAlloc之后运行所以可以访问到物理寄存器
for (auto& mbb : mfunc->getBlocks()) {
for (auto& instr : mbb->getInstructions()) {
for (auto& op : instr->getOperands()) {
auto check_and_insert_reg = [&](RegOperand* reg_op) {
if (reg_op && !reg_op->isVirtual()) {
PhysicalReg preg = reg_op->getPReg();
// 检查整数 s1-s11
if (preg >= PhysicalReg::S1 && preg <= PhysicalReg::S11) {
used_callee_saved.insert(preg);
}
// 检查浮点 fs0-fs11 (f8,f9,f18-f27)
else if ((preg >= PhysicalReg::F8 && preg <= PhysicalReg::F9) || (preg >= PhysicalReg::F18 && preg <= PhysicalReg::F27)) {
used_callee_saved.insert(preg);
}
}
};
if (op->getKind() == MachineOperand::KIND_REG) {
check_and_insert_reg(static_cast<RegOperand*>(op.get()));
} else if (op->getKind() == MachineOperand::KIND_MEM) {
check_and_insert_reg(static_cast<MemOperand*>(op.get())->getBase());
}
}
}
}
if (used_callee_saved.empty()) {
frame_info.callee_saved_size = 0;
frame_info.callee_saved_regs_to_store.clear();
return;
}
// 1. 计算被调用者保存寄存器所需的总空间大小
// s0 总是由 PEI Pass 单独处理,这里不计入大小,但要确保它在列表中
int size = 0;
std::set<PhysicalReg> regs_to_save = used_callee_saved;
if (regs_to_save.count(PhysicalReg::S0)) {
regs_to_save.erase(PhysicalReg::S0);
// 2. 计算并更新 frame_info
frame_info.callee_saved_size = used_callee_saved.size() * 8;
// 为了布局确定性和恢复顺序一致,对寄存器排序
std::vector<PhysicalReg> sorted_regs(used_callee_saved.begin(), used_callee_saved.end());
std::sort(sorted_regs.begin(), sorted_regs.end());
// 3. 在函数序言中插入保存指令
MachineBasicBlock* entry_block = mfunc->getBlocks().front().get();
auto& entry_instrs = entry_block->getInstructions();
// 插入点在函数入口标签之后,或者就是最开始
auto insert_pos = entry_instrs.begin();
if (!entry_instrs.empty() && entry_instrs.front()->getOpcode() == RVOpcodes::LABEL) {
insert_pos = std::next(insert_pos);
}
size = regs_to_save.size() * 8; // 每个寄存器占8字节 (64-bit)
frame_info.callee_saved_size = size;
std::vector<std::unique_ptr<MachineInstr>> save_instrs;
// [关键] 从局部变量区域之后开始分配空间
int current_offset = - (16 + frame_info.locals_size);
// 2. 创建一个有序的、需要保存的寄存器列表,以便后续 Pass 确定地生成代码
// s0 不应包含在此列表中,因为它由 PEI Pass 特殊处理
std::vector<PhysicalReg> sorted_regs(regs_to_save.begin(), regs_to_save.end());
std::sort(sorted_regs.begin(), sorted_regs.end(), [](PhysicalReg a, PhysicalReg b){
return static_cast<int>(a) < static_cast<int>(b);
});
frame_info.callee_saved_regs_to_store = sorted_regs;
for (PhysicalReg reg : sorted_regs) {
current_offset -= 8;
RVOpcodes save_op = is_fp_reg(reg) ? RVOpcodes::FSD : RVOpcodes::SD;
// 3. 更新栈帧总大小。
// 这是初步计算PEI Pass 会进行最终的对齐。
frame_info.total_size = frame_info.locals_size +
frame_info.spill_size +
frame_info.callee_saved_size;
auto save_instr = std::make_unique<MachineInstr>(save_op);
save_instr->addOperand(std::make_unique<RegOperand>(reg));
save_instr->addOperand(std::make_unique<MemOperand>(
std::make_unique<RegOperand>(PhysicalReg::S0), // 基址为帧指针 s0
std::make_unique<ImmOperand>(current_offset)
));
save_instrs.push_back(std::move(save_instr));
}
if (!save_instrs.empty()) {
entry_instrs.insert(insert_pos,
std::make_move_iterator(save_instrs.begin()),
std::make_move_iterator(save_instrs.end()));
}
// 4. 在函数结尾ret之前插入恢复指令
for (auto& mbb : mfunc->getBlocks()) {
for (auto it = mbb->getInstructions().begin(); it != mbb->getInstructions().end(); ++it) {
if ((*it)->getOpcode() == RVOpcodes::RET) {
std::vector<std::unique_ptr<MachineInstr>> restore_instrs;
// [关键] 使用与保存时完全相同的逻辑来计算偏移量
current_offset = - (16 + frame_info.locals_size);
for (PhysicalReg reg : sorted_regs) {
current_offset -= 8;
RVOpcodes restore_op = is_fp_reg(reg) ? RVOpcodes::FLD : RVOpcodes::LD;
auto restore_instr = std::make_unique<MachineInstr>(restore_op);
restore_instr->addOperand(std::make_unique<RegOperand>(reg));
restore_instr->addOperand(std::make_unique<MemOperand>(
std::make_unique<RegOperand>(PhysicalReg::S0),
std::make_unique<ImmOperand>(current_offset)
));
restore_instrs.push_back(std::move(restore_instr));
}
if (!restore_instrs.empty()) {
mbb->getInstructions().insert(it,
std::make_move_iterator(restore_instrs.begin()),
std::make_move_iterator(restore_instrs.end()));
}
goto next_block_label;
}
}
next_block_label:;
}
}
} // namespace sysy
} // namespace sysy

View File

@ -1,235 +0,0 @@
#include "EliminateFrameIndices.h"
#include "RISCv64ISel.h"
#include <cassert>
#include <vector>
namespace sysy {
// getTypeSizeInBytes 是一个通用辅助函数,保持不变
unsigned EliminateFrameIndicesPass::getTypeSizeInBytes(Type* type) {
if (!type) {
assert(false && "Cannot get size of a null type.");
return 0;
}
switch (type->getKind()) {
case Type::kInt:
case Type::kFloat:
return 4;
case Type::kPointer:
return 8;
case Type::kArray: {
auto arrayType = type->as<ArrayType>();
return arrayType->getNumElements() * getTypeSizeInBytes(arrayType->getElementType());
}
default:
assert(false && "Unsupported type for size calculation.");
return 0;
}
}
void EliminateFrameIndicesPass::runOnMachineFunction(MachineFunction* mfunc) {
StackFrameInfo& frame_info = mfunc->getFrameInfo();
Function* F = mfunc->getFunc();
RISCv64ISel* isel = mfunc->getISel();
// 在这里处理栈传递的参数以便在寄存器分配前就将数据流显式化修复溢出逻辑的BUG。
// 2. 只为局部变量(AllocaInst)分配栈空间和计算偏移量
// 局部变量从 s0 下方(负偏移量)开始分配,紧接着为 ra 和 s0 预留的16字节之后
int local_var_offset = 16;
if(F) { // 确保函数指针有效
for (auto& bb : F->getBasicBlocks()) {
for (auto& inst : bb->getInstructions()) {
if (auto alloca = dynamic_cast<AllocaInst*>(inst.get())) {
Type* allocated_type = alloca->getType()->as<PointerType>()->getBaseType();
int size = getTypeSizeInBytes(allocated_type);
// 优化栈帧大小对于大数组使用4字节对齐小对象使用8字节对齐
if (size >= 256) { // 大数组优化
size = (size + 3) & ~3; // 4字节对齐
} else {
size = (size + 7) & ~7; // 8字节对齐
}
if (size == 0) size = 4; // 最小4字节
local_var_offset += size;
unsigned alloca_vreg = isel->getVReg(alloca);
// 局部变量使用相对于s0的负向偏移
frame_info.alloca_offsets[alloca_vreg] = -local_var_offset;
}
}
}
}
// 记录仅由AllocaInst分配的局部变量的总大小
frame_info.locals_size = local_var_offset - 16;
// 记录局部变量区域分配结束的最终偏移量
frame_info.locals_end_offset = -local_var_offset;
// 在函数入口为所有栈传递的参数插入load指令
// 这个步骤至关重要它在寄存器分配之前为这些参数的vreg创建了明确的“定义(def)”指令。
// 这解决了在高寄存器压力下当这些vreg被溢出时`rewriteProgram`找不到其定义点而崩溃的问题。
if (F && isel && !mfunc->getBlocks().empty()) {
MachineBasicBlock* entry_block = mfunc->getBlocks().front().get();
std::vector<std::unique_ptr<MachineInstr>> arg_load_instrs;
// 步骤 3.1: 生成所有加载栈参数的指令,暂存起来
int arg_idx = 0;
for (Argument* arg : F->getArguments()) {
// 根据ABI前8个整型/指针参数通过寄存器传递,这里只处理超出部分。
if (arg_idx >= 8) {
// 计算参数在调用者栈帧中的位置该位置相对于被调用者的帧指针s0是正向偏移。
// 第9个参数(arg_idx=8)位于 0(s0)第10个(arg_idx=9)位于 8(s0),以此类推。
int offset = (arg_idx - 8) * 8;
unsigned arg_vreg = isel->getVReg(arg);
Type* arg_type = arg->getType();
// 根据参数类型选择正确的加载指令
RVOpcodes load_op;
if (arg_type->isFloat()) {
load_op = RVOpcodes::FLW; // 单精度浮点
} else if (arg_type->isPointer()) {
load_op = RVOpcodes::LD; // 64位指针
} else {
load_op = RVOpcodes::LW; // 32位整数
}
// 创建加载指令: lw/ld/flw vreg, offset(s0)
auto load_instr = std::make_unique<MachineInstr>(load_op);
load_instr->addOperand(std::make_unique<RegOperand>(arg_vreg));
load_instr->addOperand(std::make_unique<MemOperand>(
std::make_unique<RegOperand>(PhysicalReg::S0), // 基址为帧指针
std::make_unique<ImmOperand>(offset)
));
arg_load_instrs.push_back(std::move(load_instr));
}
arg_idx++;
}
//仅当有需要加载的栈参数时,才执行插入逻辑
if (!arg_load_instrs.empty()) {
auto& entry_instrs = entry_block->getInstructions();
auto insertion_point = entry_instrs.begin(); // 默认插入点为块的开头
auto last_arg_save_it = entry_instrs.end();
// 步骤 3.2: 寻找一个安全的插入点。
// 遍历入口块的指令,找到最后一条保存“寄存器传递参数”的伪指令。
// 这样可以确保我们在所有 a0-a7 参数被保存之后,才执行可能覆盖它们的加载指令。
for (auto it = entry_instrs.begin(); it != entry_instrs.end(); ++it) {
MachineInstr* instr = it->get();
// 寻找代表保存参数到栈的伪指令
if (instr->getOpcode() == RVOpcodes::FRAME_STORE_W ||
instr->getOpcode() == RVOpcodes::FRAME_STORE_D ||
instr->getOpcode() == RVOpcodes::FRAME_STORE_F) {
// 检查被保存的值是否是寄存器参数 (arg_no < 8)
auto& operands = instr->getOperands();
if (operands.empty() || operands[0]->getKind() != MachineOperand::KIND_REG) continue;
unsigned src_vreg = static_cast<RegOperand*>(operands[0].get())->getVRegNum();
Value* ir_value = isel->getVRegValueMap().count(src_vreg) ? isel->getVRegValueMap().at(src_vreg) : nullptr;
if (auto ir_arg = dynamic_cast<Argument*>(ir_value)) {
if (ir_arg->getIndex() < 8) {
last_arg_save_it = it; // 找到了一个保存寄存器参数的指令,更新位置
}
}
}
}
// 如果找到了这样的保存指令,我们的插入点就在它之后
if (last_arg_save_it != entry_instrs.end()) {
insertion_point = std::next(last_arg_save_it);
}
// 步骤 3.3: 在计算出的安全位置,一次性插入所有新创建的参数加载指令
entry_instrs.insert(insertion_point,
std::make_move_iterator(arg_load_instrs.begin()),
std::make_move_iterator(arg_load_instrs.end()));
}
}
// 4. 遍历所有机器指令,将访问局部变量的伪指令展开为真实指令
for (auto& mbb : mfunc->getBlocks()) {
std::vector<std::unique_ptr<MachineInstr>> new_instructions;
for (auto& instr_ptr : mbb->getInstructions()) {
RVOpcodes opcode = instr_ptr->getOpcode();
if (opcode == RVOpcodes::FRAME_LOAD_W || opcode == RVOpcodes::FRAME_LOAD_D || opcode == RVOpcodes::FRAME_LOAD_F) {
RVOpcodes real_load_op;
if (opcode == RVOpcodes::FRAME_LOAD_W) real_load_op = RVOpcodes::LW;
else if (opcode == RVOpcodes::FRAME_LOAD_D) real_load_op = RVOpcodes::LD;
else real_load_op = RVOpcodes::FLW;
auto& operands = instr_ptr->getOperands();
unsigned dest_vreg = static_cast<RegOperand*>(operands[0].get())->getVRegNum();
unsigned alloca_vreg = static_cast<RegOperand*>(operands[1].get())->getVRegNum();
int offset = frame_info.alloca_offsets.at(alloca_vreg);
auto addr_vreg = isel->getNewVReg(Type::getPointerType(Type::getIntType()));
// 展开为: addi addr_vreg, s0, offset
auto addi = std::make_unique<MachineInstr>(RVOpcodes::ADDI);
addi->addOperand(std::make_unique<RegOperand>(addr_vreg));
addi->addOperand(std::make_unique<RegOperand>(PhysicalReg::S0));
addi->addOperand(std::make_unique<ImmOperand>(offset));
new_instructions.push_back(std::move(addi));
// 展开为: lw/ld/flw dest_vreg, 0(addr_vreg)
auto load_instr = std::make_unique<MachineInstr>(real_load_op);
load_instr->addOperand(std::make_unique<RegOperand>(dest_vreg));
load_instr->addOperand(std::make_unique<MemOperand>(
std::make_unique<RegOperand>(addr_vreg),
std::make_unique<ImmOperand>(0)));
new_instructions.push_back(std::move(load_instr));
} else if (opcode == RVOpcodes::FRAME_STORE_W || opcode == RVOpcodes::FRAME_STORE_D || opcode == RVOpcodes::FRAME_STORE_F) {
RVOpcodes real_store_op;
if (opcode == RVOpcodes::FRAME_STORE_W) real_store_op = RVOpcodes::SW;
else if (opcode == RVOpcodes::FRAME_STORE_D) real_store_op = RVOpcodes::SD;
else real_store_op = RVOpcodes::FSW;
auto& operands = instr_ptr->getOperands();
unsigned src_vreg = static_cast<RegOperand*>(operands[0].get())->getVRegNum();
unsigned alloca_vreg = static_cast<RegOperand*>(operands[1].get())->getVRegNum();
int offset = frame_info.alloca_offsets.at(alloca_vreg);
auto addr_vreg = isel->getNewVReg(Type::getPointerType(Type::getIntType()));
// 展开为: addi addr_vreg, s0, offset
auto addi = std::make_unique<MachineInstr>(RVOpcodes::ADDI);
addi->addOperand(std::make_unique<RegOperand>(addr_vreg));
addi->addOperand(std::make_unique<RegOperand>(PhysicalReg::S0));
addi->addOperand(std::make_unique<ImmOperand>(offset));
new_instructions.push_back(std::move(addi));
// 展开为: sw/sd/fsw src_vreg, 0(addr_vreg)
auto store_instr = std::make_unique<MachineInstr>(real_store_op);
store_instr->addOperand(std::make_unique<RegOperand>(src_vreg));
store_instr->addOperand(std::make_unique<MemOperand>(
std::make_unique<RegOperand>(addr_vreg),
std::make_unique<ImmOperand>(0)));
new_instructions.push_back(std::move(store_instr));
} else if (instr_ptr->getOpcode() == RVOpcodes::FRAME_ADDR) {
auto& operands = instr_ptr->getOperands();
unsigned dest_vreg = static_cast<RegOperand*>(operands[0].get())->getVRegNum();
unsigned alloca_vreg = static_cast<RegOperand*>(operands[1].get())->getVRegNum();
int offset = frame_info.alloca_offsets.at(alloca_vreg);
// 将 `frame_addr rd, rs` 展开为 `addi rd, s0, offset`
auto addi = std::make_unique<MachineInstr>(RVOpcodes::ADDI);
addi->addOperand(std::make_unique<RegOperand>(dest_vreg));
addi->addOperand(std::make_unique<RegOperand>(PhysicalReg::S0));
addi->addOperand(std::make_unique<ImmOperand>(offset));
new_instructions.push_back(std::move(addi));
} else {
new_instructions.push_back(std::move(instr_ptr));
}
}
mbb->getInstructions() = std::move(new_instructions);
}
}
} // namespace sysy

View File

@ -1,22 +1,17 @@
#include "PrologueEpilogueInsertion.h"
#include "RISCv64LLIR.h" // 假设包含了 PhysicalReg, RVOpcodes 等定义
#include "RISCv64ISel.h"
#include "RISCv64RegAlloc.h" // 需要访问RegAlloc的结果
#include <algorithm>
#include <vector>
#include <set>
namespace sysy {
char PrologueEpilogueInsertionPass::ID = 0;
void PrologueEpilogueInsertionPass::runOnMachineFunction(MachineFunction* mfunc) {
StackFrameInfo& frame_info = mfunc->getFrameInfo();
Function* F = mfunc->getFunc();
RISCv64ISel* isel = mfunc->getISel();
// 1. 清理 KEEPALIVE 伪指令
for (auto& mbb : mfunc->getBlocks()) {
auto& instrs = mbb->getInstructions();
// 使用标准的 Erase-Remove Idiom 来删除满足条件的元素
instrs.erase(
std::remove_if(instrs.begin(), instrs.end(),
[](const std::unique_ptr<MachineInstr>& instr) {
@ -27,59 +22,39 @@ void PrologueEpilogueInsertionPass::runOnMachineFunction(MachineFunction* mfunc)
);
}
// 2. 确定需要保存的被调用者保存寄存器 (callee-saved)
StackFrameInfo& frame_info = mfunc->getFrameInfo();
Function* F = mfunc->getFunc();
RISCv64ISel* isel = mfunc->getISel();
// [关键] 获取寄存器分配的结果 (vreg -> preg 的映射)
// RegAlloc Pass 必须已经运行过
auto& vreg_to_preg_map = frame_info.vreg_to_preg_map;
std::set<PhysicalReg> used_callee_saved_regs_set;
const auto& callee_saved_int = getCalleeSavedIntRegs();
const auto& callee_saved_fp = getCalleeSavedFpRegs();
for (const auto& pair : vreg_to_preg_map) {
PhysicalReg preg = pair.second;
bool is_int_cs = std::find(callee_saved_int.begin(), callee_saved_int.end(), preg) != callee_saved_int.end();
bool is_fp_cs = std::find(callee_saved_fp.begin(), callee_saved_fp.end(), preg) != callee_saved_fp.end();
if ((is_int_cs && preg != PhysicalReg::S0) || is_fp_cs) {
used_callee_saved_regs_set.insert(preg);
}
}
frame_info.callee_saved_regs_to_store.assign(
used_callee_saved_regs_set.begin(), used_callee_saved_regs_set.end()
);
std::sort(frame_info.callee_saved_regs_to_store.begin(), frame_info.callee_saved_regs_to_store.end());
frame_info.callee_saved_size = frame_info.callee_saved_regs_to_store.size() * 8;
// 3. 计算最终的栈帧总大小,包含栈溢出保护
// 完全遵循 AsmPrinter 中的计算逻辑
int total_stack_size = frame_info.locals_size +
frame_info.spill_size +
frame_info.callee_saved_size +
16;
16; // 为 ra 和 s0 固定的16字节
// 栈溢出保护:增加最大栈帧大小以容纳大型数组
const int MAX_STACK_FRAME_SIZE = 8192; // 8KB to handle large arrays like 256*4*2 = 2048 bytes
if (total_stack_size > MAX_STACK_FRAME_SIZE) {
// 如果仍然超过限制,尝试优化对齐方式
std::cerr << "Warning: Stack frame size " << total_stack_size
<< " exceeds recommended limit " << MAX_STACK_FRAME_SIZE << " for function "
<< mfunc->getName() << std::endl;
}
// 优化减少对齐开销使用16字节对齐而非更大的对齐
int aligned_stack_size = (total_stack_size + 15) & ~15;
frame_info.total_size = aligned_stack_size;
// 只有在需要分配栈空间时才生成指令
if (aligned_stack_size > 0) {
// --- 4. 插入完整的序言 ---
// --- 1. 插入序言 ---
MachineBasicBlock* entry_block = mfunc->getBlocks().front().get();
auto& entry_instrs = entry_block->getInstructions();
std::vector<std::unique_ptr<MachineInstr>> prologue_instrs;
// 4.1. 分配栈帧
// 1. addi sp, sp, -aligned_stack_size
auto alloc_stack = std::make_unique<MachineInstr>(RVOpcodes::ADDI);
alloc_stack->addOperand(std::make_unique<RegOperand>(PhysicalReg::SP));
alloc_stack->addOperand(std::make_unique<RegOperand>(PhysicalReg::SP));
alloc_stack->addOperand(std::make_unique<ImmOperand>(-aligned_stack_size));
prologue_instrs.push_back(std::move(alloc_stack));
// 4.2. 保存 ra 和 s0
// 2. sd ra, (aligned_stack_size - 8)(sp)
auto save_ra = std::make_unique<MachineInstr>(RVOpcodes::SD);
save_ra->addOperand(std::make_unique<RegOperand>(PhysicalReg::RA));
save_ra->addOperand(std::make_unique<MemOperand>(
@ -87,6 +62,8 @@ void PrologueEpilogueInsertionPass::runOnMachineFunction(MachineFunction* mfunc)
std::make_unique<ImmOperand>(aligned_stack_size - 8)
));
prologue_instrs.push_back(std::move(save_ra));
// 3. sd s0, (aligned_stack_size - 16)(sp)
auto save_fp = std::make_unique<MachineInstr>(RVOpcodes::SD);
save_fp->addOperand(std::make_unique<RegOperand>(PhysicalReg::S0));
save_fp->addOperand(std::make_unique<MemOperand>(
@ -95,54 +72,66 @@ void PrologueEpilogueInsertionPass::runOnMachineFunction(MachineFunction* mfunc)
));
prologue_instrs.push_back(std::move(save_fp));
// 4.3. 设置新的帧指针 s0
// 4. addi s0, sp, aligned_stack_size
auto set_fp = std::make_unique<MachineInstr>(RVOpcodes::ADDI);
set_fp->addOperand(std::make_unique<RegOperand>(PhysicalReg::S0));
set_fp->addOperand(std::make_unique<RegOperand>(PhysicalReg::SP));
set_fp->addOperand(std::make_unique<ImmOperand>(aligned_stack_size));
prologue_instrs.push_back(std::move(set_fp));
// --- 在s0设置完毕后使用物理寄存器加载栈参数 ---
if (F && isel) {
int arg_idx = 0;
for (Argument* arg : F->getArguments()) {
if (arg_idx >= 8) {
unsigned vreg = isel->getVReg(arg);
if (frame_info.alloca_offsets.count(vreg) && vreg_to_preg_map.count(vreg)) {
int offset = frame_info.alloca_offsets.at(vreg);
PhysicalReg dest_preg = vreg_to_preg_map.at(vreg);
Type* arg_type = arg->getType();
if (arg_type->isFloat()) {
auto load_arg = std::make_unique<MachineInstr>(RVOpcodes::FLW);
load_arg->addOperand(std::make_unique<RegOperand>(dest_preg));
load_arg->addOperand(std::make_unique<MemOperand>(
std::make_unique<RegOperand>(PhysicalReg::S0),
std::make_unique<ImmOperand>(offset)
));
prologue_instrs.push_back(std::move(load_arg));
} else {
RVOpcodes load_op = arg_type->isPointer() ? RVOpcodes::LD : RVOpcodes::LW;
auto load_arg = std::make_unique<MachineInstr>(load_op);
load_arg->addOperand(std::make_unique<RegOperand>(dest_preg));
load_arg->addOperand(std::make_unique<MemOperand>(
std::make_unique<RegOperand>(PhysicalReg::S0),
std::make_unique<ImmOperand>(offset)
));
prologue_instrs.push_back(std::move(load_arg));
}
}
}
arg_idx++;
}
}
// 4.4. 保存所有使用到的被调用者保存寄存器
int next_available_offset = -(16 + frame_info.locals_size + frame_info.spill_size);
for (const auto& reg : frame_info.callee_saved_regs_to_store) {
// 采用“先使用,后更新”逻辑
RVOpcodes store_op = isFPR(reg) ? RVOpcodes::FSD : RVOpcodes::SD;
auto save_cs_reg = std::make_unique<MachineInstr>(store_op);
save_cs_reg->addOperand(std::make_unique<RegOperand>(reg));
save_cs_reg->addOperand(std::make_unique<MemOperand>(
std::make_unique<RegOperand>(PhysicalReg::S0),
std::make_unique<ImmOperand>(next_available_offset) // 使用当前偏移
));
prologue_instrs.push_back(std::move(save_cs_reg));
next_available_offset -= 8; // 为下一个寄存器准备偏移
// 确定插入点
auto insert_pos = entry_instrs.begin();
// 一次性将所有序言指令插入
if (!prologue_instrs.empty()) {
entry_instrs.insert(insert_pos,
std::make_move_iterator(prologue_instrs.begin()),
std::make_move_iterator(prologue_instrs.end()));
}
// 4.5. 将所有生成的序言指令一次性插入到函数入口
entry_instrs.insert(entry_instrs.begin(),
std::make_move_iterator(prologue_instrs.begin()),
std::make_move_iterator(prologue_instrs.end()));
// --- 5. 插入完整的尾声 ---
// --- 2. 插入尾声 (此部分逻辑保持不变) ---
for (auto& mbb : mfunc->getBlocks()) {
for (auto it = mbb->getInstructions().begin(); it != mbb->getInstructions().end(); ++it) {
if ((*it)->getOpcode() == RVOpcodes::RET) {
std::vector<std::unique_ptr<MachineInstr>> epilogue_instrs;
// 5.1. 恢复被调用者保存寄存器
int next_available_offset_restore = -(16 + frame_info.locals_size + frame_info.spill_size);
for (const auto& reg : frame_info.callee_saved_regs_to_store) {
RVOpcodes load_op = isFPR(reg) ? RVOpcodes::FLD : RVOpcodes::LD;
auto restore_cs_reg = std::make_unique<MachineInstr>(load_op);
restore_cs_reg->addOperand(std::make_unique<RegOperand>(reg));
restore_cs_reg->addOperand(std::make_unique<MemOperand>(
std::make_unique<RegOperand>(PhysicalReg::S0),
std::make_unique<ImmOperand>(next_available_offset_restore) // 使用当前偏移
));
epilogue_instrs.push_back(std::move(restore_cs_reg));
next_available_offset_restore -= 8; // 为下一个寄存器准备偏移
}
// 5.2. 恢复 ra 和 s0
// 1. ld ra
auto restore_ra = std::make_unique<MachineInstr>(RVOpcodes::LD);
restore_ra->addOperand(std::make_unique<RegOperand>(PhysicalReg::RA));
restore_ra->addOperand(std::make_unique<MemOperand>(
@ -150,6 +139,8 @@ void PrologueEpilogueInsertionPass::runOnMachineFunction(MachineFunction* mfunc)
std::make_unique<ImmOperand>(aligned_stack_size - 8)
));
epilogue_instrs.push_back(std::move(restore_ra));
// 2. ld s0
auto restore_fp = std::make_unique<MachineInstr>(RVOpcodes::LD);
restore_fp->addOperand(std::make_unique<RegOperand>(PhysicalReg::S0));
restore_fp->addOperand(std::make_unique<MemOperand>(
@ -158,18 +149,18 @@ void PrologueEpilogueInsertionPass::runOnMachineFunction(MachineFunction* mfunc)
));
epilogue_instrs.push_back(std::move(restore_fp));
// 5.3. 释放栈帧
// 3. addi sp, sp, aligned_stack_size
auto dealloc_stack = std::make_unique<MachineInstr>(RVOpcodes::ADDI);
dealloc_stack->addOperand(std::make_unique<RegOperand>(PhysicalReg::SP));
dealloc_stack->addOperand(std::make_unique<RegOperand>(PhysicalReg::SP));
dealloc_stack->addOperand(std::make_unique<ImmOperand>(aligned_stack_size));
epilogue_instrs.push_back(std::move(dealloc_stack));
// 将尾声指令插入到 RET 指令之前
mbb->getInstructions().insert(it,
std::make_move_iterator(epilogue_instrs.begin()),
std::make_move_iterator(epilogue_instrs.end()));
if (!epilogue_instrs.empty()) {
mbb->getInstructions().insert(it,
std::make_move_iterator(epilogue_instrs.begin()),
std::make_move_iterator(epilogue_instrs.end()));
}
goto next_block;
}
}

View File

@ -1,282 +0,0 @@
#include "DivStrengthReduction.h"
#include <cmath>
#include <cstdint>
namespace sysy {
char DivStrengthReduction::ID = 0;
bool DivStrengthReduction::runOnFunction(Function *F, AnalysisManager& AM) {
// This pass works on MachineFunction level, not IR level
return false;
}
void DivStrengthReduction::runOnMachineFunction(MachineFunction *mfunc) {
if (!mfunc)
return;
bool debug = false; // Set to true for debugging
if (debug)
std::cout << "Running DivStrengthReduction optimization..." << std::endl;
int next_temp_reg = 1000;
auto createTempReg = [&]() -> int {
return next_temp_reg++;
};
struct MagicInfo {
int64_t magic;
int shift;
};
auto computeMagic = [](int64_t d, bool is_32bit) -> MagicInfo {
int word_size = is_32bit ? 32 : 64;
uint64_t ad = std::abs(d);
if (ad == 0) return {0, 0};
int l = std::floor(std::log2(ad));
if ((ad & (ad - 1)) == 0) { // power of 2
l = 0; // special case for power of 2, shift will be calculated differently
}
__int128_t one = 1;
__int128_t num;
int total_shift;
if (is_32bit) {
total_shift = 31 + l;
num = one << total_shift;
} else {
total_shift = 63 + l;
num = one << total_shift;
}
__int128_t den = ad;
int64_t magic = (num / den) + 1;
return {magic, total_shift};
};
auto isPowerOfTwo = [](int64_t n) -> bool {
return n > 0 && (n & (n - 1)) == 0;
};
auto getPowerOfTwoExponent = [](int64_t n) -> int {
if (n <= 0 || (n & (n - 1)) != 0) return -1;
int shift = 0;
while (n > 1) {
n >>= 1;
shift++;
}
return shift;
};
struct InstructionReplacement {
size_t index;
size_t count_to_erase;
std::vector<std::unique_ptr<MachineInstr>> newInstrs;
};
for (auto &mbb_uptr : mfunc->getBlocks()) {
auto &mbb = *mbb_uptr;
auto &instrs = mbb.getInstructions();
std::vector<InstructionReplacement> replacements;
for (size_t i = 0; i < instrs.size(); ++i) {
auto *instr = instrs[i].get();
bool is_32bit = (instr->getOpcode() == RVOpcodes::DIVW);
if (instr->getOpcode() != RVOpcodes::DIV && !is_32bit) {
continue;
}
if (instr->getOperands().size() != 3) {
continue;
}
auto *dst_op = instr->getOperands()[0].get();
auto *src1_op = instr->getOperands()[1].get();
auto *src2_op = instr->getOperands()[2].get();
int64_t divisor = 0;
bool const_divisor_found = false;
size_t instructions_to_replace = 1;
if (src2_op->getKind() == MachineOperand::KIND_IMM) {
divisor = static_cast<ImmOperand *>(src2_op)->getValue();
const_divisor_found = true;
} else if (src2_op->getKind() == MachineOperand::KIND_REG) {
if (i > 0) {
auto *prev_instr = instrs[i - 1].get();
if (prev_instr->getOpcode() == RVOpcodes::LI && prev_instr->getOperands().size() == 2) {
auto *li_dst_op = prev_instr->getOperands()[0].get();
auto *li_imm_op = prev_instr->getOperands()[1].get();
if (li_dst_op->getKind() == MachineOperand::KIND_REG && li_imm_op->getKind() == MachineOperand::KIND_IMM) {
auto *div_reg_op = static_cast<RegOperand *>(src2_op);
auto *li_dst_reg_op = static_cast<RegOperand *>(li_dst_op);
if (div_reg_op->isVirtual() && li_dst_reg_op->isVirtual() &&
div_reg_op->getVRegNum() == li_dst_reg_op->getVRegNum()) {
divisor = static_cast<ImmOperand *>(li_imm_op)->getValue();
const_divisor_found = true;
instructions_to_replace = 2;
}
}
}
}
}
if (!const_divisor_found) {
continue;
}
auto *dst_reg = static_cast<RegOperand *>(dst_op);
auto *src1_reg = static_cast<RegOperand *>(src1_op);
if (divisor == 0) continue;
std::vector<std::unique_ptr<MachineInstr>> newInstrs;
if (divisor == 1) {
auto moveInstr = std::make_unique<MachineInstr>(is_32bit ? RVOpcodes::ADDW : RVOpcodes::ADD);
moveInstr->addOperand(std::make_unique<RegOperand>(*dst_reg));
moveInstr->addOperand(std::make_unique<RegOperand>(*src1_reg));
moveInstr->addOperand(std::make_unique<RegOperand>(PhysicalReg::ZERO));
newInstrs.push_back(std::move(moveInstr));
}
else if (divisor == -1) {
auto negInstr = std::make_unique<MachineInstr>(is_32bit ? RVOpcodes::SUBW : RVOpcodes::SUB);
negInstr->addOperand(std::make_unique<RegOperand>(*dst_reg));
negInstr->addOperand(std::make_unique<RegOperand>(PhysicalReg::ZERO));
negInstr->addOperand(std::make_unique<RegOperand>(*src1_reg));
newInstrs.push_back(std::move(negInstr));
}
else if (isPowerOfTwo(std::abs(divisor))) {
int shift = getPowerOfTwoExponent(std::abs(divisor));
int temp_reg = createTempReg();
auto sraSignInstr = std::make_unique<MachineInstr>(is_32bit ? RVOpcodes::SRAIW : RVOpcodes::SRAI);
sraSignInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
sraSignInstr->addOperand(std::make_unique<RegOperand>(*src1_reg));
sraSignInstr->addOperand(std::make_unique<ImmOperand>(is_32bit ? 31 : 63));
newInstrs.push_back(std::move(sraSignInstr));
auto srlInstr = std::make_unique<MachineInstr>(is_32bit ? RVOpcodes::SRLIW : RVOpcodes::SRLI);
srlInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
srlInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
srlInstr->addOperand(std::make_unique<ImmOperand>((is_32bit ? 32 : 64) - shift));
newInstrs.push_back(std::move(srlInstr));
auto addInstr = std::make_unique<MachineInstr>(is_32bit ? RVOpcodes::ADDW : RVOpcodes::ADD);
addInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
addInstr->addOperand(std::make_unique<RegOperand>(*src1_reg));
addInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
newInstrs.push_back(std::move(addInstr));
auto sraInstr = std::make_unique<MachineInstr>(is_32bit ? RVOpcodes::SRAIW : RVOpcodes::SRAI);
sraInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
sraInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
sraInstr->addOperand(std::make_unique<ImmOperand>(shift));
newInstrs.push_back(std::move(sraInstr));
if (divisor < 0) {
auto negInstr = std::make_unique<MachineInstr>(is_32bit ? RVOpcodes::SUBW : RVOpcodes::SUB);
negInstr->addOperand(std::make_unique<RegOperand>(*dst_reg));
negInstr->addOperand(std::make_unique<RegOperand>(PhysicalReg::ZERO));
negInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
newInstrs.push_back(std::move(negInstr));
} else {
auto moveInstr = std::make_unique<MachineInstr>(is_32bit ? RVOpcodes::ADDW : RVOpcodes::ADD);
moveInstr->addOperand(std::make_unique<RegOperand>(*dst_reg));
moveInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
moveInstr->addOperand(std::make_unique<RegOperand>(PhysicalReg::ZERO));
newInstrs.push_back(std::move(moveInstr));
}
}
else {
auto magic_info = computeMagic(divisor, is_32bit);
int magic_reg = createTempReg();
int temp_reg = createTempReg();
auto loadInstr = std::make_unique<MachineInstr>(RVOpcodes::LI);
loadInstr->addOperand(std::make_unique<RegOperand>(magic_reg));
loadInstr->addOperand(std::make_unique<ImmOperand>(magic_info.magic));
newInstrs.push_back(std::move(loadInstr));
if (is_32bit) {
auto mulInstr = std::make_unique<MachineInstr>(RVOpcodes::MUL);
mulInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
mulInstr->addOperand(std::make_unique<RegOperand>(*src1_reg));
mulInstr->addOperand(std::make_unique<RegOperand>(magic_reg));
newInstrs.push_back(std::move(mulInstr));
auto sraInstr = std::make_unique<MachineInstr>(RVOpcodes::SRAI);
sraInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
sraInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
sraInstr->addOperand(std::make_unique<ImmOperand>(magic_info.shift));
newInstrs.push_back(std::move(sraInstr));
} else {
auto mulhInstr = std::make_unique<MachineInstr>(RVOpcodes::MULH);
mulhInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
mulhInstr->addOperand(std::make_unique<RegOperand>(*src1_reg));
mulhInstr->addOperand(std::make_unique<RegOperand>(magic_reg));
newInstrs.push_back(std::move(mulhInstr));
int post_shift = magic_info.shift - 63;
if (post_shift > 0) {
auto sraInstr = std::make_unique<MachineInstr>(RVOpcodes::SRAI);
sraInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
sraInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
sraInstr->addOperand(std::make_unique<ImmOperand>(post_shift));
newInstrs.push_back(std::move(sraInstr));
}
}
int sign_reg = createTempReg();
auto sraSignInstr = std::make_unique<MachineInstr>(is_32bit ? RVOpcodes::SRAIW : RVOpcodes::SRAI);
sraSignInstr->addOperand(std::make_unique<RegOperand>(sign_reg));
sraSignInstr->addOperand(std::make_unique<RegOperand>(*src1_reg));
sraSignInstr->addOperand(std::make_unique<ImmOperand>(is_32bit ? 31 : 63));
newInstrs.push_back(std::move(sraSignInstr));
auto subInstr = std::make_unique<MachineInstr>(is_32bit ? RVOpcodes::SUBW : RVOpcodes::SUB);
subInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
subInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
subInstr->addOperand(std::make_unique<RegOperand>(sign_reg));
newInstrs.push_back(std::move(subInstr));
if (divisor < 0) {
auto negInstr = std::make_unique<MachineInstr>(is_32bit ? RVOpcodes::SUBW : RVOpcodes::SUB);
negInstr->addOperand(std::make_unique<RegOperand>(*dst_reg));
negInstr->addOperand(std::make_unique<RegOperand>(PhysicalReg::ZERO));
negInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
newInstrs.push_back(std::move(negInstr));
} else {
auto moveInstr = std::make_unique<MachineInstr>(is_32bit ? RVOpcodes::ADDW : RVOpcodes::ADD);
moveInstr->addOperand(std::make_unique<RegOperand>(*dst_reg));
moveInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
moveInstr->addOperand(std::make_unique<RegOperand>(PhysicalReg::ZERO));
newInstrs.push_back(std::move(moveInstr));
}
}
if (!newInstrs.empty()) {
size_t start_index = i;
if (instructions_to_replace == 2) {
start_index = i - 1;
}
replacements.push_back({start_index, instructions_to_replace, std::move(newInstrs)});
}
}
for (auto it = replacements.rbegin(); it != replacements.rend(); ++it) {
instrs.erase(instrs.begin() + it->index, instrs.begin() + it->index + it->count_to_erase);
instrs.insert(instrs.begin() + it->index,
std::make_move_iterator(it->newInstrs.begin()),
std::make_move_iterator(it->newInstrs.end()));
}
}
}
} // namespace sysy

View File

@ -60,7 +60,7 @@ void RISCv64AsmPrinter::printInstruction(MachineInstr* instr, bool debug) {
case RVOpcodes::ADD: *OS << "add "; break; case RVOpcodes::ADDI: *OS << "addi "; break;
case RVOpcodes::ADDW: *OS << "addw "; break; case RVOpcodes::ADDIW: *OS << "addiw "; break;
case RVOpcodes::SUB: *OS << "sub "; break; case RVOpcodes::SUBW: *OS << "subw "; break;
case RVOpcodes::MUL: *OS << "mul "; break; case RVOpcodes::MULW: *OS << "mulw "; break; case RVOpcodes::MULH: *OS << "mulh "; break;
case RVOpcodes::MUL: *OS << "mul "; break; case RVOpcodes::MULW: *OS << "mulw "; break;
case RVOpcodes::DIV: *OS << "div "; break; case RVOpcodes::DIVW: *OS << "divw "; break;
case RVOpcodes::REM: *OS << "rem "; break; case RVOpcodes::REMW: *OS << "remw "; break;
case RVOpcodes::XOR: *OS << "xor "; break; case RVOpcodes::XORI: *OS << "xori "; break;
@ -104,7 +104,7 @@ void RISCv64AsmPrinter::printInstruction(MachineInstr* instr, bool debug) {
case RVOpcodes::FMV_S: *OS << "fmv.s "; break;
case RVOpcodes::FMV_W_X: *OS << "fmv.w.x "; break;
case RVOpcodes::FMV_X_W: *OS << "fmv.x.w "; break;
case RVOpcodes::CALL: { // 为CALL指令添加特殊处理逻辑
case RVOpcodes::CALL: { // [核心修改] 为CALL指令添加特殊处理逻辑
*OS << "call ";
// 遍历所有操作数,只寻找并打印函数名标签
for (const auto& op : instr->getOperands()) {

View File

@ -73,7 +73,7 @@ std::string RISCv64CodeGen::module_gen() {
for (const auto& global_ptr : module->getGlobals()) {
GlobalValue* global = global_ptr.get();
// 使用更健壮的逻辑来判断是否为大型零初始化数组
// [核心修改] 使用更健壮的逻辑来判断是否为大型零初始化数组
bool is_all_zeros = true;
const auto& init_values = global->getInitValues();
@ -174,43 +174,15 @@ std::string RISCv64CodeGen::function_gen(Function* func) {
// === 完整的后端处理流水线 ===
// 阶段 1: 指令选择 (sysy::IR -> LLIR with virtual registers)
DEBUG = 0;
DEEPDEBUG = 0;
RISCv64ISel isel;
std::unique_ptr<MachineFunction> mfunc = isel.runOnFunction(func);
// 第一次调试打印输出
std::stringstream ss_after_isel;
RISCv64AsmPrinter printer_isel(mfunc.get());
printer_isel.run(ss_after_isel, true);
if (DEBUG) {
std::cout << ss_after_isel.str();
}
if (DEBUG) {
std::cerr << "====== Intermediate Representation after Instruction Selection ======\n"
<< ss_after_isel.str();
}
// 阶段 2: 消除帧索引 (展开伪指令,计算局部变量偏移)
// 这个Pass必须在寄存器分配之前运行
EliminateFrameIndicesPass efi_pass;
efi_pass.runOnMachineFunction(mfunc.get());
std::stringstream ss1;
RISCv64AsmPrinter printer1(mfunc.get());
printer1.run(ss1, true);
if (DEBUG) {
std::cerr << "====== stack info after eliminate frame indices ======\n";
mfunc->dumpStackFrameInfo(std::cerr);
std::stringstream ss_after_eli;
printer_isel.run(ss_after_eli, true);
std::cerr << "====== LLIR after eliminate frame indices ======\n"
<< ss_after_eli.str();
}
// 阶段 2: 除法强度削弱优化 (Division Strength Reduction)
DivStrengthReduction div_strength_reduction;
div_strength_reduction.runOnMachineFunction(mfunc.get());
// 阶段 2.1: 指令调度 (Instruction Scheduling)
// 阶段 2: 指令调度 (Instruction Scheduling)
PreRA_Scheduler scheduler;
scheduler.runOnMachineFunction(mfunc.get());
@ -218,20 +190,10 @@ std::string RISCv64CodeGen::function_gen(Function* func) {
RISCv64RegAlloc reg_alloc(mfunc.get());
reg_alloc.run();
if (DEBUG) {
std::cerr << "====== stack info after reg alloc ======\n";
mfunc->dumpStackFrameInfo(std::cerr);
}
// 阶段 3.1: 处理被调用者保存寄存器
CalleeSavedHandler callee_handler;
callee_handler.runOnMachineFunction(mfunc.get());
if (DEBUG) {
std::cerr << "====== stack info after callee handler ======\n";
mfunc->dumpStackFrameInfo(std::cerr);
}
// 阶段 4: 窥孔优化 (Peephole Optimization)
PeepholeOptimizer peephole;
peephole.runOnMachineFunction(mfunc.get());
@ -244,7 +206,7 @@ std::string RISCv64CodeGen::function_gen(Function* func) {
PrologueEpilogueInsertionPass pei_pass;
pei_pass.runOnMachineFunction(mfunc.get());
// 阶段 3.3: 大立即数合法化
// 阶段 3.3: 清理产生的大立即数
LegalizeImmediatesPass legalizer;
legalizer.runOnMachineFunction(mfunc.get());
@ -252,9 +214,8 @@ std::string RISCv64CodeGen::function_gen(Function* func) {
std::stringstream ss;
RISCv64AsmPrinter printer(mfunc.get());
printer.run(ss);
if (DEBUG) ss << "\n" << ss1.str(); // 将指令选择阶段的结果也包含在最终输出中
return ss.str();
}
} // namespace sysy

View File

@ -2,8 +2,8 @@
#include <stdexcept>
#include <set>
#include <functional>
#include <cmath>
#include <limits>
#include <cmath> // For std::fabs
#include <limits> // For std::numeric_limits
#include <iostream>
namespace sysy {
@ -402,7 +402,7 @@ void RISCv64ISel::selectNode(DAGNode* node) {
Value* base = nullptr;
Value* offset = nullptr;
// 扩展基地址的判断,使其可以识别 AllocaInst 或 GlobalValue
// [修改] 扩展基地址的判断,使其可以识别 AllocaInst 或 GlobalValue
if (dynamic_cast<AllocaInst*>(lhs) || dynamic_cast<GlobalValue*>(lhs)) {
base = lhs;
offset = rhs;
@ -421,7 +421,7 @@ void RISCv64ISel::selectNode(DAGNode* node) {
CurMBB->addInstruction(std::move(li));
}
// 2. 根据基地址的类型,生成不同的指令来获取基地址
// 2. [修改] 根据基地址的类型,生成不同的指令来获取基地址
auto base_addr_vreg = getNewVReg(Type::getIntType()); // 创建一个新的临时vreg来存放基地址
// 情况一:基地址是局部栈变量
@ -452,7 +452,7 @@ void RISCv64ISel::selectNode(DAGNode* node) {
}
}
// 在BINARY节点内部按需加载常量操作数。
// [V2优点] 在BINARY节点内部按需加载常量操作数。
auto load_val_if_const = [&](Value* val) {
if (auto c = dynamic_cast<ConstantValue*>(val)) {
if (DEBUG) {
@ -483,7 +483,7 @@ void RISCv64ISel::selectNode(DAGNode* node) {
auto dest_vreg = getVReg(bin);
auto lhs_vreg = getVReg(lhs);
// 融合 ADDIW 优化。
// [V2优点] 融合 ADDIW 优化。
if (rhs_is_imm_opt) {
auto rhs_const = dynamic_cast<ConstantValue*>(rhs);
auto instr = std::make_unique<MachineInstr>(RVOpcodes::ADDIW);
@ -539,15 +539,6 @@ void RISCv64ISel::selectNode(DAGNode* node) {
CurMBB->addInstruction(std::move(instr));
break;
}
case Instruction::kSRA: {
auto rhs_const = dynamic_cast<ConstantInteger*>(rhs);
auto instr = std::make_unique<MachineInstr>(RVOpcodes::SRAIW);
instr->addOperand(std::make_unique<RegOperand>(dest_vreg));
instr->addOperand(std::make_unique<RegOperand>(lhs_vreg));
instr->addOperand(std::make_unique<ImmOperand>(rhs_const->getInt()));
CurMBB->addInstruction(std::move(instr));
break;
}
case BinaryInst::kICmpEQ: { // 等于 (a == b) -> (subw; seqz)
auto sub = std::make_unique<MachineInstr>(RVOpcodes::SUBW);
sub->addOperand(std::make_unique<RegOperand>(dest_vreg));
@ -952,7 +943,7 @@ void RISCv64ISel::selectNode(DAGNode* node) {
// --- 步骤 3: 生成CALL指令 ---
auto call_instr = std::make_unique<MachineInstr>(RVOpcodes::CALL);
// 如果函数有返回值,将它的目标虚拟寄存器作为第一个操作数
// [协议] 如果函数有返回值,将它的目标虚拟寄存器作为第一个操作数
if (!call->getType()->isVoid()) {
unsigned dest_vreg = getVReg(call);
call_instr->addOperand(std::make_unique<RegOperand>(dest_vreg));
@ -1029,7 +1020,7 @@ void RISCv64ISel::selectNode(DAGNode* node) {
} else {
// --- 处理整数/指针返回值 ---
// 返回值需要被放入 a0
// 在RETURN节点内加载常量返回值
// [V2优点] 在RETURN节点内加载常量返回值
if (auto const_val = dynamic_cast<ConstantValue*>(ret_val)) {
auto li_instr = std::make_unique<MachineInstr>(RVOpcodes::LI);
li_instr->addOperand(std::make_unique<RegOperand>(PhysicalReg::A0));
@ -1043,7 +1034,7 @@ void RISCv64ISel::selectNode(DAGNode* node) {
}
}
}
// 函数尾声epilogue不由RETURN节点生成
// [V1设计保留] 函数尾声epilogue不由RETURN节点生成
// 而是由后续的AsmPrinter或其它Pass统一处理这是一种常见且有效的模块化设计。
auto ret_mi = std::make_unique<MachineInstr>(RVOpcodes::RET);
CurMBB->addInstruction(std::move(ret_mi));
@ -1057,7 +1048,7 @@ void RISCv64ISel::selectNode(DAGNode* node) {
auto then_bb_name = cond_br->getThenBlock()->getName();
auto else_bb_name = cond_br->getElseBlock()->getName();
// 检查分支条件是否为编译期常量
// [优化] 检查分支条件是否为编译期常量
if (auto const_cond = dynamic_cast<ConstantValue*>(condition)) {
// 如果条件是常量直接生成一个无条件跳转J而不是BNE
if (const_cond->getInt() != 0) { // 条件为 true
@ -1072,7 +1063,7 @@ void RISCv64ISel::selectNode(DAGNode* node) {
}
// 如果条件不是常量,则执行标准流程
else {
// 为条件变量生成加载指令(如果它是常量的话,尽管上面已经处理了)
// [修复] 为条件变量生成加载指令(如果它是常量的话,尽管上面已经处理了)
// 这一步是为了逻辑完整,以防有其他类型的常量没有被捕获
if (auto const_val = dynamic_cast<ConstantValue*>(condition)) {
auto li = std::make_unique<MachineInstr>(RVOpcodes::LI);
@ -1106,7 +1097,7 @@ void RISCv64ISel::selectNode(DAGNode* node) {
}
case DAGNode::MEMSET: {
// Memset的核心展开逻辑在虚拟寄存器层面是正确的无需修改。
// [V1设计保留] Memset的核心展开逻辑在虚拟寄存器层面是正确的无需修改。
// 之前的bug是由于其输入地址、值、大小的虚拟寄存器未被正确初始化。
// 在修复了CONSTANT/ALLOCA_ADDR的加载问题后此处的逻辑现在可以正常工作。
@ -1289,19 +1280,14 @@ void RISCv64ISel::selectNode(DAGNode* node) {
if (stride != 0) {
// --- 为当前索引和步长生成偏移计算指令 ---
auto offset_vreg = getNewVReg();
// 处理索引 - 区分常量与动态值
unsigned index_vreg;
auto index_vreg = getVReg(indexValue);
// 如果索引是常量,先用 LI 指令加载到虚拟寄存器
if (auto const_index = dynamic_cast<ConstantValue*>(indexValue)) {
// 对于常量索引,直接创建新的虚拟寄存器
index_vreg = getNewVReg();
auto li = std::make_unique<MachineInstr>(RVOpcodes::LI);
li->addOperand(std::make_unique<RegOperand>(index_vreg));
li->addOperand(std::make_unique<ImmOperand>(const_index->getInt()));
CurMBB->addInstruction(std::move(li));
} else {
// 对于动态索引,使用已存在的虚拟寄存器
index_vreg = getVReg(indexValue);
}
// 优化如果步长是1可以直接移动(MV)作为偏移量,无需乘法
@ -1459,7 +1445,7 @@ std::vector<std::unique_ptr<RISCv64ISel::DAGNode>> RISCv64ISel::build_dag(BasicB
// 依次添加所有索引作为后续的操作数
for (auto index : gep->getIndices()) {
// 从 Use 对象中获取真正的 Value*
// [修复] 从 Use 对象中获取真正的 Value*
gep_node->operands.push_back(get_operand_node(index->getValue(), value_to_node, nodes_storage));
}
} else if (auto load = dynamic_cast<LoadInst*>(inst)) {
@ -1487,7 +1473,7 @@ std::vector<std::unique_ptr<RISCv64ISel::DAGNode>> RISCv64ISel::build_dag(BasicB
}
}
}
if (bin->isFPBinary()) { // 假设浮点指令枚举值更大
if (bin->getKind() >= Instruction::kFAdd) { // 假设浮点指令枚举值更大
auto fbin_node = create_node(DAGNode::FBINARY, bin, value_to_node, nodes_storage);
fbin_node->operands.push_back(get_operand_node(bin->getLhs(), value_to_node, nodes_storage));
fbin_node->operands.push_back(get_operand_node(bin->getRhs(), value_to_node, nodes_storage));
@ -1563,7 +1549,7 @@ unsigned RISCv64ISel::getTypeSizeInBytes(Type* type) {
}
}
// 打印DAG图以供调试的辅助函数
// [新] 打印DAG图以供调试的辅助函数
void RISCv64ISel::print_dag(const std::vector<std::unique_ptr<DAGNode>>& dag, const std::string& bb_name) {
// 检查是否有DEBUG宏或者全局变量避免在非调试模式下打印
// if (!DEBUG) return;

View File

@ -1,122 +1,6 @@
#include "RISCv64LLIR.h"
#include <vector>
#include <iostream> // 用于 std::ostream 和 std::cerr
#include <string> // 用于 std::string
namespace sysy {
// 辅助函数:将 PhysicalReg 枚举转换为可读的字符串
std::string regToString(PhysicalReg reg) {
switch (reg) {
case PhysicalReg::ZERO: return "x0"; case PhysicalReg::RA: return "ra";
case PhysicalReg::SP: return "sp"; case PhysicalReg::GP: return "gp";
case PhysicalReg::TP: return "tp"; case PhysicalReg::T0: return "t0";
case PhysicalReg::T1: return "t1"; case PhysicalReg::T2: return "t2";
case PhysicalReg::S0: return "s0"; case PhysicalReg::S1: return "s1";
case PhysicalReg::A0: return "a0"; case PhysicalReg::A1: return "a1";
case PhysicalReg::A2: return "a2"; case PhysicalReg::A3: return "a3";
case PhysicalReg::A4: return "a4"; case PhysicalReg::A5: return "a5";
case PhysicalReg::A6: return "a6"; case PhysicalReg::A7: return "a7";
case PhysicalReg::S2: return "s2"; case PhysicalReg::S3: return "s3";
case PhysicalReg::S4: return "s4"; case PhysicalReg::S5: return "s5";
case PhysicalReg::S6: return "s6"; case PhysicalReg::S7: return "s7";
case PhysicalReg::S8: return "s8"; case PhysicalReg::S9: return "s9";
case PhysicalReg::S10: return "s10"; case PhysicalReg::S11: return "s11";
case PhysicalReg::T3: return "t3"; case PhysicalReg::T4: return "t4";
case PhysicalReg::T5: return "t5"; case PhysicalReg::T6: return "t6";
case PhysicalReg::F0: return "f0"; case PhysicalReg::F1: return "f1";
case PhysicalReg::F2: return "f2"; case PhysicalReg::F3: return "f3";
case PhysicalReg::F4: return "f4"; case PhysicalReg::F5: return "f5";
case PhysicalReg::F6: return "f6"; case PhysicalReg::F7: return "f7";
case PhysicalReg::F8: return "f8"; case PhysicalReg::F9: return "f9";
case PhysicalReg::F10: return "f10"; case PhysicalReg::F11: return "f11";
case PhysicalReg::F12: return "f12"; case PhysicalReg::F13: return "f13";
case PhysicalReg::F14: return "f14"; case PhysicalReg::F15: return "f15";
case PhysicalReg::F16: return "f16"; case PhysicalReg::F17: return "f17";
case PhysicalReg::F18: return "f18"; case PhysicalReg::F19: return "f19";
case PhysicalReg::F20: return "f20"; case PhysicalReg::F21: return "f21";
case PhysicalReg::F22: return "f22"; case PhysicalReg::F23: return "f23";
case PhysicalReg::F24: return "f24"; case PhysicalReg::F25: return "f25";
case PhysicalReg::F26: return "f26"; case PhysicalReg::F27: return "f27";
case PhysicalReg::F28: return "f28"; case PhysicalReg::F29: return "f29";
case PhysicalReg::F30: return "f30"; case PhysicalReg::F31: return "f31";
default: return "UNKNOWN_REG";
}
}
// 打印栈帧信息的完整实现
void MachineFunction::dumpStackFrameInfo(std::ostream& os) const {
const StackFrameInfo& info = frame_info;
os << "--- Stack Frame Info for function '" << getName() << "' ---\n";
// 打印尺寸信息
os << " Sizes:\n";
os << " Total Size: " << info.total_size << " bytes\n";
os << " Locals Size: " << info.locals_size << " bytes\n";
os << " Spill Size: " << info.spill_size << " bytes\n";
os << " Callee-Saved Size: " << info.callee_saved_size << " bytes\n";
os << "\n";
// 打印 Alloca 变量的偏移量
os << " Alloca Offsets (vreg -> offset from FP):\n";
if (info.alloca_offsets.empty()) {
os << " (None)\n";
} else {
for (const auto& pair : info.alloca_offsets) {
os << " %vreg" << pair.first << " -> " << pair.second << "\n";
}
}
os << "\n";
// 打印溢出变量的偏移量
os << " Spill Offsets (vreg -> offset from FP):\n";
if (info.spill_offsets.empty()) {
os << " (None)\n";
} else {
for (const auto& pair : info.spill_offsets) {
os << " %vreg" << pair.first << " -> " << pair.second << "\n";
}
}
os << "\n";
// 打印使用的被调用者保存寄存器
os << " Used Callee-Saved Registers:\n";
if (info.used_callee_saved_regs.empty()) {
os << " (None)\n";
} else {
os << " { ";
for (const auto& reg : info.used_callee_saved_regs) {
os << regToString(reg) << " ";
}
os << "}\n";
}
os << "\n";
// 打印需要保存/恢复的被调用者保存寄存器 (有序)
os << " Callee-Saved Registers to Store/Restore:\n";
if (info.callee_saved_regs_to_store.empty()) {
os << " (None)\n";
} else {
os << " [ ";
for (const auto& reg : info.callee_saved_regs_to_store) {
os << regToString(reg) << " ";
}
os << "]\n";
}
os << "\n";
// 打印最终的寄存器分配结果
os << " Final Register Allocation Map (vreg -> preg):\n";
if (info.vreg_to_preg_map.empty()) {
os << " (None)\n";
} else {
for (const auto& pair : info.vreg_to_preg_map) {
os << " %vreg" << pair.first << " -> " << regToString(pair.second) << "\n";
}
}
os << "---------------------------------------------------\n";
}
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,20 +0,0 @@
#ifndef ELIMINATE_FRAME_INDICES_H
#define ELIMINATE_FRAME_INDICES_H
#include "RISCv64LLIR.h"
namespace sysy {
class EliminateFrameIndicesPass {
public:
// Pass 的主入口函数
void runOnMachineFunction(MachineFunction* mfunc);
private:
// 帮助计算类型大小的辅助函数从原RegAlloc中移出
unsigned getTypeSizeInBytes(Type* type);
};
} // namespace sysy
#endif // ELIMINATE_FRAME_INDICES_H

View File

@ -1,30 +0,0 @@
#ifndef RISCV64_DIV_STRENGTH_REDUCTION_H
#define RISCV64_DIV_STRENGTH_REDUCTION_H
#include "RISCv64LLIR.h"
#include "Pass.h"
namespace sysy {
/**
* @class DivStrengthReduction
* @brief 除法强度削弱优化器
* * 将除法运算转换为乘法运算使用magic number算法
* 适用于除数为常数的情况,可以显著提高性能
*/
class DivStrengthReduction : public Pass {
public:
static char ID;
DivStrengthReduction() : Pass("div-strength-reduction", Granularity::Function, PassKind::Optimization) {}
void *getPassID() const override { return &ID; }
bool runOnFunction(Function *F, AnalysisManager& AM) override;
void runOnMachineFunction(MachineFunction* mfunc);
};
} // namespace sysy
#endif // RISCV64_DIV_STRENGTH_REDUCTION_H

View File

@ -22,6 +22,7 @@ private:
// 函数级代码生成 (实现新的流水线)
std::string function_gen(Function* func);
// 私有辅助函数,用于根据类型计算其占用的字节数。
unsigned getTypeSizeInBytes(Type* type);

View File

@ -3,7 +3,6 @@
#include "IR.h" // 确保包含了您自己的IR头文件
#include <string>
#include <iostream>
#include <vector>
#include <memory>
#include <cstdint>
@ -39,14 +38,14 @@ enum class PhysicalReg {
// 用于内部表示物理寄存器在干扰图中的节点ID一个简单的特殊ID确保不与vreg_counter冲突
// 假设 vreg_counter 不会达到这么大的值
PHYS_REG_START_ID = 1000000,
PHYS_REG_START_ID = 100000,
PHYS_REG_END_ID = PHYS_REG_START_ID + 320, // 预留足够的空间
};
// RISC-V 指令操作码枚举
enum class RVOpcodes {
// 算术指令
ADD, ADDI, ADDW, ADDIW, SUB, SUBW, MUL, MULW, MULH, DIV, DIVW, REM, REMW,
ADD, ADDI, ADDW, ADDIW, SUB, SUBW, MUL, MULW, DIV, DIVW, REM, REMW,
// 逻辑指令
XOR, XORI, OR, ORI, AND, ANDI,
// 移位指令
@ -196,11 +195,6 @@ public:
preg = new_preg;
is_virtual = false;
}
void setVRegNum(unsigned new_vreg_num) {
vreg_num = new_vreg_num;
is_virtual = true; // 确保设置vreg时操作数状态正确
}
private:
unsigned vreg_num = 0;
PhysicalReg preg = PhysicalReg::ZERO;
@ -280,15 +274,14 @@ private:
// 栈帧信息
struct StackFrameInfo {
int locals_size = 0; // 仅为AllocaInst分配的大小
int locals_end_offset = 0; // 记录局部变量分配结束后的偏移量(相对于s0为负)
int spill_size = 0; // 仅为溢出分配的大小
int total_size = 0; // 总大小
int callee_saved_size = 0; // 保存寄存器的大小
std::map<unsigned, int> alloca_offsets; // <AllocaInst的vreg, 栈偏移>
std::map<unsigned, int> spill_offsets; // <溢出vreg, 栈偏移>
std::set<PhysicalReg> used_callee_saved_regs; // 使用的保存寄存器
std::map<unsigned, PhysicalReg> vreg_to_preg_map; // RegAlloc最终的分配结果
std::vector<PhysicalReg> callee_saved_regs_to_store; // 已排序的、需要存取的被调用者保存寄存器
std::map<unsigned, PhysicalReg> vreg_to_preg_map;
std::vector<PhysicalReg> callee_saved_regs; // 用于存储需要保存的被调用者保存寄存器列表
};
// 机器函数
@ -302,7 +295,7 @@ public:
StackFrameInfo& getFrameInfo() { return frame_info; }
const std::vector<std::unique_ptr<MachineBasicBlock>>& getBlocks() const { return blocks; }
std::vector<std::unique_ptr<MachineBasicBlock>>& getBlocks() { return blocks; }
void dumpStackFrameInfo(std::ostream& os = std::cerr) const;
void addBlock(std::unique_ptr<MachineBasicBlock> block) {
blocks.push_back(std::move(block));
}

View File

@ -8,10 +8,7 @@
#include "CalleeSavedHandler.h"
#include "LegalizeImmediates.h"
#include "PrologueEpilogueInsertion.h"
#include "EliminateFrameIndices.h"
#include "Pass.h"
#include "DivStrengthReduction.h"
namespace sysy {

View File

@ -3,15 +3,9 @@
#include "RISCv64LLIR.h"
#include "RISCv64ISel.h" // 包含 RISCv64ISel.h 以访问 ISel 和 Value 类型
#include <set>
#include <vector>
#include <map>
#include <stack>
extern int DEBUG;
extern int DEEPDEBUG;
extern int DEBUGLENGTH; // 用于限制调试输出的长度
extern int DEEPERDEBUG; // 用于更深层次的调试输出
namespace sysy {
@ -23,98 +17,58 @@ public:
void run();
private:
// 类型定义与Python版本对应
using VRegSet = std::set<unsigned>;
using InterferenceGraph = std::map<unsigned, VRegSet>;
using VRegStack = std::vector<unsigned>; // 使用vector模拟栈方便遍历
using MoveList = std::map<unsigned, std::set<const MachineInstr*>>;
using AliasMap = std::map<unsigned, unsigned>;
using ColorMap = std::map<unsigned, PhysicalReg>;
using VRegMoveSet = std::set<const MachineInstr*>;
using LiveSet = std::set<unsigned>; // 活跃虚拟寄存器集合
using InterferenceGraph = std::map<unsigned, std::set<unsigned>>;
// --- 核心算法流程 ---
void initialize();
void build();
void makeWorklist();
void simplify();
void coalesce();
void freeze();
void selectSpill();
void assignColors();
void rewriteProgram();
bool doAllocation();
void applyColoring();
void dumpState(const std::string &stage);
void precolorByCallingConvention();
// --- 辅助函数 ---
void getInstrUseDef(const MachineInstr* instr, VRegSet& use, VRegSet& def);
void getInstrUseDef_Liveness(const MachineInstr *instr, VRegSet &use, VRegSet &def);
void addEdge(unsigned u, unsigned v);
VRegSet adjacent(unsigned n);
VRegMoveSet nodeMoves(unsigned n);
bool moveRelated(unsigned n);
void decrementDegree(unsigned m);
void enableMoves(const VRegSet& nodes);
unsigned getAlias(unsigned n);
void addWorklist(unsigned u);
bool briggsHeuristic(unsigned u, unsigned v);
bool georgeHeuristic(unsigned u, unsigned v);
void combine(unsigned u, unsigned v);
void freezeMoves(unsigned u);
void collectUsedCalleeSavedRegs();
bool isFPVReg(unsigned vreg) const;
std::string regToString(PhysicalReg reg);
std::string regIdToString(unsigned id);
// --- 活跃性分析 ---
// 栈帧管理
void eliminateFrameIndices();
// 活跃性分析
void analyzeLiveness();
MachineFunction* MFunc;
RISCv64ISel* ISel;
// 构建干扰图
void buildInterferenceGraph();
// --- 算法数据结构 ---
// 寄存器池
// 图着色分配寄存器
void colorGraph();
// 重写函数替换vreg并插入溢出代码
void rewriteFunction();
// 辅助函数获取指令的Use/Def集合
void getInstrUseDef(MachineInstr* instr, LiveSet& use, LiveSet& def);
// 辅助函数,处理调用约定
void handleCallingConvention();
MachineFunction* MFunc;
// 活跃性分析结果
std::map<const MachineInstr*, LiveSet> live_in_map;
std::map<const MachineInstr*, LiveSet> live_out_map;
// 干扰图
InterferenceGraph interference_graph;
// 图着色结果
std::map<unsigned, PhysicalReg> color_map; // vreg -> preg
std::set<unsigned> spilled_vregs; // 被溢出的vreg集合
// 可用的物理寄存器池
std::vector<PhysicalReg> allocable_int_regs;
std::vector<PhysicalReg> allocable_fp_regs;
int K_int; // 整数寄存器数量
int K_fp; // 浮点寄存器数量
// 节点集合
VRegSet precolored; // 预着色的节点 (物理寄存器)
VRegSet initial; // 初始的、所有待处理的虚拟寄存器节点
VRegSet simplifyWorklist;
VRegSet freezeWorklist;
VRegSet spillWorklist;
VRegSet spilledNodes;
VRegSet coalescedNodes;
VRegSet coloredNodes;
VRegStack selectStack;
// Move指令相关
std::set<const MachineInstr*> coalescedMoves;
std::set<const MachineInstr*> constrainedMoves;
std::set<const MachineInstr*> frozenMoves;
std::set<const MachineInstr*> worklistMoves;
std::set<const MachineInstr*> activeMoves;
// 数据结构
InterferenceGraph adjSet;
std::map<unsigned, VRegSet> adjList; // 邻接表
std::map<unsigned, int> degree;
MoveList moveList;
AliasMap alias;
ColorMap color_map;
// 活跃性分析结果
std::map<const MachineInstr*, VRegSet> live_in_map;
std::map<const MachineInstr*, VRegSet> live_out_map;
// 存储vreg到IR Value*的反向映射
// 这个map将在run()函数开始时被填充并在rewriteFunction()中使用。
std::map<unsigned, Value*> vreg_to_value_map;
std::map<PhysicalReg, unsigned> preg_to_vreg_id_map; // 物理寄存器到特殊vreg ID的映射
// 用于计算类型大小的辅助函数
unsigned getTypeSizeInBytes(Type* type);
// 辅助函数,用于打印集合
static void printLiveSet(const LiveSet& s, const std::string& name, std::ostream& os);
// VReg -> Value* 和 VReg -> Type* 的映射
const std::map<unsigned, Value*>& vreg_to_value_map;
const std::map<unsigned, Type*>& vreg_type_map;
};
} // namespace sysy

View File

@ -728,8 +728,6 @@ class Instruction : public User {
kPhi = 0x1UL << 39,
kBitItoF = 0x1UL << 40,
kBitFtoI = 0x1UL << 41,
kSRA = 0x1UL << 42,
kMulh = 0x1UL << 43
};
protected:
@ -826,12 +824,6 @@ public:
return "Memset";
case kPhi:
return "Phi";
case kBitItoF:
return "BitItoF";
case kBitFtoI:
return "BitFtoI";
case kSRA:
return "SRA";
default:
return "Unknown";
}
@ -843,15 +835,11 @@ public:
bool isBinary() const {
static constexpr uint64_t BinaryOpMask =
(kAdd | kSub | kMul | kDiv | kRem | kAnd | kOr | kSRA | kMulh) |
(kICmpEQ | kICmpNE | kICmpLT | kICmpGT | kICmpLE | kICmpGE);
return kind & BinaryOpMask;
}
bool isFPBinary() const {
static constexpr uint64_t FPBinaryOpMask =
(kAdd | kSub | kMul | kDiv | kRem | kAnd | kOr) |
(kICmpEQ | kICmpNE | kICmpLT | kICmpGT | kICmpLE | kICmpGE) |
(kFAdd | kFSub | kFMul | kFDiv) |
(kFCmpEQ | kFCmpNE | kFCmpLT | kFCmpGT | kFCmpLE | kFCmpGE);
return kind & FPBinaryOpMask;
return kind & BinaryOpMask;
}
bool isUnary() const {
static constexpr uint64_t UnaryOpMask =

View File

@ -217,12 +217,6 @@ class IRBuilder {
BinaryInst * createOrInst(Value *lhs, Value *rhs, const std::string &name = "") {
return createBinaryInst(Instruction::kOr, Type::getIntType(), lhs, rhs, name);
} ///< 创建按位或指令
BinaryInst * createSRAInst(Value *lhs, Value *rhs, const std::string &name = "") {
return createBinaryInst(Instruction::kSRA, Type::getIntType(), lhs, rhs, name);
} ///< 创建算术右移指令
BinaryInst * createMulhInst(Value *lhs, Value *rhs, const std::string &name = "") {
return createBinaryInst(Instruction::kMulh, Type::getIntType(), lhs, rhs, name);
} ///< 创建高位乘法指令
CallInst * createCallInst(Function *callee, const std::vector<Value *> &args, const std::string &name = "") {
std::string newName;
if (name.empty() && callee->getReturnType() != Type::getVoidType()) {

View File

@ -1,20 +0,0 @@
#pragma once
#include "IR.h"
#include "Pass.h"
#include <queue>
#include <set>
namespace sysy {
class BuildCFG : public OptimizationPass {
public:
static void *ID;
BuildCFG() : OptimizationPass("BuildCFG", Granularity::Function) {}
bool runOnFunction(Function *F, AnalysisManager &AM) override;
void getAnalysisUsage(std::set<void *> &analysisDependencies, std::set<void *> &analysisInvalidations) const override;
void *getPassID() const override { return &ID; }
};
} // namespace sysy

View File

@ -1,24 +0,0 @@
#pragma once
#include "../Pass.h"
namespace sysy {
class LargeArrayToGlobalPass : public OptimizationPass {
public:
static void *ID;
LargeArrayToGlobalPass() : OptimizationPass("LargeArrayToGlobal", Granularity::Module) {}
bool runOnModule(Module *M, AnalysisManager &AM) override;
void *getPassID() const override {
return &ID;
}
private:
unsigned calculateTypeSize(Type *type);
void convertAllocaToGlobal(AllocaInst *alloca, Function *F, Module *M);
std::string generateUniqueGlobalName(AllocaInst *alloca, Function *F);
};
} // namespace sysy

View File

@ -279,7 +279,7 @@ private:
IRBuilder *pBuilder;
public:
PassManager() = delete;
PassManager() = default;
~PassManager() = default;
PassManager(Module *module, IRBuilder *builder) : pmodule(module) ,pBuilder(builder), analysisManager(module) {}

View File

@ -11,8 +11,6 @@ add_library(midend_lib STATIC
Pass/Optimize/Reg2Mem.cpp
Pass/Optimize/SysYIRCFGOpt.cpp
Pass/Optimize/SCCP.cpp
Pass/Optimize/BuildCFG.cpp
Pass/Optimize/LargeArrayToGlobal.cpp
)
# 包含中端模块所需的头文件路径

View File

@ -1,79 +0,0 @@
#include "BuildCFG.h"
#include "Dom.h"
#include "Liveness.h"
#include <iostream>
#include <queue>
#include <set>
namespace sysy {
void *BuildCFG::ID = (void *)&BuildCFG::ID; // 定义唯一的 Pass ID
// 声明Pass的分析使用
void BuildCFG::getAnalysisUsage(std::set<void *> &analysisDependencies, std::set<void *> &analysisInvalidations) const {
// BuildCFG不依赖其他分析
// analysisDependencies.insert(&DominatorTreeAnalysisPass::ID); // 错误的例子
// BuildCFG会使所有依赖于CFG的分析结果失效所以它必须声明这些失效
analysisInvalidations.insert(&DominatorTreeAnalysisPass::ID);
analysisInvalidations.insert(&LivenessAnalysisPass::ID);
}
bool BuildCFG::runOnFunction(Function *F, AnalysisManager &AM) {
if (DEBUG) {
std::cout << "Running BuildCFG pass on function: " << F->getName() << std::endl;
}
bool changed = false;
// 1. 清空所有基本块的前驱和后继列表
for (auto &bb : F->getBasicBlocks()) {
bb->clearPredecessors();
bb->clearSuccessors();
}
// 2. 遍历每个基本块重建CFG
for (auto &bb : F->getBasicBlocks()) {
// 获取基本块的最后一条指令
auto &inst = *bb->terminator();
Instruction *termInst = inst.get();
// 确保基本块有终结指令
if (!termInst) {
continue;
}
// 根据终结指令类型,建立前驱后继关系
if (termInst->isBranch()) {
// 无条件跳转
if (termInst->isUnconditional()) {
auto brInst = dynamic_cast<UncondBrInst *>(termInst);
BasicBlock *succ = dynamic_cast<BasicBlock *>(brInst->getBlock());
assert(succ && "Branch instruction's target must be a BasicBlock");
bb->addSuccessor(succ);
succ->addPredecessor(bb.get());
changed = true;
// 条件跳转
} else if (termInst->isConditional()) {
auto brInst = dynamic_cast<CondBrInst *>(termInst);
BasicBlock *trueSucc = dynamic_cast<BasicBlock *>(brInst->getThenBlock());
BasicBlock *falseSucc = dynamic_cast<BasicBlock *>(brInst->getElseBlock());
assert(trueSucc && falseSucc && "Branch instruction's targets must be BasicBlocks");
bb->addSuccessor(trueSucc);
trueSucc->addPredecessor(bb.get());
bb->addSuccessor(falseSucc);
falseSucc->addPredecessor(bb.get());
changed = true;
}
} else if (auto retInst = dynamic_cast<ReturnInst *>(termInst)) {
// RetInst没有后继无需处理
// ...
}
}
return changed;
}
} // namespace sysy

View File

@ -1,143 +0,0 @@
#include "../../include/midend/Pass/Optimize/LargeArrayToGlobal.h"
#include "../../IR.h"
#include <unordered_map>
#include <sstream>
#include <string>
namespace sysy {
// Helper function to convert type to string
static std::string typeToString(Type *type) {
if (!type) return "null";
switch (type->getKind()) {
case Type::kInt:
return "int";
case Type::kFloat:
return "float";
case Type::kPointer:
return "ptr";
case Type::kArray: {
auto *arrayType = type->as<ArrayType>();
return "[" + std::to_string(arrayType->getNumElements()) + " x " +
typeToString(arrayType->getElementType()) + "]";
}
default:
return "unknown";
}
}
void *LargeArrayToGlobalPass::ID = &LargeArrayToGlobalPass::ID;
bool LargeArrayToGlobalPass::runOnModule(Module *M, AnalysisManager &AM) {
bool changed = false;
if (!M) {
return false;
}
// Collect all alloca instructions from all functions
std::vector<std::pair<AllocaInst*, Function*>> allocasToConvert;
for (auto &funcPair : M->getFunctions()) {
Function *F = funcPair.second.get();
if (!F || F->getBasicBlocks().begin() == F->getBasicBlocks().end()) {
continue;
}
for (auto &BB : F->getBasicBlocks()) {
for (auto &inst : BB->getInstructions()) {
if (auto *alloca = dynamic_cast<AllocaInst*>(inst.get())) {
Type *allocatedType = alloca->getAllocatedType();
// Calculate the size of the allocated type
unsigned size = calculateTypeSize(allocatedType);
// Debug: print size information
std::cout << "LargeArrayToGlobalPass: Found alloca with size " << size
<< " for type " << typeToString(allocatedType) << std::endl;
// Convert arrays of 1KB (1024 bytes) or larger to global variables
if (size >= 1024) {
std::cout << "LargeArrayToGlobalPass: Converting array of size " << size << " to global" << std::endl;
allocasToConvert.emplace_back(alloca, F);
}
}
}
}
}
// Convert the collected alloca instructions to global variables
for (auto [alloca, F] : allocasToConvert) {
convertAllocaToGlobal(alloca, F, M);
changed = true;
}
return changed;
}
unsigned LargeArrayToGlobalPass::calculateTypeSize(Type *type) {
if (!type) return 0;
switch (type->getKind()) {
case Type::kInt:
case Type::kFloat:
return 4;
case Type::kPointer:
return 8;
case Type::kArray: {
auto *arrayType = type->as<ArrayType>();
return arrayType->getNumElements() * calculateTypeSize(arrayType->getElementType());
}
default:
return 0;
}
}
void LargeArrayToGlobalPass::convertAllocaToGlobal(AllocaInst *alloca, Function *F, Module *M) {
Type *allocatedType = alloca->getAllocatedType();
// Create a unique name for the global variable
std::string globalName = generateUniqueGlobalName(alloca, F);
// Create the global variable - GlobalValue expects pointer type
Type *pointerType = Type::getPointerType(allocatedType);
GlobalValue *globalVar = M->createGlobalValue(globalName, pointerType);
if (!globalVar) {
return;
}
// Replace all uses of the alloca with the global variable
alloca->replaceAllUsesWith(globalVar);
// Remove the alloca instruction from its basic block
for (auto &BB : F->getBasicBlocks()) {
auto &instructions = BB->getInstructions();
for (auto it = instructions.begin(); it != instructions.end(); ++it) {
if (it->get() == alloca) {
instructions.erase(it);
break;
}
}
}
}
std::string LargeArrayToGlobalPass::generateUniqueGlobalName(AllocaInst *alloca, Function *F) {
std::string baseName = alloca->getName();
if (baseName.empty()) {
baseName = "array";
}
// Ensure uniqueness by appending function name and counter
static std::unordered_map<std::string, int> nameCounter;
std::string key = F->getName() + "." + baseName;
int counter = nameCounter[key]++;
std::ostringstream oss;
oss << key << "." << counter;
return oss.str();
}
} // namespace sysy

View File

@ -6,8 +6,6 @@
#include "Mem2Reg.h"
#include "Reg2Mem.h"
#include "SCCP.h"
#include "BuildCFG.h"
#include "LargeArrayToGlobal.h"
#include "Pass.h"
#include <iostream>
#include <queue>
@ -37,13 +35,10 @@ void PassManager::runOptimizationPipeline(Module* moduleIR, IRBuilder* builderIR
3. 添加优化passid
*/
// 注册分析遍
registerAnalysisPass<DominatorTreeAnalysisPass>();
registerAnalysisPass<LivenessAnalysisPass>();
registerAnalysisPass<sysy::DominatorTreeAnalysisPass>();
registerAnalysisPass<sysy::LivenessAnalysisPass>();
// 注册优化遍
registerOptimizationPass<BuildCFG>();
registerOptimizationPass<LargeArrayToGlobalPass>();
registerOptimizationPass<SysYDelInstAfterBrPass>();
registerOptimizationPass<SysYDelNoPreBLockPass>();
registerOptimizationPass<SysYBlockMergePass>();
@ -63,24 +58,14 @@ void PassManager::runOptimizationPipeline(Module* moduleIR, IRBuilder* builderIR
if (DEBUG) std::cout << "Applying -O1 optimizations.\n";
if (DEBUG) std::cout << "--- Running custom optimization sequence ---\n";
if(DEBUG) {
std::cout << "=== IR Before CFGOpt Optimizations ===\n";
printPasses();
}
this->clearPasses();
this->addPass(&BuildCFG::ID);
this->addPass(&LargeArrayToGlobalPass::ID);
this->run();
this->clearPasses();
this->addPass(&SysYDelInstAfterBrPass::ID);
this->addPass(&SysYDelNoPreBLockPass::ID);
this->addPass(&SysYBlockMergePass::ID);
this->addPass(&SysYDelEmptyBlockPass::ID);
this->addPass(&SysYCondBr2BrPass::ID);
this->addPass(&SysYAddReturnPass::ID);
this->run();
// this->clearPasses();
// this->addPass(&SysYDelInstAfterBrPass::ID);
// this->addPass(&SysYDelNoPreBLockPass::ID);
// this->addPass(&SysYBlockMergePass::ID);
// this->addPass(&SysYDelEmptyBlockPass::ID);
// this->addPass(&SysYCondBr2BrPass::ID);
// this->addPass(&SysYAddReturnPass::ID);
// this->run();
if(DEBUG) {
std::cout << "=== IR After CFGOpt Optimizations ===\n";
@ -123,6 +108,10 @@ void PassManager::runOptimizationPipeline(Module* moduleIR, IRBuilder* builderIR
printPasses();
}
this->clearPasses();
this->addPass(&DCE::ID);
this->run();
if (DEBUG) std::cout << "--- Custom optimization sequence finished ---\n";
}

View File

@ -15,29 +15,6 @@
using namespace std;
namespace sysy {
std::pair<long long, int> calculate_signed_magic(int d) {
if (d == 0) throw std::runtime_error("Division by zero");
if (d == 1 || d == -1) return {0, 0}; // Not used by strength reduction
int k = 0;
unsigned int ad = (d > 0) ? d : -d;
unsigned int temp = ad;
while (temp > 0) {
temp >>= 1;
k++;
}
if ((ad & (ad - 1)) == 0) { // if power of 2
k--;
}
unsigned __int128 m_val = 1;
m_val <<= (32 + k - 1);
unsigned __int128 m_prime = m_val / ad;
long long m = m_prime + 1;
return {m, k};
}
// std::vector<Value*> BinaryValueStack; ///< 用于存储value的栈
// std::vector<int> BinaryOpStack; ///< 用于存储二元表达式的操作符栈
@ -272,26 +249,7 @@ void SysYIRGenerator::compute() {
case BinaryOp::ADD: resultValue = builder.createAddInst(lhs, rhs); break;
case BinaryOp::SUB: resultValue = builder.createSubInst(lhs, rhs); break;
case BinaryOp::MUL: resultValue = builder.createMulInst(lhs, rhs); break;
case BinaryOp::DIV: {
ConstantInteger *rhsConst = dynamic_cast<ConstantInteger *>(rhs);
if (rhsConst) {
int divisor = rhsConst->getInt();
if (divisor > 0 && (divisor & (divisor - 1)) == 0) {
int shift = 0;
int temp = divisor;
while (temp > 1) {
temp >>= 1;
shift++;
}
resultValue = builder.createSRAInst(lhs, ConstantInteger::get(shift));
} else {
resultValue = builder.createDivInst(lhs, rhs);
}
} else {
resultValue = builder.createDivInst(lhs, rhs);
}
break;
}
case BinaryOp::DIV: resultValue = builder.createDivInst(lhs, rhs); break;
case BinaryOp::MOD: resultValue = builder.createRemInst(lhs, rhs); break;
}
} else if (commonType == Type::getFloatType()) {
@ -628,7 +586,18 @@ std::any SysYIRGenerator::visitConstDecl(SysYParser::ConstDeclContext *ctx) {
// 显式地为局部常量在栈上分配空间
// alloca 的类型将是指针指向常量类型,例如 `int*` 或 `int[2][3]*`
// 将 alloca 全部集中到entry函数中
// 记录当前位置
BasicBlock *curBB = builder.getBasicBlock();
auto curPos =builder.getPosition();
Function *currentFunction = builder.getBasicBlock()->getParent();
BasicBlock *entryBB = currentFunction->getEntryBlock();
// 在terminator前插入
auto entryPos = entryBB->terminator();
builder.setPosition(entryBB, entryPos);
AllocaInst *alloca = builder.createAllocaInst(Type::getPointerType(variableType), name);
// 恢复当前位置
builder.setPosition(curBB, curPos);
ArrayValueTree *root = std::any_cast<ArrayValueTree *>(constDef->constInitVal()->accept(this));
ValueCounter values;
@ -785,8 +754,20 @@ std::any SysYIRGenerator::visitVarDecl(SysYParser::VarDeclContext *ctx) {
// 对于数组alloca 的类型将是指针指向数组类型,例如 `int[2][3]*`
// 对于标量alloca 的类型将是指针指向标量类型,例如 `int*`
AllocaInst* alloca =
builder.createAllocaInst(Type::getPointerType(variableType), name);
BasicBlock *curBB = builder.getBasicBlock();
auto curPos =builder.getPosition();
Function *currentFunction = builder.getBasicBlock()->getParent();
BasicBlock *entryBB = currentFunction->getEntryBlock();
// 在terminator前插入
auto entryPos = entryBB->terminator();
builder.setPosition(entryBB, entryPos);
AllocaInst *alloca = builder.createAllocaInst(Type::getPointerType(variableType), name);
// 恢复当前位置
builder.setPosition(curBB, curPos);
// AllocaInst* alloca =
// builder.createAllocaInst(Type::getPointerType(variableType), name);
if (varDef->initVal() != nullptr) {
ValueCounter values;

View File

@ -240,8 +240,6 @@ void SysYPrinter::printInst(Instruction *pInst) {
case Kind::kMul:
case Kind::kDiv:
case Kind::kRem:
case Kind::kSRA:
case Kind::kMulh:
case Kind::kFAdd:
case Kind::kFSub:
case Kind::kFMul:
@ -274,8 +272,6 @@ void SysYPrinter::printInst(Instruction *pInst) {
case Kind::kMul: std::cout << "mul"; break;
case Kind::kDiv: std::cout << "sdiv"; break;
case Kind::kRem: std::cout << "srem"; break;
case Kind::kSRA: std::cout << "ashr"; break;
case Kind::kMulh: std::cout << "mulh"; break;
case Kind::kFAdd: std::cout << "fadd"; break;
case Kind::kFSub: std::cout << "fsub"; break;
case Kind::kFMul: std::cout << "fmul"; break;

View File

@ -21,8 +21,6 @@ using namespace sysy;
int DEBUG = 0;
int DEEPDEBUG = 0;
int DEEPERDEBUG = 0;
int DEBUGLENGTH = 50;
static string argStopAfter;
static string argInputFile;