Compare commits

...

7 Commits

11 changed files with 1200 additions and 522 deletions

View File

@ -12,6 +12,39 @@ std::string RISCv64CodeGen::code_gen() {
return module_gen();
}
unsigned RISCv64CodeGen::getTypeSizeInBytes(Type* type) {
if (!type) {
assert(false && "Cannot get size of a null type.");
return 0;
}
switch (type->getKind()) {
// 对于SysY语言基本类型int和float都占用4字节
case Type::kInt:
case Type::kFloat:
return 4;
// 指针类型在RISC-V 64位架构下占用8字节
// 虽然SysY没有'int*'语法但数组变量在IR层面本身就是指针类型
case Type::kPointer:
return 8;
// 数组类型的总大小 = 元素数量 * 单个元素的大小
case Type::kArray: {
auto arrayType = type->as<ArrayType>();
// 递归调用以计算元素大小
return arrayType->getNumElements() * getTypeSizeInBytes(arrayType->getElementType());
}
// 其他类型如Void, Label等不占用栈空间或者不应该出现在这里
default:
// 如果遇到未处理的类型,触发断言,方便调试
// assert(false && "Unsupported type for size calculation.");
return 0; // 对于像Label或Void这样的类型返回0是合理的
}
}
void printInitializer(std::stringstream& ss, const ValueCounter& init_values) {
for (size_t i = 0; i < init_values.getValues().size(); ++i) {
auto val = init_values.getValues()[i];
@ -39,18 +72,36 @@ std::string RISCv64CodeGen::module_gen() {
for (const auto& global_ptr : module->getGlobals()) {
GlobalValue* global = global_ptr.get();
// [核心修改] 使用更健壮的逻辑来判断是否为大型零初始化数组
bool is_all_zeros = true;
const auto& init_values = global->getInitValues();
// 判断是否为大型零初始化数组,以便放入.bss段
bool is_large_zero_array = false;
if (init_values.getValues().size() == 1) {
if (auto const_val = dynamic_cast<ConstantValue*>(init_values.getValues()[0])) {
if (const_val->isInt() && const_val->getInt() == 0 && init_values.getNumbers()[0] > 16) {
is_large_zero_array = true;
// 检查初始化值是否全部为0
if (init_values.getValues().empty()) {
// 如果 ValueCounter 为空GlobalValue 的构造函数会确保它是零初始化的
is_all_zeros = true;
} else {
for (auto val : init_values.getValues()) {
if (auto const_val = dynamic_cast<ConstantValue*>(val)) {
if (!const_val->isZero()) {
is_all_zeros = false;
break;
}
} else {
// 如果初始值包含非常量(例如,另一个全局变量的地址),则不认为是纯零初始化
is_all_zeros = false;
break;
}
}
}
// 使用 getTypeSizeInBytes 检查总大小是否超过阈值 (16个整数 = 64字节)
Type* allocated_type = global->getType()->as<PointerType>()->getBaseType();
unsigned total_size = getTypeSizeInBytes(allocated_type);
bool is_large_zero_array = is_all_zeros && (total_size > 64);
if (is_large_zero_array) {
bss_globals.push_back(global);
} else {
@ -58,12 +109,12 @@ std::string RISCv64CodeGen::module_gen() {
}
}
// --- 步骤2生成 .bss 段的代码 (这部分不变) ---
// --- 步骤2生成 .bss 段的代码 ---
if (!bss_globals.empty()) {
ss << ".bss\n";
for (GlobalValue* global : bss_globals) {
unsigned count = global->getInitValues().getNumbers()[0];
unsigned total_size = count * 4; // 假设元素都是4字节
Type* allocated_type = global->getType()->as<PointerType>()->getBaseType();
unsigned total_size = getTypeSizeInBytes(allocated_type);
ss << " .align 3\n";
ss << ".globl " << global->getName() << "\n";
@ -74,33 +125,45 @@ std::string RISCv64CodeGen::module_gen() {
}
}
// --- [修改] 步骤3生成 .data 段的代码 ---
// 我们需要检查 data_globals 和 常量列表是否都为空
// --- 步骤3生成 .data 段的代码 ---
if (!data_globals.empty() || !module->getConsts().empty()) {
ss << ".data\n";
// a. 处理普通的全局变量 (GlobalValue)
// a. 处理普通的全局变量 (GlobalValue)
for (GlobalValue* global : data_globals) {
Type* allocated_type = global->getType()->as<PointerType>()->getBaseType();
unsigned total_size = getTypeSizeInBytes(allocated_type);
ss << " .align 3\n";
ss << ".globl " << global->getName() << "\n";
ss << ".type " << global->getName() << ", @object\n";
ss << ".size " << global->getName() << ", " << total_size << "\n";
ss << global->getName() << ":\n";
printInitializer(ss, global->getInitValues());
}
// b. [新增] 再处理全局常量 (ConstantVariable)
// b. 处理全局常量 (ConstantVariable)
for (const auto& const_ptr : module->getConsts()) {
ConstantVariable* cnst = const_ptr.get();
Type* allocated_type = cnst->getType()->as<PointerType>()->getBaseType();
unsigned total_size = getTypeSizeInBytes(allocated_type);
ss << " .align 3\n";
ss << ".globl " << cnst->getName() << "\n";
ss << ".type " << cnst->getName() << ", @object\n";
ss << ".size " << cnst->getName() << ", " << total_size << "\n";
ss << cnst->getName() << ":\n";
printInitializer(ss, cnst->getInitValues());
}
}
// --- 处理函数 (.text段) 的逻辑保持不变 ---
// --- 步骤4处理函数 (.text段) 的逻辑 ---
if (!module->getFunctions().empty()) {
ss << ".text\n";
for (const auto& func_pair : module->getFunctions()) {
if (func_pair.second.get()) {
if (func_pair.second.get() && !func_pair.second->getBasicBlocks().empty()) {
ss << function_gen(func_pair.second.get());
if (DEBUG) std::cerr << "Function: " << func_pair.first << " generated.\n";
}
}
}

View File

@ -22,6 +22,10 @@ private:
// 函数级代码生成 (实现新的流水线)
std::string function_gen(Function* func);
// 私有辅助函数,用于根据类型计算其占用的字节数。
unsigned getTypeSizeInBytes(Type* type);
Module* module;
};

View File

@ -576,7 +576,9 @@ public:
if (iter != predecessors.end()) {
predecessors.erase(iter);
} else {
assert(false);
// 如果没有找到前驱块,可能是因为它已经被移除或不存在
// 这可能是一个错误情况或者是因为在CFG优化过程中已经处理
// assert(false && "Predecessor block not found in BasicBlock");
}
}
void removeSuccessor(BasicBlock *block) {
@ -584,7 +586,9 @@ public:
if (iter != successors.end()) {
successors.erase(iter);
} else {
assert(false);
// 如果没有找到后继块,可能是因为它已经被移除或不存在
// 这可能是一个错误情况或者是因为在CFG优化过程中已经处理
// assert(false && "Successor block not found in BasicBlock");
}
}
void replacePredecessor(BasicBlock *oldBlock, BasicBlock *newBlock) {
@ -916,10 +920,23 @@ class PhiInst : public Instruction {
Value* getIncomingValue(unsigned k) const {return getOperand(2 * k);} ///< 获取位置为k的值
BasicBlock* getIncomingBlock(unsigned k) const {return dynamic_cast<BasicBlock*>(getOperand(2 * k + 1));}
Value* getIncomingValue(BasicBlock* blk) const {
return getvalfromBlk(blk);
} ///< 获取指定基本块的传入值
BasicBlock* getIncomingBlock(Value* val) const {
return getBlkfromVal(val);
} ///< 获取指定值的传入基本块
void replaceIncoming(BasicBlock *oldBlock, BasicBlock *newBlock, Value *newValue){
delBlk(oldBlock);
addIncoming(newValue, newBlock);
}
auto& getincomings() const {return blk2val;} ///< 获取所有的基本块和对应的值
Value* getvalfromBlk(BasicBlock* blk);
BasicBlock* getBlkfromVal(Value* val);
Value* getvalfromBlk(BasicBlock* blk) const ;
BasicBlock* getBlkfromVal(Value* val) const ;
unsigned getNumIncomingValues() const { return vsize; } ///< 获取传入值的数量
void addIncoming(Value *value, BasicBlock *block) {
@ -930,6 +947,10 @@ class PhiInst : public Instruction {
vsize++;
} ///< 添加传入值和对应的基本块
void removeIncoming(BasicBlock *block){
delBlk(block);
}
void delValue(Value* val);
void delBlk(BasicBlock* blk);

View File

@ -6,30 +6,82 @@
#include <set>
#include <vector>
#include <algorithm>
#include <functional>
namespace sysy {
// 支配树分析结果类 (保持不变)
// 支配树分析结果类
class DominatorTree : public AnalysisResultBase {
public:
DominatorTree(Function* F);
// 获取指定基本块的所有支配者
const std::set<BasicBlock*>* getDominators(BasicBlock* BB) const;
BasicBlock* getImmediateDominator(BasicBlock* BB) const;
const std::set<BasicBlock*>* getDominanceFrontier(BasicBlock* BB) const;
// 获取指定基本块的即时支配者 (Immediate Dominator)
BasicBlock* getImmediateDominator(BasicBlock* BB) const;
// 获取指定基本块的支配边界 (Dominance Frontier)
const std::set<BasicBlock*>* getDominanceFrontier(BasicBlock* BB) const;
// 获取指定基本块在支配树中的子节点
const std::set<BasicBlock*>* getDominatorTreeChildren(BasicBlock* BB) const;
// 额外的 Getter获取所有支配者、即时支配者和支配边界的完整映射可选主要用于调试或特定场景
const std::map<BasicBlock*, std::set<BasicBlock*>>& getDominatorsMap() const { return Dominators; }
const std::map<BasicBlock*, BasicBlock*>& getIDomsMap() const { return IDoms; }
const std::map<BasicBlock*, std::set<BasicBlock*>>& getDominanceFrontiersMap() const { return DominanceFrontiers; }
// 计算所有基本块的支配者集合
void computeDominators(Function* F);
void computeIDoms(Function* F);
// 计算所有基本块的即时支配者(内部使用 Lengauer-Tarjan 算法)
void computeIDoms(Function* F);
// 计算所有基本块的支配边界
void computeDominanceFrontiers(Function* F);
// 计算支配树的结构(即每个节点的直接子节点)
void computeDominatorTreeChildren(Function* F);
private:
// 与该支配树关联的函数
Function* AssociatedFunction;
std::map<BasicBlock*, std::set<BasicBlock*>> Dominators;
std::map<BasicBlock*, BasicBlock*> IDoms;
std::map<BasicBlock*, std::set<BasicBlock*>> DominanceFrontiers;
std::map<BasicBlock*, std::set<BasicBlock*>> DominatorTreeChildren;
std::map<BasicBlock*, std::set<BasicBlock*>> Dominators; // 每个基本块的支配者集合
std::map<BasicBlock*, BasicBlock*> IDoms; // 每个基本块的即时支配者
std::map<BasicBlock*, std::set<BasicBlock*>> DominanceFrontiers; // 每个基本块的支配边界
std::map<BasicBlock*, std::set<BasicBlock*>> DominatorTreeChildren; // 支配树中每个基本块的子节点
// ==========================================================
// Lengauer-Tarjan 算法内部所需的数据结构和辅助函数
// 这些成员是私有的,以封装 LT 算法的复杂性并避免命名空间污染
// ==========================================================
// DFS 遍历相关:
std::map<BasicBlock*, int> dfnum_map; // 存储每个基本块的 DFS 编号
std::vector<BasicBlock*> vertex_vec; // 通过 DFS 编号反向查找对应的基本块指针
std::map<BasicBlock*, BasicBlock*> parent_map; // 存储 DFS 树中每个基本块的父节点
int df_counter; // DFS 计数器,也代表 DFS 遍历的总节点数 (N)
// 半支配者 (Semi-dominator) 相关:
std::map<BasicBlock*, BasicBlock*> sdom_map; // 存储每个基本块的半支配者
std::map<BasicBlock*, BasicBlock*> idom_map; // 存储每个基本块的即时支配者 (IDom)
std::map<BasicBlock*, std::vector<BasicBlock*>> bucket_map; // 桶结构,用于存储具有相同半支配者的节点,以延迟 IDom 计算
// 并查集 (Union-Find) 相关(用于 evalAndCompress 函数):
std::map<BasicBlock*, BasicBlock*> ancestor_map; // 并查集中的父节点(用于路径压缩)
std::map<BasicBlock*, BasicBlock*> label_map; // 并查集中,每个集合的代表节点(或其路径上 sdom 最小的节点)
// ==========================================================
// 辅助计算函数 (私有)
// ==========================================================
// 计算基本块的逆后序遍历 (Reverse Post Order, RPO) 顺序
// RPO 用于优化支配者计算和 LT 算法的效率
std::vector<BasicBlock*> computeReversePostOrder(Function* F);
// Lengauer-Tarjan 算法特定的辅助 DFS 函数
// 用于初始化 dfnum_map, vertex_vec, parent_map
void dfs_lt_helper(BasicBlock* u);
// 结合了并查集的 Find 操作和 LT 算法的 Eval 操作
// 用于在路径压缩时更新 label找到路径上 sdom 最小的节点
BasicBlock* evalAndCompress_lt_helper(BasicBlock* i);
// 并查集的 Link 操作
// 将 v_child 挂载到 u_parent 的并查集树下
void link_lt_helper(BasicBlock* u_parent, BasicBlock* v_child);
};

View File

@ -75,11 +75,7 @@ private:
// --------------------------------------------------------------------
// 对支配树进行深度优先遍历,重命名变量并替换 load/store 指令
// alloca: 当前正在处理的 AllocaInst
// currentBB: 当前正在遍历的基本块
// dt: 支配树分析结果
// valueStack: 存储当前 AllocaInst 在当前路径上可见的 SSA 值栈
void renameVariables(AllocaInst* alloca, BasicBlock* currentBB);
void renameVariables(BasicBlock* currentBB);
// --------------------------------------------------------------------
// 阶段4: 清理

View File

@ -569,15 +569,15 @@ void User::replaceOperand(unsigned index, Value *value) {
* phi相关函数
*/
Value* PhiInst::getvalfromBlk(BasicBlock* blk){
refreshB2VMap();
Value* PhiInst::getvalfromBlk(BasicBlock* blk) const {
// refreshB2VMap();
if( blk2val.find(blk) != blk2val.end()) {
return blk2val.at(blk);
}
return nullptr;
}
BasicBlock* PhiInst::getBlkfromVal(Value* val){
BasicBlock* PhiInst::getBlkfromVal(Value* val) const {
// 返回第一个值对应的基本块
for(unsigned i = 0; i < vsize; i++) {
if(getValue(i) == val) {
@ -591,6 +591,9 @@ void PhiInst::delValue(Value* val){
//根据value删除对应的基本块和值
unsigned i = 0;
BasicBlock* blk = getBlkfromVal(val);
if(blk == nullptr) {
return; // 如果val没有对应的基本块直接返回
}
for(i = 0; i < vsize; i++) {
if(getValue(i) == val) {
break;
@ -606,6 +609,9 @@ void PhiInst::delBlk(BasicBlock* blk){
//根据Blk删除对应的基本块和值
unsigned i = 0;
Value* val = getvalfromBlk(blk);
if(val == nullptr) {
return; // 如果blk没有对应的值直接返回
}
for(i = 0; i < vsize; i++) {
if(getBlock(i) == blk) {
break;
@ -618,9 +624,12 @@ void PhiInst::delBlk(BasicBlock* blk){
}
void PhiInst::replaceBlk(BasicBlock* newBlk, unsigned k){
refreshB2VMap();
// refreshB2VMap();
BasicBlock* oldBlk = getBlock(k);
Value* val = blk2val.at(oldBlk);
if(newBlk == oldBlk || oldBlk == nullptr) {
return; // 如果新旧基本块相同,直接返回
}
// Value* val = blk2val.at(getBlock(k));
// 替换基本块
setOperand(2 * k + 1, newBlk);
@ -630,7 +639,7 @@ void PhiInst::replaceBlk(BasicBlock* newBlk, unsigned k){
}
void PhiInst::replaceold2new(BasicBlock* oldBlk, BasicBlock* newBlk){
refreshB2VMap();
// refreshB2VMap();
Value* val = blk2val.at(oldBlk);
// 替换基本块
delBlk(oldBlk);

View File

@ -1,19 +1,30 @@
#include "Dom.h"
#include <limits> // for std::numeric_limits
#include <algorithm> // for std::set_intersection, std::reverse
#include <iostream> // for debug output
#include <limits> // for std::numeric_limits
#include <queue>
#include <functional> // for std::function
#include <map>
#include <vector>
#include <set>
namespace sysy {
// 初始化 支配树静态 ID
// ==============================================================
// DominatorTreeAnalysisPass 的静态ID
// ==============================================================
void *DominatorTreeAnalysisPass::ID = (void *)&DominatorTreeAnalysisPass::ID;
// ==============================================================
// DominatorTree 结果类的实现
// ==============================================================
// 构造函数:初始化关联函数,但不进行计算
DominatorTree::DominatorTree(Function *F) : AssociatedFunction(F) {
// 构造时可以不计算,在分析遍运行里计算并填充
// 构造时不需要计算,在分析遍运行里计算并填充
}
// Getter 方法 (保持不变)
const std::set<BasicBlock *> *DominatorTree::getDominators(BasicBlock *BB) const {
auto it = Dominators.find(BB);
if (it != Dominators.end()) {
@ -38,164 +49,437 @@ const std::set<BasicBlock *> *DominatorTree::getDominanceFrontier(BasicBlock *BB
return nullptr;
}
const std::set<BasicBlock*>* DominatorTree::getDominatorTreeChildren(BasicBlock* BB) const {
auto it = DominatorTreeChildren.find(BB);
if (it != DominatorTreeChildren.end()) {
return &(it->second);
}
return nullptr;
const std::set<BasicBlock *> *DominatorTree::getDominatorTreeChildren(BasicBlock *BB) const {
auto it = DominatorTreeChildren.find(BB);
if (it != DominatorTreeChildren.end()) {
return &(it->second);
}
return nullptr;
}
void DominatorTree::computeDominators(Function *F) {
// 经典的迭代算法计算支配者集合
// TODO: 可以替换为更高效的算法,如 Lengauer-Tarjan 算法
BasicBlock *entryBlock = F->getEntryBlock();
// 辅助函数:打印 BasicBlock 集合 (保持不变)
void printBBSet(const std::string &prefix, const std::set<BasicBlock *> &s) {
if (!DEBUG)
return;
std::cout << prefix << "{";
bool first = true;
for (const auto &bb : s) {
if (!first)
std::cout << ", ";
std::cout << bb->getName();
first = false;
}
std::cout << "}" << std::endl;
}
for (const auto &bb_ptr : F->getBasicBlocks()) {
BasicBlock *bb = bb_ptr.get();
// 辅助函数:计算逆后序遍历 (RPO) - 保持不变
std::vector<BasicBlock*> DominatorTree::computeReversePostOrder(Function* F) {
std::vector<BasicBlock*> postOrder;
std::set<BasicBlock*> visited;
std::function<void(BasicBlock*)> dfs_rpo =
[&](BasicBlock* bb) {
visited.insert(bb);
for (BasicBlock* succ : bb->getSuccessors()) {
if (visited.find(succ) == visited.end()) {
dfs_rpo(succ);
}
}
postOrder.push_back(bb);
};
dfs_rpo(F->getEntryBlock());
std::reverse(postOrder.begin(), postOrder.end());
if (DEBUG) {
std::cout << "--- Computed RPO: ";
for (BasicBlock* bb : postOrder) {
std::cout << bb->getName() << " ";
}
std::cout << "---" << std::endl;
}
return postOrder;
}
// computeDominators 方法 (保持不变因为它它是独立于IDom算法的)
void DominatorTree::computeDominators(Function *F) {
if (DEBUG)
std::cout << "--- Computing Dominators ---" << std::endl;
BasicBlock *entryBlock = F->getEntryBlock();
std::vector<BasicBlock*> bbs_rpo = computeReversePostOrder(F);
for (BasicBlock *bb : bbs_rpo) {
if (bb == entryBlock) {
Dominators[bb].clear();
Dominators[bb].insert(bb);
if (DEBUG) std::cout << "Init Dominators[" << bb->getName() << "]: {" << bb->getName() << "}" << std::endl;
} else {
for (const auto &all_bb_ptr : F->getBasicBlocks()) {
Dominators[bb].insert(all_bb_ptr.get());
Dominators[bb].clear();
for (BasicBlock *all_bb : bbs_rpo) {
Dominators[bb].insert(all_bb);
}
if (DEBUG) {
std::cout << "Init Dominators[" << bb->getName() << "]: ";
printBBSet("", Dominators[bb]);
}
}
}
bool changed = true;
int iteration = 0;
while (changed) {
changed = false;
for (const auto &bb_ptr : F->getBasicBlocks()) {
BasicBlock *bb = bb_ptr.get();
if (bb == entryBlock)
continue;
iteration++;
if (DEBUG) std::cout << "Iteration " << iteration << std::endl;
for (BasicBlock *bb : bbs_rpo) {
if (bb == entryBlock) continue;
std::set<BasicBlock *> newDom;
bool firstPred = true;
bool firstPredProcessed = false;
for (BasicBlock *pred : bb->getPredecessors()) {
if (Dominators.count(pred)) {
if (firstPred) {
newDom = Dominators[pred];
firstPred = false;
} else {
std::set<BasicBlock *> intersection;
std::set_intersection(newDom.begin(), newDom.end(), Dominators[pred].begin(), Dominators[pred].end(),
std::inserter(intersection, intersection.begin()));
newDom = intersection;
}
if(DEBUG){
std::cout << " Processing predecessor: " << pred->getName() << std::endl;
}
if (!firstPredProcessed) {
newDom = Dominators[pred];
firstPredProcessed = true;
} else {
std::set<BasicBlock *> intersection;
std::set_intersection(newDom.begin(), newDom.end(), Dominators[pred].begin(), Dominators[pred].end(),
std::inserter(intersection, intersection.begin()));
newDom = intersection;
}
}
newDom.insert(bb);
if (newDom != Dominators[bb]) {
if (DEBUG) {
std::cout << " Dominators[" << bb->getName() << "] changed from ";
printBBSet("", Dominators[bb]);
std::cout << " to ";
printBBSet("", newDom);
}
Dominators[bb] = newDom;
changed = true;
}
}
}
if (DEBUG)
std::cout << "--- Dominators Computation Finished ---" << std::endl;
}
void DominatorTree::computeIDoms(Function *F) {
// 采用与之前类似的简化实现。TODO:Lengauer-Tarjan算法
BasicBlock *entryBlock = F->getEntryBlock();
IDoms[entryBlock] = nullptr;
// ==============================================================
// Lengauer-Tarjan 算法辅助数据结构和函数 (私有成员)
// ==============================================================
for (const auto &bb_ptr : F->getBasicBlocks()) {
BasicBlock *bb = bb_ptr.get();
if (bb == entryBlock)
continue;
BasicBlock *currentIDom = nullptr;
const std::set<BasicBlock *> *domsOfBB = getDominators(bb);
if (!domsOfBB)
continue;
for (BasicBlock *D : *domsOfBB) {
if (D == bb)
continue;
bool isCandidateIDom = true;
for (BasicBlock *candidate : *domsOfBB) {
if (candidate == bb || candidate == D)
continue;
const std::set<BasicBlock *> *domsOfCandidate = getDominators(candidate);
if (domsOfCandidate && domsOfCandidate->count(D) == 0 && domsOfBB->count(candidate)) {
isCandidateIDom = false;
break;
}
}
if (isCandidateIDom) {
currentIDom = D;
break;
}
// DFS 遍历,填充 dfnum_map, vertex_vec, parent_map
// 对应用户代码的 dfs 函数
void DominatorTree::dfs_lt_helper(BasicBlock* u) {
dfnum_map[u] = df_counter;
if (df_counter >= vertex_vec.size()) { // 动态调整大小
vertex_vec.resize(df_counter + 1);
}
vertex_vec[df_counter] = u;
if (DEBUG) std::cout << " DFS: Visiting " << u->getName() << ", dfnum = " << df_counter << std::endl;
df_counter++;
for (BasicBlock* v : u->getSuccessors()) {
if (dfnum_map.find(v) == dfnum_map.end()) { // 如果 v 未访问过
parent_map[v] = u;
if (DEBUG) std::cout << " DFS: Setting parent[" << v->getName() << "] = " << u->getName() << std::endl;
dfs_lt_helper(v);
}
}
IDoms[bb] = currentIDom;
}
}
// 并查集:找到集合的代表,并进行路径压缩
// 同时更新 label确保 label[i] 总是指向其祖先链中 sdom_map 最小的节点
// 对应用户代码的 find 函数,也包含了 eval 的逻辑
BasicBlock* DominatorTree::evalAndCompress_lt_helper(BasicBlock* i) {
if (DEBUG) std::cout << " Eval: Processing " << i->getName() << std::endl;
// 如果 i 是根 (ancestor_map[i] == nullptr)
if (ancestor_map.find(i) == ancestor_map.end() || ancestor_map[i] == nullptr) {
if (DEBUG) std::cout << " Eval: " << i->getName() << " is root, returning itself." << std::endl;
return i; // 根节点自身就是路径上sdom最小的因为它没有祖先
}
// 如果 i 的祖先不是根,则递归查找并进行路径压缩
BasicBlock* root_ancestor = evalAndCompress_lt_helper(ancestor_map[i]);
// 路径压缩时,根据 sdom_map 比较并更新 label_map
// 确保 label_map[i] 存储的是 i 到 root_ancestor 路径上 sdom_map 最小的节点
// 注意:这里的 ancestor_map[i] 已经被递归调用压缩过一次了所以是root_ancestor的旧路径
// 应该比较的是 label_map[ancestor_map[i]] 和 label_map[i]
if (sdom_map.count(label_map[ancestor_map[i]]) && // 确保 label_map[ancestor_map[i]] 存在 sdom
sdom_map.count(label_map[i]) && // 确保 label_map[i] 存在 sdom
dfnum_map[sdom_map[label_map[ancestor_map[i]]]] < dfnum_map[sdom_map[label_map[i]]]) {
if (DEBUG) std::cout << " Eval: Updating label for " << i->getName() << " from "
<< label_map[i]->getName() << " to " << label_map[ancestor_map[i]]->getName() << std::endl;
label_map[i] = label_map[ancestor_map[i]];
}
ancestor_map[i] = root_ancestor; // 执行路径压缩:将 i 直接指向其所属集合的根
if (DEBUG) std::cout << " Eval: Path compression for " << i->getName() << ", new ancestor = "
<< (root_ancestor ? root_ancestor->getName() : "nullptr") << std::endl;
return label_map[i]; // <-- **将这里改为返回 label_map[i]**
}
// Link 函数:将 v 加入 u 的 DFS 树子树中 (实际上是并查集操作)
// 对应用户代码的 fa[u] = fth[u];
void DominatorTree::link_lt_helper(BasicBlock* u_parent, BasicBlock* v_child) {
ancestor_map[v_child] = u_parent; // 设置并查集父节点
label_map[v_child] = v_child; // 初始化 label 为自身
if (DEBUG) std::cout << " Link: " << v_child->getName() << " linked to " << u_parent->getName() << std::endl;
}
// ==============================================================
// Lengauer-Tarjan 算法实现 computeIDoms
// ==============================================================
void DominatorTree::computeIDoms(Function *F) {
if (DEBUG) std::cout << "--- Computing Immediate Dominators (IDoms) using Lengauer-Tarjan ---" << std::endl;
BasicBlock *entryBlock = F->getEntryBlock();
// 1. 初始化所有 LT 相关的数据结构
dfnum_map.clear();
vertex_vec.clear();
parent_map.clear();
sdom_map.clear();
idom_map.clear();
bucket_map.clear();
ancestor_map.clear();
label_map.clear();
df_counter = 0; // DFS 计数器从 0 开始
// 预分配 vertex_vec 的大小避免频繁resize
vertex_vec.resize(F->getBasicBlocks().size() + 1);
// 在 DFS 遍历之前,先为所有基本块初始化 sdom 和 label
// 这是 Lengauer-Tarjan 算法的要求,确保所有节点在 Phase 2 开始前都在 map 中
for (auto &bb_ptr : F->getBasicBlocks()) {
BasicBlock* bb = bb_ptr.get();
sdom_map[bb] = bb; // sdom(bb) 初始化为 bb 自身
label_map[bb] = bb; // label(bb) 初始化为 bb 自身 (用于 Union-Find 的路径压缩)
}
// 确保入口块也被正确初始化(如果它不在 F->getBasicBlocks() 的正常迭代中)
sdom_map[entryBlock] = entryBlock;
label_map[entryBlock] = entryBlock;
// Phase 1: DFS 遍历并预处理
// 对应用户代码的 dfs(st)
dfs_lt_helper(entryBlock);
idom_map[entryBlock] = nullptr; // 入口块没有即时支配者
if (DEBUG) std::cout << " IDom[" << entryBlock->getName() << "] = nullptr" << std::endl;
if (DEBUG) std::cout << " Sdom[" << entryBlock->getName() << "] = " << entryBlock->getName() << std::endl;
// 初始化并查集的祖先和 label
for (auto const& [bb_key, dfn_val] : dfnum_map) {
ancestor_map[bb_key] = nullptr; // 初始为独立集合的根
label_map[bb_key] = bb_key; // 初始 label 为自身
}
if (DEBUG) {
std::cout << " --- DFS Phase Complete ---" << std::endl;
std::cout << " dfnum_map:" << std::endl;
for (auto const& [bb, dfn] : dfnum_map) {
std::cout << " " << bb->getName() << " -> " << dfn << std::endl;
}
std::cout << " vertex_vec (by dfnum):" << std::endl;
for (size_t k = 0; k < df_counter; ++k) {
if (vertex_vec[k]) std::cout << " [" << k << "] -> " << vertex_vec[k]->getName() << std::endl;
}
std::cout << " parent_map:" << std::endl;
for (auto const& [child, parent] : parent_map) {
std::cout << " " << child->getName() << " -> " << (parent ? parent->getName() : "nullptr") << std::endl;
}
std::cout << " ------------------------" << std::endl;
}
// Phase 2: 计算半支配者 (sdom)
// 对应用户代码的 for (int i = dfc; i >= 2; --i) 循环的上半部分
// 按照 DFS 编号递减的顺序遍历所有节点 (除了 entryBlock它的 DFS 编号是 0)
if (DEBUG) std::cout << "--- Phase 2: Computing Semi-Dominators (sdom) ---" << std::endl;
for (int i = df_counter - 1; i >= 1; --i) { // 从 DFS 编号最大的节点开始,到 1
BasicBlock* w = vertex_vec[i]; // 当前处理的节点
if (DEBUG) std::cout << " Processing node w: " << w->getName() << " (dfnum=" << i << ")" << std::endl;
// 对于 w 的每个前驱 v
for (BasicBlock* v : w->getPredecessors()) {
if (DEBUG) std::cout << " Considering predecessor v: " << v->getName() << std::endl;
// 如果前驱 v 未被 DFS 访问过 (即不在 dfnum_map 中),则跳过
if (dfnum_map.find(v) == dfnum_map.end()) {
if (DEBUG) std::cout << " Predecessor " << v->getName() << " not in DFS tree, skipping." << std::endl;
continue;
}
// 调用 evalAndCompress 来找到 v 在其 DFS 树祖先链上具有最小 sdom 的节点
BasicBlock* u_with_min_sdom_on_path = evalAndCompress_lt_helper(v);
if (DEBUG) std::cout << " Eval(" << v->getName() << ") returned "
<< u_with_min_sdom_on_path->getName() << std::endl;
if (DEBUG && sdom_map.count(u_with_min_sdom_on_path) && sdom_map.count(w)) {
std::cout << " Comparing sdom: dfnum[" << sdom_map[u_with_min_sdom_on_path]->getName() << "] (" << dfnum_map[sdom_map[u_with_min_sdom_on_path]]
<< ") vs dfnum[" << sdom_map[w]->getName() << "] (" << dfnum_map[sdom_map[w]] << ")" << std::endl;
}
// 比较 sdom(u) 和 sdom(w)
if (sdom_map.count(u_with_min_sdom_on_path) && sdom_map.count(w) &&
dfnum_map[sdom_map[u_with_min_sdom_on_path]] < dfnum_map[sdom_map[w]]) {
if (DEBUG) std::cout << " Updating sdom[" << w->getName() << "] from "
<< sdom_map[w]->getName() << " to "
<< sdom_map[u_with_min_sdom_on_path]->getName() << std::endl;
sdom_map[w] = sdom_map[u_with_min_sdom_on_path]; // 更新 sdom(w)
if (DEBUG) std::cout << " Sdom update applied. New sdom[" << w->getName() << "] = " << sdom_map[w]->getName() << std::endl;
}
}
// 将 w 加入 sdom(w) 对应的桶中
bucket_map[sdom_map[w]].push_back(w);
if (DEBUG) std::cout << " Adding " << w->getName() << " to bucket of sdom(" << w->getName() << "): "
<< sdom_map[w]->getName() << std::endl;
// 将 w 的父节点加入并查集 (link 操作)
if (parent_map.count(w) && parent_map[w] != nullptr) {
link_lt_helper(parent_map[w], w);
}
// Phase 3-part 1: 处理 parent[w] 的桶中所有节点,确定部分 idom
if (parent_map.count(w) && parent_map[w] != nullptr) {
BasicBlock* p = parent_map[w]; // p 是 w 的父节点
if (DEBUG) std::cout << " Processing bucket for parent " << p->getName() << std::endl;
// 注意这里需要复制桶的内容因为原始桶在循环中会被clear
std::vector<BasicBlock*> nodes_in_p_bucket_copy = bucket_map[p];
for (BasicBlock* y : nodes_in_p_bucket_copy) {
if (DEBUG) std::cout << " Processing node y from bucket: " << y->getName() << std::endl;
// 找到 y 在其 DFS 树祖先链上具有最小 sdom 的节点
BasicBlock* u = evalAndCompress_lt_helper(y);
if (DEBUG) std::cout << " Eval(" << y->getName() << ") returned " << u->getName() << std::endl;
// 确定 idom(y)
// if sdom(eval(y)) == sdom(parent(w)), then idom(y) = parent(w)
// else idom(y) = eval(y)
if (sdom_map.count(u) && sdom_map.count(p) &&
dfnum_map[sdom_map[u]] < dfnum_map[sdom_map[p]]) {
idom_map[y] = u; // 确定的 idom
if (DEBUG) std::cout << " IDom[" << y->getName() << "] set to " << u->getName() << std::endl;
} else {
idom_map[y] = p; // p 是 y 的 idom
if (DEBUG) std::cout << " IDom[" << y->getName() << "] set to " << p->getName() << std::endl;
}
}
bucket_map[p].clear(); // 清空桶,防止重复处理
if (DEBUG) std::cout << " Cleared bucket for parent " << p->getName() << std::endl;
}
}
// Phase 3-part 2: 最终确定 idom (处理那些 idom != sdom 的节点)
if (DEBUG) std::cout << "--- Phase 3: Finalizing Immediate Dominators (idom) ---" << std::endl;
for (int i = 1; i < df_counter; ++i) { // 从 DFS 编号最小的节点 (除了 entryBlock) 开始
BasicBlock* w = vertex_vec[i];
if (DEBUG) std::cout << " Finalizing node w: " << w->getName() << std::endl;
if (idom_map.count(w) && sdom_map.count(w) && idom_map[w] != sdom_map[w]) {
// idom[w] 的 idom 是其真正的 idom
if (DEBUG) std::cout << " idom[" << w->getName() << "] (" << idom_map[w]->getName()
<< ") != sdom[" << w->getName() << "] (" << sdom_map[w]->getName() << ")" << std::endl;
if (idom_map.count(idom_map[w])) {
idom_map[w] = idom_map[idom_map[w]];
if (DEBUG) std::cout << " Updating idom[" << w->getName() << "] to idom(idom(w)): "
<< idom_map[w]->getName() << std::endl;
} else {
if (DEBUG) std::cout << " Warning: idom(idom(" << w->getName() << ")) not found, leaving idom[" << w->getName() << "] as is." << std::endl;
}
}
if (DEBUG) {
std::cout << " Final IDom[" << w->getName() << "] = " << (idom_map[w] ? idom_map[w]->getName() : "nullptr") << std::endl;
}
}
// 将计算结果从 idom_map 存储到 DominatorTree 的成员变量 IDoms 中
IDoms = idom_map;
if (DEBUG) std::cout << "--- Immediate Dominators Computation Finished ---" << std::endl;
}
// ==============================================================
// computeDominanceFrontiers 和 computeDominatorTreeChildren (保持不变)
// ==============================================================
void DominatorTree::computeDominanceFrontiers(Function *F) {
// 经典的支配边界计算算法
if (DEBUG)
std::cout << "--- Computing Dominance Frontiers ---" << std::endl;
for (const auto &bb_ptr_X : F->getBasicBlocks()) {
BasicBlock *X = bb_ptr_X.get();
DominanceFrontiers[X].clear();
for (BasicBlock *Y : X->getSuccessors()) {
const std::set<BasicBlock *> *domsOfY = getDominators(Y);
if (domsOfY && domsOfY->find(X) == domsOfY->end()) {
DominanceFrontiers[X].insert(Y);
}
}
const std::set<BasicBlock *> *domsOfX = getDominators(X);
if (!domsOfX)
continue;
for (const auto &bb_ptr_Z : F->getBasicBlocks()) {
BasicBlock *Z = bb_ptr_Z.get();
if (Z == X)
continue;
const std::set<BasicBlock *> *domsOfZ = getDominators(Z);
if (domsOfZ && domsOfZ->count(X) && Z != X) {
for (BasicBlock *Y : Z->getSuccessors()) {
const std::set<BasicBlock *> *domsOfY = getDominators(Y);
if (domsOfY && domsOfY->find(X) == domsOfY->end()) {
DominanceFrontiers[X].insert(Y);
}
if (!domsOfZ || domsOfZ->find(X) == domsOfZ->end()) { // Z 不被 X 支配
continue;
}
for (BasicBlock *Y : Z->getSuccessors()) {
const std::set<BasicBlock *> *domsOfY = getDominators(Y);
// 如果 Y == X或者 Y 不被 X 严格支配 (即 Y 不被 X 支配)
if (Y == X || (domsOfY && domsOfY->find(X) == domsOfY->end())) {
DominanceFrontiers[X].insert(Y);
}
}
}
if (DEBUG) {
std::cout << " DF(" << X->getName() << "): ";
printBBSet("", DominanceFrontiers[X]);
}
}
if (DEBUG)
std::cout << "--- Dominance Frontiers Computation Finished ---" << std::endl;
}
void DominatorTree::computeDominatorTreeChildren(Function *F) {
if (DEBUG)
std::cout << "--- Computing Dominator Tree Children ---" << std::endl;
// 首先清空,确保重新计算时是空的
for (auto &bb_ptr : F->getBasicBlocks()) {
DominatorTreeChildren[bb_ptr.get()].clear();
}
for (auto &bb_ptr : F->getBasicBlocks()) {
BasicBlock *B = bb_ptr.get();
auto it = getImmediateDominator(B);
if (it != nullptr) {
BasicBlock *A = it;
if (A) {
DominatorTreeChildren[A].insert(B);
BasicBlock *A = getImmediateDominator(B); // A 是 B 的即时支配者
if (A) { // 如果 B 有即时支配者 A (即 B 不是入口块)
DominatorTreeChildren[A].insert(B);
if (DEBUG) {
std::cout << " " << B->getName() << " is child of " << A->getName() << std::endl;
}
}
}
if (DEBUG)
std::cout << "--- Dominator Tree Children Computation Finished ---" << std::endl;
}
// ==============================================================
// DominatorTreeAnalysisPass 的实现
// DominatorTreeAnalysisPass 的实现 (保持不变)
// ==============================================================
bool DominatorTreeAnalysisPass::runOnFunction(Function* F, AnalysisManager &AM) {
bool DominatorTreeAnalysisPass::runOnFunction(Function *F, AnalysisManager &AM) {
// 每次运行时清空旧数据,确保重新计算
CurrentDominatorTree = std::make_unique<DominatorTree>(F);
CurrentDominatorTree->computeDominators(F);
CurrentDominatorTree->computeIDoms(F);
CurrentDominatorTree->computeIDoms(F); // 修正后的LT算法
CurrentDominatorTree->computeDominanceFrontiers(F);
CurrentDominatorTree->computeDominatorTreeChildren(F);
return false;
}
std::unique_ptr<AnalysisResultBase> DominatorTreeAnalysisPass::getResult() {
// 返回计算好的 DominatorTree 实例,所有权转移给 AnalysisManager
return std::move(CurrentDominatorTree);
}

View File

@ -60,7 +60,7 @@ void Mem2RegContext::run(Function *func, AnalysisManager *AM) {
}
// 从入口基本块开始,对支配树进行 DFS 遍历,进行变量重命名
renameVariables(nullptr, func->getEntryBlock()); // 第一个参数 alloca 在这里不使用,因为是递归入口点
renameVariables(func->getEntryBlock()); // 第一个参数 alloca 在这里不使用,因为是递归入口点
// --------------------------------------------------------------------
// 阶段4: 清理
@ -209,16 +209,21 @@ void Mem2RegContext::insertPhis(AllocaInst *alloca, const std::unordered_set<Bas
}
// 对支配树进行深度优先遍历,重命名变量并替换 load/store 指令
void Mem2RegContext::renameVariables(AllocaInst *currentAlloca, BasicBlock *currentBB) {
// 维护一个局部栈,用于存储当前基本块中为 Phi 和 Store 创建的 SSA 值,以便在退出时弹出
std::stack<Value *> localStackPushed;
// 移除了 AllocaInst *currentAlloca 参数,因为这个函数是为整个基本块处理所有可提升的 Alloca
void Mem2RegContext::renameVariables(BasicBlock *currentBB) {
// 1. 在函数开始时,记录每个 promotableAlloca 的当前栈深度。
// 这将用于在函数返回时精确地回溯栈状态。
std::map<AllocaInst *, size_t> originalStackSizes;
for (auto alloca : promotableAllocas) {
originalStackSizes[alloca] = allocaToValueStackMap[alloca].size();
}
// --------------------------------------------------------------------
// 处理当前基本块的指令
// --------------------------------------------------------------------
for (auto instIter = currentBB->getInstructions().begin(); instIter != currentBB->getInstructions().end();) {
Instruction *inst = instIter->get();
bool instDeleted = false;
bool instDeleted = false;
// 处理 Phi 指令 (如果是当前 alloca 的 Phi)
if (auto phiInst = dynamic_cast<PhiInst *>(inst)) {
@ -227,55 +232,69 @@ void Mem2RegContext::renameVariables(AllocaInst *currentAlloca, BasicBlock *curr
if (allocaToPhiMap[alloca].count(currentBB) && allocaToPhiMap[alloca][currentBB] == phiInst) {
// 为 Phi 指令的输出创建一个新的 SSA 值,并压入值栈
allocaToValueStackMap[alloca].push(phiInst);
localStackPushed.push(phiInst); // 记录以便弹出
break; // 找到对应的 alloca处理下一个指令
if (DEBUG) {
std::cout << "Mem2Reg: Pushed Phi " << (phiInst->getName().empty() ? "anonymous" : phiInst->getName()) << " for alloca " << alloca->getName()
<< ". Stack size: " << allocaToValueStackMap[alloca].size() << std::endl;
}
break; // 找到对应的 alloca处理下一个指令
}
}
}
// 处理 LoadInst
else if (auto loadInst = dynamic_cast<LoadInst *>(inst)) {
// 检查这个 LoadInst 是否是为某个可提升的 alloca
for (auto alloca : promotableAllocas) {
if (loadInst->getPointer() == alloca) {
// loadInst->getPointer() 返回 AllocaInst*
// 将 LoadInst 的所有用途替换为当前 alloca 值栈顶部的 SSA 值
// 检查 LoadInst 的指针是否直接是 alloca或者是指向 alloca 的 GEP
Value *ptrOperand = loadInst->getPointer();
if (ptrOperand == alloca || (dynamic_cast<GetElementPtrInst *>(ptrOperand) &&
dynamic_cast<GetElementPtrInst *>(ptrOperand)->getBasePointer() == alloca)) {
assert(!allocaToValueStackMap[alloca].empty() && "Value stack empty for alloca during load replacement!");
if(DEBUG){
std::cout << "Mem2Reg: Replacing load " << loadInst->getPointer()->getName() << " with SSA value." << std::endl;
if (DEBUG) {
std::cout << "Mem2Reg: Replacing load "
<< (ptrOperand->getName().empty() ? "anonymous" : ptrOperand->getName()) << " with SSA value "
<< (allocaToValueStackMap[alloca].top()->getName().empty()
? "anonymous"
: allocaToValueStackMap[alloca].top()->getName())
<< " for alloca " << alloca->getName() << std::endl;
std::cout << "Mem2Reg: allocaToValueStackMap[" << alloca->getName()
<< "] size: " << allocaToValueStackMap[alloca].size() << std::endl;
}
loadInst->replaceAllUsesWith(allocaToValueStackMap[alloca].top());
instIter = SysYIROptUtils::usedelete(instIter);
instDeleted = true;
// std::cerr << "Mem2Reg: Replaced load " << loadInst->name() << " with SSA value." << std::endl;
break;
}
}
}
// 处理 StoreInst
else if (auto storeInst = dynamic_cast<StoreInst *>(inst)) {
// 检查这个 StoreInst 是否是为某个可提升的 alloca
for (auto alloca : promotableAllocas) {
if (storeInst->getPointer() == alloca) {
// 假设 storeInst->getPointer() 返回 AllocaInst*
// 将 StoreInst 存储的值作为新的 SSA 值,压入值栈
if(DEBUG){
std::cout << "Mem2Reg: Replacing store to " << storeInst->getPointer()->getName() << " with SSA value." << std::endl;
// 检查 StoreInst 的指针是否直接是 alloca或者是指向 alloca 的 GEP
Value *ptrOperand = storeInst->getPointer();
if (ptrOperand == alloca || (dynamic_cast<GetElementPtrInst *>(ptrOperand) &&
dynamic_cast<GetElementPtrInst *>(ptrOperand)->getBasePointer() == alloca)) {
if (DEBUG) {
std::cout << "Mem2Reg: Replacing store to "
<< (ptrOperand->getName().empty() ? "anonymous" : ptrOperand->getName()) << " with SSA value "
<< (storeInst->getValue()->getName().empty() ? "anonymous" : storeInst->getValue()->getName())
<< " for alloca " << alloca->getName() << std::endl;
std::cout << "Mem2Reg: allocaToValueStackMap[" << alloca->getName()
<< "] size before push: " << allocaToValueStackMap[alloca].size() << std::endl;
}
allocaToValueStackMap[alloca].push(storeInst->getValue());
localStackPushed.push(storeInst->getValue()); // 记录以便弹出
instIter = SysYIROptUtils::usedelete(instIter);
instDeleted = true;
// std::cerr << "Mem2Reg: Replaced store to " << storeInst->ptr()->name() << " with SSA value." << std::endl;
if (DEBUG) {
std::cout << "Mem2Reg: allocaToValueStackMap[" << alloca->getName()
<< "] size after push: " << allocaToValueStackMap[alloca].size() << std::endl;
}
break;
}
}
}
if (!instDeleted) {
++instIter; // 如果指令没有被删除,移动到下一个
}
}
// --------------------------------------------------------------------
// 处理后继基本块的 Phi 指令参数
// --------------------------------------------------------------------
@ -290,40 +309,57 @@ void Mem2RegContext::renameVariables(AllocaInst *currentAlloca, BasicBlock *curr
// 参数值是当前 alloca 值栈顶部的 SSA 值
assert(!allocaToValueStackMap[alloca].empty() && "Value stack empty for alloca when setting phi operand!");
phiInst->addIncoming(allocaToValueStackMap[alloca].top(), currentBB);
if (DEBUG) {
std::cout << "Mem2Reg: Added incoming arg to Phi "
<< (phiInst->getName().empty() ? "anonymous" : phiInst->getName()) << " from "
<< currentBB->getName() << " with value "
<< (allocaToValueStackMap[alloca].top()->getName().empty()
? "anonymous"
: allocaToValueStackMap[alloca].top()->getName())
<< std::endl;
}
}
}
}
// --------------------------------------------------------------------
// 递归访问支配树的子节点
// --------------------------------------------------------------------
const std::set<BasicBlock *> *dominatedBlocks = dt->getDominatorTreeChildren(currentBB);
if(dominatedBlocks){
if (dominatedBlocks) { // 检查是否存在子节点
if(DEBUG){
std::cout << "Mem2Reg: Processing dominated blocks for " << currentBB->getName() << std::endl;
for (auto dominatedBB : *dominatedBlocks) {
std::cout << "Mem2Reg: Dominated block: " << (dominatedBB ? dominatedBB->getName() : "null") << std::endl;
}
}
for (auto dominatedBB : *dominatedBlocks) {
if (dominatedBB) {
if(DEBUG){
std::cout << "Mem2Reg: Recursively renaming variables in dominated block: " << dominatedBB->getName() << std::endl;
if (dominatedBB) { // 确保子块有效
if (DEBUG) {
std::cout << "Mem2Reg: Recursively renaming variables in dominated block: " << dominatedBB->getName()
<< std::endl;
}
renameVariables(currentAlloca, dominatedBB);
renameVariables(dominatedBB); // 递归调用,不再传递 currentAlloca
}
}
}
// --------------------------------------------------------------------
// 退出基本块时,弹出在此块中压入值栈的 SSA 值
// 退出基本块时,弹出在此块中压入值栈的 SSA 值,恢复栈到进入该块时的状态
// --------------------------------------------------------------------
while (!localStackPushed.empty()) {
Value *val = localStackPushed.top();
localStackPushed.pop();
// 找到是哪个 alloca 对应的栈
for (auto alloca : promotableAllocas) {
if (!allocaToValueStackMap[alloca].empty() && allocaToValueStackMap[alloca].top() == val) {
allocaToValueStackMap[alloca].pop();
break;
for (auto alloca : promotableAllocas) {
while (allocaToValueStackMap[alloca].size() > originalStackSizes[alloca]) {
if (DEBUG) {
std::cout << "Mem2Reg: Popping value "
<< (allocaToValueStackMap[alloca].top()->getName().empty()
? "anonymous"
: allocaToValueStackMap[alloca].top()->getName())
<< " for alloca " << alloca->getName() << ". Stack size: " << allocaToValueStackMap[alloca].size()
<< " -> " << (allocaToValueStackMap[alloca].size() - 1) << std::endl;
}
allocaToValueStackMap[alloca].pop();
}
}
}
// 删除所有原始的 AllocaInst、LoadInst 和 StoreInst

View File

@ -1,12 +1,12 @@
#include "SysYIRCFGOpt.h"
#include "SysYIROptUtils.h"
#include <cassert>
#include <iostream>
#include <list>
#include <map>
#include <memory>
#include <string>
#include <iostream>
#include <queue> // 引入队列SysYDelNoPreBLock需要
#include <string>
namespace sysy {
@ -18,7 +18,6 @@ void *SysYBlockMergePass::ID = (void *)&SysYBlockMergePass::ID;
void *SysYAddReturnPass::ID = (void *)&SysYAddReturnPass::ID;
void *SysYCondBr2BrPass::ID = (void *)&SysYCondBr2BrPass::ID;
// ======================================================================
// SysYCFGOptUtils: 辅助工具类包含实际的CFG优化逻辑
// ======================================================================
@ -26,40 +25,42 @@ void *SysYCondBr2BrPass::ID = (void *)&SysYCondBr2BrPass::ID;
// 删除br后的无用指令
bool SysYCFGOptUtils::SysYDelInstAfterBr(Function *func) {
bool changed = false;
auto basicBlocks = func->getBasicBlocks();
for (auto &basicBlock : basicBlocks) {
bool Branch = false;
auto &instructions = basicBlock->getInstructions();
auto Branchiter = instructions.end();
for (auto iter = instructions.begin(); iter != instructions.end(); ++iter) {
if ((*iter)->isTerminator()){
if ((*iter)->isTerminator()) {
Branch = true;
Branchiter = iter;
break;
}
}
if (Branchiter != instructions.end()) ++Branchiter;
if (Branchiter != instructions.end())
++Branchiter;
while (Branchiter != instructions.end()) {
changed = true;
Branchiter = instructions.erase(Branchiter);
}
if (Branch) { // 更新前驱后继关系
auto thelastinstinst = basicBlock->getInstructions().end();
--thelastinstinst;
if (Branch) { // 更新前驱后继关系
auto thelastinstinst = basicBlock->terminator();
auto &Successors = basicBlock->getSuccessors();
for (auto iterSucc = Successors.begin(); iterSucc != Successors.end();) {
(*iterSucc)->removePredecessor(basicBlock.get());
basicBlock->removeSuccessor(*iterSucc);
}
if (thelastinstinst->get()->isUnconditional()) {
BasicBlock* branchBlock = dynamic_cast<BasicBlock *>(thelastinstinst->get()->getOperand(0));
auto brinst = dynamic_cast<UncondBrInst *>(thelastinstinst->get());
BasicBlock *branchBlock = dynamic_cast<BasicBlock *>(brinst->getBlock());
basicBlock->addSuccessor(branchBlock);
branchBlock->addPredecessor(basicBlock.get());
} else if (thelastinstinst->get()->isConditional()) {
BasicBlock* thenBlock = dynamic_cast<BasicBlock *>(thelastinstinst->get()->getOperand(1));
BasicBlock* elseBlock = dynamic_cast<BasicBlock *>(thelastinstinst->get()->getOperand(2));
auto brinst = dynamic_cast<CondBrInst *>(thelastinstinst->get());
BasicBlock *thenBlock = dynamic_cast<BasicBlock *>(brinst->getThenBlock());
BasicBlock *elseBlock = dynamic_cast<BasicBlock *>(brinst->getElseBlock());
basicBlock->addSuccessor(thenBlock);
basicBlock->addSuccessor(elseBlock);
thenBlock->addPredecessor(basicBlock.get());
@ -75,26 +76,26 @@ bool SysYCFGOptUtils::SysYDelInstAfterBr(Function *func) {
bool SysYCFGOptUtils::SysYBlockMerge(Function *func) {
bool changed = false;
for (auto blockiter = func->getBasicBlocks().begin();
blockiter != func->getBasicBlocks().end();) {
for (auto blockiter = func->getBasicBlocks().begin(); blockiter != func->getBasicBlocks().end();) {
if (blockiter->get()->getNumSuccessors() == 1) {
// 如果当前块只有一个后继块
// 且后继块只有一个前驱块
// 则将当前块和后继块合并
if (((blockiter->get())->getSuccessors()[0])->getNumPredecessors() == 1) {
// std::cout << "merge block: " << blockiter->get()->getName() << std::endl;
BasicBlock* block = blockiter->get();
BasicBlock* nextBlock = blockiter->get()->getSuccessors()[0];
BasicBlock *block = blockiter->get();
BasicBlock *nextBlock = blockiter->get()->getSuccessors()[0];
// auto nextarguments = nextBlock->getArguments();
// 删除br指令
if (block->getNumInstructions() != 0) {
auto thelastinstinst = block->end();
(--thelastinstinst);
auto thelastinstinst = block->terminator();
if (thelastinstinst->get()->isUnconditional()) {
thelastinstinst = SysYIROptUtils::usedelete(thelastinstinst);
} else if (thelastinstinst->get()->isConditional()) {
// 如果是条件分支,判断条件是否相同,主要优化相同布尔表达式
if (thelastinstinst->get()->getOperand(1)->getName() == thelastinstinst->get()->getOperand(1)->getName()) {
// 按道理不会走到这个分支
// 如果是条件分支查看then else是否相同
auto brinst = dynamic_cast<CondBrInst *>(thelastinstinst->get());
if (brinst->getThenBlock() == brinst->getElseBlock()) {
thelastinstinst = SysYIROptUtils::usedelete(thelastinstinst);
}
}
@ -104,7 +105,7 @@ bool SysYCFGOptUtils::SysYBlockMerge(Function *func) {
for (auto institer = nextBlock->begin(); institer != nextBlock->end();) {
institer->get()->setParent(block);
block->getInstructions().emplace_back(institer->release());
institer = nextBlock->getInstructions().erase(institer);
institer = nextBlock->getInstructions().erase(institer);
}
// 更新前驱后继关系,类似树节点操作
block->removeSuccessor(nextBlock);
@ -135,318 +136,431 @@ bool SysYCFGOptUtils::SysYBlockMerge(Function *func) {
// 删除无前驱块兼容SSA后的处理
bool SysYCFGOptUtils::SysYDelNoPreBLock(Function *func) {
bool changed = false;
bool changed = false; // 标记是否有基本块被删除
std::set<BasicBlock *> reachableBlocks; // 用于存储所有可达的基本块
std::queue<BasicBlock *> blockQueue; // BFS 遍历队列
for (auto &block : func->getBasicBlocks()) {
block->setreachableFalse();
BasicBlock *entryBlock = func->getEntryBlock();
if (entryBlock) { // 确保函数有入口块
reachableBlocks.insert(entryBlock); // 将入口块标记为可达
blockQueue.push(entryBlock); // 入口块入队
}
// 对函数基本块做一个拓扑排序,排查不可达基本块
auto entryBlock = func->getEntryBlock();
entryBlock->setreachableTrue();
std::queue<BasicBlock *> blockqueue;
blockqueue.push(entryBlock);
while (!blockqueue.empty()) {
auto block = blockqueue.front();
blockqueue.pop();
for (auto &succ : block->getSuccessors()) {
if (!succ->getreachable()) {
succ->setreachableTrue();
blockqueue.push(succ);
// 如果没有入口块(比如一个空函数),则没有块是可达的,所有块都将被删除。
while (!blockQueue.empty()) { // BFS 遍历:只要队列不空
BasicBlock *currentBlock = blockQueue.front();
blockQueue.pop(); // 取出当前块
for (auto &succ : currentBlock->getSuccessors()) { // 遍历当前块的所有后继
// 如果后继块不在 reachableBlocks 中(即尚未被访问过)
if (reachableBlocks.find(succ) == reachableBlocks.end()) {
reachableBlocks.insert(succ); // 标记为可达
blockQueue.push(succ); // 入队,以便继续遍历
}
}
}
// 删除不可达基本块指令
for (auto blockIter = func->getBasicBlocks().begin(); blockIter != func->getBasicBlocks().end(); blockIter++) {
if (!blockIter->get()->getreachable()) {
for (auto instIter = blockIter->get()->getInstructions().begin();
instIter != blockIter->get()->getInstructions().end();) {
instIter = SysYIROptUtils::usedelete(instIter);
std::vector<BasicBlock *> blocksToDelete; // 用于存储所有不可达基本块
for (auto &blockPtr : func->getBasicBlocks()) {
BasicBlock *block = blockPtr.get();
// 如果当前块不在 reachableBlocks 集合中,说明它是不可达的
if (reachableBlocks.find(block) == reachableBlocks.end()) {
blocksToDelete.push_back(block); // 将其加入待删除列表
changed = true; // 只要找到一个不可达块,就说明函数发生了改变
}
}
for (BasicBlock *unreachableBlock : blocksToDelete) {
// 遍历不可达块中的所有指令,并删除它们
for (auto instIter = unreachableBlock->getInstructions().begin();
instIter != unreachableBlock->getInstructions().end();) {
instIter = SysYIROptUtils::usedelete(instIter);
}
}
for (BasicBlock *unreachableBlock : blocksToDelete) {
for (BasicBlock *succBlock : unreachableBlock->getSuccessors()) {
// 只有当后继块自身是可达的(没有被删除)时才需要处理
if (reachableBlocks.count(succBlock)) {
for (auto &phiInstPtr : succBlock->getInstructions()) {
// Phi 指令总是在基本块的开头。一旦遇到非 Phi 指令即可停止。
if (phiInstPtr->getKind() != Instruction::kPhi) {
break;
}
// 将这个 Phi 节点中来自不可达前驱unreachableBlock的输入参数删除
dynamic_cast<PhiInst *>(phiInstPtr.get())->delBlk(unreachableBlock);
}
}
}
}
for (auto blockIter = func->getBasicBlocks().begin(); blockIter != func->getBasicBlocks().end();) {
if (!blockIter->get()->getreachable()) {
for (auto succblock : blockIter->get()->getSuccessors()) {
for (auto &phiinst : succblock->getInstructions()) {
if (phiinst->getKind() != Instruction::kPhi) {
break;
}
// 使用 delBlk 方法正确地删除对应于被删除基本块的传入值
dynamic_cast<PhiInst *>(phiinst.get())->delBlk(blockIter->get());
}
}
// 删除不可达基本块,注意迭代器不可达问题
BasicBlock *currentBlock = blockIter->get();
// 如果当前块不在可达块集合中,则将其从函数中移除
if (reachableBlocks.find(currentBlock) == reachableBlocks.end()) {
// func->removeBasicBlock 应该返回下一个有效的迭代器
func->removeBasicBlock((blockIter++)->get());
changed = true;
} else {
blockIter++;
blockIter++; // 如果可达,则移动到下一个块
}
}
return changed;
}
// 删除空块
bool SysYCFGOptUtils::SysYDelEmptyBlock(Function *func, IRBuilder* pBuilder) {
bool SysYCFGOptUtils::SysYDelEmptyBlock(Function *func, IRBuilder *pBuilder) {
bool changed = false;
// 收集不可达基本块
// 这里的不可达基本块是指没有实际指令的基本块
// 当一个基本块没有实际指令例如只有phi指令和一个uncondbr指令时也会被视作不可达
auto basicBlocks = func->getBasicBlocks();
std::map<sysy::BasicBlock *, BasicBlock *> EmptyBlocks;
// 空块儿和后继的基本块的映射
for (auto &basicBlock : basicBlocks) {
if (basicBlock->getNumInstructions() == 0) {
if (basicBlock->getNumSuccessors() == 1) {
EmptyBlocks[basicBlock.get()] = basicBlock->getSuccessors().front();
}
}
else{
// 如果只有phi指令和一个uncondbr。(phi)*(uncondbr)?
// 判断除了最后一个指令之外是不是只有phi指令
bool onlyPhi = true;
for (auto &inst : basicBlock->getInstructions()) {
if (!inst->isPhi() && !inst->isUnconditional()) {
onlyPhi = false;
break;
}
}
if(onlyPhi && basicBlock->getNumSuccessors() == 1) // 确保有后继且只有一个
EmptyBlocks[basicBlock.get()] = basicBlock->getSuccessors().front();
}
// 步骤 1: 识别并映射所有符合“空块”定义的基本块及其目标后继
// 使用 std::map 来存储 <空块, 空块跳转目标>
// 这样可以处理空块链A -> B -> C如果 B 是空块A 应该跳到 C
std::map<BasicBlock *, BasicBlock *> emptyBlockRedirectMap;
// 为了避免在遍历 func->getBasicBlocks() 时修改它导致迭代器失效,
// 我们先收集所有的基本块。
std::vector<BasicBlock *> allBlocks;
for (auto &blockPtr : func->getBasicBlocks()) {
allBlocks.push_back(blockPtr.get());
}
// 更新基本块信息,增加必要指令
for (auto &basicBlock : basicBlocks) {
// 把空块转换成只有跳转指令的不可达块 (这段逻辑在优化遍中可能需要调整,这里是原样保留)
// 通常DelEmptyBlock 应该在BlockMerge之后运行如果存在完全空块它会尝试填充一个Br指令
// 但是,它主要目的是重定向跳转。
if (distance(basicBlock->begin(), basicBlock->end()) == 0) {
if (basicBlock->getNumSuccessors() == 0) {
continue;
}
if (basicBlock->getNumSuccessors() > 1) {
// 如果一个空块有多个后继说明CFG结构有问题或者需要特殊处理这里简单assert
assert(false && "Empty block with multiple successors found during SysYDelEmptyBlock");
}
// 这里的逻辑有点问题,如果一个块是空的,且只有一个后继,应该直接跳转到后继。
// 如果这个块最终被删除了,那么其前驱也需要重定向。
// 这个循环的目的是重定向现有的跳转指令,而不是创建新的。
// 所以下面的逻辑才是核心。
// pBuilder->setPosition(basicBlock.get(), basicBlock->end());
// pBuilder->createUncondBrInst(basicBlock->getSuccessors()[0], {});
for (BasicBlock *block : allBlocks) {
// 入口块通常不应该被认为是空块并删除,除非它没有实际指令且只有一个后继,
// 但为了安全起见,通常会跳过入口块的删除
// 如果入口块是空的,它应该被合并到它的后继,但处理起来更复杂,这里先不处理入口块为空的情况
if (block == func->getEntryBlock()) {
continue;
}
auto thelastinst = basicBlock->getInstructions().end();
--thelastinst;
// 根据br指令传递的后继块信息跳过空块链
if (thelastinst->get()->isUnconditional()) {
BasicBlock* OldBrBlock = dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(0));
BasicBlock *thelastBlockOld = nullptr;
// 如果空块链表为多个块
while (EmptyBlocks.count(dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(0)))) {
thelastBlockOld = dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(0));
thelastinst->get()->replaceOperand(0, EmptyBlocks[thelastBlockOld]);
}
// 如果有重定向发生
if (thelastBlockOld != nullptr) {
basicBlock->removeSuccessor(OldBrBlock);
OldBrBlock->removePredecessor(basicBlock.get());
basicBlock->addSuccessor(dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(0)));
dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(0))->addPredecessor(basicBlock.get());
changed = true; // 标记IR被修改
}
if (thelastBlockOld != nullptr) {
for (auto &InstInNew : dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(0))->getInstructions()) {
if (InstInNew->isPhi()) {
// 使用 delBlk 方法删除 oldBlock 对应的传入值
dynamic_cast<PhiInst *>(InstInNew.get())->delBlk(thelastBlockOld);
} else {
// 检查基本块是否是空的除了Phi指令外只包含一个终止指令 (Terminator)
// 且该终止指令必须是无条件跳转。
// 空块必须只有一个后继才能被简化
if (block->getNumSuccessors() == 1) {
bool hasNonPhiNonTerminator = false;
// 遍历除了最后一个指令之外的指令
for (auto instIter = block->getInstructions().begin(); instIter != block->getInstructions().end();) {
// 如果是终止指令(例如 br, ret且不是最后一个指令则该块有问题
if ((*instIter)->isTerminator() && instIter != block->terminator()) {
hasNonPhiNonTerminator = true;
break;
}
}
}
} else if (thelastinst->get()->getKind() == Instruction::kCondBr) {
auto OldThenBlock = dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(1));
auto OldElseBlock = dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(2));
bool thenChanged = false;
bool elseChanged = false;
BasicBlock *thelastBlockOld = nullptr;
while (EmptyBlocks.count(dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(1)))) {
thelastBlockOld = dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(1));
thelastinst->get()->replaceOperand(
1, EmptyBlocks[dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(1))]);
thenChanged = true;
}
if (thenChanged) {
basicBlock->removeSuccessor(OldThenBlock);
OldThenBlock->removePredecessor(basicBlock.get());
basicBlock->addSuccessor(dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(1)));
dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(1))->addPredecessor(basicBlock.get());
changed = true; // 标记IR被修改
}
// 处理 then 和 else 分支合并的情况
if (dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(1)) ==
dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(2))) {
auto thebrBlock = dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(1));
thelastinst = SysYIROptUtils::usedelete(thelastinst);
pBuilder->setPosition(basicBlock.get(), basicBlock->end());
pBuilder->createUncondBrInst(thebrBlock);
changed = true; // 标记IR被修改
continue;
}
if (thelastBlockOld != nullptr) {
for (auto &InstInNew : dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(1))->getInstructions()) {
if (InstInNew->isPhi()) {
// 使用 delBlk 方法删除 oldBlock 对应的传入值
dynamic_cast<PhiInst *>(InstInNew.get())->delBlk(thelastBlockOld);
} else {
break;
// 如果不是 Phi 指令且不是终止指令
if (!(*instIter)->isPhi() && !(*instIter)->isTerminator()) {
hasNonPhiNonTerminator = true;
break;
}
++instIter;
if (!hasNonPhiNonTerminator &&
instIter == block->getInstructions().end()) { // 如果块中只有 Phi 指令和一个 Terminator
// 确保最后一个指令是无条件跳转
auto lastInst = block->terminator()->get();
if (lastInst && lastInst->isUnconditional()) {
emptyBlockRedirectMap[block] = block->getSuccessors().front();
}
}
}
thelastBlockOld = nullptr;
while (EmptyBlocks.count(dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(2)))) {
thelastBlockOld = dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(2));
thelastinst->get()->replaceOperand(
2, EmptyBlocks[dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(2))]);
elseChanged = true;
}
if (elseChanged) {
basicBlock->removeSuccessor(OldElseBlock);
OldElseBlock->removePredecessor(basicBlock.get());
basicBlock->addSuccessor(dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(2)));
dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(2))->addPredecessor(basicBlock.get());
changed = true; // 标记IR被修改
}
// 处理 then 和 else 分支合并的情况
if (dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(1)) ==
dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(2))) {
auto thebrBlock = dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(1));
thelastinst = SysYIROptUtils::usedelete(thelastinst);
pBuilder->setPosition(basicBlock.get(), basicBlock->end());
pBuilder->createUncondBrInst(thebrBlock);
changed = true; // 标记IR被修改
continue;
}
// 如果有重定向发生
// 需要更新后继块的前驱关系
if (thelastBlockOld != nullptr) {
for (auto &InstInNew : dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(2))->getInstructions()) {
if (InstInNew->isPhi()) {
// 使用 delBlk 方法删除 oldBlock 对应的传入值
dynamic_cast<PhiInst *>(InstInNew.get())->delBlk(thelastBlockOld);
} else {
break;
}
}
}
} else {
// 如果不是终止指令,但有后继 (例如,末尾没有显式终止指令的块)
// 这段逻辑可能需要更严谨的CFG检查来确保正确性
if (basicBlock->getNumSuccessors() == 1) {
// 这里的逻辑似乎是想为没有terminator的块添加一个但通常这应该在CFG构建阶段完成。
// 如果这里仍然执行,确保它符合预期。
// pBuilder->setPosition(basicBlock.get(), basicBlock->end());
// pBuilder->createUncondBrInst(basicBlock->getSuccessors()[0], {});
// auto thelastinst = basicBlock->getInstructions().end();
// (--thelastinst);
// auto OldBrBlock = dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(0));
// sysy::BasicBlock *thelastBlockOld = nullptr;
// while (EmptyBlocks.find(dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(0))) !=
// EmptyBlocks.end()) {
// thelastBlockOld = dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(0));
// thelastinst->get()->replaceOperand(
// 0, EmptyBlocks[dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(0))]);
// }
// basicBlock->removeSuccessor(OldBrBlock);
// OldBrBlock->removePredecessor(basicBlock.get());
// basicBlock->addSuccessor(dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(0)));
// dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(0))->addPredecessor(basicBlock.get());
// changed = true; // 标记IR被修改
// if (thelastBlockOld != nullptr) {
// int indexphi = 0;
// for (auto &pred : dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(0))->getPredecessors()) {
// if (pred == thelastBlockOld) {
// break;
// }
// indexphi++;
// }
// for (auto &InstInNew : dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(0))->getInstructions()) {
// if (InstInNew->isPhi()) {
// dynamic_cast<PhiInst *>(InstInNew.get())->removeOperand(indexphi + 1);
// } else {
// break;
// }
// }
// }
}
}
}
}
// 真正的删除空块
for (auto iter = func->getBasicBlocks().begin(); iter != func->getBasicBlocks().end();) {
if (EmptyBlocks.count(iter->get())) {
// EntryBlock跳过
if (iter->get() == func->getEntryBlock()) {
++iter;
continue;
// 步骤 2: 遍历 emptyBlockRedirectMap处理空块
// 确保每个空块都直接重定向到其最终的非空后继块
for (auto const &[emptyBlock, directSucc] : emptyBlockRedirectMap) {
BasicBlock *targetBlock = directSucc;
// 沿着空块链一直找到最终的非空块目标
while (emptyBlockRedirectMap.count(targetBlock)) {
targetBlock = emptyBlockRedirectMap[targetBlock];
}
emptyBlockRedirectMap[emptyBlock] = targetBlock; // 更新映射到最终目标
}
// 步骤 3: 遍历所有基本块,重定向其终止指令,绕过空块
// 注意:这里需要再次遍历所有块,包括可能成为新目标的块
for (BasicBlock *currentBlock : allBlocks) {
// 如果 currentBlock 本身就是个空块,它会通过其前驱的重定向被处理,这里跳过
if (emptyBlockRedirectMap.count(currentBlock)) {
continue;
}
// 获取当前块的最后一个指令(终止指令)
if (currentBlock->getInstructions().empty()) {
// 理论上,除了入口块和可能被合并的空块外,所有块都应该有终止指令
// 如果这里碰到空块,可能是逻辑错误或者需要特殊处理
continue;
}
std::function<Value *(Value *, BasicBlock *)> getUltimateSourceValue = [&](Value *val,
BasicBlock *currentDefBlock) -> Value * {
// 如果值不是指令,例如常量或函数参数,则它本身就是最终来源
if (auto instr = dynamic_cast<Instruction *>(val)) { // Assuming Value* has a method to check if it's an instruction
return val;
}
for (auto instIter = iter->get()->getInstructions().begin();
instIter != iter->get()->getInstructions().end();) {
instIter = SysYIROptUtils::usedelete(instIter);
Instruction *inst = dynamic_cast<Instruction *>(val);
// 如果定义指令不在任何空块中,它就是最终来源
if (!emptyBlockRedirectMap.count(currentDefBlock)) {
return val;
}
// 删除不可达基本块的phi指令的操作数
for (auto &succ : iter->get()->getSuccessors()) {
for (auto &instinsucc : succ->getInstructions()) {
if (instinsucc->isPhi()) {
// iter->get() 就是当前被删除的空基本块它作为前驱连接到这里的Phi指令
dynamic_cast<PhiInst *>(instinsucc.get())->delBlk(iter->get());
// 如果是 Phi 指令,且它在空块中,则继续追溯其在空块链中前驱的传入值
if (inst->getKind() == Instruction::kPhi) {
PhiInst *phi = dynamic_cast<PhiInst *>(inst);
// 查找哪个前驱是空块链中的上一个块
for (size_t i = 0; i < phi->getNumOperands(); i += 2) {
BasicBlock *incomingBlock = dynamic_cast<BasicBlock *>(phi->getOperand(i + 1));
// 检查 incomingBlock 是否是当前空块的前驱,且也在空块映射中(或就是 P
// 找到在空块链中导致 currentDefBlock 的那个前驱块
if (emptyBlockRedirectMap.count(incomingBlock) || incomingBlock == currentBlock) {
// 递归追溯该传入值
return getUltimateSourceValue(phi->getIncomingValue(incomingBlock), incomingBlock);
}
}
}
// 如果是其他指令或者无法追溯到Phi链则认为它在空块中产生无法安全传播返回null或原值
// 在严格的空块定义下除了Phi和Terminator不应有其他指令产生值。
return val; // Fallback: If not a Phi, or unable to trace, return itself (may be dangling)
};
auto lastInst = currentBlock->getInstructions().back().get();
if (lastInst->isUnconditional()) { // 无条件跳转
UncondBrInst *brInst = dynamic_cast<UncondBrInst *>(lastInst);
BasicBlock *oldTarget = dynamic_cast<BasicBlock *>(brInst->getBlock()); // 原始跳转目标
if (emptyBlockRedirectMap.count(oldTarget)) { // 如果目标是空块
BasicBlock *newTarget = emptyBlockRedirectMap[oldTarget]; // 获取最终目标
// 更新 CFG 关系
currentBlock->removeSuccessor(oldTarget);
oldTarget->removePredecessor(currentBlock);
brInst->replaceOperand(0, newTarget); // 更新跳转指令的操作数
currentBlock->addSuccessor(newTarget);
newTarget->addPredecessor(currentBlock);
changed = true; // 标记发生改变
for (auto &phiInstPtr : newTarget->getInstructions()) {
if (phiInstPtr->getKind() == Instruction::kPhi) {
PhiInst *phiInst = dynamic_cast<PhiInst *>(phiInstPtr.get());
BasicBlock *actualEmptyPredecessorOfS = nullptr;
for (size_t i = 0; i < phiInst->getNumOperands(); i += 2) {
BasicBlock *incomingBlock = dynamic_cast<BasicBlock *>(phiInst->getOperand(i + 1));
if (incomingBlock && emptyBlockRedirectMap.count(incomingBlock) &&
emptyBlockRedirectMap[incomingBlock] == newTarget) {
actualEmptyPredecessorOfS = incomingBlock;
break;
}
}
if (actualEmptyPredecessorOfS) {
// 获取 Phi 节点原本从 actualEmptyPredecessorOfS 接收的值
Value *valueFromEmptyPredecessor = phiInst->getIncomingValue(actualEmptyPredecessorOfS);
// 追溯这个值,找到它在非空块中的最终来源
// currentBlock 是 P
// oldTarget 是 E1 (链的起点)
// actualEmptyPredecessorOfS 是 En (链的终点S 的前驱)
Value *ultimateSourceValue = getUltimateSourceValue(valueFromEmptyPredecessor, actualEmptyPredecessorOfS);
// 替换 Phi 节点的传入块和传入值
if (ultimateSourceValue) { // 确保成功追溯到有效来源
phiInst->replaceIncoming(actualEmptyPredecessorOfS, currentBlock, ultimateSourceValue);
} else {
assert(false && "[DelEmptyBlock] Unable to trace a valid source for Phi instruction");
// 无法追溯到有效来源,这可能是个错误或特殊情况
// 此时可能需要移除该 Phi 项,或者插入一个 undef 值
phiInst->removeIncoming(actualEmptyPredecessorOfS);
}
}
} else {
// Phi 指令通常在基本块的开头,如果不是 Phi 指令就停止检查
break;
}
}
}
func->removeBasicBlock((iter++)->get());
changed = true;
} else {
++iter;
} else if (lastInst->getKind() == Instruction::kCondBr) { // 条件跳转
CondBrInst *condBrInst = dynamic_cast<CondBrInst *>(lastInst);
BasicBlock *oldThenTarget = dynamic_cast<BasicBlock *>(condBrInst->getThenBlock());
BasicBlock *oldElseTarget = dynamic_cast<BasicBlock *>(condBrInst->getElseBlock());
bool thenPathChanged = false;
bool elsePathChanged = false;
// 处理 Then 分支
if (emptyBlockRedirectMap.count(oldThenTarget)) {
BasicBlock *newThenTarget = emptyBlockRedirectMap[oldThenTarget];
condBrInst->replaceOperand(1, newThenTarget); // 更新跳转指令操作数
currentBlock->removeSuccessor(oldThenTarget);
oldThenTarget->removePredecessor(currentBlock);
currentBlock->addSuccessor(newThenTarget);
newThenTarget->addPredecessor(currentBlock);
thenPathChanged = true;
changed = true;
// 处理新 Then 目标块中的 Phi 指令
// for (auto &phiInstPtr : newThenTarget->getInstructions()) {
// if (phiInstPtr->getKind() == Instruction::kPhi) {
// dynamic_cast<PhiInst *>(phiInstPtr.get())->delBlk(oldThenTarget);
// } else {
// break;
// }
// }
for (auto &phiInstPtr : newThenTarget->getInstructions()) {
if (phiInstPtr->getKind() == Instruction::kPhi) {
PhiInst *phiInst = dynamic_cast<PhiInst *>(phiInstPtr.get());
BasicBlock *actualEmptyPredecessorOfS = nullptr;
for (size_t i = 0; i < phiInst->getNumOperands(); i += 2) {
BasicBlock *incomingBlock = dynamic_cast<BasicBlock *>(phiInst->getOperand(i + 1));
if (incomingBlock && emptyBlockRedirectMap.count(incomingBlock) &&
emptyBlockRedirectMap[incomingBlock] == newThenTarget) {
actualEmptyPredecessorOfS = incomingBlock;
break;
}
}
if (actualEmptyPredecessorOfS) {
// 获取 Phi 节点原本从 actualEmptyPredecessorOfS 接收的值
Value *valueFromEmptyPredecessor = phiInst->getIncomingValue(actualEmptyPredecessorOfS);
// 追溯这个值,找到它在非空块中的最终来源
// currentBlock 是 P
// oldTarget 是 E1 (链的起点)
// actualEmptyPredecessorOfS 是 En (链的终点S 的前驱)
Value *ultimateSourceValue = getUltimateSourceValue(valueFromEmptyPredecessor, actualEmptyPredecessorOfS);
// 替换 Phi 节点的传入块和传入值
if (ultimateSourceValue) { // 确保成功追溯到有效来源
phiInst->replaceIncoming(actualEmptyPredecessorOfS, currentBlock, ultimateSourceValue);
} else {
assert(false && "[DelEmptyBlock] Unable to trace a valid source for Phi instruction");
// 无法追溯到有效来源,这可能是个错误或特殊情况
// 此时可能需要移除该 Phi 项,或者插入一个 undef 值
phiInst->removeIncoming(actualEmptyPredecessorOfS);
}
}
} else {
break;
}
}
}
// 处理 Else 分支
if (emptyBlockRedirectMap.count(oldElseTarget)) {
BasicBlock *newElseTarget = emptyBlockRedirectMap[oldElseTarget];
condBrInst->replaceOperand(2, newElseTarget); // 更新跳转指令操作数
currentBlock->removeSuccessor(oldElseTarget);
oldElseTarget->removePredecessor(currentBlock);
currentBlock->addSuccessor(newElseTarget);
newElseTarget->addPredecessor(currentBlock);
elsePathChanged = true;
changed = true;
// 处理新 Else 目标块中的 Phi 指令
// for (auto &phiInstPtr : newElseTarget->getInstructions()) {
// if (phiInstPtr->getKind() == Instruction::kPhi) {
// dynamic_cast<PhiInst *>(phiInstPtr.get())->delBlk(oldElseTarget);
// } else {
// break;
// }
// }
for (auto &phiInstPtr : newElseTarget->getInstructions()) {
if (phiInstPtr->getKind() == Instruction::kPhi) {
PhiInst *phiInst = dynamic_cast<PhiInst *>(phiInstPtr.get());
BasicBlock *actualEmptyPredecessorOfS = nullptr;
for (size_t i = 0; i < phiInst->getNumOperands(); i += 2) {
BasicBlock *incomingBlock = dynamic_cast<BasicBlock *>(phiInst->getOperand(i + 1));
if (incomingBlock && emptyBlockRedirectMap.count(incomingBlock) &&
emptyBlockRedirectMap[incomingBlock] == newElseTarget) {
actualEmptyPredecessorOfS = incomingBlock;
break;
}
}
if (actualEmptyPredecessorOfS) {
// 获取 Phi 节点原本从 actualEmptyPredecessorOfS 接收的值
Value *valueFromEmptyPredecessor = phiInst->getIncomingValue(actualEmptyPredecessorOfS);
// 追溯这个值,找到它在非空块中的最终来源
// currentBlock 是 P
// oldTarget 是 E1 (链的起点)
// actualEmptyPredecessorOfS 是 En (链的终点S 的前驱)
Value *ultimateSourceValue = getUltimateSourceValue(valueFromEmptyPredecessor, actualEmptyPredecessorOfS);
// 替换 Phi 节点的传入块和传入值
if (ultimateSourceValue) { // 确保成功追溯到有效来源
phiInst->replaceIncoming(actualEmptyPredecessorOfS, currentBlock, ultimateSourceValue);
} else {
assert(false && "[DelEmptyBlock] Unable to trace a valid source for Phi instruction");
// 无法追溯到有效来源,这可能是个错误或特殊情况
// 此时可能需要移除该 Phi 项,或者插入一个 undef 值
phiInst->removeIncoming(actualEmptyPredecessorOfS);
}
}
} else {
break;
}
}
}
// 额外处理:如果条件跳转的两个分支现在指向同一个块,则可以简化为无条件跳转
if (condBrInst->getThenBlock() == condBrInst->getElseBlock()) {
BasicBlock *commonTarget = dynamic_cast<BasicBlock *>(condBrInst->getThenBlock());
SysYIROptUtils::usedelete(lastInst); // 删除旧的条件跳转指令
pBuilder->setPosition(currentBlock, currentBlock->end());
pBuilder->createUncondBrInst(commonTarget); // 插入新的无条件跳转指令
// 更安全地更新 CFG 关系
std::set<BasicBlock *> currentSuccessors;
currentSuccessors.insert(oldThenTarget);
currentSuccessors.insert(oldElseTarget);
// 移除旧的后继关系
for (BasicBlock *succ : currentSuccessors) {
currentBlock->removeSuccessor(succ);
succ->removePredecessor(currentBlock);
}
// 添加新的后继关系
currentBlock->addSuccessor(commonTarget);
commonTarget->addPredecessor(currentBlock);
changed = true;
}
}
}
// 步骤 4: 真正地删除空基本块
// 注意:只能在所有跳转和 Phi 指令都更新完毕后才能删除这些块
for (auto blockIter = func->getBasicBlocks().begin(); blockIter != func->getBasicBlocks().end();) {
BasicBlock *currentBlock = blockIter->get();
if (emptyBlockRedirectMap.count(currentBlock)) { // 如果在空块映射中
// 入口块不应该被删除,即使它符合空块定义,因为函数需要一个入口
if (currentBlock == func->getEntryBlock()) {
++blockIter;
continue;
}
// 在删除块之前,确保其内部指令被正确删除(虽然这类块指令很少)
for (auto instIter = currentBlock->getInstructions().begin();
instIter != currentBlock->getInstructions().end();) {
instIter = SysYIROptUtils::usedelete(instIter);
}
// 移除块
func->removeBasicBlock((blockIter++)->get());
changed = true;
} else {
++blockIter;
}
}
return changed;
}
// 如果函数没有返回指令,则添加一个默认返回指令(主要解决void函数没有返回指令的问题)
bool SysYCFGOptUtils::SysYAddReturn(Function *func, IRBuilder* pBuilder) {
bool SysYCFGOptUtils::SysYAddReturn(Function *func, IRBuilder *pBuilder) {
bool changed = false;
auto basicBlocks = func->getBasicBlocks();
for (auto &block : basicBlocks) {
@ -460,7 +574,8 @@ bool SysYCFGOptUtils::SysYAddReturn(Function *func, IRBuilder* pBuilder) {
auto thelastinst = block->getInstructions().end();
--thelastinst;
if (thelastinst->get()->getKind() != Instruction::kReturn) {
// std::cout << "Warning: Function " << func->getName() << " has no return instruction, adding default return." << std::endl;
// std::cout << "Warning: Function " << func->getName() << " has no return instruction, adding default
// return." << std::endl;
pBuilder->setPosition(block.get(), block->end());
// TODO: 如果int float函数缺少返回值是否需要报错
@ -476,7 +591,7 @@ bool SysYCFGOptUtils::SysYAddReturn(Function *func, IRBuilder* pBuilder) {
}
}
}
return changed;
}
@ -484,18 +599,18 @@ bool SysYCFGOptUtils::SysYAddReturn(Function *func, IRBuilder* pBuilder) {
// 主要针对已知条件值的分支转换为无条件分支
// 例如 if (cond) { ... } else { ... } 中的 cond 已经
// 确定为 true 或 false 的情况
bool SysYCFGOptUtils::SysYCondBr2Br(Function *func, IRBuilder* pBuilder) {
bool SysYCFGOptUtils::SysYCondBr2Br(Function *func, IRBuilder *pBuilder) {
bool changed = false;
for (auto &basicblock : func->getBasicBlocks()) {
if (basicblock->getNumInstructions() == 0)
continue;
auto thelast = basicblock->getInstructions().end();
--thelast;
if (thelast->get()->isConditional()){
ConstantValue *constOperand = dynamic_cast<ConstantValue *>(thelast->get()->getOperand(0));
auto thelast = basicblock->terminator();
if (thelast->get()->isConditional()) {
auto condBrInst = dynamic_cast<CondBrInst *>(thelast->get());
ConstantValue *constOperand = dynamic_cast<ConstantValue *>(condBrInst->getCondition());
std::string opname;
int constint = 0;
float constfloat = 0.0F;
@ -514,27 +629,27 @@ bool SysYCFGOptUtils::SysYCondBr2Br(Function *func, IRBuilder* pBuilder) {
if (constfloat_Use || constint_Use) {
changed = true;
auto thenBlock = dynamic_cast<BasicBlock *>(thelast->get()->getOperand(1));
auto elseBlock = dynamic_cast<BasicBlock *>(thelast->get()->getOperand(2));
auto thenBlock = dynamic_cast<BasicBlock *>(condBrInst->getThenBlock());
auto elseBlock = dynamic_cast<BasicBlock *>(condBrInst->getElseBlock());
thelast = SysYIROptUtils::usedelete(thelast);
if ((constfloat_Use && constfloat == 1.0F) || (constint_Use && constint == 1)) {
// cond为true或非0
pBuilder->setPosition(basicblock.get(), basicblock->end());
pBuilder->createUncondBrInst(thenBlock);
// 更新CFG关系
basicblock->removeSuccessor(elseBlock);
elseBlock->removePredecessor(basicblock.get());
// 删除elseBlock的phi指令中对应的basicblock.get()的传入值
for (auto &phiinst : elseBlock->getInstructions()) {
if (phiinst->getKind() != Instruction::kPhi) {
break;
}
// 使用 delBlk 方法删除 basicblock.get() 对应的传入值
dynamic_cast<PhiInst *>(phiinst.get())->delBlk(basicblock.get());
dynamic_cast<PhiInst *>(phiinst.get())->removeIncoming(basicblock.get());
}
} else { // cond为false或0
pBuilder->setPosition(basicblock.get(), basicblock->end());
@ -550,9 +665,8 @@ bool SysYCFGOptUtils::SysYCondBr2Br(Function *func, IRBuilder* pBuilder) {
break;
}
// 使用 delBlk 方法删除 basicblock.get() 对应的传入值
dynamic_cast<PhiInst *>(phiinst.get())->delBlk(basicblock.get());
dynamic_cast<PhiInst *>(phiinst.get())->removeIncoming(basicblock.get());
}
}
}
}
@ -565,28 +679,28 @@ bool SysYCFGOptUtils::SysYCondBr2Br(Function *func, IRBuilder* pBuilder) {
// 独立的CFG优化遍的实现
// ======================================================================
bool SysYDelInstAfterBrPass::runOnFunction(Function *F, AnalysisManager& AM) {
bool SysYDelInstAfterBrPass::runOnFunction(Function *F, AnalysisManager &AM) {
return SysYCFGOptUtils::SysYDelInstAfterBr(F);
}
bool SysYDelEmptyBlockPass::runOnFunction(Function *F, AnalysisManager& AM) {
bool SysYDelEmptyBlockPass::runOnFunction(Function *F, AnalysisManager &AM) {
return SysYCFGOptUtils::SysYDelEmptyBlock(F, pBuilder);
}
bool SysYDelNoPreBLockPass::runOnFunction(Function *F, AnalysisManager& AM) {
bool SysYDelNoPreBLockPass::runOnFunction(Function *F, AnalysisManager &AM) {
return SysYCFGOptUtils::SysYDelNoPreBLock(F);
}
bool SysYBlockMergePass::runOnFunction(Function *F, AnalysisManager& AM) {
return SysYCFGOptUtils::SysYBlockMerge(F);
bool SysYBlockMergePass::runOnFunction(Function *F, AnalysisManager &AM) {
return SysYCFGOptUtils::SysYBlockMerge(F);
}
bool SysYAddReturnPass::runOnFunction(Function *F, AnalysisManager& AM) {
bool SysYAddReturnPass::runOnFunction(Function *F, AnalysisManager &AM) {
return SysYCFGOptUtils::SysYAddReturn(F, pBuilder);
}
bool SysYCondBr2BrPass::runOnFunction(Function *F, AnalysisManager& AM) {
bool SysYCondBr2BrPass::runOnFunction(Function *F, AnalysisManager &AM) {
return SysYCFGOptUtils::SysYCondBr2Br(F, pBuilder);
}
} // namespace sysy
} // namespace sysy

View File

@ -58,14 +58,14 @@ void PassManager::runOptimizationPipeline(Module* moduleIR, IRBuilder* builderIR
if (DEBUG) std::cout << "Applying -O1 optimizations.\n";
if (DEBUG) std::cout << "--- Running custom optimization sequence ---\n";
this->clearPasses();
this->addPass(&SysYDelInstAfterBrPass::ID);
this->addPass(&SysYDelNoPreBLockPass::ID);
this->addPass(&SysYBlockMergePass::ID);
this->addPass(&SysYDelEmptyBlockPass::ID);
this->addPass(&SysYCondBr2BrPass::ID);
this->addPass(&SysYAddReturnPass::ID);
this->run();
// this->clearPasses();
// this->addPass(&SysYDelInstAfterBrPass::ID);
// this->addPass(&SysYDelNoPreBLockPass::ID);
// this->addPass(&SysYBlockMergePass::ID);
// this->addPass(&SysYDelEmptyBlockPass::ID);
// this->addPass(&SysYCondBr2BrPass::ID);
// this->addPass(&SysYAddReturnPass::ID);
// this->run();
if(DEBUG) {
std::cout << "=== IR After CFGOpt Optimizations ===\n";
@ -108,6 +108,10 @@ void PassManager::runOptimizationPipeline(Module* moduleIR, IRBuilder* builderIR
printPasses();
}
this->clearPasses();
this->addPass(&DCE::ID);
this->run();
if (DEBUG) std::cout << "--- Custom optimization sequence finished ---\n";
}

View File

@ -586,7 +586,18 @@ std::any SysYIRGenerator::visitConstDecl(SysYParser::ConstDeclContext *ctx) {
// 显式地为局部常量在栈上分配空间
// alloca 的类型将是指针指向常量类型,例如 `int*` 或 `int[2][3]*`
// 将 alloca 全部集中到entry函数中
// 记录当前位置
BasicBlock *curBB = builder.getBasicBlock();
auto curPos =builder.getPosition();
Function *currentFunction = builder.getBasicBlock()->getParent();
BasicBlock *entryBB = currentFunction->getEntryBlock();
// 在terminator前插入
auto entryPos = entryBB->terminator();
builder.setPosition(entryBB, entryPos);
AllocaInst *alloca = builder.createAllocaInst(Type::getPointerType(variableType), name);
// 恢复当前位置
builder.setPosition(curBB, curPos);
ArrayValueTree *root = std::any_cast<ArrayValueTree *>(constDef->constInitVal()->accept(this));
ValueCounter values;
@ -653,7 +664,44 @@ std::any SysYIRGenerator::visitConstDecl(SysYParser::ConstDeclContext *ctx) {
Value *currentValue = counterValues[k];
unsigned currentRepeatNum = counterNumbers[k];
// 检查是否是0并且重复次数足够大例如 >16才用 memset
if (ConstantInteger *constInt = dynamic_cast<ConstantInteger *>(currentValue)) {
if (constInt->getInt() == 0 && currentRepeatNum >= 16) { // 阈值可调整如16、32等
// 计算 memset 的起始地址(基于当前线性偏移量)
std::vector<Value *> memsetStartIndices;
int tempLinearIndex = linearIndexOffset;
// 将线性索引转换为多维索引
for (int dimIdx = dimSizes.size() - 1; dimIdx >= 0; --dimIdx) {
memsetStartIndices.insert(memsetStartIndices.begin(),
ConstantInteger::get(static_cast<int>(tempLinearIndex % dimSizes[dimIdx])));
tempLinearIndex /= dimSizes[dimIdx];
}
// 构造 GEP 计算 memset 的起始地址
std::vector<Value *> gepIndicesForMemset;
gepIndicesForMemset.push_back(ConstantInteger::get(0)); // 跳过 alloca 类型
gepIndicesForMemset.insert(gepIndicesForMemset.end(), memsetStartIndices.begin(),
memsetStartIndices.end());
Value *memsetPtr = builder.createGetElementPtrInst(alloca, gepIndicesForMemset);
// 计算 memset 的字节数 = 元素个数 × 元素大小
Type *elementType = type;;
uint64_t elementSize = elementType->getSize();
Value *size = ConstantInteger::get(currentRepeatNum * elementSize);
// 生成 memset 指令(假设你的 IRBuilder 有 createMemset 方法)
builder.createMemsetInst(memsetPtr, ConstantInteger::get(0), size, ConstantInteger::get(0));
// 跳过这些已处理的0
linearIndexOffset += currentRepeatNum;
continue; // 直接进入下一次循环
}
}
for (unsigned i = 0; i < currentRepeatNum; ++i) {
// 对于非零值,生成对应的 store 指令
std::vector<Value *> currentIndices;
int tempLinearIndex = linearIndexOffset + i; // 使用偏移量和当前重复次数内的索引
@ -706,8 +754,20 @@ std::any SysYIRGenerator::visitVarDecl(SysYParser::VarDeclContext *ctx) {
// 对于数组alloca 的类型将是指针指向数组类型,例如 `int[2][3]*`
// 对于标量alloca 的类型将是指针指向标量类型,例如 `int*`
AllocaInst* alloca =
builder.createAllocaInst(Type::getPointerType(variableType), name);
BasicBlock *curBB = builder.getBasicBlock();
auto curPos =builder.getPosition();
Function *currentFunction = builder.getBasicBlock()->getParent();
BasicBlock *entryBB = currentFunction->getEntryBlock();
// 在terminator前插入
auto entryPos = entryBB->terminator();
builder.setPosition(entryBB, entryPos);
AllocaInst *alloca = builder.createAllocaInst(Type::getPointerType(variableType), name);
// 恢复当前位置
builder.setPosition(curBB, curPos);
// AllocaInst* alloca =
// builder.createAllocaInst(Type::getPointerType(variableType), name);
if (varDef->initVal() != nullptr) {
ValueCounter values;
@ -761,39 +821,73 @@ std::any SysYIRGenerator::visitVarDecl(SysYParser::VarDeclContext *ctx) {
ConstantInteger::get(0));
}
else {
int linearIndexOffset = 0; // 用于追踪当前处理的线性索引的偏移量
for (int k = 0; k < counterValues.size(); ++k) {
// 当前 Value 的值和重复次数
Value* currentValue = counterValues[k];
unsigned currentRepeatNum = counterNumbers[k];
// 当前 Value 的值和重复次数
Value *currentValue = counterValues[k];
unsigned currentRepeatNum = counterNumbers[k];
// 检查是否是0并且重复次数足够大例如 >16才用 memset
if (ConstantInteger *constInt = dynamic_cast<ConstantInteger *>(currentValue)) {
if (constInt->getInt() == 0 && currentRepeatNum >= 16) { // 阈值可调整如16、32等
// 计算 memset 的起始地址(基于当前线性偏移量)
std::vector<Value *> memsetStartIndices;
int tempLinearIndex = linearIndexOffset;
for (unsigned i = 0; i < currentRepeatNum; ++i) {
std::vector<Value *> currentIndices;
int tempLinearIndex = linearIndexOffset + i; // 使用偏移量和当前重复次数内的索引
// 将线性索引转换为多维索引
for (int dimIdx = dimSizes.size() - 1; dimIdx >= 0; --dimIdx) {
memsetStartIndices.insert(memsetStartIndices.begin(),
ConstantInteger::get(static_cast<int>(tempLinearIndex % dimSizes[dimIdx])));
tempLinearIndex /= dimSizes[dimIdx];
}
// 将线性索引转换为多维索引
for (int dimIdx = dimSizes.size() - 1; dimIdx >= 0; --dimIdx) {
currentIndices.insert(currentIndices.begin(),
ConstantInteger::get(static_cast<int>(tempLinearIndex % dimSizes[dimIdx])));
tempLinearIndex /= dimSizes[dimIdx];
}
// 对于局部数组alloca 本身就是 GEP 的基指针。
// GEP 的第一个索引必须是 0用于“步过”整个数组。
std::vector<Value*> gepIndicesForInit;
gepIndicesForInit.push_back(ConstantInteger::get(0));
gepIndicesForInit.insert(gepIndicesForInit.end(), currentIndices.begin(), currentIndices.end());
// 计算元素的地址
Value* elementAddress = getGEPAddressInst(alloca, gepIndicesForInit);
// 生成 store 指令
builder.createStoreInst(currentValue, elementAddress);
// 构造 GEP 计算 memset 的起始地址
std::vector<Value *> gepIndicesForMemset;
gepIndicesForMemset.push_back(ConstantInteger::get(0)); // 跳过 alloca 类型
gepIndicesForMemset.insert(gepIndicesForMemset.end(), memsetStartIndices.begin(),
memsetStartIndices.end());
Value *memsetPtr = builder.createGetElementPtrInst(alloca, gepIndicesForMemset);
// 计算 memset 的字节数 = 元素个数 × 元素大小
Type *elementType = type;
;
uint64_t elementSize = elementType->getSize();
Value *size = ConstantInteger::get(currentRepeatNum * elementSize);
// 生成 memset 指令(假设你的 IRBuilder 有 createMemset 方法)
builder.createMemsetInst(memsetPtr, ConstantInteger::get(0), size, ConstantInteger::get(0));
// 跳过这些已处理的0
linearIndexOffset += currentRepeatNum;
continue; // 直接进入下一次循环
}
// 更新线性索引偏移量,以便下一次迭代从正确的位置开始
linearIndexOffset += currentRepeatNum;
}
}
for (unsigned i = 0; i < currentRepeatNum; ++i) {
std::vector<Value *> currentIndices;
int tempLinearIndex = linearIndexOffset + i; // 使用偏移量和当前重复次数内的索引
// 将线性索引转换为多维索引
for (int dimIdx = dimSizes.size() - 1; dimIdx >= 0; --dimIdx) {
currentIndices.insert(currentIndices.begin(),
ConstantInteger::get(static_cast<int>(tempLinearIndex % dimSizes[dimIdx])));
tempLinearIndex /= dimSizes[dimIdx];
}
// 对于局部数组alloca 本身就是 GEP 的基指针。
// GEP 的第一个索引必须是 0用于“步过”整个数组。
std::vector<Value *> gepIndicesForInit;
gepIndicesForInit.push_back(ConstantInteger::get(0));
gepIndicesForInit.insert(gepIndicesForInit.end(), currentIndices.begin(), currentIndices.end());
// 计算元素的地址
Value *elementAddress = getGEPAddressInst(alloca, gepIndicesForInit);
// 生成 store 指令
builder.createStoreInst(currentValue, elementAddress);
}
// 更新线性索引偏移量,以便下一次迭代从正确的位置开始
linearIndexOffset += currentRepeatNum;
}
}
}
}
@ -895,7 +989,7 @@ std::any SysYIRGenerator::visitFuncDef(SysYParser::FuncDefContext *ctx){
currentParamDims.push_back(ConstantInteger::get(-1)); // 标记第一个维度为未知
for (const auto &exp : param->exp()) {
// 访问表达式以获取维度大小,这些维度必须是常量
Value* dimVal = std::any_cast<Value *>(visitExp(exp));
Value* dimVal = computeExp(exp);
// 确保维度是常量整数,否则 buildArrayType 会断言失败
assert(dynamic_cast<ConstantInteger*>(dimVal) && "Array dimension in parameter must be a constant integer!");
currentParamDims.push_back(dimVal);
@ -966,6 +1060,7 @@ std::any SysYIRGenerator::visitFuncDef(SysYParser::FuncDefContext *ctx){
// 从 entryBB 无条件跳转到 funcBodyEntry
builder.createUncondBrInst(funcBodyEntry);
BasicBlock::conectBlocks(entry, funcBodyEntry); // 连接 entryBB 和 funcBodyEntry
builder.setPosition(funcBodyEntry,funcBodyEntry->end()); // 将插入点设置到 funcBodyEntry
for (auto item : ctx->blockStmt()->blockItem()) {