Compare commits
3 Commits
buildcfg
...
backend-di
| Author | SHA1 | Date | |
|---|---|---|---|
| 9c5d9ea78c | |||
| 0ce742a86e | |||
| f312792fe9 |
220
Pass_ID_List.md
220
Pass_ID_List.md
@ -14,220 +14,10 @@
|
||||
|
||||
Mem2Reg 遍的主要目标是将那些不必要的、只用于局部标量变量的内存分配 (alloca 指令) 消除,并将这些变量的值转换为 SSA 形式。这有助于减少内存访问,提高代码效率,并为后续的优化创造更好的条件。
|
||||
|
||||
通过Mem2Reg理解删除指令时对use关系的维护:
|
||||
|
||||
在 `Mem2Reg` 优化遍中,当 `load` 和 `store` 指令被删除时,其 `use` 关系(即它们作为操作数与其他 `Value` 对象之间的连接)的正确消除是一个关键问题,尤其涉及到 `AllocaInst`。
|
||||
|
||||
结合您提供的 `Mem2RegContext::renameVariables` 代码和我们之前讨论的 `usedelete` 逻辑,下面是 `use` 关系如何被正确消除的详细过程:
|
||||
|
||||
### 问题回顾:`Use` 关系的双向性
|
||||
|
||||
在您的 IR 设计中,`Use` 对象扮演着连接 `User`(使用者,如 `LoadInst`)和 `Value`(被使用者,如 `AllocaInst`)的双向角色:
|
||||
|
||||
* 一个 `User` 持有对其操作数 `Value` 的 `Use` 对象(通过 `User::operands` 列表)。
|
||||
* 一个 `Value` 持有所有使用它的 `User` 的 `Use` 对象(通过 `Value::uses` 列表)。
|
||||
|
||||
原始问题是:当一个 `LoadInst` 或 `StoreInst` 被删除时,如果不对其作为操作数与 `AllocaInst` 之间的 `Use` 关系进行明确清理,`AllocaInst` 的 `uses` 列表中就会留下指向已删除 `LoadInst` / `StoreInst` 的 `Use` 对象,导致内部的 `User*` 指针悬空,在后续访问时引发 `segmentation fault`。
|
||||
|
||||
### `Mem2Reg` 中 `load`/`store` 指令的删除行为
|
||||
|
||||
在 `Mem2RegContext::renameVariables` 函数中,`load` 和 `store` 指令被处理时,其行为如下:
|
||||
|
||||
1. **处理 `LoadInst`:**
|
||||
当找到一个指向可提升 `AllocaInst` 的 `LoadInst` 时,其用途会被 `replaceAllUsesWith(allocaToValueStackMap[alloca].top())` 替换。这意味着任何原本使用 `LoadInst` 本身计算结果的指令,现在都直接使用 SSA 值栈顶部的 `Value`。
|
||||
**重点:** 这一步处理的是 `LoadInst` 作为**被使用的值 (Value)** 时,其 `uses` 列表的清理。即,将 `LoadInst` 的所有使用者重定向到新的 SSA 值,并把这些 `Use` 对象从 `LoadInst` 的 `uses` 列表中移除。
|
||||
|
||||
2. **处理 `StoreInst`:**
|
||||
当找到一个指向可提升 `AllocaInst` 的 `StoreInst` 时,`StoreInst` 存储的值会被压入值栈。`StoreInst` 本身并不产生可被其他指令直接使用的值(其类型是 `void`),所以它没有 `uses` 列表需要替换。
|
||||
**重点:** `StoreInst` 的主要作用是更新内存状态,在 SSA 形式下,它被移除后需要清理它作为**使用者 (User)** 时的操作数关系。
|
||||
|
||||
在这两种情况下,一旦 `load` 或 `store` 指令的 SSA 转换完成,它们都会通过 `instIter = SysYIROptUtils::usedelete(instIter)` 被显式删除。
|
||||
|
||||
### `SysYIROptUtils::usedelete` 如何正确消除 `Use` 关系
|
||||
|
||||
关键在于对 `SysYIROptUtils::usedelete` 函数的修改,使其在删除指令时,同时处理该指令作为 `User` 和 `Value` 的两种 `Use` 关系:
|
||||
|
||||
1. **清理指令作为 `Value` 时的 `uses` 列表 (由 `replaceAllUsesWith` 完成):**
|
||||
在 `usedelete` 函数中,`inst->replaceAllUsesWith(UndefinedValue::get(inst->getType()))` 的调用至关重要。这确保了:
|
||||
* 如果被删除的 `Instruction`(例如 `LoadInst`)产生了结果值并被其他指令使用,所有这些使用者都会被重定向到 `UndefinedValue`(或者 `Mem2Reg` 中具体的 SSA 值)。
|
||||
* 这个过程会遍历 `LoadInst` 的 `uses` 列表,并将这些 `Use` 对象从 `LoadInst` 的 `uses` 列表中移除。这意味着 `LoadInst` 自己不再被任何其他指令使用。
|
||||
|
||||
2. **清理指令作为 `User` 时其操作数的 `uses` 列表 (由 `RemoveUserOperandUses` 完成):**
|
||||
这是您提出的、并已集成到 `usedelete` 中的关键改进点。对于一个被删除的 `Instruction`(它同时也是 `User`),我们需要清理它**自己使用的操作数**所维护的 `use` 关系。
|
||||
* 例如,`LoadInst %op1` 使用了 `%op1`(一个 `AllocaInst`)。当 `LoadInst` 被删除时,`AllocaInst` 的 `uses` 列表中有一个 `Use` 对象指向这个 `LoadInst`。
|
||||
* `RemoveUserOperandUses` 函数会遍历被删除 `User`(即 `LoadInst` 或 `StoreInst`)的 `operands` 列表。
|
||||
* 对于 `operands` 列表中的每个 `std::shared_ptr<Use> use_ptr`,它会获取 `Use` 对象内部指向的 `Value`(例如 `AllocaInst*`),然后调用 `value->removeUse(use_ptr)`。
|
||||
* 这个 `removeUse` 调用会负责将 `use_ptr` 从 `AllocaInst` 的 `uses` 列表中删除。
|
||||
|
||||
### 总结
|
||||
|
||||
通过在 `SysYIROptUtils::usedelete` 中同时执行这两个步骤:
|
||||
|
||||
* `replaceAllUsesWith`:处理被删除指令**作为结果被使用**时的 `use` 关系。
|
||||
* `RemoveUserOperandUses`:处理被删除指令**作为使用者(User)时,其操作数**的 `use` 关系。
|
||||
|
||||
这就确保了当 `Mem2Reg` 遍历并删除 `load` 和 `store` 指令时,无论是它们作为 `Value` 的使用者,还是它们作为 `User` 的操作数,所有相关的 `Use` 对象都能被正确地从 `Value` 的 `uses` 列表中移除,从而避免了悬空指针和后续的 `segmentation fault`。
|
||||
|
||||
最后,当所有指向某个 `AllocaInst` 的 `load` 和 `store` 指令都被移除后,`AllocaInst` 的 `uses` 列表将变得干净(只包含 Phi 指令,如果它们在 SSA 转换中需要保留 Alloca 作为操作数),这时在 `Mem2RegContext::cleanup()` 阶段,`SysYIROptUtils::usedelete(alloca)` 就可以安全地删除 `AllocaInst` 本身了。
|
||||
|
||||
## Reg2Mem
|
||||
|
||||
我们的Reg2Mem 遍的主要目标是作为 Mem2Reg 的一种逆操作,但更具体是解决后端无法识别 PhiInst 指令的问题。主要的速录是将函数参数和 PhiInst 指令的结果从 SSA 形式转换回内存形式,通过插入 alloca、load 和 store 指令来实现。其他非 Phi 的指令结果将保持 SSA 形式。
|
||||
|
||||
## SCCP
|
||||
|
||||
SCCP(稀疏条件常量传播)是一种编译器优化技术,它结合了常量传播和死代码消除。其核心思想是在程序执行过程中,尝试识别并替换那些在编译时就能确定其值的变量(常量),同时移除那些永远不会被执行到的代码块(不可达代码)。
|
||||
|
||||
以下是 SCCP 的实现思路:
|
||||
|
||||
1. 核心数据结构与工作列表:
|
||||
|
||||
Lattice 值(Lattice Value): SCCP 使用三值格(Three-Valued Lattice)来表示变量的状态:
|
||||
|
||||
Top (T): 初始状态,表示变量的值未知,但可能是一个常量。
|
||||
|
||||
Constant (C): 表示变量的值已经确定为一个具体的常量。
|
||||
|
||||
Bottom (⊥): 表示变量的值不确定或不是一个常量(例如,它可能在运行时有多个不同的值,或者从内存中加载)。一旦变量状态变为 Bottom,它就不能再变回 Constant 或 Top。
|
||||
|
||||
SSAPValue: 封装了 Lattice 值和常量具体值(如果状态是 Constant)。
|
||||
|
||||
*valState (map<Value, SSAPValue>):** 存储程序中每个 Value(变量、指令结果等)的当前 SCCP Lattice 状态。
|
||||
|
||||
*ExecutableBlocks (set<BasicBlock>):** 存储在分析过程中被确定为可执行的基本块。
|
||||
|
||||
工作列表 (Worklists):
|
||||
|
||||
cfgWorkList (queue<pair<BasicBlock, BasicBlock>>):** 存储待处理的控制流图(CFG)边。当一个块被标记为可执行时,它的后继边会被添加到这个列表。
|
||||
|
||||
*ssaWorkList (queue<Instruction>):** 存储待处理的 SSA (Static Single Assignment) 指令。当一个指令的任何操作数的状态发生变化时,该指令就会被添加到这个列表,需要重新评估。
|
||||
|
||||
2. 初始化:
|
||||
|
||||
所有 Value 的状态都被初始化为 Top。
|
||||
|
||||
所有基本块都被初始化为不可执行。
|
||||
|
||||
函数的入口基本块被标记为可执行,并且该块中的所有指令被添加到 ssaWorkList。
|
||||
|
||||
3. 迭代过程 (Fixed-Point Iteration):
|
||||
|
||||
SCCP 的核心是一个迭代过程,它交替处理 CFG 工作列表和 SSA 工作列表,直到达到一个不动点(即没有更多的状态变化)。
|
||||
|
||||
处理 cfgWorkList:
|
||||
|
||||
从 cfgWorkList 中取出一个边 (prev, next)。
|
||||
|
||||
如果 next 块之前是不可执行的,现在通过 prev 块可达,则将其标记为可执行 (markBlockExecutable)。
|
||||
|
||||
一旦 next 块变为可执行,其内部的所有指令(特别是 Phi 指令)都需要被重新评估,因此将它们添加到 ssaWorkList。
|
||||
|
||||
处理 ssaWorkList:
|
||||
|
||||
从 ssaWorkList 中取出一个指令 inst。
|
||||
|
||||
重要: 只有当 inst 所在的块是可执行的,才处理该指令。不可执行块中的指令不参与常量传播。
|
||||
|
||||
计算新的 Lattice 值 (computeLatticeValue): 根据指令类型和其操作数的当前 Lattice 状态,计算 inst 的新的 Lattice 状态。
|
||||
|
||||
常量折叠: 如果所有操作数都是常量,则可以直接执行运算并得到一个新的常量结果。
|
||||
|
||||
Bottom 传播: 如果任何操作数是 Bottom,或者运算规则导致不确定(例如除以零),则结果为 Bottom。
|
||||
|
||||
Phi 指令的特殊处理: Phi 指令的值取决于其所有可执行的前驱块传入的值。
|
||||
|
||||
如果所有可执行前驱都提供了相同的常量 C,则 Phi 结果为 C。
|
||||
|
||||
如果有任何可执行前驱提供了 Bottom,或者不同的可执行前驱提供了不同的常量,则 Phi 结果为 Bottom。
|
||||
|
||||
如果所有可执行前驱都提供了 Top,则 Phi 结果仍为 Top。
|
||||
|
||||
更新状态: 如果 inst 的新计算出的 Lattice 值与它当前存储的值不同,则更新 valState[inst]。
|
||||
|
||||
传播变化: 如果 inst 的状态发生变化,那么所有使用 inst 作为操作数的指令都可能受到影响,需要重新评估。因此,将 inst 的所有使用者添加到 ssaWorkList。
|
||||
|
||||
处理终结符指令 (BranchInst, ReturnInst):
|
||||
|
||||
对于条件分支 BranchInst,如果其条件操作数变为常量:
|
||||
|
||||
如果条件为真,则只有真分支的目标块是可达的,将该边添加到 cfgWorkList。
|
||||
|
||||
如果条件为假,则只有假分支的目标块是可达的,将该边添加到 cfgWorkList。
|
||||
|
||||
如果条件不是常量(Top 或 Bottom),则两个分支都可能被执行,将两边的边都添加到 cfgWorkList。
|
||||
|
||||
这会影响 CFG 的可达性分析,可能导致新的块被标记为可执行。
|
||||
|
||||
4. 应用优化 (Transformation):
|
||||
|
||||
当两个工作列表都为空,达到不动点后,程序代码开始进行实际的修改:
|
||||
|
||||
常量替换:
|
||||
|
||||
遍历所有指令。如果指令的 valState 为 Constant,则用相应的 ConstantValue 替换该指令的所有用途 (replaceAllUsesWith)。
|
||||
|
||||
将该指令标记为待删除。
|
||||
|
||||
对于指令的操作数,如果其 valState 为 Constant,则直接将操作数替换为对应的 ConstantValue(常量折叠)。
|
||||
|
||||
删除死指令: 遍历所有标记为待删除的指令,并从其父基本块中删除它们。
|
||||
|
||||
删除不可达基本块: 遍历函数中的所有基本块。如果一个基本块没有被标记为可执行 (ExecutableBlocks 中不存在),则将其从函数中删除。但入口块不能删除。
|
||||
|
||||
简化分支指令:
|
||||
|
||||
遍历所有可执行的基本块的终结符指令。
|
||||
|
||||
对于条件分支 BranchInst,如果其条件操作数在 valState 中是 Constant:
|
||||
|
||||
如果条件为真,则将该条件分支替换为一个无条件跳转到真分支目标块的指令。
|
||||
|
||||
如果条件为假,则将该条件分支替换为一个无条件跳转到假分支目标块的指令。
|
||||
|
||||
更新 CFG,移除不可达的分支边和其前驱信息。
|
||||
|
||||
computeLatticeValue 的具体逻辑:
|
||||
|
||||
这个函数是 SCCP 的核心逻辑,它定义了如何根据指令类型和操作数的当前 Lattice 状态来计算指令结果的 Lattice 状态。
|
||||
|
||||
二元运算 (Add, Sub, Mul, Div, Rem, ICmp, And, Or):
|
||||
|
||||
如果任何一个操作数是 Bottom,结果就是 Bottom。
|
||||
|
||||
如果任何一个操作数是 Top,结果就是 Top。
|
||||
|
||||
如果两个操作数都是 Constant,执行实际的常量运算,结果是一个新的 Constant。
|
||||
|
||||
一元运算 (Neg, Not):
|
||||
|
||||
如果操作数是 Bottom,结果就是 Bottom。
|
||||
|
||||
如果操作数是 Top,结果就是 Top。
|
||||
|
||||
如果操作数是 Constant,执行实际的常量运算,结果是一个新的 Constant。
|
||||
|
||||
Load 指令: 通常情况下,Load 的结果会被标记为 Bottom,因为内存内容通常在编译时无法确定。但如果加载的是已知的全局常量,可能可以确定。在提供的代码中,它通常返回 Bottom。
|
||||
|
||||
Store 指令: Store 不产生值,所以其 SSAPValue 保持 Top 或不关心。
|
||||
|
||||
Call 指令: 大多数 Call 指令(尤其是对外部或有副作用的函数)的结果都是 Bottom。对于纯函数,如果所有参数都是常量,理论上可以折叠,但这需要额外的分析。
|
||||
|
||||
GetElementPtr (GEP) 指令: GEP 计算内存地址。如果所有索引都是常量,地址本身是常量。但 SCCP 关注的是数据值,因此这里通常返回 Bottom,除非有特定的指针常量跟踪。
|
||||
|
||||
Phi 指令: 如上所述,基于所有可执行前驱的传入值进行聚合。
|
||||
|
||||
Alloc 指令: Alloc 分配内存,返回一个指针。其内容通常是 Bottom。
|
||||
|
||||
Branch 和 Return 指令: 这些是终结符指令,不产生一个可用于其他指令的值,通常 SSAPValue 保持 Top 或不关心。
|
||||
|
||||
类型转换 (ZExt, SExt, Trunc, FtoI, ItoF): 如果操作数是 Constant,则执行相应的类型转换,结果仍为 Constant。对于浮点数转换,由于 SSAPValue 的 constantVal 为 int 类型,所以对浮点数的操作会保守地返回 Bottom。
|
||||
|
||||
未处理的指令: 默认情况下,任何未明确处理的指令都被保守地假定为产生 Bottom 值。
|
||||
|
||||
浮点数处理的注意事项:
|
||||
|
||||
在提供的代码中,SSAPValue 的 constantVal 是 int 类型。这使得浮点数常量传播变得复杂。对于浮点数相关的指令(kFAdd, kFMul, kFCmp, kFNeg, kFNot, kItoF, kFtoI 等),如果不能将浮点值准确地存储在 int 中,或者不能可靠地执行浮点运算,那么通常会保守地将结果设置为 Bottom。一个更完善的 SCCP 实现会使用 std::variant<int, float> 或独立的浮点常量存储来处理浮点数。
|
||||
|
||||
|
||||
# 后续优化可能涉及的改动
|
||||
|
||||
@ -235,12 +25,4 @@ Branch 和 Return 指令: 这些是终结符指令,不产生一个可用于其
|
||||
|
||||
好处:优化友好性,方便mem2reg提升
|
||||
目前没有实现这个机制,如果想要实现首先解决同一函数不同域的同名变量命名区分
|
||||
需要保证符号表能正确维护域中的局部变量
|
||||
|
||||
|
||||
# 关于中端优化提升编译器性能的TODO
|
||||
|
||||
## usedelete_withinstdelte方法
|
||||
|
||||
这个方法删除了use关系并移除了指令,逻辑是根据Instruction* inst去find对应的迭代器并erase
|
||||
有些情况下外部持有迭代器和inst,可以省略find过程
|
||||
需要保证符号表能正确维护域中的局部变量
|
||||
@ -11,6 +11,7 @@ add_library(riscv64_backend_lib STATIC
|
||||
Optimize/Peephole.cpp
|
||||
Optimize/PostRA_Scheduler.cpp
|
||||
Optimize/PreRA_Scheduler.cpp
|
||||
Optimize/DivStrengthReduction.cpp
|
||||
)
|
||||
|
||||
# 包含后端模块所需的头文件路径
|
||||
|
||||
282
src/backend/RISCv64/Optimize/DivStrengthReduction.cpp
Normal file
282
src/backend/RISCv64/Optimize/DivStrengthReduction.cpp
Normal file
@ -0,0 +1,282 @@
|
||||
#include "DivStrengthReduction.h"
|
||||
#include <cmath>
|
||||
#include <cstdint>
|
||||
|
||||
namespace sysy {
|
||||
|
||||
char DivStrengthReduction::ID = 0;
|
||||
|
||||
bool DivStrengthReduction::runOnFunction(Function *F, AnalysisManager& AM) {
|
||||
// This pass works on MachineFunction level, not IR level
|
||||
return false;
|
||||
}
|
||||
|
||||
void DivStrengthReduction::runOnMachineFunction(MachineFunction *mfunc) {
|
||||
if (!mfunc)
|
||||
return;
|
||||
|
||||
bool debug = false; // Set to true for debugging
|
||||
if (debug)
|
||||
std::cout << "Running DivStrengthReduction optimization..." << std::endl;
|
||||
|
||||
int next_temp_reg = 1000;
|
||||
auto createTempReg = [&]() -> int {
|
||||
return next_temp_reg++;
|
||||
};
|
||||
|
||||
struct MagicInfo {
|
||||
int64_t magic;
|
||||
int shift;
|
||||
};
|
||||
|
||||
auto computeMagic = [](int64_t d, bool is_32bit) -> MagicInfo {
|
||||
int word_size = is_32bit ? 32 : 64;
|
||||
uint64_t ad = std::abs(d);
|
||||
|
||||
if (ad == 0) return {0, 0};
|
||||
|
||||
int l = std::floor(std::log2(ad));
|
||||
if ((ad & (ad - 1)) == 0) { // power of 2
|
||||
l = 0; // special case for power of 2, shift will be calculated differently
|
||||
}
|
||||
|
||||
__int128_t one = 1;
|
||||
__int128_t num;
|
||||
int total_shift;
|
||||
|
||||
if (is_32bit) {
|
||||
total_shift = 31 + l;
|
||||
num = one << total_shift;
|
||||
} else {
|
||||
total_shift = 63 + l;
|
||||
num = one << total_shift;
|
||||
}
|
||||
|
||||
__int128_t den = ad;
|
||||
int64_t magic = (num / den) + 1;
|
||||
|
||||
return {magic, total_shift};
|
||||
};
|
||||
|
||||
auto isPowerOfTwo = [](int64_t n) -> bool {
|
||||
return n > 0 && (n & (n - 1)) == 0;
|
||||
};
|
||||
|
||||
auto getPowerOfTwoExponent = [](int64_t n) -> int {
|
||||
if (n <= 0 || (n & (n - 1)) != 0) return -1;
|
||||
int shift = 0;
|
||||
while (n > 1) {
|
||||
n >>= 1;
|
||||
shift++;
|
||||
}
|
||||
return shift;
|
||||
};
|
||||
|
||||
struct InstructionReplacement {
|
||||
size_t index;
|
||||
size_t count_to_erase;
|
||||
std::vector<std::unique_ptr<MachineInstr>> newInstrs;
|
||||
};
|
||||
|
||||
for (auto &mbb_uptr : mfunc->getBlocks()) {
|
||||
auto &mbb = *mbb_uptr;
|
||||
auto &instrs = mbb.getInstructions();
|
||||
std::vector<InstructionReplacement> replacements;
|
||||
|
||||
for (size_t i = 0; i < instrs.size(); ++i) {
|
||||
auto *instr = instrs[i].get();
|
||||
|
||||
bool is_32bit = (instr->getOpcode() == RVOpcodes::DIVW);
|
||||
|
||||
if (instr->getOpcode() != RVOpcodes::DIV && !is_32bit) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if (instr->getOperands().size() != 3) {
|
||||
continue;
|
||||
}
|
||||
|
||||
auto *dst_op = instr->getOperands()[0].get();
|
||||
auto *src1_op = instr->getOperands()[1].get();
|
||||
auto *src2_op = instr->getOperands()[2].get();
|
||||
|
||||
int64_t divisor = 0;
|
||||
bool const_divisor_found = false;
|
||||
size_t instructions_to_replace = 1;
|
||||
|
||||
if (src2_op->getKind() == MachineOperand::KIND_IMM) {
|
||||
divisor = static_cast<ImmOperand *>(src2_op)->getValue();
|
||||
const_divisor_found = true;
|
||||
} else if (src2_op->getKind() == MachineOperand::KIND_REG) {
|
||||
if (i > 0) {
|
||||
auto *prev_instr = instrs[i - 1].get();
|
||||
if (prev_instr->getOpcode() == RVOpcodes::LI && prev_instr->getOperands().size() == 2) {
|
||||
auto *li_dst_op = prev_instr->getOperands()[0].get();
|
||||
auto *li_imm_op = prev_instr->getOperands()[1].get();
|
||||
if (li_dst_op->getKind() == MachineOperand::KIND_REG && li_imm_op->getKind() == MachineOperand::KIND_IMM) {
|
||||
auto *div_reg_op = static_cast<RegOperand *>(src2_op);
|
||||
auto *li_dst_reg_op = static_cast<RegOperand *>(li_dst_op);
|
||||
if (div_reg_op->isVirtual() && li_dst_reg_op->isVirtual() &&
|
||||
div_reg_op->getVRegNum() == li_dst_reg_op->getVRegNum()) {
|
||||
divisor = static_cast<ImmOperand *>(li_imm_op)->getValue();
|
||||
const_divisor_found = true;
|
||||
instructions_to_replace = 2;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (!const_divisor_found) {
|
||||
continue;
|
||||
}
|
||||
|
||||
auto *dst_reg = static_cast<RegOperand *>(dst_op);
|
||||
auto *src1_reg = static_cast<RegOperand *>(src1_op);
|
||||
|
||||
if (divisor == 0) continue;
|
||||
|
||||
std::vector<std::unique_ptr<MachineInstr>> newInstrs;
|
||||
|
||||
if (divisor == 1) {
|
||||
auto moveInstr = std::make_unique<MachineInstr>(is_32bit ? RVOpcodes::ADDW : RVOpcodes::ADD);
|
||||
moveInstr->addOperand(std::make_unique<RegOperand>(*dst_reg));
|
||||
moveInstr->addOperand(std::make_unique<RegOperand>(*src1_reg));
|
||||
moveInstr->addOperand(std::make_unique<RegOperand>(PhysicalReg::ZERO));
|
||||
newInstrs.push_back(std::move(moveInstr));
|
||||
}
|
||||
else if (divisor == -1) {
|
||||
auto negInstr = std::make_unique<MachineInstr>(is_32bit ? RVOpcodes::SUBW : RVOpcodes::SUB);
|
||||
negInstr->addOperand(std::make_unique<RegOperand>(*dst_reg));
|
||||
negInstr->addOperand(std::make_unique<RegOperand>(PhysicalReg::ZERO));
|
||||
negInstr->addOperand(std::make_unique<RegOperand>(*src1_reg));
|
||||
newInstrs.push_back(std::move(negInstr));
|
||||
}
|
||||
else if (isPowerOfTwo(std::abs(divisor))) {
|
||||
int shift = getPowerOfTwoExponent(std::abs(divisor));
|
||||
int temp_reg = createTempReg();
|
||||
|
||||
auto sraSignInstr = std::make_unique<MachineInstr>(is_32bit ? RVOpcodes::SRAIW : RVOpcodes::SRAI);
|
||||
sraSignInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
sraSignInstr->addOperand(std::make_unique<RegOperand>(*src1_reg));
|
||||
sraSignInstr->addOperand(std::make_unique<ImmOperand>(is_32bit ? 31 : 63));
|
||||
newInstrs.push_back(std::move(sraSignInstr));
|
||||
|
||||
auto srlInstr = std::make_unique<MachineInstr>(is_32bit ? RVOpcodes::SRLIW : RVOpcodes::SRLI);
|
||||
srlInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
srlInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
srlInstr->addOperand(std::make_unique<ImmOperand>((is_32bit ? 32 : 64) - shift));
|
||||
newInstrs.push_back(std::move(srlInstr));
|
||||
|
||||
auto addInstr = std::make_unique<MachineInstr>(is_32bit ? RVOpcodes::ADDW : RVOpcodes::ADD);
|
||||
addInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
addInstr->addOperand(std::make_unique<RegOperand>(*src1_reg));
|
||||
addInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
newInstrs.push_back(std::move(addInstr));
|
||||
|
||||
auto sraInstr = std::make_unique<MachineInstr>(is_32bit ? RVOpcodes::SRAIW : RVOpcodes::SRAI);
|
||||
sraInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
sraInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
sraInstr->addOperand(std::make_unique<ImmOperand>(shift));
|
||||
newInstrs.push_back(std::move(sraInstr));
|
||||
|
||||
if (divisor < 0) {
|
||||
auto negInstr = std::make_unique<MachineInstr>(is_32bit ? RVOpcodes::SUBW : RVOpcodes::SUB);
|
||||
negInstr->addOperand(std::make_unique<RegOperand>(*dst_reg));
|
||||
negInstr->addOperand(std::make_unique<RegOperand>(PhysicalReg::ZERO));
|
||||
negInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
newInstrs.push_back(std::move(negInstr));
|
||||
} else {
|
||||
auto moveInstr = std::make_unique<MachineInstr>(is_32bit ? RVOpcodes::ADDW : RVOpcodes::ADD);
|
||||
moveInstr->addOperand(std::make_unique<RegOperand>(*dst_reg));
|
||||
moveInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
moveInstr->addOperand(std::make_unique<RegOperand>(PhysicalReg::ZERO));
|
||||
newInstrs.push_back(std::move(moveInstr));
|
||||
}
|
||||
}
|
||||
else {
|
||||
auto magic_info = computeMagic(divisor, is_32bit);
|
||||
int magic_reg = createTempReg();
|
||||
int temp_reg = createTempReg();
|
||||
|
||||
auto loadInstr = std::make_unique<MachineInstr>(RVOpcodes::LI);
|
||||
loadInstr->addOperand(std::make_unique<RegOperand>(magic_reg));
|
||||
loadInstr->addOperand(std::make_unique<ImmOperand>(magic_info.magic));
|
||||
newInstrs.push_back(std::move(loadInstr));
|
||||
|
||||
if (is_32bit) {
|
||||
auto mulInstr = std::make_unique<MachineInstr>(RVOpcodes::MUL);
|
||||
mulInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
mulInstr->addOperand(std::make_unique<RegOperand>(*src1_reg));
|
||||
mulInstr->addOperand(std::make_unique<RegOperand>(magic_reg));
|
||||
newInstrs.push_back(std::move(mulInstr));
|
||||
|
||||
auto sraInstr = std::make_unique<MachineInstr>(RVOpcodes::SRAI);
|
||||
sraInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
sraInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
sraInstr->addOperand(std::make_unique<ImmOperand>(magic_info.shift));
|
||||
newInstrs.push_back(std::move(sraInstr));
|
||||
} else {
|
||||
auto mulhInstr = std::make_unique<MachineInstr>(RVOpcodes::MULH);
|
||||
mulhInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
mulhInstr->addOperand(std::make_unique<RegOperand>(*src1_reg));
|
||||
mulhInstr->addOperand(std::make_unique<RegOperand>(magic_reg));
|
||||
newInstrs.push_back(std::move(mulhInstr));
|
||||
|
||||
int post_shift = magic_info.shift - 63;
|
||||
if (post_shift > 0) {
|
||||
auto sraInstr = std::make_unique<MachineInstr>(RVOpcodes::SRAI);
|
||||
sraInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
sraInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
sraInstr->addOperand(std::make_unique<ImmOperand>(post_shift));
|
||||
newInstrs.push_back(std::move(sraInstr));
|
||||
}
|
||||
}
|
||||
|
||||
int sign_reg = createTempReg();
|
||||
auto sraSignInstr = std::make_unique<MachineInstr>(is_32bit ? RVOpcodes::SRAIW : RVOpcodes::SRAI);
|
||||
sraSignInstr->addOperand(std::make_unique<RegOperand>(sign_reg));
|
||||
sraSignInstr->addOperand(std::make_unique<RegOperand>(*src1_reg));
|
||||
sraSignInstr->addOperand(std::make_unique<ImmOperand>(is_32bit ? 31 : 63));
|
||||
newInstrs.push_back(std::move(sraSignInstr));
|
||||
|
||||
auto subInstr = std::make_unique<MachineInstr>(is_32bit ? RVOpcodes::SUBW : RVOpcodes::SUB);
|
||||
subInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
subInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
subInstr->addOperand(std::make_unique<RegOperand>(sign_reg));
|
||||
newInstrs.push_back(std::move(subInstr));
|
||||
|
||||
if (divisor < 0) {
|
||||
auto negInstr = std::make_unique<MachineInstr>(is_32bit ? RVOpcodes::SUBW : RVOpcodes::SUB);
|
||||
negInstr->addOperand(std::make_unique<RegOperand>(*dst_reg));
|
||||
negInstr->addOperand(std::make_unique<RegOperand>(PhysicalReg::ZERO));
|
||||
negInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
newInstrs.push_back(std::move(negInstr));
|
||||
} else {
|
||||
auto moveInstr = std::make_unique<MachineInstr>(is_32bit ? RVOpcodes::ADDW : RVOpcodes::ADD);
|
||||
moveInstr->addOperand(std::make_unique<RegOperand>(*dst_reg));
|
||||
moveInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
moveInstr->addOperand(std::make_unique<RegOperand>(PhysicalReg::ZERO));
|
||||
newInstrs.push_back(std::move(moveInstr));
|
||||
}
|
||||
}
|
||||
|
||||
if (!newInstrs.empty()) {
|
||||
size_t start_index = i;
|
||||
if (instructions_to_replace == 2) {
|
||||
start_index = i - 1;
|
||||
}
|
||||
replacements.push_back({start_index, instructions_to_replace, std::move(newInstrs)});
|
||||
}
|
||||
}
|
||||
|
||||
for (auto it = replacements.rbegin(); it != replacements.rend(); ++it) {
|
||||
instrs.erase(instrs.begin() + it->index, instrs.begin() + it->index + it->count_to_erase);
|
||||
instrs.insert(instrs.begin() + it->index,
|
||||
std::make_move_iterator(it->newInstrs.begin()),
|
||||
std::make_move_iterator(it->newInstrs.end()));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace sysy
|
||||
@ -60,7 +60,7 @@ void RISCv64AsmPrinter::printInstruction(MachineInstr* instr, bool debug) {
|
||||
case RVOpcodes::ADD: *OS << "add "; break; case RVOpcodes::ADDI: *OS << "addi "; break;
|
||||
case RVOpcodes::ADDW: *OS << "addw "; break; case RVOpcodes::ADDIW: *OS << "addiw "; break;
|
||||
case RVOpcodes::SUB: *OS << "sub "; break; case RVOpcodes::SUBW: *OS << "subw "; break;
|
||||
case RVOpcodes::MUL: *OS << "mul "; break; case RVOpcodes::MULW: *OS << "mulw "; break;
|
||||
case RVOpcodes::MUL: *OS << "mul "; break; case RVOpcodes::MULW: *OS << "mulw "; break; case RVOpcodes::MULH: *OS << "mulh "; break;
|
||||
case RVOpcodes::DIV: *OS << "div "; break; case RVOpcodes::DIVW: *OS << "divw "; break;
|
||||
case RVOpcodes::REM: *OS << "rem "; break; case RVOpcodes::REMW: *OS << "remw "; break;
|
||||
case RVOpcodes::XOR: *OS << "xor "; break; case RVOpcodes::XORI: *OS << "xori "; break;
|
||||
|
||||
@ -119,7 +119,11 @@ std::string RISCv64CodeGen::function_gen(Function* func) {
|
||||
RISCv64AsmPrinter printer1(mfunc.get());
|
||||
printer1.run(ss1, true);
|
||||
|
||||
// 阶段 2: 指令调度 (Instruction Scheduling)
|
||||
// 阶段 2: 除法强度削弱优化 (Division Strength Reduction)
|
||||
DivStrengthReduction div_strength_reduction;
|
||||
div_strength_reduction.runOnMachineFunction(mfunc.get());
|
||||
|
||||
// 阶段 2.1: 指令调度 (Instruction Scheduling)
|
||||
PreRA_Scheduler scheduler;
|
||||
scheduler.runOnMachineFunction(mfunc.get());
|
||||
|
||||
|
||||
@ -539,6 +539,15 @@ void RISCv64ISel::selectNode(DAGNode* node) {
|
||||
CurMBB->addInstruction(std::move(instr));
|
||||
break;
|
||||
}
|
||||
case Instruction::kSRA: {
|
||||
auto rhs_const = dynamic_cast<ConstantInteger*>(rhs);
|
||||
auto instr = std::make_unique<MachineInstr>(RVOpcodes::SRAIW);
|
||||
instr->addOperand(std::make_unique<RegOperand>(dest_vreg));
|
||||
instr->addOperand(std::make_unique<RegOperand>(lhs_vreg));
|
||||
instr->addOperand(std::make_unique<ImmOperand>(rhs_const->getInt()));
|
||||
CurMBB->addInstruction(std::move(instr));
|
||||
break;
|
||||
}
|
||||
case BinaryInst::kICmpEQ: { // 等于 (a == b) -> (subw; seqz)
|
||||
auto sub = std::make_unique<MachineInstr>(RVOpcodes::SUBW);
|
||||
sub->addOperand(std::make_unique<RegOperand>(dest_vreg));
|
||||
@ -1473,7 +1482,7 @@ std::vector<std::unique_ptr<RISCv64ISel::DAGNode>> RISCv64ISel::build_dag(BasicB
|
||||
}
|
||||
}
|
||||
}
|
||||
if (bin->getKind() >= Instruction::kFAdd) { // 假设浮点指令枚举值更大
|
||||
if (bin->isFPBinary()) { // 假设浮点指令枚举值更大
|
||||
auto fbin_node = create_node(DAGNode::FBINARY, bin, value_to_node, nodes_storage);
|
||||
fbin_node->operands.push_back(get_operand_node(bin->getLhs(), value_to_node, nodes_storage));
|
||||
fbin_node->operands.push_back(get_operand_node(bin->getRhs(), value_to_node, nodes_storage));
|
||||
|
||||
30
src/include/backend/RISCv64/Optimize/DivStrengthReduction.h
Normal file
30
src/include/backend/RISCv64/Optimize/DivStrengthReduction.h
Normal file
@ -0,0 +1,30 @@
|
||||
#ifndef RISCV64_DIV_STRENGTH_REDUCTION_H
|
||||
#define RISCV64_DIV_STRENGTH_REDUCTION_H
|
||||
|
||||
#include "RISCv64LLIR.h"
|
||||
#include "Pass.h"
|
||||
|
||||
namespace sysy {
|
||||
|
||||
/**
|
||||
* @class DivStrengthReduction
|
||||
* @brief 除法强度削弱优化器
|
||||
* * 将除法运算转换为乘法运算,使用magic number算法
|
||||
* 适用于除数为常数的情况,可以显著提高性能
|
||||
*/
|
||||
class DivStrengthReduction : public Pass {
|
||||
public:
|
||||
static char ID;
|
||||
|
||||
DivStrengthReduction() : Pass("div-strength-reduction", Granularity::Function, PassKind::Optimization) {}
|
||||
|
||||
void *getPassID() const override { return &ID; }
|
||||
|
||||
bool runOnFunction(Function *F, AnalysisManager& AM) override;
|
||||
|
||||
void runOnMachineFunction(MachineFunction* mfunc);
|
||||
};
|
||||
|
||||
} // namespace sysy
|
||||
|
||||
#endif // RISCV64_DIV_STRENGTH_REDUCTION_H
|
||||
@ -45,7 +45,7 @@ enum class PhysicalReg {
|
||||
// RISC-V 指令操作码枚举
|
||||
enum class RVOpcodes {
|
||||
// 算术指令
|
||||
ADD, ADDI, ADDW, ADDIW, SUB, SUBW, MUL, MULW, DIV, DIVW, REM, REMW,
|
||||
ADD, ADDI, ADDW, ADDIW, SUB, SUBW, MUL, MULW, MULH, DIV, DIVW, REM, REMW,
|
||||
// 逻辑指令
|
||||
XOR, XORI, OR, ORI, AND, ANDI,
|
||||
// 移位指令
|
||||
|
||||
@ -9,6 +9,8 @@
|
||||
#include "LegalizeImmediates.h"
|
||||
#include "PrologueEpilogueInsertion.h"
|
||||
#include "Pass.h"
|
||||
#include "DivStrengthReduction.h"
|
||||
|
||||
|
||||
namespace sysy {
|
||||
|
||||
|
||||
@ -514,15 +514,12 @@ public:
|
||||
explicit BasicBlock(Function *parent, const std::string &name = "")
|
||||
: Value(Type::getLabelType(), name), parent(parent) {}
|
||||
~BasicBlock() override {
|
||||
// for (auto pre : predecessors) {
|
||||
// pre->removeSuccessor(this);
|
||||
// }
|
||||
// for (auto suc : successors) {
|
||||
// suc->removePredecessor(this);
|
||||
// }
|
||||
// 这些关系应该在 BasicBlock 被从 Function 中移除时,
|
||||
// 由负责 CFG 优化的 Pass (例如 SCCP 的 RemoveDeadBlock) 显式地清理。
|
||||
// 析构函数只负责清理 BasicBlock 自身拥有的资源(例如,指令列表)。
|
||||
for (auto pre : predecessors) {
|
||||
pre->removeSuccessor(this);
|
||||
}
|
||||
for (auto suc : successors) {
|
||||
suc->removePredecessor(this);
|
||||
}
|
||||
}
|
||||
|
||||
public:
|
||||
@ -602,7 +599,7 @@ public:
|
||||
prev->addSuccessor(next);
|
||||
next->addPredecessor(prev);
|
||||
}
|
||||
iterator removeInst(iterator pos) { return instructions.erase(pos); }
|
||||
void removeInst(iterator pos) { instructions.erase(pos); }
|
||||
void removeInst(Instruction *inst) {
|
||||
auto pos = std::find_if(instructions.begin(), instructions.end(),
|
||||
[inst](const std::unique_ptr<Instruction> &i) { return i.get() == inst; });
|
||||
@ -629,21 +626,6 @@ class User : public Value {
|
||||
explicit User(Type *type, const std::string &name = "") : Value(type, name) {}
|
||||
|
||||
public:
|
||||
// ~User() override {
|
||||
// // 当 User 对象被销毁时(例如,LoadInst 或 StoreInst 被删除时),
|
||||
// // 它必须通知它所使用的所有 Value,将对应的 Use 关系从它们的 uses 列表中移除。
|
||||
// // 这样可以防止 Value 的 uses 列表中出现悬空的 Use 对象。
|
||||
// for (const auto &use_ptr : operands) {
|
||||
// // 确保 use_ptr 非空,并且其内部指向的 Value* 也非空
|
||||
// // (虽然通常情况下不会为空,但为了健壮性考虑)
|
||||
// if (use_ptr && use_ptr->getValue()) {
|
||||
// use_ptr->getValue()->removeUse(use_ptr);
|
||||
// }
|
||||
// }
|
||||
// // operands 向量本身是 std::vector<std::shared_ptr<Use>>,
|
||||
// // 在此析构函数结束后,operands 向量会被销毁,其内部的 shared_ptr 也会被释放,
|
||||
// // 如果 shared_ptr 引用计数降为0,Use 对象本身也会被销毁。
|
||||
// }
|
||||
unsigned getNumOperands() const { return operands.size(); } ///< 获取操作数数量
|
||||
auto operand_begin() const { return operands.begin(); } ///< 返回操作数列表的开头迭代器
|
||||
auto operand_end() const { return operands.end(); } ///< 返回操作数列表的结尾迭代器
|
||||
@ -713,17 +695,21 @@ class Instruction : public User {
|
||||
kCondBr = 0x1UL << 30,
|
||||
kBr = 0x1UL << 31,
|
||||
kReturn = 0x1UL << 32,
|
||||
kUnreachable = 0x1UL << 33,
|
||||
// mem op
|
||||
kAlloca = 0x1UL << 34,
|
||||
kLoad = 0x1UL << 35,
|
||||
kStore = 0x1UL << 36,
|
||||
kGetElementPtr = 0x1UL << 37,
|
||||
kMemset = 0x1UL << 38,
|
||||
kAlloca = 0x1UL << 33,
|
||||
kLoad = 0x1UL << 34,
|
||||
kStore = 0x1UL << 35,
|
||||
kGetElementPtr = 0x1UL << 36,
|
||||
kMemset = 0x1UL << 37,
|
||||
// kGetSubArray = 0x1UL << 38,
|
||||
// Constant Kind removed as Constants are now Values, not Instructions.
|
||||
// kConstant = 0x1UL << 37, // Conflicts with kMemset if kept as is
|
||||
// phi
|
||||
kPhi = 0x1UL << 39,
|
||||
kBitItoF = 0x1UL << 40,
|
||||
kBitFtoI = 0x1UL << 41,
|
||||
kSRA = 0x1UL << 42,
|
||||
kMulh = 0x1UL << 43
|
||||
};
|
||||
|
||||
protected:
|
||||
@ -820,6 +806,12 @@ public:
|
||||
return "Memset";
|
||||
case kPhi:
|
||||
return "Phi";
|
||||
case kBitItoF:
|
||||
return "BitItoF";
|
||||
case kBitFtoI:
|
||||
return "BitFtoI";
|
||||
case kSRA:
|
||||
return "SRA";
|
||||
default:
|
||||
return "Unknown";
|
||||
}
|
||||
@ -831,11 +823,15 @@ public:
|
||||
|
||||
bool isBinary() const {
|
||||
static constexpr uint64_t BinaryOpMask =
|
||||
(kAdd | kSub | kMul | kDiv | kRem | kAnd | kOr) |
|
||||
(kICmpEQ | kICmpNE | kICmpLT | kICmpGT | kICmpLE | kICmpGE) |
|
||||
(kAdd | kSub | kMul | kDiv | kRem | kAnd | kOr | kSRA | kMulh) |
|
||||
(kICmpEQ | kICmpNE | kICmpLT | kICmpGT | kICmpLE | kICmpGE);
|
||||
return kind & BinaryOpMask;
|
||||
}
|
||||
bool isFPBinary() const {
|
||||
static constexpr uint64_t FPBinaryOpMask =
|
||||
(kFAdd | kFSub | kFMul | kFDiv) |
|
||||
(kFCmpEQ | kFCmpNE | kFCmpLT | kFCmpGT | kFCmpLE | kFCmpGE);
|
||||
return kind & BinaryOpMask;
|
||||
return kind & FPBinaryOpMask;
|
||||
}
|
||||
bool isUnary() const {
|
||||
static constexpr uint64_t UnaryOpMask =
|
||||
@ -848,7 +844,7 @@ public:
|
||||
return kind & MemoryOpMask;
|
||||
}
|
||||
bool isTerminator() const {
|
||||
static constexpr uint64_t TerminatorOpMask = kCondBr | kBr | kReturn | kUnreachable;
|
||||
static constexpr uint64_t TerminatorOpMask = kCondBr | kBr | kReturn;
|
||||
return kind & TerminatorOpMask;
|
||||
}
|
||||
bool isCmp() const {
|
||||
@ -868,7 +864,6 @@ public:
|
||||
}
|
||||
bool isUnconditional() const { return kind == kBr; }
|
||||
bool isConditional() const { return kind == kCondBr; }
|
||||
bool isCondBr() const { return kind == kCondBr; }
|
||||
bool isPhi() const { return kind == kPhi; }
|
||||
bool isAlloca() const { return kind == kAlloca; }
|
||||
bool isLoad() const { return kind == kLoad; }
|
||||
@ -877,7 +872,6 @@ public:
|
||||
bool isMemset() const { return kind == kMemset; }
|
||||
bool isCall() const { return kind == kCall; }
|
||||
bool isReturn() const { return kind == kReturn; }
|
||||
bool isUnreachable() const { return kind == kUnreachable; }
|
||||
bool isDefine() const {
|
||||
static constexpr uint64_t DefineOpMask = kAlloca | kStore | kPhi;
|
||||
return (kind & DefineOpMask) != 0U;
|
||||
@ -912,9 +906,6 @@ class PhiInst : public Instruction {
|
||||
public:
|
||||
Value* getValue(unsigned k) const {return getOperand(2 * k);} ///< 获取位置为k的值
|
||||
BasicBlock* getBlock(unsigned k) const {return dynamic_cast<BasicBlock*>(getOperand(2 * k + 1));}
|
||||
//增加llvm同名方法实现获取value和block
|
||||
Value* getIncomingValue(unsigned k) const {return getOperand(2 * k);} ///< 获取位置为k的值
|
||||
BasicBlock* getIncomingBlock(unsigned k) const {return dynamic_cast<BasicBlock*>(getOperand(2 * k + 1));}
|
||||
|
||||
auto& getincomings() const {return blk2val;} ///< 获取所有的基本块和对应的值
|
||||
|
||||
@ -1080,10 +1071,12 @@ class UncondBrInst : public Instruction {
|
||||
friend class Function;
|
||||
|
||||
protected:
|
||||
UncondBrInst(BasicBlock *block,
|
||||
UncondBrInst(BasicBlock *block, std::vector<Value *> args,
|
||||
BasicBlock *parent = nullptr)
|
||||
: Instruction(kBr, Type::getVoidType(), parent, "") {
|
||||
// assert(block->getNumArguments() == args.size());
|
||||
addOperand(block);
|
||||
addOperands(args);
|
||||
}
|
||||
|
||||
public:
|
||||
@ -1091,16 +1084,6 @@ public:
|
||||
auto getArguments() const {
|
||||
return make_range(std::next(operand_begin()), operand_end());
|
||||
}
|
||||
std::vector<BasicBlock *> getSuccessors() const {
|
||||
std::vector<BasicBlock *> succs;
|
||||
// 假设无条件分支的目标块是它的第一个操作数
|
||||
if (getNumOperands() > 0) {
|
||||
if (auto target_bb = dynamic_cast<BasicBlock *>(getOperand(0))) {
|
||||
succs.push_back(target_bb);
|
||||
}
|
||||
}
|
||||
return succs;
|
||||
}
|
||||
|
||||
}; // class UncondBrInst
|
||||
|
||||
@ -1112,12 +1095,17 @@ class CondBrInst : public Instruction {
|
||||
friend class Function;
|
||||
|
||||
protected:
|
||||
CondBrInst(Value *condition, BasicBlock *thenBlock, BasicBlock *elseBlock,
|
||||
BasicBlock *parent = nullptr)
|
||||
CondBrInst(Value *condition, BasicBlock *thenBlock, BasicBlock *elseBlock,
|
||||
const std::vector<Value *> &thenArgs,
|
||||
const std::vector<Value *> &elseArgs, BasicBlock *parent = nullptr)
|
||||
: Instruction(kCondBr, Type::getVoidType(), parent, "") {
|
||||
// assert(thenBlock->getNumArguments() == thenArgs.size() and
|
||||
// elseBlock->getNumArguments() == elseArgs.size());
|
||||
addOperand(condition);
|
||||
addOperand(thenBlock);
|
||||
addOperand(elseBlock);
|
||||
addOperands(thenArgs);
|
||||
addOperands(elseArgs);
|
||||
}
|
||||
public:
|
||||
Value* getCondition() const { return getOperand(0); }
|
||||
@ -1127,39 +1115,29 @@ public:
|
||||
BasicBlock* getElseBlock() const {
|
||||
return dynamic_cast<BasicBlock *>(getOperand(2));
|
||||
}
|
||||
std::vector<BasicBlock *> getSuccessors() const {
|
||||
std::vector<BasicBlock *> succs;
|
||||
// 假设条件分支的真实块是第二个操作数,假块是第三个操作数
|
||||
// 操作数通常是:[0] 条件值, [1] TrueTargetBlock, [2] FalseTargetBlock
|
||||
if (getNumOperands() > 2) {
|
||||
if (auto true_bb = getThenBlock()) {
|
||||
succs.push_back(true_bb);
|
||||
}
|
||||
if (auto false_bb = getElseBlock()) {
|
||||
succs.push_back(false_bb);
|
||||
}
|
||||
}
|
||||
return succs;
|
||||
}
|
||||
// auto getThenArguments() const {
|
||||
// auto begin = std::next(operand_begin(), 3);
|
||||
// // auto end = std::next(begin, getThenBlock()->getNumArguments());
|
||||
// return make_range(begin, end);
|
||||
// }
|
||||
// auto getElseArguments() const {
|
||||
// auto begin =
|
||||
// std::next(operand_begin(), 3 + getThenBlock()->getNumArguments());
|
||||
// auto end = operand_end();
|
||||
// return make_range(begin, end);
|
||||
// }
|
||||
|
||||
}; // class CondBrInst
|
||||
|
||||
class UnreachableInst : public Instruction {
|
||||
public:
|
||||
// 构造函数:设置指令类型为 kUnreachable
|
||||
explicit UnreachableInst(const std::string& name, BasicBlock *parent = nullptr)
|
||||
: Instruction(kUnreachable, Type::getVoidType(), parent, "") {}
|
||||
|
||||
};
|
||||
|
||||
//! Allocate memory for stack variables, used for non-global variable declartion
|
||||
class AllocaInst : public Instruction {
|
||||
friend class IRBuilder;
|
||||
friend class Function;
|
||||
protected:
|
||||
AllocaInst(Type *type,
|
||||
AllocaInst(Type *type, const std::vector<Value *> &dims = {},
|
||||
BasicBlock *parent = nullptr, const std::string &name = "")
|
||||
: Instruction(kAlloca, type, parent, name) {
|
||||
addOperands(dims);
|
||||
}
|
||||
|
||||
public:
|
||||
@ -1167,6 +1145,9 @@ public:
|
||||
Type* getAllocatedType() const {
|
||||
return getType()->as<PointerType>()->getBaseType();
|
||||
} ///< 获取分配的类型
|
||||
int getNumDims() const { return getNumOperands(); }
|
||||
auto getDims() const { return getOperands(); }
|
||||
Value* getDim(int index) { return getOperand(index); }
|
||||
|
||||
}; // class AllocaInst
|
||||
|
||||
@ -1213,15 +1194,21 @@ class LoadInst : public Instruction {
|
||||
friend class Function;
|
||||
|
||||
protected:
|
||||
LoadInst(Value *pointer,
|
||||
LoadInst(Value *pointer, const std::vector<Value *> &indices = {},
|
||||
BasicBlock *parent = nullptr, const std::string &name = "")
|
||||
: Instruction(kLoad, pointer->getType()->as<PointerType>()->getBaseType(),
|
||||
parent, name) {
|
||||
addOperand(pointer);
|
||||
addOperands(indices);
|
||||
}
|
||||
|
||||
public:
|
||||
int getNumIndices() const { return getNumOperands() - 1; }
|
||||
Value* getPointer() const { return getOperand(0); }
|
||||
auto getIndices() const {
|
||||
return make_range(std::next(operand_begin()), operand_end());
|
||||
}
|
||||
Value* getIndex(int index) const { return getOperand(index + 1); }
|
||||
|
||||
}; // class LoadInst
|
||||
|
||||
@ -1232,15 +1219,22 @@ class StoreInst : public Instruction {
|
||||
|
||||
protected:
|
||||
StoreInst(Value *value, Value *pointer,
|
||||
const std::vector<Value *> &indices = {},
|
||||
BasicBlock *parent = nullptr, const std::string &name = "")
|
||||
: Instruction(kStore, Type::getVoidType(), parent, name) {
|
||||
addOperand(value);
|
||||
addOperand(pointer);
|
||||
addOperands(indices);
|
||||
}
|
||||
|
||||
public:
|
||||
int getNumIndices() const { return getNumOperands() - 2; }
|
||||
Value* getValue() const { return getOperand(0); }
|
||||
Value* getPointer() const { return getOperand(1); }
|
||||
auto getIndices() const {
|
||||
return make_range(std::next(operand_begin(), 2), operand_end());
|
||||
}
|
||||
Value* getIndex(int index) const { return getOperand(index + 2); }
|
||||
|
||||
}; // class StoreInst
|
||||
|
||||
@ -1379,18 +1373,20 @@ protected:
|
||||
|
||||
protected:
|
||||
GlobalValue(Module *parent, Type *type, const std::string &name,
|
||||
const std::vector<Value *> &dims = {},
|
||||
ValueCounter init = {})
|
||||
: Value(type, name), parent(parent) {
|
||||
assert(type->isPointer());
|
||||
// addOperands(dims);
|
||||
// 维度信息已经被记录到Type中,dim只是为了方便初始化
|
||||
numDims = 0;
|
||||
numDims = dims.size();
|
||||
if (init.size() == 0) {
|
||||
unsigned num = 1;
|
||||
auto arrayType = type->as<ArrayType>();
|
||||
while (arrayType) {
|
||||
numDims++;
|
||||
num *= arrayType->getNumElements();
|
||||
arrayType = arrayType->getElementType()->as<ArrayType>();
|
||||
for (unsigned i = 0; i < numDims; i++) {
|
||||
// Assume dims elements are ConstantInteger and cast appropriately
|
||||
auto dim_val = dynamic_cast<ConstantInteger*>(dims[i]);
|
||||
assert(dim_val && "GlobalValue dims must be constant integers");
|
||||
num *= dim_val->getInt();
|
||||
}
|
||||
if (dynamic_cast<PointerType *>(type)->getBaseType() == Type::getFloatType()) {
|
||||
init.push_back(ConstantFloating::get(0.0F), num); // Use new constant factory
|
||||
@ -1402,6 +1398,9 @@ protected:
|
||||
}
|
||||
|
||||
public:
|
||||
// unsigned getNumDims() const { return numDims; } ///< 获取维度数量
|
||||
// Value* getDim(unsigned index) const { return getOperand(index); } ///< 获取位置为index的维度
|
||||
// auto getDims() const { return getOperands(); } ///< 获取维度列表
|
||||
unsigned getNumIndices() const {
|
||||
return numDims;
|
||||
} ///< 获取维度数量
|
||||
@ -1443,19 +1442,13 @@ class ConstantVariable : public Value {
|
||||
ValueCounter initValues; ///< 值
|
||||
|
||||
protected:
|
||||
ConstantVariable(Module *parent, Type *type, const std::string &name, const ValueCounter &init)
|
||||
ConstantVariable(Module *parent, Type *type, const std::string &name, const ValueCounter &init,
|
||||
const std::vector<Value *> &dims = {})
|
||||
: Value(type, name), parent(parent) {
|
||||
assert(type->isPointer());
|
||||
// numDims = dims.size();
|
||||
numDims = 0;
|
||||
if(type->as<PointerType>()->getBaseType()->isArray()) {
|
||||
auto arrayType = type->as<ArrayType>();
|
||||
while (arrayType) {
|
||||
numDims++;
|
||||
arrayType = arrayType->getElementType()->as<ArrayType>();
|
||||
}
|
||||
}
|
||||
numDims = dims.size();
|
||||
initValues = init;
|
||||
// addOperands(dims); 同GlobalValue,维度信息已经被记录到Type中,dim只是为了方便初始化
|
||||
}
|
||||
|
||||
public:
|
||||
@ -1487,6 +1480,9 @@ class ConstantVariable : public Value {
|
||||
|
||||
return getByIndex(index);
|
||||
} ///< 通过多维索引indices获取初始值
|
||||
// unsigned getNumDims() const { return numDims; } ///< 获取维度数量
|
||||
// Value* getDim(unsigned index) const { return getOperand(index); } ///< 获取位置为index的维度
|
||||
// auto getDims() const { return getOperands(); } ///< 获取维度列表
|
||||
const ValueCounter& getInitValues() const { return initValues; } ///< 获取初始值
|
||||
};
|
||||
|
||||
@ -1545,12 +1541,13 @@ class Module {
|
||||
return result.first->second.get();
|
||||
} ///< 创建外部函数
|
||||
///< 变量创建伴随着符号表的更新
|
||||
GlobalValue* createGlobalValue(const std::string &name, Type *type, const ValueCounter &init = {}) {
|
||||
GlobalValue* createGlobalValue(const std::string &name, Type *type, const std::vector<Value *> &dims = {},
|
||||
const ValueCounter &init = {}) {
|
||||
bool isFinished = variableTable.isCurNodeNull();
|
||||
if (isFinished) {
|
||||
variableTable.enterGlobalScope();
|
||||
}
|
||||
auto result = variableTable.addVariable(name, new GlobalValue(this, type, name, init));
|
||||
auto result = variableTable.addVariable(name, new GlobalValue(this, type, name, dims, init));
|
||||
if (isFinished) {
|
||||
variableTable.leaveScope();
|
||||
}
|
||||
@ -1559,8 +1556,9 @@ class Module {
|
||||
}
|
||||
return dynamic_cast<GlobalValue *>(result);
|
||||
} ///< 创建全局变量
|
||||
ConstantVariable* createConstVar(const std::string &name, Type *type, const ValueCounter &init) {
|
||||
auto result = variableTable.addVariable(name, new ConstantVariable(this, type, name, init));
|
||||
ConstantVariable* createConstVar(const std::string &name, Type *type, const ValueCounter &init,
|
||||
const std::vector<Value *> &dims = {}) {
|
||||
auto result = variableTable.addVariable(name, new ConstantVariable(this, type, name, init, dims));
|
||||
if (result == nullptr) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
@ -217,6 +217,12 @@ class IRBuilder {
|
||||
BinaryInst * createOrInst(Value *lhs, Value *rhs, const std::string &name = "") {
|
||||
return createBinaryInst(Instruction::kOr, Type::getIntType(), lhs, rhs, name);
|
||||
} ///< 创建按位或指令
|
||||
BinaryInst * createSRAInst(Value *lhs, Value *rhs, const std::string &name = "") {
|
||||
return createBinaryInst(Instruction::kSRA, Type::getIntType(), lhs, rhs, name);
|
||||
} ///< 创建算术右移指令
|
||||
BinaryInst * createMulhInst(Value *lhs, Value *rhs, const std::string &name = "") {
|
||||
return createBinaryInst(Instruction::kMulh, Type::getIntType(), lhs, rhs, name);
|
||||
} ///< 创建高位乘法指令
|
||||
CallInst * createCallInst(Function *callee, const std::vector<Value *> &args, const std::string &name = "") {
|
||||
std::string newName;
|
||||
if (name.empty() && callee->getReturnType() != Type::getVoidType()) {
|
||||
@ -239,30 +245,31 @@ class IRBuilder {
|
||||
block->getInstructions().emplace(position, inst);
|
||||
return inst;
|
||||
} ///< 创建return指令
|
||||
UncondBrInst * createUncondBrInst(BasicBlock *thenBlock) {
|
||||
auto inst = new UncondBrInst(thenBlock, block);
|
||||
UncondBrInst * createUncondBrInst(BasicBlock *thenBlock, const std::vector<Value *> &args) {
|
||||
auto inst = new UncondBrInst(thenBlock, args, block);
|
||||
assert(inst);
|
||||
block->getInstructions().emplace(position, inst);
|
||||
return inst;
|
||||
} ///< 创建无条件指令
|
||||
CondBrInst * createCondBrInst(Value *condition, BasicBlock *thenBlock, BasicBlock *elseBlock) {
|
||||
auto inst = new CondBrInst(condition, thenBlock, elseBlock, block);
|
||||
CondBrInst * createCondBrInst(Value *condition, BasicBlock *thenBlock, BasicBlock *elseBlock,
|
||||
const std::vector<Value *> &thenArgs, const std::vector<Value *> &elseArgs) {
|
||||
auto inst = new CondBrInst(condition, thenBlock, elseBlock, thenArgs, elseArgs, block);
|
||||
assert(inst);
|
||||
block->getInstructions().emplace(position, inst);
|
||||
return inst;
|
||||
} ///< 创建条件跳转指令
|
||||
UnreachableInst * createUnreachableInst(const std::string &name = "") {
|
||||
auto inst = new UnreachableInst(name, block);
|
||||
assert(inst);
|
||||
block->getInstructions().emplace(position, inst);
|
||||
return inst;
|
||||
} ///< 创建不可达指令
|
||||
AllocaInst * createAllocaInst(Type *type, const std::string &name = "") {
|
||||
auto inst = new AllocaInst(type, block, name);
|
||||
AllocaInst * createAllocaInst(Type *type, const std::vector<Value *> &dims = {}, const std::string &name = "") {
|
||||
auto inst = new AllocaInst(type, dims, block, name);
|
||||
assert(inst);
|
||||
block->getInstructions().emplace(position, inst);
|
||||
return inst;
|
||||
} ///< 创建分配指令
|
||||
AllocaInst * createAllocaInstWithoutInsert(Type *type, const std::vector<Value *> &dims = {}, BasicBlock *parent = nullptr,
|
||||
const std::string &name = "") {
|
||||
auto inst = new AllocaInst(type, dims, parent, name);
|
||||
assert(inst);
|
||||
return inst;
|
||||
} ///< 创建不插入指令列表的分配指令[仅用于phi指令]
|
||||
LoadInst * createLoadInst(Value *pointer, const std::vector<Value *> &indices = {}, const std::string &name = "") {
|
||||
std::string newName;
|
||||
if (name.empty()) {
|
||||
@ -274,7 +281,7 @@ class IRBuilder {
|
||||
newName = name;
|
||||
}
|
||||
|
||||
auto inst = new LoadInst(pointer, block, newName);
|
||||
auto inst = new LoadInst(pointer, indices, block, newName);
|
||||
assert(inst);
|
||||
block->getInstructions().emplace(position, inst);
|
||||
return inst;
|
||||
@ -285,8 +292,9 @@ class IRBuilder {
|
||||
block->getInstructions().emplace(position, inst);
|
||||
return inst;
|
||||
} ///< 创建memset指令
|
||||
StoreInst * createStoreInst(Value *value, Value *pointer, const std::string &name = "") {
|
||||
auto inst = new StoreInst(value, pointer, block, name);
|
||||
StoreInst * createStoreInst(Value *value, Value *pointer, const std::vector<Value *> &indices = {},
|
||||
const std::string &name = "") {
|
||||
auto inst = new StoreInst(value, pointer, indices, block, name);
|
||||
assert(inst);
|
||||
block->getInstructions().emplace(position, inst);
|
||||
return inst;
|
||||
@ -306,6 +314,24 @@ class IRBuilder {
|
||||
block->getInstructions().emplace(block->begin(), inst);
|
||||
return inst;
|
||||
} ///< 创建Phi指令
|
||||
// GetElementPtrInst* createGetElementPtrInst(Value *basePointer,
|
||||
// const std::vector<Value *> &indices = {},
|
||||
// const std::string &name = "") {
|
||||
// std::string newName;
|
||||
// if (name.empty()) {
|
||||
// std::stringstream ss;
|
||||
// ss << tmpIndex;
|
||||
// newName = ss.str();
|
||||
// tmpIndex++;
|
||||
// } else {
|
||||
// newName = name;
|
||||
// }
|
||||
|
||||
// auto inst = new GetElementPtrInst(basePointer, indices, block, newName);
|
||||
// assert(inst);
|
||||
// block->getInstructions().emplace(position, inst);
|
||||
// return inst;
|
||||
// }
|
||||
/**
|
||||
* @brief 根据 LLVM 设计模式创建 GEP 指令。
|
||||
* 它会自动推断返回类型,无需手动指定。
|
||||
|
||||
@ -1,20 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "IR.h"
|
||||
#include "Pass.h"
|
||||
#include <queue>
|
||||
#include <set>
|
||||
|
||||
namespace sysy {
|
||||
|
||||
class BuildCFG : public OptimizationPass {
|
||||
public:
|
||||
static void *ID;
|
||||
BuildCFG() : OptimizationPass("BuildCFG", Granularity::Function) {}
|
||||
bool runOnFunction(Function *F, AnalysisManager &AM) override;
|
||||
void getAnalysisUsage(std::set<void *> &analysisDependencies, std::set<void *> &analysisInvalidations) const override;
|
||||
void *getPassID() const override { return &ID; }
|
||||
|
||||
};
|
||||
|
||||
} // namespace sysy
|
||||
@ -1,139 +1,196 @@
|
||||
#pragma once
|
||||
|
||||
#include "IR.h"
|
||||
#include "Pass.h"
|
||||
#include "SysYIROptUtils.h"
|
||||
#include <cassert>
|
||||
#include <iostream>
|
||||
#include <map>
|
||||
#include <queue>
|
||||
#include <set>
|
||||
#include <unordered_set>
|
||||
#include <vector>
|
||||
#include <variant>
|
||||
#include <functional>
|
||||
|
||||
namespace sysy {
|
||||
|
||||
// 定义三值格 (Three-valued Lattice) 的状态
|
||||
enum class LatticeVal {
|
||||
Top, // ⊤ (未知 / 未初始化)
|
||||
Constant, // c (常量)
|
||||
Bottom // ⊥ (不确定 / 变化 / 未定义)
|
||||
// 稀疏条件常量传播类
|
||||
// Sparse Conditional Constant Propagation
|
||||
/*
|
||||
伪代码
|
||||
function SCCP_Optimization(Module):
|
||||
for each Function in Module:
|
||||
changed = true
|
||||
while changed:
|
||||
changed = false
|
||||
// 阶段1: 常量传播与折叠
|
||||
changed |= PropagateConstants(Function)
|
||||
// 阶段2: 控制流简化
|
||||
changed |= SimplifyControlFlow(Function)
|
||||
end while
|
||||
end for
|
||||
|
||||
function PropagateConstants(Function):
|
||||
// 初始化
|
||||
executableBlocks = {entryBlock}
|
||||
valueState = map<Value, State> // 值->状态映射
|
||||
instWorkList = Queue()
|
||||
edgeWorkList = Queue()
|
||||
|
||||
// 初始化工作列表
|
||||
for each inst in entryBlock:
|
||||
instWorkList.push(inst)
|
||||
|
||||
// 迭代处理
|
||||
while !instWorkList.empty() || !edgeWorkList.empty():
|
||||
// 处理指令工作列表
|
||||
while !instWorkList.empty():
|
||||
inst = instWorkList.pop()
|
||||
// 如果指令是可执行基本块中的
|
||||
if executableBlocks.contains(inst.parent):
|
||||
ProcessInstruction(inst)
|
||||
|
||||
// 处理边工作列表
|
||||
while !edgeWorkList.empty():
|
||||
edge = edgeWorkList.pop()
|
||||
ProcessEdge(edge)
|
||||
|
||||
// 应用常量替换
|
||||
for each inst in Function:
|
||||
if valueState[inst] == CONSTANT:
|
||||
ReplaceWithConstant(inst, valueState[inst].constant)
|
||||
changed = true
|
||||
|
||||
return changed
|
||||
|
||||
function ProcessInstruction(Instruction inst):
|
||||
switch inst.type:
|
||||
//二元操作
|
||||
case BINARY_OP:
|
||||
lhs = GetValueState(inst.operands[0])
|
||||
rhs = GetValueState(inst.operands[1])
|
||||
if lhs == CONSTANT && rhs == CONSTANT:
|
||||
newState = ComputeConstant(inst.op, lhs.value, rhs.value)
|
||||
UpdateState(inst, newState)
|
||||
else if lhs == BOTTOM || rhs == BOTTOM:
|
||||
UpdateState(inst, BOTTOM)
|
||||
//phi
|
||||
case PHI:
|
||||
mergedState = ⊤
|
||||
for each incoming in inst.incomings:
|
||||
// 检查每个输入的状态
|
||||
if executableBlocks.contains(incoming.block):
|
||||
incomingState = GetValueState(incoming.value)
|
||||
mergedState = Meet(mergedState, incomingState)
|
||||
UpdateState(inst, mergedState)
|
||||
// 条件分支
|
||||
case COND_BRANCH:
|
||||
cond = GetValueState(inst.condition)
|
||||
if cond == CONSTANT:
|
||||
// 判断条件分支
|
||||
if cond.value == true:
|
||||
AddEdgeToWorkList(inst.parent, inst.trueTarget)
|
||||
else:
|
||||
AddEdgeToWorkList(inst.parent, inst.falseTarget)
|
||||
else if cond == BOTTOM:
|
||||
AddEdgeToWorkList(inst.parent, inst.trueTarget)
|
||||
AddEdgeToWorkList(inst.parent, inst.falseTarget)
|
||||
|
||||
case UNCOND_BRANCH:
|
||||
AddEdgeToWorkList(inst.parent, inst.target)
|
||||
|
||||
// 其他指令处理...
|
||||
|
||||
function ProcessEdge(Edge edge):
|
||||
fromBB, toBB = edge
|
||||
if !executableBlocks.contains(toBB):
|
||||
executableBlocks.add(toBB)
|
||||
for each inst in toBB:
|
||||
if inst is PHI:
|
||||
instWorkList.push(inst)
|
||||
else:
|
||||
instWorkList.push(inst) // 非PHI指令
|
||||
|
||||
// 更新PHI节点的输入
|
||||
for each phi in toBB.phis:
|
||||
instWorkList.push(phi)
|
||||
|
||||
function SimplifyControlFlow(Function):
|
||||
changed = false
|
||||
// 标记可达基本块
|
||||
ReachableBBs = FindReachableBlocks(Function.entry)
|
||||
|
||||
// 删除不可达块
|
||||
for each bb in Function.blocks:
|
||||
if !ReachableBBs.contains(bb):
|
||||
RemoveDeadBlock(bb)
|
||||
changed = true
|
||||
|
||||
// 简化条件分支
|
||||
for each bb in Function.blocks:
|
||||
terminator = bb.terminator
|
||||
if terminator is COND_BRANCH:
|
||||
cond = GetValueState(terminator.condition)
|
||||
if cond == CONSTANT:
|
||||
SimplifyBranch(terminator, cond.value)
|
||||
changed = true
|
||||
|
||||
return changed
|
||||
|
||||
function RemoveDeadBlock(BasicBlock bb):
|
||||
// 1. 更新前驱块的分支指令
|
||||
for each pred in bb.predecessors:
|
||||
UpdateTerminator(pred, bb)
|
||||
|
||||
// 2. 更新后继块的PHI节点
|
||||
for each succ in bb.successors:
|
||||
RemovePhiIncoming(succ, bb)
|
||||
|
||||
// 3. 删除块内所有指令
|
||||
for each inst in bb.instructions:
|
||||
inst.remove()
|
||||
|
||||
// 4. 从函数中移除基本块
|
||||
Function.removeBlock(bb)
|
||||
|
||||
function Meet(State a, State b):
|
||||
if a == ⊤: return b
|
||||
if b == ⊤: return a
|
||||
if a == ⊥ || b == ⊥: return ⊥
|
||||
if a.value == b.value: return a
|
||||
return ⊥
|
||||
|
||||
function UpdateState(Value v, State newState):
|
||||
oldState = valueState.get(v, ⊤)
|
||||
if newState != oldState:
|
||||
valueState[v] = newState
|
||||
for each user in v.users:
|
||||
if user is Instruction:
|
||||
instWorkList.push(user)
|
||||
|
||||
*/
|
||||
|
||||
enum class LatticeValue {
|
||||
Top, // ⊤ (Unknown)
|
||||
Constant, // c (Constant)
|
||||
Bottom // ⊥ (Undefined / Varying)
|
||||
};
|
||||
// LatticeValue: 用于表示值的状态,Top表示未知,Constant表示常量,Bottom表示未定义或变化的值。
|
||||
// 这里的LatticeValue用于跟踪每个SSA值(变量、指令结果)的状态,
|
||||
// 以便在SCCP过程中进行常量传播和控制流简化。
|
||||
|
||||
// 新增枚举来区分常量的实际类型
|
||||
enum class ValueType {
|
||||
Integer,
|
||||
Float,
|
||||
Unknown // 用于 Top 和 Bottom 状态
|
||||
};
|
||||
//TODO: 下列数据结构考虑集成到类中,避免重命名问题
|
||||
static std::set<Instruction *> Worklist;
|
||||
static std::unordered_set<BasicBlock*> Executable_Blocks;
|
||||
static std::queue<std::pair<BasicBlock *, BasicBlock *> > Executable_Edges;
|
||||
static std::map<Value*, LatticeValue> valueState;
|
||||
|
||||
// 用于表示 SSA 值的具体状态(包含格值和常量值)
|
||||
struct SSAPValue {
|
||||
LatticeVal state;
|
||||
std::variant<int, float> constantVal; // 使用 std::variant 存储 int 或 float
|
||||
ValueType constant_type; // 记录常量是整数还是浮点数
|
||||
|
||||
// 默认构造函数,初始化为 Top
|
||||
SSAPValue() : state(LatticeVal::Top), constantVal(0), constant_type(ValueType::Unknown) {}
|
||||
// 构造函数,用于创建 Bottom 状态
|
||||
SSAPValue(LatticeVal s) : state(s), constantVal(0), constant_type(ValueType::Unknown) {
|
||||
assert((s == LatticeVal::Top || s == LatticeVal::Bottom) && "SSAPValue(LatticeVal) only for Top/Bottom");
|
||||
}
|
||||
// 构造函数,用于创建 int Constant 状态
|
||||
SSAPValue(int c) : state(LatticeVal::Constant), constantVal(c), constant_type(ValueType::Integer) {}
|
||||
// 构造函数,用于创建 float Constant 状态
|
||||
SSAPValue(float c) : state(LatticeVal::Constant), constantVal(c), constant_type(ValueType::Float) {}
|
||||
|
||||
// 比较操作符,用于判断状态是否改变
|
||||
bool operator==(const SSAPValue &other) const {
|
||||
if (state != other.state)
|
||||
return false;
|
||||
if (state == LatticeVal::Constant) {
|
||||
if (constant_type != other.constant_type) return false; // 类型必须匹配
|
||||
return constantVal == other.constantVal; // std::variant 会比较内部值
|
||||
}
|
||||
return true; // Top == Top, Bottom == Bottom
|
||||
}
|
||||
bool operator!=(const SSAPValue &other) const { return !(*this == other); }
|
||||
};
|
||||
|
||||
// SCCP 上下文类,持有每个函数运行时的状态
|
||||
class SCCPContext {
|
||||
class SCCP {
|
||||
private:
|
||||
IRBuilder *builder; // IR 构建器,用于插入指令和创建常量
|
||||
Module *pModule;
|
||||
|
||||
// 工作列表
|
||||
// 存储需要重新评估的指令
|
||||
std::queue<Instruction *> instWorkList;
|
||||
// 存储需要重新评估的控制流边 (pair: from_block, to_block)
|
||||
std::queue<std::pair<BasicBlock *, BasicBlock *>> edgeWorkList;
|
||||
public:
|
||||
SCCP(Module *pMoudle) : pModule(pMoudle) {}
|
||||
|
||||
// 格值映射:SSA Value 到其当前状态
|
||||
std::map<Value *, SSAPValue> valueState;
|
||||
// 可执行基本块集合
|
||||
std::unordered_set<BasicBlock *> executableBlocks;
|
||||
// 追踪已访问的CFG边,防止重复添加,使用 SysYIROptUtils::PairHash
|
||||
std::unordered_set<std::pair<BasicBlock*, BasicBlock*>, SysYIROptUtils::PairHash> visitedCFGEdges;
|
||||
|
||||
// 辅助函数:格操作 Meet
|
||||
SSAPValue Meet(const SSAPValue &a, const SSAPValue &b);
|
||||
// 辅助函数:获取值的当前状态,如果不存在则默认为 Top
|
||||
SSAPValue GetValueState(Value *v);
|
||||
// 辅助函数:更新值的状态,如果状态改变,将所有用户加入指令工作列表
|
||||
void UpdateState(Value *v, SSAPValue newState);
|
||||
// 辅助函数:将边加入边工作列表,并更新可执行块
|
||||
void AddEdgeToWorkList(BasicBlock *fromBB, BasicBlock *toBB);
|
||||
// 辅助函数:标记一个块为可执行
|
||||
void MarkBlockExecutable(BasicBlock* block);
|
||||
|
||||
// 辅助函数:对二元操作进行常量折叠
|
||||
SSAPValue ComputeConstant(BinaryInst *binaryinst, SSAPValue lhsVal, SSAPValue rhsVal);
|
||||
// 辅助函数:对一元操作进行常量折叠
|
||||
SSAPValue ComputeConstant(UnaryInst *unaryInst, SSAPValue operandVal);
|
||||
|
||||
// 主要优化阶段
|
||||
// 阶段1: 常量传播与折叠
|
||||
bool PropagateConstants(Function *func);
|
||||
// 阶段2: 控制流简化
|
||||
bool SimplifyControlFlow(Function *func);
|
||||
|
||||
// 辅助函数:处理单条指令
|
||||
void run();
|
||||
bool PropagateConstants(Function *function);
|
||||
bool SimplifyControlFlow(Function *function);
|
||||
void ProcessInstruction(Instruction *inst);
|
||||
// 辅助函数:处理单条控制流边
|
||||
void ProcessEdge(const std::pair<BasicBlock *, BasicBlock *> &edge);
|
||||
|
||||
// 控制流简化辅助函数
|
||||
// 查找所有可达的基本块 (基于常量条件)
|
||||
std::unordered_set<BasicBlock *> FindReachableBlocks(Function *func);
|
||||
// 移除死块
|
||||
void RemoveDeadBlock(BasicBlock *bb, Function *func);
|
||||
// 简化分支(将条件分支替换为无条件分支)
|
||||
void SimplifyBranch(CondBrInst*brInst, bool condVal); // 保持 BranchInst
|
||||
// 更新前驱块的终结指令(当一个后继块被移除时)
|
||||
void UpdateTerminator(BasicBlock *predBB, BasicBlock *removedSucc);
|
||||
// 移除 Phi 节点的入边(当其前驱块被移除时)
|
||||
void RemovePhiIncoming(BasicBlock *phiParentBB, BasicBlock *removedPred);
|
||||
|
||||
public:
|
||||
SCCPContext(IRBuilder *builder) : builder(builder) {}
|
||||
|
||||
// 运行 SCCP 优化
|
||||
void run(Function *func, AnalysisManager &AM);
|
||||
void RemoveDeadBlock(BasicBlock *bb);
|
||||
void UpdateState(Value *v, LatticeValue newState);
|
||||
LatticeValue Meet(LatticeValue a, LatticeValue b);
|
||||
LatticeValue GetValueState(Value *v);
|
||||
};
|
||||
|
||||
// SCCP 优化遍类,继承自 OptimizationPass
|
||||
class SCCP : public OptimizationPass {
|
||||
private:
|
||||
IRBuilder *builder; // IR 构建器,作为 Pass 的成员,传入 Context
|
||||
|
||||
public:
|
||||
SCCP(IRBuilder *builder) : OptimizationPass("SCCP", Granularity::Function), builder(builder) {}
|
||||
static void *ID;
|
||||
bool runOnFunction(Function *F, AnalysisManager &AM) override;
|
||||
void getAnalysisUsage(std::set<void *> &analysisDependencies, std::set<void *> &analysisInvalidations) const override;
|
||||
void *getPassID() const override { return &ID; }
|
||||
};
|
||||
|
||||
} // namespace sysy
|
||||
} // namespace sysy
|
||||
|
||||
@ -2,7 +2,6 @@
|
||||
|
||||
#include "IR.h"
|
||||
|
||||
extern int DEBUG;
|
||||
namespace sysy {
|
||||
|
||||
// 优化工具类,包含一些通用的优化方法
|
||||
@ -11,88 +10,13 @@ namespace sysy {
|
||||
class SysYIROptUtils{
|
||||
|
||||
public:
|
||||
struct PairHash {
|
||||
template <class T1, class T2>
|
||||
std::size_t operator () (const std::pair<T1, T2>& p) const {
|
||||
auto h1 = std::hash<T1>{}(p.first);
|
||||
auto h2 = std::hash<T2>{}(p.second);
|
||||
|
||||
// 简单的组合哈希值,可以更复杂以减少冲突
|
||||
// 使用 boost::hash_combine 的简化版本
|
||||
return h1 ^ (h2 << 1);
|
||||
}
|
||||
};
|
||||
|
||||
static void RemoveUserOperandUses(User *user) {
|
||||
if (!user) {
|
||||
return;
|
||||
// 仅仅删除use关系
|
||||
static void usedelete(Instruction *instr) {
|
||||
for (auto &use : instr->getOperands()) {
|
||||
Value* val = use->getValue();
|
||||
val->removeUse(use);
|
||||
}
|
||||
|
||||
// 遍历 User 的 operands 列表。
|
||||
// 由于 operands 是 protected 成员,我们需要一个临时方法来访问它,
|
||||
// 或者在 User 类中添加一个 friend 声明。
|
||||
// 假设 User 内部有一个像 getOperands() 这样的公共方法返回 operands 的引用,
|
||||
// 或者将 SysYIROptUtils 声明为 User 的 friend。
|
||||
// 为了示例,我将假设可以直接访问 user->operands 或通过一个getter。
|
||||
// 如果无法直接访问,请在 IR.h 的 User 类中添加:
|
||||
// public: const std::vector<std::shared_ptr<Use>>& getOperands() const { return operands; }
|
||||
|
||||
// 迭代 copies of shared_ptr to avoid issues if removeUse modifies the list
|
||||
// (though remove should handle it, iterating a copy is safer or reverse iteration).
|
||||
// Since we'll clear the vector at the end, iterating forward is fine.
|
||||
for (const auto& use_ptr : user->getOperands()) { // 假设 getOperands() 可用
|
||||
if (use_ptr) {
|
||||
Value *val = use_ptr->getValue(); // 获取 Use 指向的 Value (如 AllocaInst)
|
||||
if (val) {
|
||||
val->removeUse(use_ptr); // 通知 Value 从其 uses 列表中移除此 Use 关系
|
||||
}
|
||||
}
|
||||
}
|
||||
// 清空 User 的 operands 向量。这会递减 User 持有的 shared_ptr<Use> 的引用计数。
|
||||
// 当引用计数降为 0 时,Use 对象本身将被销毁。
|
||||
// User::operands.clear(); // 这个步骤会在 Instruction 的析构函数中自动完成,因为它是 vector 成员
|
||||
// 或者我们可以在 User::removeOperand 方法中确保 Use 对象从 operands 中移除。
|
||||
// 实际上,只要 Value::removeUse(use_ptr) 被调用了,
|
||||
// 当 Instruction 所在的 unique_ptr 销毁时,它的 operands vector 也会被销毁。
|
||||
// 所以这里不需要显式 clear()
|
||||
}
|
||||
static void usedelete(Instruction *inst) {
|
||||
assert(inst && "Instruction to delete cannot be null.");
|
||||
BasicBlock *parentBlock = inst->getParent();
|
||||
assert(parentBlock && "Instruction must have a parent BasicBlock to be deleted.");
|
||||
|
||||
// 步骤1: 处理所有使用者,将他们从使用 inst 变为使用 UndefinedValue
|
||||
// 这将清理 inst 作为 Value 时的 uses 列表
|
||||
if (!inst->getUses().empty()) {
|
||||
inst->replaceAllUsesWith(UndefinedValue::get(inst->getType()));
|
||||
}
|
||||
|
||||
// 步骤2: 清理 inst 作为 User 时的操作数关系
|
||||
// 通知 inst 所使用的所有 Value (如 AllocaInst),移除对应的 Use 关系。
|
||||
// 这里的 inst 实际上是一个 User*,所以可以安全地向下转型。
|
||||
RemoveUserOperandUses(static_cast<User*>(inst));
|
||||
|
||||
// 步骤3: 物理删除指令
|
||||
// 这会导致 Instruction 对象的 unique_ptr 销毁,从而调用其析构函数链。
|
||||
parentBlock->removeInst(inst);
|
||||
}
|
||||
|
||||
static BasicBlock::iterator usedelete(BasicBlock::iterator inst_it) {
|
||||
Instruction *inst_to_delete = inst_it->get();
|
||||
BasicBlock *parentBlock = inst_to_delete->getParent();
|
||||
assert(parentBlock && "Instruction must have a parent BasicBlock for iterator deletion.");
|
||||
|
||||
// 步骤1: 处理所有使用者
|
||||
if (!inst_to_delete->getUses().empty()) {
|
||||
inst_to_delete->replaceAllUsesWith(UndefinedValue::get(inst_to_delete->getType()));
|
||||
}
|
||||
|
||||
// 步骤2: 清理操作数关系
|
||||
RemoveUserOperandUses(static_cast<User*>(inst_to_delete));
|
||||
|
||||
// 步骤3: 物理删除指令并返回下一个迭代器
|
||||
return parentBlock->removeInst(inst_it);
|
||||
}
|
||||
|
||||
// 判断是否是全局变量
|
||||
static bool isGlobal(Value *val) {
|
||||
@ -102,17 +26,7 @@ public:
|
||||
// 判断是否是数组
|
||||
static bool isArr(Value *val) {
|
||||
auto aval = dynamic_cast<AllocaInst *>(val);
|
||||
// 如果是 AllocaInst 且通过Type::isArray()判断为数组类型
|
||||
return aval && aval->getType()->as<PointerType>()->getBaseType()->isArray();
|
||||
}
|
||||
// 判断是否是指向数组的指针
|
||||
static bool isArrPointer(Value *val) {
|
||||
auto aval = dynamic_cast<AllocaInst *>(val);
|
||||
// 如果是 AllocaInst 且通过Type::isPointer()判断为指针;
|
||||
auto baseType = aval->getType()->as<PointerType>()->getBaseType();
|
||||
// 在sysy中,函数的数组参数会退化成指针
|
||||
// 所以当AllocaInst的basetype是PointerType时(一维数组)或者是指向ArrayType的PointerType(多位数组)时,返回true
|
||||
return aval && (baseType->isPointer() || baseType->as<PointerType>()->getBaseType()->isArray());
|
||||
return aval != nullptr && aval->getNumDims() != 0;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
@ -10,8 +10,6 @@ add_library(midend_lib STATIC
|
||||
Pass/Optimize/Mem2Reg.cpp
|
||||
Pass/Optimize/Reg2Mem.cpp
|
||||
Pass/Optimize/SysYIRCFGOpt.cpp
|
||||
Pass/Optimize/SCCP.cpp
|
||||
Pass/Optimize/BuildCFG.cpp
|
||||
)
|
||||
|
||||
# 包含中端模块所需的头文件路径
|
||||
|
||||
@ -227,13 +227,12 @@ Function * Function::clone(const std::string &suffix) const {
|
||||
auto oldAllocInst = dynamic_cast<AllocaInst *>(value);
|
||||
if (oldAllocInst != nullptr) {
|
||||
std::vector<Value *> dims;
|
||||
// TODO: 这里的dims用type推断
|
||||
// for (const auto &dim : oldAllocInst->getDims()) {
|
||||
// dims.emplace_back(dim->getValue());
|
||||
// }
|
||||
for (const auto &dim : oldAllocInst->getDims()) {
|
||||
dims.emplace_back(dim->getValue());
|
||||
}
|
||||
ss << oldAllocInst->getName() << suffix;
|
||||
auto newAllocInst =
|
||||
new AllocaInst(oldAllocInst->getType(), oldNewBlockMap.at(oldAllocInst->getParent()), ss.str());
|
||||
new AllocaInst(oldAllocInst->getType(), dims, oldNewBlockMap.at(oldAllocInst->getParent()), ss.str());
|
||||
ss.str("");
|
||||
oldNewValueMap.emplace(oldAllocInst, newAllocInst);
|
||||
if (isAddedToCreate.find(oldAllocInst) == isAddedToCreate.end()) {
|
||||
@ -253,13 +252,12 @@ Function * Function::clone(const std::string &suffix) const {
|
||||
if (oldNewValueMap.find(inst.get()) == oldNewValueMap.end()) {
|
||||
auto oldAllocInst = dynamic_cast<AllocaInst *>(inst.get());
|
||||
std::vector<Value *> dims;
|
||||
// TODO: 这里的dims用type推断
|
||||
// for (const auto &dim : oldAllocInst->getDims()) {
|
||||
// dims.emplace_back(dim->getValue());
|
||||
// }
|
||||
for (const auto &dim : oldAllocInst->getDims()) {
|
||||
dims.emplace_back(dim->getValue());
|
||||
}
|
||||
ss << oldAllocInst->getName() << suffix;
|
||||
auto newAllocInst =
|
||||
new AllocaInst(oldAllocInst->getType(), oldNewBlockMap.at(oldAllocInst->getParent()), ss.str());
|
||||
new AllocaInst(oldAllocInst->getType(), dims, oldNewBlockMap.at(oldAllocInst->getParent()), ss.str());
|
||||
ss.str("");
|
||||
oldNewValueMap.emplace(oldAllocInst, newAllocInst);
|
||||
if (isAddedToCreate.find(oldAllocInst) == isAddedToCreate.end()) {
|
||||
@ -424,7 +422,7 @@ Function * Function::clone(const std::string &suffix) const {
|
||||
Value *newCond;
|
||||
newCond = oldNewValueMap.at(oldCond);
|
||||
auto newCondBrInst = new CondBrInst(newCond, oldNewBlockMap.at(oldCondBrInst->getThenBlock()),
|
||||
oldNewBlockMap.at(oldCondBrInst->getElseBlock()),
|
||||
oldNewBlockMap.at(oldCondBrInst->getElseBlock()), {}, {},
|
||||
oldNewBlockMap.at(oldCondBrInst->getParent()));
|
||||
oldNewValueMap.emplace(oldCondBrInst, newCondBrInst);
|
||||
break;
|
||||
@ -433,7 +431,7 @@ Function * Function::clone(const std::string &suffix) const {
|
||||
case Instruction::kBr: {
|
||||
auto oldBrInst = dynamic_cast<UncondBrInst *>(inst);
|
||||
auto newBrInst =
|
||||
new UncondBrInst(oldNewBlockMap.at(oldBrInst->getBlock()), oldNewBlockMap.at(oldBrInst->getParent()));
|
||||
new UncondBrInst(oldNewBlockMap.at(oldBrInst->getBlock()), {}, oldNewBlockMap.at(oldBrInst->getParent()));
|
||||
oldNewValueMap.emplace(oldBrInst, newBrInst);
|
||||
break;
|
||||
}
|
||||
@ -462,12 +460,11 @@ Function * Function::clone(const std::string &suffix) const {
|
||||
newPointer = oldNewValueMap.at(oldPointer);
|
||||
|
||||
std::vector<Value *> newIndices;
|
||||
// for (const auto &index : oldLoadInst->getIndices()) {
|
||||
// newIndices.emplace_back(oldNewValueMap.at(index->getValue()));
|
||||
// }
|
||||
for (const auto &index : oldLoadInst->getIndices()) {
|
||||
newIndices.emplace_back(oldNewValueMap.at(index->getValue()));
|
||||
}
|
||||
ss << oldLoadInst->getName() << suffix;
|
||||
// TODO : 这里的newLoadInst的类型需要根据oldLoadInst的类型来推断
|
||||
auto newLoadInst = new LoadInst(newPointer, oldNewBlockMap.at(oldLoadInst->getParent()), ss.str());
|
||||
auto newLoadInst = new LoadInst(newPointer, newIndices, oldNewBlockMap.at(oldLoadInst->getParent()), ss.str());
|
||||
ss.str("");
|
||||
oldNewValueMap.emplace(oldLoadInst, newLoadInst);
|
||||
break;
|
||||
@ -482,11 +479,10 @@ Function * Function::clone(const std::string &suffix) const {
|
||||
std::vector<Value *> newIndices;
|
||||
newPointer = oldNewValueMap.at(oldPointer);
|
||||
newValue = oldNewValueMap.at(oldValue);
|
||||
// TODO: 这里的newIndices需要根据oldStoreInst的类型来推断
|
||||
// for (const auto &index : oldStoreInst->getIndices()) {
|
||||
// newIndices.emplace_back(oldNewValueMap.at(index->getValue()));
|
||||
// }
|
||||
auto newStoreInst = new StoreInst(newValue, newPointer,
|
||||
for (const auto &index : oldStoreInst->getIndices()) {
|
||||
newIndices.emplace_back(oldNewValueMap.at(index->getValue()));
|
||||
}
|
||||
auto newStoreInst = new StoreInst(newValue, newPointer, newIndices,
|
||||
oldNewBlockMap.at(oldStoreInst->getParent()), oldStoreInst->getName());
|
||||
oldNewValueMap.emplace(oldStoreInst, newStoreInst);
|
||||
break;
|
||||
@ -569,7 +565,7 @@ void User::replaceOperand(unsigned index, Value *value) {
|
||||
* phi相关函数
|
||||
*/
|
||||
|
||||
Value* PhiInst::getvalfromBlk(BasicBlock* blk){
|
||||
Value* PhiInst::getvalfromBlk(BasicBlock* blk){
|
||||
refreshB2VMap();
|
||||
if( blk2val.find(blk) != blk2val.end()) {
|
||||
return blk2val.at(blk);
|
||||
@ -619,13 +615,11 @@ void PhiInst::delBlk(BasicBlock* blk){
|
||||
|
||||
void PhiInst::replaceBlk(BasicBlock* newBlk, unsigned k){
|
||||
refreshB2VMap();
|
||||
BasicBlock* oldBlk = getBlock(k);
|
||||
Value* val = blk2val.at(oldBlk);
|
||||
// Value* val = blk2val.at(getBlock(k));
|
||||
Value* val = blk2val.at(getBlock(k));
|
||||
// 替换基本块
|
||||
setOperand(2 * k + 1, newBlk);
|
||||
// 替换blk2val映射
|
||||
blk2val.erase(oldBlk);
|
||||
blk2val.erase(getBlock(k));
|
||||
blk2val.emplace(newBlk, val);
|
||||
}
|
||||
|
||||
|
||||
@ -1,79 +0,0 @@
|
||||
#include "BuildCFG.h"
|
||||
#include "Dom.h"
|
||||
#include "Liveness.h"
|
||||
#include <iostream>
|
||||
#include <queue>
|
||||
#include <set>
|
||||
|
||||
namespace sysy {
|
||||
|
||||
void *BuildCFG::ID = (void *)&BuildCFG::ID; // 定义唯一的 Pass ID
|
||||
|
||||
// 声明Pass的分析使用
|
||||
void BuildCFG::getAnalysisUsage(std::set<void *> &analysisDependencies, std::set<void *> &analysisInvalidations) const {
|
||||
// BuildCFG不依赖其他分析
|
||||
// analysisDependencies.insert(&DominatorTreeAnalysisPass::ID); // 错误的例子
|
||||
|
||||
// BuildCFG会使所有依赖于CFG的分析结果失效,所以它必须声明这些失效
|
||||
analysisInvalidations.insert(&DominatorTreeAnalysisPass::ID);
|
||||
analysisInvalidations.insert(&LivenessAnalysisPass::ID);
|
||||
}
|
||||
|
||||
bool BuildCFG::runOnFunction(Function *F, AnalysisManager &AM) {
|
||||
if (DEBUG) {
|
||||
std::cout << "Running BuildCFG pass on function: " << F->getName() << std::endl;
|
||||
}
|
||||
|
||||
bool changed = false;
|
||||
|
||||
// 1. 清空所有基本块的前驱和后继列表
|
||||
for (auto &bb : F->getBasicBlocks()) {
|
||||
bb->clearPredecessors();
|
||||
bb->clearSuccessors();
|
||||
}
|
||||
|
||||
// 2. 遍历每个基本块,重建CFG
|
||||
for (auto &bb : F->getBasicBlocks()) {
|
||||
// 获取基本块的最后一条指令
|
||||
auto &inst = *bb->terminator();
|
||||
Instruction *termInst = inst.get();
|
||||
// 确保基本块有终结指令
|
||||
if (!termInst) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// 根据终结指令类型,建立前驱后继关系
|
||||
if (termInst->isBranch()) {
|
||||
// 无条件跳转
|
||||
if (termInst->isUnconditional()) {
|
||||
auto brInst = dynamic_cast<UncondBrInst *>(termInst);
|
||||
BasicBlock *succ = dynamic_cast<BasicBlock *>(brInst->getBlock());
|
||||
assert(succ && "Branch instruction's target must be a BasicBlock");
|
||||
bb->addSuccessor(succ);
|
||||
succ->addPredecessor(bb.get());
|
||||
changed = true;
|
||||
|
||||
// 条件跳转
|
||||
} else if (termInst->isConditional()) {
|
||||
auto brInst = dynamic_cast<CondBrInst *>(termInst);
|
||||
BasicBlock *trueSucc = dynamic_cast<BasicBlock *>(brInst->getThenBlock());
|
||||
BasicBlock *falseSucc = dynamic_cast<BasicBlock *>(brInst->getElseBlock());
|
||||
|
||||
assert(trueSucc && falseSucc && "Branch instruction's targets must be BasicBlocks");
|
||||
|
||||
bb->addSuccessor(trueSucc);
|
||||
trueSucc->addPredecessor(bb.get());
|
||||
bb->addSuccessor(falseSucc);
|
||||
falseSucc->addPredecessor(bb.get());
|
||||
changed = true;
|
||||
}
|
||||
} else if (auto retInst = dynamic_cast<ReturnInst *>(termInst)) {
|
||||
// RetInst没有后继,无需处理
|
||||
// ...
|
||||
}
|
||||
}
|
||||
|
||||
return changed;
|
||||
}
|
||||
|
||||
} // namespace sysy
|
||||
@ -51,8 +51,10 @@ void DCEContext::run(Function *func, AnalysisManager *AM, bool &changed) {
|
||||
// 如果指令不在活跃集合中,则删除它。
|
||||
// 分支和返回指令由 isAlive 处理,并会被保留。
|
||||
if (alive_insts.count(currentInst) == 0) {
|
||||
instIter = SysYIROptUtils::usedelete(instIter); // 删除后返回下一个迭代器
|
||||
// 删除指令,保留用户风格的 SysYIROptUtils::usedelete 和 erase
|
||||
changed = true; // 标记 IR 已被修改
|
||||
SysYIROptUtils::usedelete(currentInst);
|
||||
instIter = basicBlock->getInstructions().erase(instIter); // 删除后返回下一个迭代器
|
||||
} else {
|
||||
++instIter; // 指令活跃,移动到下一个
|
||||
}
|
||||
|
||||
@ -240,11 +240,10 @@ void Mem2RegContext::renameVariables(AllocaInst *currentAlloca, BasicBlock *curr
|
||||
// loadInst->getPointer() 返回 AllocaInst*
|
||||
// 将 LoadInst 的所有用途替换为当前 alloca 值栈顶部的 SSA 值
|
||||
assert(!allocaToValueStackMap[alloca].empty() && "Value stack empty for alloca during load replacement!");
|
||||
if(DEBUG){
|
||||
std::cout << "Mem2Reg: Replacing load " << loadInst->getPointer()->getName() << " with SSA value." << std::endl;
|
||||
}
|
||||
loadInst->replaceAllUsesWith(allocaToValueStackMap[alloca].top());
|
||||
instIter = SysYIROptUtils::usedelete(instIter);
|
||||
// instIter = currentBB->force_delete_inst(loadInst); // 删除 LoadInst
|
||||
SysYIROptUtils::usedelete(loadInst); // 仅删除 use 关系
|
||||
instIter = currentBB->getInstructions().erase(instIter); // 删除 LoadInst
|
||||
instDeleted = true;
|
||||
// std::cerr << "Mem2Reg: Replaced load " << loadInst->name() << " with SSA value." << std::endl;
|
||||
break;
|
||||
@ -258,12 +257,10 @@ void Mem2RegContext::renameVariables(AllocaInst *currentAlloca, BasicBlock *curr
|
||||
if (storeInst->getPointer() == alloca) {
|
||||
// 假设 storeInst->getPointer() 返回 AllocaInst*
|
||||
// 将 StoreInst 存储的值作为新的 SSA 值,压入值栈
|
||||
if(DEBUG){
|
||||
std::cout << "Mem2Reg: Replacing store to " << storeInst->getPointer()->getName() << " with SSA value." << std::endl;
|
||||
}
|
||||
allocaToValueStackMap[alloca].push(storeInst->getValue());
|
||||
localStackPushed.push(storeInst->getValue()); // 记录以便弹出
|
||||
instIter = SysYIROptUtils::usedelete(instIter);
|
||||
SysYIROptUtils::usedelete(storeInst);
|
||||
instIter = currentBB->getInstructions().erase(instIter); // 删除 StoreInst
|
||||
instDeleted = true;
|
||||
// std::cerr << "Mem2Reg: Replaced store to " << storeInst->ptr()->name() << " with SSA value." << std::endl;
|
||||
break;
|
||||
@ -301,9 +298,7 @@ void Mem2RegContext::renameVariables(AllocaInst *currentAlloca, BasicBlock *curr
|
||||
if(dominatedBlocks){
|
||||
for (auto dominatedBB : *dominatedBlocks) {
|
||||
if (dominatedBB) {
|
||||
if(DEBUG){
|
||||
std::cout << "Mem2Reg: Recursively renaming variables in dominated block: " << dominatedBB->getName() << std::endl;
|
||||
}
|
||||
std::cout << "Mem2Reg: Recursively renaming variables in dominated block: " << dominatedBB->getName() << std::endl;
|
||||
renameVariables(currentAlloca, dominatedBB);
|
||||
}
|
||||
}
|
||||
@ -332,6 +327,7 @@ void Mem2RegContext::cleanup() {
|
||||
if (alloca && alloca->getParent()) {
|
||||
// 删除 alloca 指令本身
|
||||
SysYIROptUtils::usedelete(alloca);
|
||||
alloca->getParent()->removeInst(alloca); // 从基本块中删除 alloca
|
||||
|
||||
// std::cerr << "Mem2Reg: Deleted alloca " << alloca->name() << std::endl;
|
||||
}
|
||||
|
||||
@ -74,7 +74,7 @@ void Reg2MemContext::allocateMemoryForSSAValues(Function *func) {
|
||||
// 默认情况下,将所有参数是提升到内存
|
||||
if (isPromotableToMemory(arg)) {
|
||||
// 参数的类型就是 AllocaInst 需要分配的类型
|
||||
AllocaInst *alloca = builder->createAllocaInst(Type::getPointerType(arg->getType()), arg->getName() + ".reg2mem");
|
||||
AllocaInst *alloca = builder->createAllocaInst(Type::getPointerType(arg->getType()), {}, arg->getName() + ".reg2mem");
|
||||
// 将参数值 store 到 alloca 中 (这是 Mem2Reg 逆转的关键一步)
|
||||
valueToAllocaMap[arg] = alloca;
|
||||
|
||||
@ -103,7 +103,7 @@ void Reg2MemContext::allocateMemoryForSSAValues(Function *func) {
|
||||
// AllocaInst 应该在入口块,而不是当前指令所在块
|
||||
// 这里我们只是创建,并稍后调整其位置
|
||||
// 通常的做法是在循环结束后统一将 alloca 放到 entryBlock 的顶部
|
||||
AllocaInst *alloca = builder->createAllocaInst(Type::getPointerType(inst.get()->getType()), inst.get()->getName() + ".reg2mem");
|
||||
AllocaInst *alloca = builder->createAllocaInst(Type::getPointerType(inst.get()->getType()), {}, inst.get()->getName() + ".reg2mem");
|
||||
valueToAllocaMap[inst.get()] = alloca;
|
||||
}
|
||||
}
|
||||
@ -181,7 +181,8 @@ void Reg2MemContext::rewritePhis(Function *func) {
|
||||
// 实际删除 Phi 指令
|
||||
for (auto phi : phisToErase) {
|
||||
if (phi && phi->getParent()) {
|
||||
SysYIROptUtils::usedelete(phi);
|
||||
SysYIROptUtils::usedelete(phi); // 清理 use-def 链
|
||||
phi->getParent()->removeInst(phi); // 从基本块中删除
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -1,880 +0,0 @@
|
||||
#include "SCCP.h"
|
||||
#include "Dom.h"
|
||||
#include "Liveness.h"
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
#include <cmath> // For std::fmod, std::fabs
|
||||
#include <limits> // For std::numeric_limits
|
||||
|
||||
namespace sysy {
|
||||
|
||||
// Pass ID for SCCP
|
||||
void *SCCP::ID = (void *)&SCCP::ID;
|
||||
|
||||
// SCCPContext methods
|
||||
SSAPValue SCCPContext::Meet(const SSAPValue &a, const SSAPValue &b) {
|
||||
if (a.state == LatticeVal::Bottom || b.state == LatticeVal::Bottom) {
|
||||
return SSAPValue(LatticeVal::Bottom);
|
||||
}
|
||||
if (a.state == LatticeVal::Top) {
|
||||
return b;
|
||||
}
|
||||
if (b.state == LatticeVal::Top) {
|
||||
return a;
|
||||
}
|
||||
// Both are constants
|
||||
if (a.constant_type != b.constant_type) {
|
||||
return SSAPValue(LatticeVal::Bottom); // 不同类型的常量,结果为 Bottom
|
||||
}
|
||||
if (a.constantVal == b.constantVal) {
|
||||
return a; // 相同常量
|
||||
}
|
||||
return SSAPValue(LatticeVal::Bottom); // 相同类型但值不同,结果为 Bottom
|
||||
}
|
||||
|
||||
SSAPValue SCCPContext::GetValueState(Value *v) {
|
||||
if (auto constVal = dynamic_cast<ConstantValue *>(v)) {
|
||||
// 特殊处理 UndefinedValue:将其视为 Bottom
|
||||
if (dynamic_cast<UndefinedValue *>(constVal)) {
|
||||
return SSAPValue(LatticeVal::Bottom);
|
||||
}
|
||||
// 处理常规的 ConstantInteger 和 ConstantFloating
|
||||
if (constVal->getType()->isInt()) {
|
||||
return SSAPValue(constVal->getInt());
|
||||
} else if (constVal->getType()->isFloat()) {
|
||||
return SSAPValue(constVal->getFloat());
|
||||
} else {
|
||||
// 对于其他 ConstantValue 类型(例如,ConstantArray 等),
|
||||
// 如果它们的具体值不能用于标量常量传播,则保守地视为 Bottom。
|
||||
return SSAPValue(LatticeVal::Bottom);
|
||||
}
|
||||
}
|
||||
if (valueState.count(v)) {
|
||||
return valueState[v];
|
||||
}
|
||||
return SSAPValue(); // 默认初始化为 Top
|
||||
}
|
||||
|
||||
void SCCPContext::UpdateState(Value *v, SSAPValue newState) {
|
||||
SSAPValue oldState = GetValueState(v);
|
||||
if (newState != oldState) {
|
||||
if (DEBUG) {
|
||||
std::cout << "Updating state for " << v->getName() << " from (";
|
||||
if (oldState.state == LatticeVal::Top)
|
||||
std::cout << "Top";
|
||||
else if (oldState.state == LatticeVal::Constant) {
|
||||
if (oldState.constant_type == ValueType::Integer)
|
||||
std::cout << "Const<int>(" << std::get<int>(oldState.constantVal) << ")";
|
||||
else
|
||||
std::cout << "Const<float>(" << std::get<float>(oldState.constantVal) << ")";
|
||||
} else
|
||||
std::cout << "Bottom";
|
||||
std::cout << ") to (";
|
||||
if (newState.state == LatticeVal::Top)
|
||||
std::cout << "Top";
|
||||
else if (newState.state == LatticeVal::Constant) {
|
||||
if (newState.constant_type == ValueType::Integer)
|
||||
std::cout << "Const<int>(" << std::get<int>(newState.constantVal) << ")";
|
||||
else
|
||||
std::cout << "Const<float>(" << std::get<float>(newState.constantVal) << ")";
|
||||
} else
|
||||
std::cout << "Bottom";
|
||||
std::cout << ")" << std::endl;
|
||||
}
|
||||
|
||||
valueState[v] = newState;
|
||||
// 如果状态发生变化,将所有使用者添加到指令工作列表
|
||||
for (auto &use_ptr : v->getUses()) {
|
||||
if (auto userInst = dynamic_cast<Instruction *>(use_ptr->getUser())) {
|
||||
instWorkList.push(userInst);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void SCCPContext::AddEdgeToWorkList(BasicBlock *fromBB, BasicBlock *toBB) {
|
||||
// 检查边是否已经访问过,防止重复处理
|
||||
if (visitedCFGEdges.count({fromBB, toBB})) {
|
||||
return;
|
||||
}
|
||||
visitedCFGEdges.insert({fromBB, toBB});
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << "Adding edge to worklist: " << fromBB->getName() << " -> " << toBB->getName() << std::endl;
|
||||
}
|
||||
edgeWorkList.push({fromBB, toBB});
|
||||
}
|
||||
|
||||
void SCCPContext::MarkBlockExecutable(BasicBlock *block) {
|
||||
if (executableBlocks.insert(block).second) { // insert 返回 pair,second 为 true 表示插入成功
|
||||
if (DEBUG) {
|
||||
std::cout << "Marking block " << block->getName() << " as executable." << std::endl;
|
||||
}
|
||||
// 将新可执行块中的所有指令添加到指令工作列表
|
||||
for (auto &inst_ptr : block->getInstructions()) {
|
||||
instWorkList.push(inst_ptr.get());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 辅助函数:对二元操作进行常量折叠
|
||||
SSAPValue SCCPContext::ComputeConstant(BinaryInst *binaryInst, SSAPValue lhsVal, SSAPValue rhsVal) {
|
||||
// 确保操作数是常量
|
||||
if (lhsVal.state != LatticeVal::Constant || rhsVal.state != LatticeVal::Constant) {
|
||||
return SSAPValue(LatticeVal::Bottom); // 如果不是常量,则不能折叠
|
||||
}
|
||||
|
||||
// 处理整数运算 (kAdd, kSub, kMul, kDiv, kRem, kICmp*, kAnd, kOr)
|
||||
if (lhsVal.constant_type == ValueType::Integer && rhsVal.constant_type == ValueType::Integer) {
|
||||
int lhs = std::get<int>(lhsVal.constantVal);
|
||||
int rhs = std::get<int>(rhsVal.constantVal);
|
||||
int result = 0;
|
||||
|
||||
switch (binaryInst->getKind()) {
|
||||
case Instruction::kAdd:
|
||||
result = lhs + rhs;
|
||||
break;
|
||||
case Instruction::kSub:
|
||||
result = lhs - rhs;
|
||||
break;
|
||||
case Instruction::kMul:
|
||||
result = lhs * rhs;
|
||||
break;
|
||||
case Instruction::kDiv:
|
||||
if (rhs == 0)
|
||||
return SSAPValue(LatticeVal::Bottom); // 除零
|
||||
result = lhs / rhs;
|
||||
break;
|
||||
case Instruction::kRem:
|
||||
if (rhs == 0)
|
||||
return SSAPValue(LatticeVal::Bottom); // 模零
|
||||
result = lhs % rhs;
|
||||
break;
|
||||
case Instruction::kICmpEQ:
|
||||
result = (lhs == rhs);
|
||||
break;
|
||||
case Instruction::kICmpNE:
|
||||
result = (lhs != rhs);
|
||||
break;
|
||||
case Instruction::kICmpLT:
|
||||
result = (lhs < rhs);
|
||||
break;
|
||||
case Instruction::kICmpGT:
|
||||
result = (lhs > rhs);
|
||||
break;
|
||||
case Instruction::kICmpLE:
|
||||
result = (lhs <= rhs);
|
||||
break;
|
||||
case Instruction::kICmpGE:
|
||||
result = (lhs >= rhs);
|
||||
break;
|
||||
case Instruction::kAnd:
|
||||
result = (lhs && rhs);
|
||||
break;
|
||||
case Instruction::kOr:
|
||||
result = (lhs || rhs);
|
||||
break;
|
||||
default:
|
||||
return SSAPValue(LatticeVal::Bottom); // 未知或不匹配的二元操作
|
||||
}
|
||||
return SSAPValue(result);
|
||||
}
|
||||
// 处理浮点运算 (kFAdd, kFSub, kFMul, kFDiv, kFCmp*)
|
||||
else if (lhsVal.constant_type == ValueType::Float && rhsVal.constant_type == ValueType::Float) {
|
||||
float lhs = std::get<float>(lhsVal.constantVal);
|
||||
float rhs = std::get<float>(rhsVal.constantVal);
|
||||
float f_result = 0.0f;
|
||||
int i_result = 0; // For comparison results
|
||||
|
||||
switch (binaryInst->getKind()) {
|
||||
case Instruction::kFAdd:
|
||||
f_result = lhs + rhs;
|
||||
break;
|
||||
case Instruction::kFSub:
|
||||
f_result = lhs - rhs;
|
||||
break;
|
||||
case Instruction::kFMul:
|
||||
f_result = lhs * rhs;
|
||||
break;
|
||||
case Instruction::kFDiv:
|
||||
if (rhs == 0.0f)
|
||||
return SSAPValue(LatticeVal::Bottom); // 除零
|
||||
f_result = lhs / rhs;
|
||||
break;
|
||||
// kRem 不支持浮点数,但如果你的 IR 定义了浮点模运算,需要使用 std::fmod
|
||||
case Instruction::kFCmpEQ:
|
||||
i_result = (lhs == rhs);
|
||||
return SSAPValue(i_result);
|
||||
case Instruction::kFCmpNE:
|
||||
i_result = (lhs != rhs);
|
||||
return SSAPValue(i_result);
|
||||
case Instruction::kFCmpLT:
|
||||
i_result = (lhs < rhs);
|
||||
return SSAPValue(i_result);
|
||||
case Instruction::kFCmpGT:
|
||||
i_result = (lhs > rhs);
|
||||
return SSAPValue(i_result);
|
||||
case Instruction::kFCmpLE:
|
||||
i_result = (lhs <= rhs);
|
||||
return SSAPValue(i_result);
|
||||
case Instruction::kFCmpGE:
|
||||
i_result = (lhs >= rhs);
|
||||
return SSAPValue(i_result);
|
||||
default:
|
||||
return SSAPValue(LatticeVal::Bottom); // 未知或不匹配的浮点二元操作
|
||||
}
|
||||
return SSAPValue(f_result);
|
||||
}
|
||||
|
||||
return SSAPValue(LatticeVal::Bottom); // 类型不匹配或不支持的类型组合
|
||||
}
|
||||
|
||||
// 辅助函数:对一元操作进行常量折叠
|
||||
SSAPValue SCCPContext::ComputeConstant(UnaryInst *unaryInst, SSAPValue operandVal) {
|
||||
if (operandVal.state != LatticeVal::Constant) {
|
||||
return SSAPValue(LatticeVal::Bottom);
|
||||
}
|
||||
|
||||
if (operandVal.constant_type == ValueType::Integer) {
|
||||
int val = std::get<int>(operandVal.constantVal);
|
||||
switch (unaryInst->getKind()) {
|
||||
case Instruction::kAdd:
|
||||
return SSAPValue(val);
|
||||
case Instruction::kNeg:
|
||||
return SSAPValue(-val);
|
||||
case Instruction::kNot:
|
||||
return SSAPValue(!val);
|
||||
default:
|
||||
return SSAPValue(LatticeVal::Bottom);
|
||||
}
|
||||
} else if (operandVal.constant_type == ValueType::Float) {
|
||||
float val = std::get<float>(operandVal.constantVal);
|
||||
switch (unaryInst->getKind()) {
|
||||
case Instruction::kAdd:
|
||||
return SSAPValue(val);
|
||||
case Instruction::kFNeg:
|
||||
return SSAPValue(-val);
|
||||
case Instruction::kFNot:
|
||||
return SSAPValue(static_cast<int>(val == 0.0f)); // 浮点数非,0.0f 为真,其他为假
|
||||
default:
|
||||
return SSAPValue(LatticeVal::Bottom);
|
||||
}
|
||||
}
|
||||
return SSAPValue(LatticeVal::Bottom);
|
||||
}
|
||||
|
||||
// 辅助函数:处理单条指令
|
||||
void SCCPContext::ProcessInstruction(Instruction *inst) {
|
||||
SSAPValue oldState = GetValueState(inst);
|
||||
SSAPValue newState;
|
||||
|
||||
if (!executableBlocks.count(inst->getParent())) {
|
||||
// 如果指令所在的块不可执行,其值应保持 Top
|
||||
// 除非它之前已经是 Bottom,因为 Bottom 是单调的
|
||||
if (oldState.state != LatticeVal::Bottom) {
|
||||
newState = SSAPValue(); // Top
|
||||
} else {
|
||||
newState = oldState; // 保持 Bottom
|
||||
}
|
||||
UpdateState(inst, newState);
|
||||
return; // 不处理不可达块中的指令的实际值
|
||||
}
|
||||
|
||||
switch (inst->getKind()) {
|
||||
case Instruction::kAdd:
|
||||
case Instruction::kSub:
|
||||
case Instruction::kMul:
|
||||
case Instruction::kDiv:
|
||||
case Instruction::kRem:
|
||||
case Instruction::kICmpEQ:
|
||||
case Instruction::kICmpNE:
|
||||
case Instruction::kICmpLT:
|
||||
case Instruction::kICmpGT:
|
||||
case Instruction::kICmpLE:
|
||||
case Instruction::kICmpGE:
|
||||
case Instruction::kFAdd:
|
||||
case Instruction::kFSub:
|
||||
case Instruction::kFMul:
|
||||
case Instruction::kFDiv:
|
||||
case Instruction::kFCmpEQ:
|
||||
case Instruction::kFCmpNE:
|
||||
case Instruction::kFCmpLT:
|
||||
case Instruction::kFCmpGT:
|
||||
case Instruction::kFCmpLE:
|
||||
case Instruction::kFCmpGE:
|
||||
case Instruction::kAnd:
|
||||
case Instruction::kOr: {
|
||||
BinaryInst *binaryInst = static_cast<BinaryInst *>(inst);
|
||||
SSAPValue lhs = GetValueState(binaryInst->getOperand(0));
|
||||
SSAPValue rhs = GetValueState(binaryInst->getOperand(1));
|
||||
// 如果任一操作数是 Bottom,结果就是 Bottom
|
||||
if (lhs.state == LatticeVal::Bottom || rhs.state == LatticeVal::Bottom) {
|
||||
newState = SSAPValue(LatticeVal::Bottom);
|
||||
} else if (lhs.state == LatticeVal::Top || rhs.state == LatticeVal::Top) {
|
||||
newState = SSAPValue(); // Top
|
||||
} else { // 都是常量
|
||||
newState = ComputeConstant(binaryInst, lhs, rhs);
|
||||
}
|
||||
break;
|
||||
}
|
||||
case Instruction::kNeg:
|
||||
case Instruction::kNot:
|
||||
case Instruction::kFNeg:
|
||||
case Instruction::kFNot: {
|
||||
UnaryInst *unaryInst = static_cast<UnaryInst *>(inst);
|
||||
SSAPValue operand = GetValueState(unaryInst->getOperand());
|
||||
if (operand.state == LatticeVal::Bottom) {
|
||||
newState = SSAPValue(LatticeVal::Bottom);
|
||||
} else if (operand.state == LatticeVal::Top) {
|
||||
newState = SSAPValue(); // Top
|
||||
} else { // 是常量
|
||||
newState = ComputeConstant(unaryInst, operand);
|
||||
}
|
||||
break;
|
||||
}
|
||||
// 直接处理类型转换指令
|
||||
case Instruction::kFtoI: {
|
||||
SSAPValue operand = GetValueState(inst->getOperand(0));
|
||||
if (operand.state == LatticeVal::Constant && operand.constant_type == ValueType::Float) {
|
||||
newState = SSAPValue(static_cast<int>(std::get<float>(operand.constantVal)));
|
||||
} else if (operand.state == LatticeVal::Bottom) {
|
||||
newState = SSAPValue(LatticeVal::Bottom);
|
||||
} else { // Top
|
||||
newState = SSAPValue();
|
||||
}
|
||||
break;
|
||||
}
|
||||
case Instruction::kItoF: {
|
||||
SSAPValue operand = GetValueState(inst->getOperand(0));
|
||||
if (operand.state == LatticeVal::Constant && operand.constant_type == ValueType::Integer) {
|
||||
newState = SSAPValue(static_cast<float>(std::get<int>(operand.constantVal)));
|
||||
} else if (operand.state == LatticeVal::Bottom) {
|
||||
newState = SSAPValue(LatticeVal::Bottom);
|
||||
} else { // Top
|
||||
newState = SSAPValue();
|
||||
}
|
||||
break;
|
||||
}
|
||||
case Instruction::kBitFtoI: {
|
||||
SSAPValue operand = GetValueState(inst->getOperand(0));
|
||||
if (operand.state == LatticeVal::Constant && operand.constant_type == ValueType::Float) {
|
||||
float fval = std::get<float>(operand.constantVal);
|
||||
newState = SSAPValue(*reinterpret_cast<int *>(&fval));
|
||||
} else if (operand.state == LatticeVal::Bottom) {
|
||||
newState = SSAPValue(LatticeVal::Bottom);
|
||||
} else { // Top
|
||||
newState = SSAPValue();
|
||||
}
|
||||
break;
|
||||
}
|
||||
case Instruction::kBitItoF: {
|
||||
SSAPValue operand = GetValueState(inst->getOperand(0));
|
||||
if (operand.state == LatticeVal::Constant && operand.constant_type == ValueType::Integer) {
|
||||
int ival = std::get<int>(operand.constantVal);
|
||||
newState = SSAPValue(*reinterpret_cast<float *>(&ival));
|
||||
} else if (operand.state == LatticeVal::Bottom) {
|
||||
newState = SSAPValue(LatticeVal::Bottom);
|
||||
} else { // Top
|
||||
newState = SSAPValue();
|
||||
}
|
||||
break;
|
||||
}
|
||||
case Instruction::kLoad: {
|
||||
// 对于 Load 指令,除非我们有特殊的别名分析,否则假定为 Bottom
|
||||
// 或者如果它加载的是一个已知常量地址的全局常量
|
||||
Value *ptr = inst->getOperand(0);
|
||||
if (auto globalVal = dynamic_cast<GlobalValue *>(ptr)) {
|
||||
// 如果 GlobalValue 有初始化器,并且它是常量,我们可以传播
|
||||
// 这需要额外的逻辑来检查 globalVal 的初始化器
|
||||
// 暂时保守地设置为 Bottom
|
||||
newState = SSAPValue(LatticeVal::Bottom);
|
||||
} else {
|
||||
newState = SSAPValue(LatticeVal::Bottom);
|
||||
}
|
||||
break;
|
||||
}
|
||||
case Instruction::kStore:
|
||||
// Store 指令不产生值,其 SSAPValue 不重要
|
||||
newState = SSAPValue(); // 保持 Top
|
||||
break;
|
||||
case Instruction::kCall:
|
||||
// 大多数 Call 指令都假定为 Bottom,除非是纯函数且所有参数都是常量
|
||||
newState = SSAPValue(LatticeVal::Bottom);
|
||||
break;
|
||||
case Instruction::kGetElementPtr: {
|
||||
// GEP 指令计算地址,通常其结果值(地址指向的内容)是 Bottom
|
||||
// 除非所有索引和基指针都是常量,指向一个确定常量值的内存位置
|
||||
bool all_ops_constant = true;
|
||||
for (unsigned i = 0; i < inst->getNumOperands(); ++i) {
|
||||
if (GetValueState(inst->getOperand(i)).state != LatticeVal::Constant) {
|
||||
all_ops_constant = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
// 即使地址是常量,地址处的内容通常不是。所以通常是 Bottom
|
||||
newState = SSAPValue(LatticeVal::Bottom);
|
||||
break;
|
||||
}
|
||||
case Instruction::kPhi: {
|
||||
PhiInst *phi = static_cast<PhiInst *>(inst);
|
||||
SSAPValue phiResult = SSAPValue(); // 初始为 Top
|
||||
|
||||
for (unsigned i = 0; i < phi->getNumIncomingValues(); ++i) {
|
||||
Value *incomingVal = phi->getIncomingValue(i);
|
||||
BasicBlock *incomingBlock = phi->getIncomingBlock(i);
|
||||
|
||||
if (executableBlocks.count(incomingBlock)) { // 仅考虑可执行前驱
|
||||
phiResult = Meet(phiResult, GetValueState(incomingVal));
|
||||
if (phiResult.state == LatticeVal::Bottom)
|
||||
break; // 如果已经 Bottom,则提前退出
|
||||
}
|
||||
}
|
||||
newState = phiResult;
|
||||
break;
|
||||
}
|
||||
case Instruction::kAlloca: // 对应 kAlloca
|
||||
// Alloca 分配内存,返回一个指针,其内容是 Bottom
|
||||
newState = SSAPValue(LatticeVal::Bottom);
|
||||
break;
|
||||
case Instruction::kBr: // 对应 kBr
|
||||
case Instruction::kCondBr: // 对应 kCondBr
|
||||
case Instruction::kReturn: // 对应 kReturn
|
||||
case Instruction::kUnreachable: // 对应 kUnreachable
|
||||
// 终结符指令不产生值
|
||||
newState = SSAPValue(); // 保持 Top
|
||||
break;
|
||||
case Instruction::kMemset:
|
||||
// Memset 不产生值,但有副作用,不进行常量传播
|
||||
newState = SSAPValue(LatticeVal::Bottom);
|
||||
break;
|
||||
default:
|
||||
if (DEBUG) {
|
||||
std::cout << "Unimplemented instruction kind in SCCP: " << inst->getKind() << std::endl;
|
||||
}
|
||||
newState = SSAPValue(LatticeVal::Bottom); // 未知指令保守处理为 Bottom
|
||||
break;
|
||||
}
|
||||
UpdateState(inst, newState);
|
||||
|
||||
// 特殊处理终结符指令,影响 CFG 边的可达性
|
||||
if (inst->isTerminator()) {
|
||||
if (inst->isBranch()) {
|
||||
|
||||
if (inst->isCondBr()) { // 使用 kCondBr
|
||||
CondBrInst *branchInst = static_cast<CondBrInst *>(inst);
|
||||
SSAPValue condVal = GetValueState(branchInst->getOperand(0));
|
||||
if (condVal.state == LatticeVal::Constant) {
|
||||
bool condition_is_true = false;
|
||||
if (condVal.constant_type == ValueType::Integer) {
|
||||
condition_is_true = (std::get<int>(condVal.constantVal) != 0);
|
||||
} else if (condVal.constant_type == ValueType::Float) {
|
||||
condition_is_true = (std::get<float>(condVal.constantVal) != 0.0f);
|
||||
}
|
||||
|
||||
if (condition_is_true) {
|
||||
AddEdgeToWorkList(branchInst->getParent(), branchInst->getThenBlock());
|
||||
} else {
|
||||
AddEdgeToWorkList(branchInst->getParent(), branchInst->getElseBlock());
|
||||
}
|
||||
} else { // 条件是 Top 或 Bottom,两条路径都可能
|
||||
AddEdgeToWorkList(branchInst->getParent(), branchInst->getThenBlock());
|
||||
AddEdgeToWorkList(branchInst->getParent(), branchInst->getElseBlock());
|
||||
}
|
||||
} else { // 无条件分支 (kBr)
|
||||
UncondBrInst *branchInst = static_cast<UncondBrInst *>(inst);
|
||||
AddEdgeToWorkList(branchInst->getParent(), branchInst->getBlock());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 辅助函数:处理单条控制流边
|
||||
void SCCPContext::ProcessEdge(const std::pair<BasicBlock *, BasicBlock *> &edge) {
|
||||
BasicBlock *fromBB = edge.first;
|
||||
BasicBlock *toBB = edge.second;
|
||||
|
||||
MarkBlockExecutable(toBB);
|
||||
|
||||
// 对于目标块中的所有 Phi 指令,重新评估其值,因为可能有新的前驱被激活
|
||||
for (auto &inst_ptr : toBB->getInstructions()) {
|
||||
if (dynamic_cast<PhiInst *>(inst_ptr.get())) {
|
||||
instWorkList.push(inst_ptr.get());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 阶段1: 常量传播与折叠
|
||||
bool SCCPContext::PropagateConstants(Function *func) {
|
||||
bool changed = false;
|
||||
|
||||
// 初始化:所有值 Top,所有块不可执行
|
||||
for (auto &bb_ptr : func->getBasicBlocks()) {
|
||||
executableBlocks.erase(bb_ptr.get());
|
||||
for (auto &inst_ptr : bb_ptr->getInstructions()) {
|
||||
valueState[inst_ptr.get()] = SSAPValue(); // Top
|
||||
}
|
||||
}
|
||||
|
||||
// 标记入口块为可执行
|
||||
if (!func->getBasicBlocks().empty()) {
|
||||
MarkBlockExecutable(func->getEntryBlock());
|
||||
}
|
||||
|
||||
// 主循环:处理工作列表直到不动点
|
||||
while (!instWorkList.empty() || !edgeWorkList.empty()) {
|
||||
while (!edgeWorkList.empty()) {
|
||||
ProcessEdge(edgeWorkList.front());
|
||||
edgeWorkList.pop();
|
||||
}
|
||||
|
||||
while (!instWorkList.empty()) {
|
||||
Instruction *inst = instWorkList.front();
|
||||
instWorkList.pop();
|
||||
ProcessInstruction(inst);
|
||||
}
|
||||
}
|
||||
|
||||
// 应用常量替换和死代码消除
|
||||
std::vector<Instruction *> instsToDelete;
|
||||
for (auto &bb_ptr : func->getBasicBlocks()) {
|
||||
BasicBlock *bb = bb_ptr.get();
|
||||
if (!executableBlocks.count(bb)) {
|
||||
// 整个块是死块,标记所有指令删除
|
||||
for (auto &inst_ptr : bb->getInstructions()) {
|
||||
instsToDelete.push_back(inst_ptr.get());
|
||||
}
|
||||
changed = true;
|
||||
continue;
|
||||
}
|
||||
for (auto it = bb->begin(); it != bb->end();) {
|
||||
Instruction *inst = it->get();
|
||||
SSAPValue ssaPVal = GetValueState(inst);
|
||||
|
||||
if (ssaPVal.state == LatticeVal::Constant) {
|
||||
ConstantValue *constVal = nullptr;
|
||||
if (ssaPVal.constant_type == ValueType::Integer) {
|
||||
constVal = ConstantInteger::get(std::get<int>(ssaPVal.constantVal));
|
||||
} else if (ssaPVal.constant_type == ValueType::Float) {
|
||||
constVal = ConstantFloating::get(std::get<float>(ssaPVal.constantVal));
|
||||
} else {
|
||||
constVal = UndefinedValue::get(inst->getType()); // 不应发生
|
||||
}
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << "Replacing " << inst->getName() << " with constant ";
|
||||
if (ssaPVal.constant_type == ValueType::Integer)
|
||||
std::cout << std::get<int>(ssaPVal.constantVal);
|
||||
else
|
||||
std::cout << std::get<float>(ssaPVal.constantVal);
|
||||
std::cout << std::endl;
|
||||
}
|
||||
inst->replaceAllUsesWith(constVal);
|
||||
instsToDelete.push_back(inst);
|
||||
++it;
|
||||
changed = true;
|
||||
} else {
|
||||
// 如果操作数是常量,直接替换为常量值(常量折叠)
|
||||
for (unsigned i = 0; i < inst->getNumOperands(); ++i) {
|
||||
Value *operand = inst->getOperand(i);
|
||||
SSAPValue opVal = GetValueState(operand);
|
||||
if (opVal.state == LatticeVal::Constant) {
|
||||
ConstantValue *constOp = nullptr;
|
||||
if (opVal.constant_type == ValueType::Integer) {
|
||||
constOp = ConstantInteger::get(std::get<int>(opVal.constantVal));
|
||||
} else if (opVal.constant_type == ValueType::Float) {
|
||||
constOp = ConstantFloating::get(std::get<float>(opVal.constantVal));
|
||||
} else {
|
||||
constOp = UndefinedValue::get(operand->getType());
|
||||
}
|
||||
|
||||
if (constOp != operand) {
|
||||
inst->setOperand(i, constOp);
|
||||
changed = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
++it;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 实际删除指令
|
||||
// TODO: 删除的逻辑需要考虑修改
|
||||
for (Instruction *inst : instsToDelete) {
|
||||
// 在尝试删除之前,先检查指令是否仍然附加到其父基本块。
|
||||
// 如果它已经没有父块,可能说明它已被其他方式处理或已处于无效状态。
|
||||
if (inst->getParent() != nullptr) {
|
||||
// 调用负责完整删除的函数,该函数应负责清除uses并将其从父块中移除。
|
||||
SysYIROptUtils::usedelete(inst);
|
||||
}
|
||||
else {
|
||||
// 指令已不属于任何父块,无需再次删除。
|
||||
if (DEBUG) {
|
||||
std::cerr << "Info: Instruction " << inst->getName() << " was already detached or is not in a parent block." << std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
return changed;
|
||||
}
|
||||
|
||||
// 阶段2: 控制流简化
|
||||
bool SCCPContext::SimplifyControlFlow(Function *func) {
|
||||
bool changed = false;
|
||||
|
||||
// 重新确定可达块,因为 PropagateConstants 可能改变了分支条件
|
||||
std::unordered_set<BasicBlock *> newReachableBlocks = FindReachableBlocks(func);
|
||||
|
||||
// 移除不可达块
|
||||
std::vector<BasicBlock *> blocksToDelete;
|
||||
for (auto &bb_ptr : func->getBasicBlocks()) {
|
||||
if (bb_ptr.get() == func->getEntryBlock())
|
||||
continue; // 入口块不能删除
|
||||
if (newReachableBlocks.find(bb_ptr.get()) == newReachableBlocks.end()) {
|
||||
blocksToDelete.push_back(bb_ptr.get());
|
||||
changed = true;
|
||||
}
|
||||
}
|
||||
for (BasicBlock *bb : blocksToDelete) {
|
||||
RemoveDeadBlock(bb, func);
|
||||
}
|
||||
|
||||
// 简化分支指令
|
||||
for (auto &bb_ptr : func->getBasicBlocks()) {
|
||||
BasicBlock *bb = bb_ptr.get();
|
||||
if (!newReachableBlocks.count(bb))
|
||||
continue; // 只处理可达块
|
||||
|
||||
Instruction *terminator = bb->terminator()->get();
|
||||
if (terminator->isBranch()) {
|
||||
|
||||
if (terminator->isCondBr()) { // 检查是否是条件分支 (kCondBr)
|
||||
CondBrInst *branchInst = static_cast<CondBrInst *>(terminator);
|
||||
SSAPValue condVal = GetValueState(branchInst->getOperand(0));
|
||||
if (condVal.state == LatticeVal::Constant) {
|
||||
bool condition_is_true = false;
|
||||
if (condVal.constant_type == ValueType::Integer) {
|
||||
condition_is_true = (std::get<int>(condVal.constantVal) != 0);
|
||||
} else if (condVal.constant_type == ValueType::Float) {
|
||||
condition_is_true = (std::get<float>(condVal.constantVal) != 0.0f);
|
||||
}
|
||||
SimplifyBranch(branchInst, condition_is_true);
|
||||
changed = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return changed;
|
||||
}
|
||||
|
||||
// 查找所有可达的基本块 (基于常量条件)
|
||||
std::unordered_set<BasicBlock *> SCCPContext::FindReachableBlocks(Function *func) {
|
||||
std::unordered_set<BasicBlock *> reachable;
|
||||
std::queue<BasicBlock *> q;
|
||||
|
||||
if (func->getEntryBlock()) {
|
||||
q.push(func->getEntryBlock());
|
||||
reachable.insert(func->getEntryBlock());
|
||||
}
|
||||
|
||||
while (!q.empty()) {
|
||||
BasicBlock *currentBB = q.front();
|
||||
q.pop();
|
||||
|
||||
Instruction *terminator = currentBB->terminator()->get();
|
||||
if (!terminator)
|
||||
continue;
|
||||
|
||||
if (terminator->isBranch()) {
|
||||
if (terminator->isCondBr()) { // 检查是否是条件分支 (kCondBr)
|
||||
CondBrInst *branchInst = static_cast<CondBrInst *>(terminator);
|
||||
SSAPValue condVal = GetValueState(branchInst->getOperand(0));
|
||||
if (condVal.state == LatticeVal::Constant) {
|
||||
bool condition_is_true = false;
|
||||
if (condVal.constant_type == ValueType::Integer) {
|
||||
condition_is_true = (std::get<int>(condVal.constantVal) != 0);
|
||||
} else if (condVal.constant_type == ValueType::Float) {
|
||||
condition_is_true = (std::get<float>(condVal.constantVal) != 0.0f);
|
||||
}
|
||||
|
||||
if (condition_is_true) {
|
||||
BasicBlock *trueBlock = branchInst->getThenBlock();
|
||||
if (reachable.find(trueBlock) == reachable.end()) {
|
||||
reachable.insert(trueBlock);
|
||||
q.push(trueBlock);
|
||||
}
|
||||
} else {
|
||||
BasicBlock *falseBlock = branchInst->getElseBlock();
|
||||
if (reachable.find(falseBlock) == reachable.end()) {
|
||||
reachable.insert(falseBlock);
|
||||
q.push(falseBlock);
|
||||
}
|
||||
}
|
||||
} else { // 条件是 Top 或 Bottom,两条路径都可达
|
||||
for (auto succ : branchInst->getSuccessors()) {
|
||||
if (reachable.find(succ) == reachable.end()) {
|
||||
reachable.insert(succ);
|
||||
q.push(succ);
|
||||
}
|
||||
}
|
||||
}
|
||||
} else { // 无条件分支 (kBr)
|
||||
UncondBrInst *branchInst = static_cast<UncondBrInst *>(terminator);
|
||||
BasicBlock *targetBlock = branchInst->getBlock();
|
||||
if (reachable.find(targetBlock) == reachable.end()) {
|
||||
reachable.insert(targetBlock);
|
||||
q.push(targetBlock);
|
||||
}
|
||||
}
|
||||
} else if (terminator->isReturn() || terminator->isUnreachable()) {
|
||||
// ReturnInst 没有后继,不需要处理
|
||||
// UnreachableInst 也没有后继,不需要处理
|
||||
}
|
||||
}
|
||||
return reachable;
|
||||
}
|
||||
|
||||
// 移除死块
|
||||
void SCCPContext::RemoveDeadBlock(BasicBlock *bb, Function *func) {
|
||||
if (DEBUG) {
|
||||
std::cout << "Removing dead block: " << bb->getName() << std::endl;
|
||||
}
|
||||
// 首先更新其所有前驱的终结指令,移除指向死块的边
|
||||
std::vector<BasicBlock *> preds_to_update;
|
||||
for (auto &pred : bb->getPredecessors()) {
|
||||
if (pred != nullptr) { // 检查是否为空指针
|
||||
preds_to_update.push_back(pred);
|
||||
}
|
||||
}
|
||||
for (BasicBlock *pred : preds_to_update) {
|
||||
if (executableBlocks.count(pred)) {
|
||||
UpdateTerminator(pred, bb);
|
||||
}
|
||||
}
|
||||
|
||||
// 移除其后继的 Phi 节点的入边
|
||||
std::vector<BasicBlock *> succs_to_update;
|
||||
for (auto succ : bb->getSuccessors()) {
|
||||
succs_to_update.push_back(succ);
|
||||
}
|
||||
for (BasicBlock *succ : succs_to_update) {
|
||||
RemovePhiIncoming(succ, bb);
|
||||
succ->removePredecessor(bb);
|
||||
}
|
||||
|
||||
func->removeBasicBlock(bb); // 从函数中移除基本块
|
||||
}
|
||||
|
||||
// 简化分支(将条件分支替换为无条件分支)
|
||||
void SCCPContext::SimplifyBranch(CondBrInst *brInst, bool condVal) {
|
||||
BasicBlock *parentBB = brInst->getParent();
|
||||
BasicBlock *trueBlock = brInst->getThenBlock();
|
||||
BasicBlock *falseBlock = brInst->getElseBlock();
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << "Simplifying branch in " << parentBB->getName() << ": cond is " << (condVal ? "true" : "false")
|
||||
<< std::endl;
|
||||
}
|
||||
|
||||
builder->setPosition(parentBB, parentBB->findInstIterator(brInst));
|
||||
if (condVal) { // 条件为真,跳转到真分支
|
||||
builder->createUncondBrInst(trueBlock); // 插入无条件分支 kBr
|
||||
SysYIROptUtils::usedelete(brInst); // 移除旧的条件分支指令
|
||||
parentBB->removeSuccessor(falseBlock);
|
||||
falseBlock->removePredecessor(parentBB);
|
||||
RemovePhiIncoming(falseBlock, parentBB);
|
||||
} else { // 条件为假,跳转到假分支
|
||||
builder->createUncondBrInst(falseBlock); // 插入无条件分支 kBr
|
||||
SysYIROptUtils::usedelete(brInst); // 移除旧的条件分支指令
|
||||
parentBB->removeSuccessor(trueBlock);
|
||||
trueBlock->removePredecessor(parentBB);
|
||||
RemovePhiIncoming(trueBlock, parentBB);
|
||||
}
|
||||
}
|
||||
|
||||
// 更新前驱块的终结指令(当一个后继块被移除时)
|
||||
void SCCPContext::UpdateTerminator(BasicBlock *predBB, BasicBlock *removedSucc) {
|
||||
Instruction *terminator = predBB->terminator()->get();
|
||||
if (!terminator)
|
||||
return;
|
||||
|
||||
if (terminator->isBranch()) {
|
||||
if (terminator->isCondBr()) { // 如果是条件分支
|
||||
CondBrInst *branchInst = static_cast<CondBrInst *>(terminator);
|
||||
if (branchInst->getThenBlock() == removedSucc) {
|
||||
if (DEBUG) {
|
||||
std::cout << "Updating cond br in " << predBB->getName() << ": True block (" << removedSucc->getName()
|
||||
<< ") removed. Converting to Br to " << branchInst->getElseBlock()->getName() << std::endl;
|
||||
}
|
||||
builder->setPosition(predBB, predBB->findInstIterator(branchInst));
|
||||
builder->createUncondBrInst(branchInst->getElseBlock());
|
||||
SysYIROptUtils::usedelete(branchInst);
|
||||
predBB->removeSuccessor(removedSucc);
|
||||
} else if (branchInst->getElseBlock() == removedSucc) {
|
||||
if (DEBUG) {
|
||||
std::cout << "Updating cond br in " << predBB->getName() << ": False block (" << removedSucc->getName()
|
||||
<< ") removed. Converting to Br to " << branchInst->getThenBlock()->getName() << std::endl;
|
||||
}
|
||||
builder->setPosition(predBB, predBB->findInstIterator(branchInst));
|
||||
builder->createUncondBrInst(branchInst->getThenBlock());
|
||||
SysYIROptUtils::usedelete(branchInst);
|
||||
predBB->removeSuccessor(removedSucc);
|
||||
}
|
||||
} else { // 无条件分支 (kBr)
|
||||
UncondBrInst *branchInst = static_cast<UncondBrInst *>(terminator);
|
||||
if (branchInst->getBlock() == removedSucc) {
|
||||
if (DEBUG) {
|
||||
std::cout << "Updating unconditional br in " << predBB->getName() << ": Target block ("
|
||||
<< removedSucc->getName() << ") removed. Replacing with Unreachable." << std::endl;
|
||||
}
|
||||
SysYIROptUtils::usedelete(branchInst);
|
||||
predBB->removeSuccessor(removedSucc);
|
||||
builder->setPosition(predBB, predBB->end());
|
||||
builder->createUnreachableInst();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 移除 Phi 节点的入边(当其前驱块被移除时)
|
||||
void SCCPContext::RemovePhiIncoming(BasicBlock *phiParentBB, BasicBlock *removedPred) { // 修正 removedPred 类型
|
||||
std::vector<Instruction *> insts_to_check;
|
||||
for (auto &inst_ptr : phiParentBB->getInstructions()) {
|
||||
insts_to_check.push_back(inst_ptr.get());
|
||||
}
|
||||
|
||||
for (Instruction *inst : insts_to_check) {
|
||||
if (auto phi = dynamic_cast<PhiInst *>(inst)) {
|
||||
phi->delBlk(removedPred);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 运行 SCCP 优化
|
||||
void SCCPContext::run(Function *func, AnalysisManager &AM) {
|
||||
bool changed_constant_propagation = PropagateConstants(func);
|
||||
bool changed_control_flow = SimplifyControlFlow(func);
|
||||
|
||||
// 如果任何一个阶段修改了 IR,标记分析结果为失效
|
||||
if (changed_constant_propagation || changed_control_flow) {
|
||||
// AM.invalidate(); // 假设有这样的方法来使所有分析结果失效
|
||||
}
|
||||
}
|
||||
|
||||
// SCCP Pass methods
|
||||
bool SCCP::runOnFunction(Function *F, AnalysisManager &AM) {
|
||||
if (DEBUG) {
|
||||
std::cout << "Running SCCP on function: " << F->getName() << std::endl;
|
||||
}
|
||||
SCCPContext context(builder);
|
||||
context.run(F, AM);
|
||||
return true;
|
||||
}
|
||||
|
||||
void SCCP::getAnalysisUsage(std::set<void *> &analysisDependencies, std::set<void *> &analysisInvalidations) const {
|
||||
// analysisInvalidations.insert(nullptr); // 表示使所有默认分析失效
|
||||
analysisInvalidations.insert(&DominatorTreeAnalysisPass::ID); // 支配树可能受影响
|
||||
analysisInvalidations.insert(&LivenessAnalysisPass::ID); // 活跃性分析很可能失效
|
||||
}
|
||||
|
||||
} // namespace sysy
|
||||
@ -91,11 +91,13 @@ bool SysYCFGOptUtils::SysYBlockMerge(Function *func) {
|
||||
auto thelastinstinst = block->end();
|
||||
(--thelastinstinst);
|
||||
if (thelastinstinst->get()->isUnconditional()) {
|
||||
thelastinstinst = SysYIROptUtils::usedelete(thelastinstinst);
|
||||
SysYIROptUtils::usedelete(thelastinstinst->get());
|
||||
thelastinstinst = block->getInstructions().erase(thelastinstinst);
|
||||
} else if (thelastinstinst->get()->isConditional()) {
|
||||
// 如果是条件分支,判断条件是否相同,主要优化相同布尔表达式
|
||||
if (thelastinstinst->get()->getOperand(1)->getName() == thelastinstinst->get()->getOperand(1)->getName()) {
|
||||
thelastinstinst = SysYIROptUtils::usedelete(thelastinstinst);
|
||||
SysYIROptUtils::usedelete(thelastinstinst->get());
|
||||
thelastinstinst = block->getInstructions().erase(thelastinstinst);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -162,7 +164,8 @@ bool SysYCFGOptUtils::SysYDelNoPreBLock(Function *func) {
|
||||
if (!blockIter->get()->getreachable()) {
|
||||
for (auto instIter = blockIter->get()->getInstructions().begin();
|
||||
instIter != blockIter->get()->getInstructions().end();) {
|
||||
instIter = SysYIROptUtils::usedelete(instIter);
|
||||
SysYIROptUtils::usedelete(instIter->get());
|
||||
instIter = blockIter->get()->getInstructions().erase(instIter);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -303,9 +306,10 @@ bool SysYCFGOptUtils::SysYDelEmptyBlock(Function *func, IRBuilder* pBuilder) {
|
||||
if (dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(1)) ==
|
||||
dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(2))) {
|
||||
auto thebrBlock = dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(1));
|
||||
thelastinst = SysYIROptUtils::usedelete(thelastinst);
|
||||
SysYIROptUtils::usedelete(thelastinst->get());
|
||||
thelastinst = basicBlock->getInstructions().erase(thelastinst);
|
||||
pBuilder->setPosition(basicBlock.get(), basicBlock->end());
|
||||
pBuilder->createUncondBrInst(thebrBlock);
|
||||
pBuilder->createUncondBrInst(thebrBlock, {});
|
||||
changed = true; // 标记IR被修改
|
||||
continue;
|
||||
}
|
||||
@ -341,9 +345,10 @@ bool SysYCFGOptUtils::SysYDelEmptyBlock(Function *func, IRBuilder* pBuilder) {
|
||||
if (dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(1)) ==
|
||||
dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(2))) {
|
||||
auto thebrBlock = dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(1));
|
||||
thelastinst = SysYIROptUtils::usedelete(thelastinst);
|
||||
SysYIROptUtils::usedelete(thelastinst->get());
|
||||
thelastinst = basicBlock->getInstructions().erase(thelastinst);
|
||||
pBuilder->setPosition(basicBlock.get(), basicBlock->end());
|
||||
pBuilder->createUncondBrInst(thebrBlock);
|
||||
pBuilder->createUncondBrInst(thebrBlock, {});
|
||||
changed = true; // 标记IR被修改
|
||||
continue;
|
||||
}
|
||||
@ -420,7 +425,9 @@ bool SysYCFGOptUtils::SysYDelEmptyBlock(Function *func, IRBuilder* pBuilder) {
|
||||
|
||||
for (auto instIter = iter->get()->getInstructions().begin();
|
||||
instIter != iter->get()->getInstructions().end();) {
|
||||
instIter = SysYIROptUtils::usedelete(instIter);
|
||||
SysYIROptUtils::usedelete(instIter->get()); // 仅删除 use 关系
|
||||
// 显式地从基本块中删除指令并更新迭代器
|
||||
instIter = iter->get()->getInstructions().erase(instIter);
|
||||
}
|
||||
// 删除不可达基本块的phi指令的操作数
|
||||
for (auto &succ : iter->get()->getSuccessors()) {
|
||||
@ -516,11 +523,12 @@ bool SysYCFGOptUtils::SysYCondBr2Br(Function *func, IRBuilder* pBuilder) {
|
||||
|
||||
auto thenBlock = dynamic_cast<BasicBlock *>(thelast->get()->getOperand(1));
|
||||
auto elseBlock = dynamic_cast<BasicBlock *>(thelast->get()->getOperand(2));
|
||||
thelast = SysYIROptUtils::usedelete(thelast);
|
||||
SysYIROptUtils::usedelete(thelast->get());
|
||||
thelast = basicblock->getInstructions().erase(thelast);
|
||||
if ((constfloat_Use && constfloat == 1.0F) || (constint_Use && constint == 1)) {
|
||||
// cond为true或非0
|
||||
pBuilder->setPosition(basicblock.get(), basicblock->end());
|
||||
pBuilder->createUncondBrInst(thenBlock);
|
||||
pBuilder->createUncondBrInst(thenBlock, {});
|
||||
|
||||
// 更新CFG关系
|
||||
basicblock->removeSuccessor(elseBlock);
|
||||
@ -538,7 +546,7 @@ bool SysYCFGOptUtils::SysYCondBr2Br(Function *func, IRBuilder* pBuilder) {
|
||||
} else { // cond为false或0
|
||||
|
||||
pBuilder->setPosition(basicblock.get(), basicblock->end());
|
||||
pBuilder->createUncondBrInst(elseBlock);
|
||||
pBuilder->createUncondBrInst(elseBlock, {});
|
||||
|
||||
// 更新CFG关系
|
||||
basicblock->removeSuccessor(thenBlock);
|
||||
|
||||
@ -5,8 +5,6 @@
|
||||
#include "DCE.h"
|
||||
#include "Mem2Reg.h"
|
||||
#include "Reg2Mem.h"
|
||||
#include "SCCP.h"
|
||||
#include "BuildCFG.h"
|
||||
#include "Pass.h"
|
||||
#include <iostream>
|
||||
#include <queue>
|
||||
@ -36,12 +34,10 @@ void PassManager::runOptimizationPipeline(Module* moduleIR, IRBuilder* builderIR
|
||||
3. 添加优化passid
|
||||
*/
|
||||
// 注册分析遍
|
||||
registerAnalysisPass<DominatorTreeAnalysisPass>();
|
||||
registerAnalysisPass<LivenessAnalysisPass>();
|
||||
registerAnalysisPass<sysy::DominatorTreeAnalysisPass>();
|
||||
registerAnalysisPass<sysy::LivenessAnalysisPass>();
|
||||
|
||||
// 注册优化遍
|
||||
registerOptimizationPass<BuildCFG>();
|
||||
|
||||
registerOptimizationPass<SysYDelInstAfterBrPass>();
|
||||
registerOptimizationPass<SysYDelNoPreBLockPass>();
|
||||
registerOptimizationPass<SysYBlockMergePass>();
|
||||
@ -54,22 +50,11 @@ void PassManager::runOptimizationPipeline(Module* moduleIR, IRBuilder* builderIR
|
||||
registerOptimizationPass<Mem2Reg>(builderIR);
|
||||
registerOptimizationPass<Reg2Mem>(builderIR);
|
||||
|
||||
registerOptimizationPass<SCCP>(builderIR);
|
||||
|
||||
if (optLevel >= 1) {
|
||||
//经过设计安排优化遍的执行顺序以及执行逻辑
|
||||
if (DEBUG) std::cout << "Applying -O1 optimizations.\n";
|
||||
if (DEBUG) std::cout << "--- Running custom optimization sequence ---\n";
|
||||
|
||||
if(DEBUG) {
|
||||
std::cout << "=== IR Before CFGOpt Optimizations ===\n";
|
||||
printPasses();
|
||||
}
|
||||
|
||||
this->clearPasses();
|
||||
this->addPass(&BuildCFG::ID);
|
||||
this->run();
|
||||
|
||||
this->clearPasses();
|
||||
this->addPass(&SysYDelInstAfterBrPass::ID);
|
||||
this->addPass(&SysYDelNoPreBLockPass::ID);
|
||||
@ -102,15 +87,6 @@ void PassManager::runOptimizationPipeline(Module* moduleIR, IRBuilder* builderIR
|
||||
printPasses();
|
||||
}
|
||||
|
||||
this->clearPasses();
|
||||
this->addPass(&SCCP::ID);
|
||||
this->run();
|
||||
|
||||
if(DEBUG) {
|
||||
std::cout << "=== IR After SCCP Optimizations ===\n";
|
||||
printPasses();
|
||||
}
|
||||
|
||||
this->clearPasses();
|
||||
this->addPass(&Reg2Mem::ID);
|
||||
this->run();
|
||||
|
||||
@ -15,6 +15,29 @@
|
||||
using namespace std;
|
||||
namespace sysy {
|
||||
|
||||
std::pair<long long, int> calculate_signed_magic(int d) {
|
||||
if (d == 0) throw std::runtime_error("Division by zero");
|
||||
if (d == 1 || d == -1) return {0, 0}; // Not used by strength reduction
|
||||
|
||||
int k = 0;
|
||||
unsigned int ad = (d > 0) ? d : -d;
|
||||
unsigned int temp = ad;
|
||||
while (temp > 0) {
|
||||
temp >>= 1;
|
||||
k++;
|
||||
}
|
||||
if ((ad & (ad - 1)) == 0) { // if power of 2
|
||||
k--;
|
||||
}
|
||||
|
||||
unsigned __int128 m_val = 1;
|
||||
m_val <<= (32 + k - 1);
|
||||
unsigned __int128 m_prime = m_val / ad;
|
||||
long long m = m_prime + 1;
|
||||
|
||||
return {m, k};
|
||||
}
|
||||
|
||||
|
||||
// std::vector<Value*> BinaryValueStack; ///< 用于存储value的栈
|
||||
// std::vector<int> BinaryOpStack; ///< 用于存储二元表达式的操作符栈
|
||||
@ -249,7 +272,26 @@ void SysYIRGenerator::compute() {
|
||||
case BinaryOp::ADD: resultValue = builder.createAddInst(lhs, rhs); break;
|
||||
case BinaryOp::SUB: resultValue = builder.createSubInst(lhs, rhs); break;
|
||||
case BinaryOp::MUL: resultValue = builder.createMulInst(lhs, rhs); break;
|
||||
case BinaryOp::DIV: resultValue = builder.createDivInst(lhs, rhs); break;
|
||||
case BinaryOp::DIV: {
|
||||
ConstantInteger *rhsConst = dynamic_cast<ConstantInteger *>(rhs);
|
||||
if (rhsConst) {
|
||||
int divisor = rhsConst->getInt();
|
||||
if (divisor > 0 && (divisor & (divisor - 1)) == 0) {
|
||||
int shift = 0;
|
||||
int temp = divisor;
|
||||
while (temp > 1) {
|
||||
temp >>= 1;
|
||||
shift++;
|
||||
}
|
||||
resultValue = builder.createSRAInst(lhs, ConstantInteger::get(shift));
|
||||
} else {
|
||||
resultValue = builder.createDivInst(lhs, rhs);
|
||||
}
|
||||
} else {
|
||||
resultValue = builder.createDivInst(lhs, rhs);
|
||||
}
|
||||
break;
|
||||
}
|
||||
case BinaryOp::MOD: resultValue = builder.createRemInst(lhs, rhs); break;
|
||||
}
|
||||
} else if (commonType == Type::getFloatType()) {
|
||||
@ -533,7 +575,7 @@ std::any SysYIRGenerator::visitGlobalConstDecl(SysYParser::GlobalConstDeclContex
|
||||
if (!dims.empty()) { // 如果有维度,说明是数组
|
||||
variableType = buildArrayType(type, dims); // 构建完整的 ArrayType
|
||||
}
|
||||
module->createConstVar(name, Type::getPointerType(variableType), values);
|
||||
module->createConstVar(name, Type::getPointerType(variableType), values, dims);
|
||||
}
|
||||
return std::any();
|
||||
}
|
||||
@ -562,7 +604,7 @@ std::any SysYIRGenerator::visitGlobalVarDecl(SysYParser::GlobalVarDeclContext *c
|
||||
if (!dims.empty()) { // 如果有维度,说明是数组
|
||||
variableType = buildArrayType(type, dims); // 构建完整的 ArrayType
|
||||
}
|
||||
module->createGlobalValue(name, Type::getPointerType(variableType), values);
|
||||
module->createGlobalValue(name, Type::getPointerType(variableType), dims, values);
|
||||
}
|
||||
return std::any();
|
||||
}
|
||||
@ -586,7 +628,7 @@ std::any SysYIRGenerator::visitConstDecl(SysYParser::ConstDeclContext *ctx) {
|
||||
|
||||
// 显式地为局部常量在栈上分配空间
|
||||
// alloca 的类型将是指针指向常量类型,例如 `int*` 或 `int[2][3]*`
|
||||
AllocaInst *alloca = builder.createAllocaInst(Type::getPointerType(variableType), name);
|
||||
AllocaInst *alloca = builder.createAllocaInst(Type::getPointerType(variableType), {}, name);
|
||||
|
||||
ArrayValueTree *root = std::any_cast<ArrayValueTree *>(constDef->constInitVal()->accept(this));
|
||||
ValueCounter values;
|
||||
@ -707,7 +749,7 @@ std::any SysYIRGenerator::visitVarDecl(SysYParser::VarDeclContext *ctx) {
|
||||
// 对于数组,alloca 的类型将是指针指向数组类型,例如 `int[2][3]*`
|
||||
// 对于标量,alloca 的类型将是指针指向标量类型,例如 `int*`
|
||||
AllocaInst* alloca =
|
||||
builder.createAllocaInst(Type::getPointerType(variableType), name);
|
||||
builder.createAllocaInst(Type::getPointerType(variableType), {}, name);
|
||||
|
||||
if (varDef->initVal() != nullptr) {
|
||||
ValueCounter values;
|
||||
@ -950,7 +992,7 @@ std::any SysYIRGenerator::visitFuncDef(SysYParser::FuncDefContext *ctx){
|
||||
auto funcArgs = function->getArguments();
|
||||
std::vector<AllocaInst *> allocas;
|
||||
for (int i = 0; i < paramActualTypes.size(); ++i) {
|
||||
AllocaInst *alloca = builder.createAllocaInst(Type::getPointerType(paramActualTypes[i]), paramNames[i]);
|
||||
AllocaInst *alloca = builder.createAllocaInst(Type::getPointerType(paramActualTypes[i]), {}, paramNames[i]);
|
||||
allocas.push_back(alloca);
|
||||
module->addVariable(paramNames[i], alloca);
|
||||
}
|
||||
@ -965,7 +1007,7 @@ std::any SysYIRGenerator::visitFuncDef(SysYParser::FuncDefContext *ctx){
|
||||
BasicBlock* funcBodyEntry = function->addBasicBlock("funcBodyEntry_" + name);
|
||||
|
||||
// 从 entryBB 无条件跳转到 funcBodyEntry
|
||||
builder.createUncondBrInst(funcBodyEntry);
|
||||
builder.createUncondBrInst(funcBodyEntry, {});
|
||||
builder.setPosition(funcBodyEntry,funcBodyEntry->end()); // 将插入点设置到 funcBodyEntry
|
||||
|
||||
for (auto item : ctx->blockStmt()->blockItem()) {
|
||||
@ -1141,7 +1183,7 @@ std::any SysYIRGenerator::visitIfStmt(SysYParser::IfStmtContext *ctx) {
|
||||
ctx->stmt(0)->accept(this);
|
||||
module->leaveScope();
|
||||
}
|
||||
builder.createUncondBrInst(exitBlock);
|
||||
builder.createUncondBrInst(exitBlock, {});
|
||||
BasicBlock::conectBlocks(builder.getBasicBlock(), exitBlock);
|
||||
|
||||
labelstring << "if_else.L" << builder.getLabelIndex();
|
||||
@ -1158,7 +1200,7 @@ std::any SysYIRGenerator::visitIfStmt(SysYParser::IfStmtContext *ctx) {
|
||||
ctx->stmt(1)->accept(this);
|
||||
module->leaveScope();
|
||||
}
|
||||
builder.createUncondBrInst(exitBlock);
|
||||
builder.createUncondBrInst(exitBlock, {});
|
||||
BasicBlock::conectBlocks(builder.getBasicBlock(), exitBlock);
|
||||
|
||||
labelstring << "if_exit.L" << builder.getLabelIndex();
|
||||
@ -1188,7 +1230,7 @@ std::any SysYIRGenerator::visitIfStmt(SysYParser::IfStmtContext *ctx) {
|
||||
ctx->stmt(0)->accept(this);
|
||||
module->leaveScope();
|
||||
}
|
||||
builder.createUncondBrInst(exitBlock);
|
||||
builder.createUncondBrInst(exitBlock, {});
|
||||
BasicBlock::conectBlocks(builder.getBasicBlock(), exitBlock);
|
||||
|
||||
labelstring << "if_exit.L" << builder.getLabelIndex();
|
||||
@ -1210,7 +1252,7 @@ std::any SysYIRGenerator::visitWhileStmt(SysYParser::WhileStmtContext *ctx) {
|
||||
labelstring << "while_head.L" << builder.getLabelIndex();
|
||||
BasicBlock *headBlock = function->addBasicBlock(labelstring.str());
|
||||
labelstring.str("");
|
||||
builder.createUncondBrInst(headBlock);
|
||||
builder.createUncondBrInst(headBlock, {});
|
||||
BasicBlock::conectBlocks(curBlock, headBlock);
|
||||
builder.setPosition(headBlock, headBlock->end());
|
||||
|
||||
@ -1243,7 +1285,7 @@ std::any SysYIRGenerator::visitWhileStmt(SysYParser::WhileStmtContext *ctx) {
|
||||
module->leaveScope();
|
||||
}
|
||||
|
||||
builder.createUncondBrInst(headBlock);
|
||||
builder.createUncondBrInst(headBlock, {});
|
||||
BasicBlock::conectBlocks(builder.getBasicBlock(), exitBlock);
|
||||
builder.popBreakBlock();
|
||||
builder.popContinueBlock();
|
||||
@ -1259,14 +1301,14 @@ std::any SysYIRGenerator::visitWhileStmt(SysYParser::WhileStmtContext *ctx) {
|
||||
|
||||
std::any SysYIRGenerator::visitBreakStmt(SysYParser::BreakStmtContext *ctx) {
|
||||
BasicBlock* breakBlock = builder.getBreakBlock();
|
||||
builder.createUncondBrInst(breakBlock);
|
||||
builder.createUncondBrInst(breakBlock, {});
|
||||
BasicBlock::conectBlocks(builder.getBasicBlock(), breakBlock);
|
||||
return std::any();
|
||||
}
|
||||
|
||||
std::any SysYIRGenerator::visitContinueStmt(SysYParser::ContinueStmtContext *ctx) {
|
||||
BasicBlock* continueBlock = builder.getContinueBlock();
|
||||
builder.createUncondBrInst(continueBlock);
|
||||
builder.createUncondBrInst(continueBlock, {});
|
||||
BasicBlock::conectBlocks(builder.getBasicBlock(), continueBlock);
|
||||
return std::any();
|
||||
}
|
||||
@ -1807,7 +1849,7 @@ std::any SysYIRGenerator::visitLAndExp(SysYParser::LAndExpContext *ctx){
|
||||
labelstring.str("");
|
||||
|
||||
auto cond = std::any_cast<Value *>(visitEqExp(ctx->eqExp(i)));
|
||||
builder.createCondBrInst(cond, newtrueBlock, falseBlock);
|
||||
builder.createCondBrInst(cond, newtrueBlock, falseBlock, {}, {});
|
||||
|
||||
BasicBlock::conectBlocks(curBlock, newtrueBlock);
|
||||
BasicBlock::conectBlocks(curBlock, falseBlock);
|
||||
@ -1817,7 +1859,7 @@ std::any SysYIRGenerator::visitLAndExp(SysYParser::LAndExpContext *ctx){
|
||||
}
|
||||
|
||||
auto cond = std::any_cast<Value *>(visitEqExp(conds.back()));
|
||||
builder.createCondBrInst(cond, trueBlock, falseBlock);
|
||||
builder.createCondBrInst(cond, trueBlock, falseBlock, {}, {});
|
||||
|
||||
BasicBlock::conectBlocks(curBlock, trueBlock);
|
||||
BasicBlock::conectBlocks(curBlock, falseBlock);
|
||||
@ -1934,7 +1976,7 @@ void Utils::createExternalFunction(
|
||||
for (int i = 0; i < paramTypes.size(); ++i) {
|
||||
auto arg = new Argument(paramTypes[i], function, i, paramNames[i]);
|
||||
auto alloca = pBuilder->createAllocaInst(
|
||||
Type::getPointerType(paramTypes[i]), paramNames[i]);
|
||||
Type::getPointerType(paramTypes[i]), {}, paramNames[i]);
|
||||
function->insertArgument(arg);
|
||||
auto store = pBuilder->createStoreInst(arg, alloca);
|
||||
pModule->addVariable(paramNames[i], alloca);
|
||||
|
||||
@ -240,6 +240,8 @@ void SysYPrinter::printInst(Instruction *pInst) {
|
||||
case Kind::kMul:
|
||||
case Kind::kDiv:
|
||||
case Kind::kRem:
|
||||
case Kind::kSRA:
|
||||
case Kind::kMulh:
|
||||
case Kind::kFAdd:
|
||||
case Kind::kFSub:
|
||||
case Kind::kFMul:
|
||||
@ -272,6 +274,8 @@ void SysYPrinter::printInst(Instruction *pInst) {
|
||||
case Kind::kMul: std::cout << "mul"; break;
|
||||
case Kind::kDiv: std::cout << "sdiv"; break;
|
||||
case Kind::kRem: std::cout << "srem"; break;
|
||||
case Kind::kSRA: std::cout << "ashr"; break;
|
||||
case Kind::kMulh: std::cout << "mulh"; break;
|
||||
case Kind::kFAdd: std::cout << "fadd"; break;
|
||||
case Kind::kFSub: std::cout << "fsub"; break;
|
||||
case Kind::kFMul: std::cout << "fmul"; break;
|
||||
@ -408,12 +412,7 @@ void SysYPrinter::printInst(Instruction *pInst) {
|
||||
}
|
||||
std::cout << std::endl;
|
||||
} break;
|
||||
|
||||
case Kind::kUnreachable: {
|
||||
std::cout << "Unreachable" << std::endl;
|
||||
|
||||
} break;
|
||||
|
||||
|
||||
case Kind::kAlloca: {
|
||||
auto allocaInst = dynamic_cast<AllocaInst *>(pInst);
|
||||
std::cout << "%" << allocaInst->getName() << " = alloca ";
|
||||
@ -424,6 +423,17 @@ void SysYPrinter::printInst(Instruction *pInst) {
|
||||
auto allocatedType = allocaInst->getAllocatedType();
|
||||
printType(allocatedType);
|
||||
|
||||
// 仍然打印维度信息,如果存在的话
|
||||
if (allocaInst->getNumDims() > 0) {
|
||||
std::cout << ", ";
|
||||
for (size_t i = 0; i < allocaInst->getNumDims(); i++) {
|
||||
if (i > 0) std::cout << ", ";
|
||||
printType(Type::getIntType()); // 维度大小通常是 i32 类型
|
||||
std::cout << " ";
|
||||
printValue(allocaInst->getDim(i));
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << ", align 4" << std::endl;
|
||||
} break;
|
||||
|
||||
@ -436,6 +446,17 @@ void SysYPrinter::printInst(Instruction *pInst) {
|
||||
std::cout << " ";
|
||||
printValue(loadInst->getPointer()); // 要加载的地址
|
||||
|
||||
// 仍然打印索引信息,如果存在的话
|
||||
if (loadInst->getNumIndices() > 0) {
|
||||
std::cout << ", indices "; // 或者其他分隔符,取决于你期望的格式
|
||||
for (size_t i = 0; i < loadInst->getNumIndices(); i++) {
|
||||
if (i > 0) std::cout << ", ";
|
||||
printType(loadInst->getIndex(i)->getType());
|
||||
std::cout << " ";
|
||||
printValue(loadInst->getIndex(i));
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << ", align 4" << std::endl;
|
||||
} break;
|
||||
|
||||
@ -450,6 +471,16 @@ void SysYPrinter::printInst(Instruction *pInst) {
|
||||
std::cout << " ";
|
||||
printValue(storeInst->getPointer()); // 目标地址
|
||||
|
||||
// 仍然打印索引信息,如果存在的话
|
||||
if (storeInst->getNumIndices() > 0) {
|
||||
std::cout << ", indices "; // 或者其他分隔符
|
||||
for (size_t i = 0; i < storeInst->getNumIndices(); i++) {
|
||||
if (i > 0) std::cout << ", ";
|
||||
printType(storeInst->getIndex(i)->getType());
|
||||
std::cout << " ";
|
||||
printValue(storeInst->getIndex(i));
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << ", align 4" << std::endl;
|
||||
} break;
|
||||
|
||||
Reference in New Issue
Block a user