Compare commits
16 Commits
midend-Loo
...
midend-tco
| Author | SHA1 | Date | |
|---|---|---|---|
| 042b1a5d99 | |||
| 937833117e | |||
| ad74e435ba | |||
| 5c34cbc7b8 | |||
| c9a0c700e1 | |||
| f317010d76 | |||
| 8ca64610eb | |||
| 969a78a088 | |||
| 8763c0a11a | |||
| d83dc7a2e7 | |||
| e32585fd25 | |||
| c4eb1c3980 | |||
| d038884ffb | |||
| 467f2f6b24 | |||
| fa33bf5134 | |||
| a3435e7c26 |
@ -396,9 +396,25 @@ check_initial_overflow()
|
||||
智能回退:使用已验证的标准值保证正确性
|
||||
保持通用性:对于没有预设值的除数仍然可以工作
|
||||
|
||||
## 死归纳变量消除
|
||||
|
||||
整体架构和工作流程
|
||||
当前的归纳变量消除优化分为三个清晰的阶段:
|
||||
|
||||
识别阶段:找出所有潜在的死归纳变量
|
||||
安全性分析阶段:验证每个变量消除的安全性
|
||||
消除执行阶段:实际删除安全的死归纳变量
|
||||
|
||||
|
||||
逃逸点检测 (已修复的关键安全机制)
|
||||
数组索引检测:GEP指令被正确识别为逃逸点
|
||||
循环退出条件:用于比较和条件分支的归纳变量不会被消除
|
||||
控制流指令:condBr、br、return等被特殊处理为逃逸点
|
||||
内存操作:store/load指令经过别名分析检查
|
||||
|
||||
# 后续优化可能涉及的改动
|
||||
|
||||
## 1)将所有的alloca集中到entryblock中
|
||||
## 1)将所有的alloca集中到entryblock中(已实现)
|
||||
|
||||
好处:优化友好性,方便mem2reg提升
|
||||
目前没有实现这个机制,如果想要实现首先解决同一函数不同域的同名变量命名区分
|
||||
|
||||
@ -634,6 +634,22 @@ void PeepholeOptimizer::runOnMachineFunction(MachineFunction *mfunc) {
|
||||
}
|
||||
}
|
||||
}
|
||||
// 8. 消除无用移动指令: mv a, a -> (删除)
|
||||
else if (mi1->getOpcode() == RVOpcodes::MV &&
|
||||
mi1->getOperands().size() == 2) {
|
||||
if (mi1->getOperands()[0]->getKind() == MachineOperand::KIND_REG &&
|
||||
mi1->getOperands()[1]->getKind() == MachineOperand::KIND_REG) {
|
||||
auto *dst = static_cast<RegOperand *>(mi1->getOperands()[0].get());
|
||||
auto *src = static_cast<RegOperand *>(mi1->getOperands()[1].get());
|
||||
|
||||
// 检查源和目标寄存器是否相同
|
||||
if (areRegsEqual(dst, src)) {
|
||||
// 删除这条无用指令
|
||||
instrs.erase(instrs.begin() + i);
|
||||
changed = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 根据是否发生变化调整遍历索引
|
||||
if (!changed) {
|
||||
|
||||
@ -350,7 +350,11 @@ private:
|
||||
std::set<Value*>& visited
|
||||
);
|
||||
bool isBasicInductionVariable(Value* val, Loop* loop);
|
||||
bool hasSimpleMemoryPattern(Loop* loop); // 简单的内存模式检查
|
||||
// ========== 循环不变量分析辅助方法 ==========
|
||||
bool isInvariantOperands(Instruction* inst, Loop* loop, const std::unordered_set<Value*>& invariants);
|
||||
bool isMemoryLocationModifiedInLoop(Value* ptr, Loop* loop);
|
||||
bool isMemoryLocationLoadedInLoop(Value* ptr, Loop* loop, Instruction* excludeInst = nullptr);
|
||||
bool isPureFunction(Function* calledFunc);
|
||||
};
|
||||
|
||||
} // namespace sysy
|
||||
|
||||
87
src/include/midend/Pass/Optimize/GVN.h
Normal file
87
src/include/midend/Pass/Optimize/GVN.h
Normal file
@ -0,0 +1,87 @@
|
||||
#pragma once
|
||||
|
||||
#include "Pass.h"
|
||||
#include "IR.h"
|
||||
#include "Dom.h"
|
||||
#include "SideEffectAnalysis.h"
|
||||
#include <unordered_map>
|
||||
#include <unordered_set>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <sstream>
|
||||
|
||||
namespace sysy {
|
||||
|
||||
// GVN优化遍的核心逻辑封装类
|
||||
class GVNContext {
|
||||
public:
|
||||
// 运行GVN优化的主要方法
|
||||
void run(Function* func, AnalysisManager* AM, bool& changed);
|
||||
|
||||
private:
|
||||
// 新的值编号系统
|
||||
std::unordered_map<Value*, unsigned> valueToNumber; // Value -> 值编号
|
||||
std::unordered_map<unsigned, Value*> numberToValue; // 值编号 -> 代表值
|
||||
std::unordered_map<std::string, unsigned> expressionToNumber; // 表达式 -> 值编号
|
||||
unsigned nextValueNumber = 1;
|
||||
|
||||
// 已访问的基本块集合
|
||||
std::unordered_set<BasicBlock*> visited;
|
||||
|
||||
// 逆后序遍历的基本块列表
|
||||
std::vector<BasicBlock*> rpoBlocks;
|
||||
|
||||
// 需要删除的指令集合
|
||||
std::unordered_set<Instruction*> needRemove;
|
||||
|
||||
// 分析结果
|
||||
DominatorTree* domTree = nullptr;
|
||||
SideEffectAnalysisResult* sideEffectAnalysis = nullptr;
|
||||
|
||||
// 计算逆后序遍历
|
||||
void computeRPO(Function* func);
|
||||
void dfs(BasicBlock* bb);
|
||||
|
||||
// 新的值编号方法
|
||||
unsigned getValueNumber(Value* value);
|
||||
unsigned assignValueNumber(Value* value);
|
||||
|
||||
// 基本块处理
|
||||
void processBasicBlock(BasicBlock* bb, bool& changed);
|
||||
|
||||
// 指令处理
|
||||
bool processInstruction(Instruction* inst);
|
||||
|
||||
// 表达式构建和查找
|
||||
std::string buildExpressionKey(Instruction* inst);
|
||||
Value* findExistingValue(const std::string& exprKey, Instruction* inst);
|
||||
|
||||
// 支配关系和安全性检查
|
||||
bool dominates(Instruction* a, Instruction* b);
|
||||
bool isMemorySafe(LoadInst* earlierLoad, LoadInst* laterLoad);
|
||||
|
||||
// 清理方法
|
||||
void eliminateRedundantInstructions(bool& changed);
|
||||
void invalidateMemoryValues(StoreInst* store);
|
||||
};
|
||||
|
||||
// GVN优化遍类
|
||||
class GVN : public OptimizationPass {
|
||||
public:
|
||||
// 静态成员,作为该遍的唯一ID
|
||||
static void* ID;
|
||||
|
||||
GVN() : OptimizationPass("GVN", Granularity::Function) {}
|
||||
|
||||
// 在函数上运行优化
|
||||
bool runOnFunction(Function* func, AnalysisManager& AM) override;
|
||||
|
||||
// 返回该遍的唯一ID
|
||||
void* getPassID() const override { return ID; }
|
||||
|
||||
// 声明分析依赖
|
||||
void getAnalysisUsage(std::set<void*>& analysisDependencies,
|
||||
std::set<void*>& analysisInvalidations) const override;
|
||||
};
|
||||
|
||||
} // namespace sysy
|
||||
107
src/include/midend/Pass/Optimize/GlobalStrengthReduction.h
Normal file
107
src/include/midend/Pass/Optimize/GlobalStrengthReduction.h
Normal file
@ -0,0 +1,107 @@
|
||||
#pragma once
|
||||
|
||||
#include "Pass.h"
|
||||
#include "IR.h"
|
||||
#include "SideEffectAnalysis.h"
|
||||
#include <unordered_map>
|
||||
#include <unordered_set>
|
||||
#include <vector>
|
||||
#include <cstdint>
|
||||
|
||||
namespace sysy {
|
||||
|
||||
// 魔数乘法结构,用于除法优化
|
||||
struct MagicNumber {
|
||||
uint32_t multiplier;
|
||||
int shift;
|
||||
bool needAdd;
|
||||
|
||||
MagicNumber(uint32_t m, int s, bool add = false)
|
||||
: multiplier(m), shift(s), needAdd(add) {}
|
||||
};
|
||||
|
||||
// 全局强度削弱优化遍的核心逻辑封装类
|
||||
class GlobalStrengthReductionContext {
|
||||
public:
|
||||
// 构造函数,接受IRBuilder参数
|
||||
explicit GlobalStrengthReductionContext(IRBuilder* builder) : builder(builder) {}
|
||||
|
||||
// 运行优化的主要方法
|
||||
void run(Function* func, AnalysisManager* AM, bool& changed);
|
||||
|
||||
private:
|
||||
IRBuilder* builder; // IR构建器
|
||||
|
||||
// 分析结果
|
||||
SideEffectAnalysisResult* sideEffectAnalysis = nullptr;
|
||||
|
||||
// 优化计数
|
||||
int algebraicOptCount = 0;
|
||||
int strengthReductionCount = 0;
|
||||
int divisionOptCount = 0;
|
||||
|
||||
// 主要优化方法
|
||||
bool processBasicBlock(BasicBlock* bb);
|
||||
bool processInstruction(Instruction* inst);
|
||||
|
||||
// 代数优化方法
|
||||
bool tryAlgebraicOptimization(Instruction* inst);
|
||||
bool optimizeAddition(BinaryInst* inst);
|
||||
bool optimizeSubtraction(BinaryInst* inst);
|
||||
bool optimizeMultiplication(BinaryInst* inst);
|
||||
bool optimizeDivision(BinaryInst* inst);
|
||||
bool optimizeComparison(BinaryInst* inst);
|
||||
bool optimizeLogical(BinaryInst* inst);
|
||||
|
||||
// 强度削弱方法
|
||||
bool tryStrengthReduction(Instruction* inst);
|
||||
bool reduceMultiplication(BinaryInst* inst);
|
||||
bool reduceDivision(BinaryInst* inst);
|
||||
bool reducePower(CallInst* inst);
|
||||
|
||||
// 复杂乘法强度削弱方法
|
||||
bool tryComplexMultiplication(BinaryInst* inst, Value* variable, int constant);
|
||||
bool findOptimalShiftDecomposition(int constant, std::vector<int>& shifts);
|
||||
Value* createShiftDecomposition(BinaryInst* inst, Value* variable, const std::vector<int>& shifts);
|
||||
|
||||
// 魔数乘法相关方法
|
||||
MagicNumber computeMagicNumber(uint32_t divisor);
|
||||
std::pair<int, int> computeMulhMagicNumbers(int divisor);
|
||||
Value* createMagicDivision(BinaryInst* divInst, uint32_t divisor, const MagicNumber& magic);
|
||||
Value* createMagicDivisionLibdivide(BinaryInst* divInst, int divisor);
|
||||
bool isPowerOfTwo(uint32_t n);
|
||||
int log2OfPowerOfTwo(uint32_t n);
|
||||
|
||||
// 辅助方法
|
||||
bool isConstantInt(Value* val, int& constVal);
|
||||
bool isConstantInt(Value* val, uint32_t& constVal);
|
||||
ConstantInteger* getConstantInt(int val);
|
||||
bool hasOnlyLocalUses(Instruction* inst);
|
||||
void replaceWithOptimized(Instruction* original, Value* replacement);
|
||||
};
|
||||
|
||||
// 全局强度削弱优化遍类
|
||||
class GlobalStrengthReduction : public OptimizationPass {
|
||||
private:
|
||||
IRBuilder* builder; // IR构建器,用于创建新指令
|
||||
|
||||
public:
|
||||
// 静态成员,作为该遍的唯一ID
|
||||
static void* ID;
|
||||
|
||||
// 构造函数,接受IRBuilder参数
|
||||
explicit GlobalStrengthReduction(IRBuilder* builder)
|
||||
: OptimizationPass("GlobalStrengthReduction", Granularity::Function), builder(builder) {}
|
||||
|
||||
// 在函数上运行优化
|
||||
bool runOnFunction(Function* func, AnalysisManager& AM) override;
|
||||
|
||||
// 返回该遍的唯一ID
|
||||
void* getPassID() const override { return ID; }
|
||||
|
||||
// 声明分析依赖
|
||||
void getAnalysisUsage(std::set<void*>& analysisDependencies,
|
||||
std::set<void*>& analysisInvalidations) const override;
|
||||
};
|
||||
|
||||
} // namespace sysy
|
||||
@ -6,6 +6,7 @@
|
||||
#include "Loop.h"
|
||||
#include "Dom.h"
|
||||
#include "SideEffectAnalysis.h"
|
||||
#include "AliasAnalysis.h"
|
||||
#include <vector>
|
||||
#include <unordered_map>
|
||||
#include <unordered_set>
|
||||
@ -53,6 +54,7 @@ private:
|
||||
LoopCharacteristicsResult* loopCharacteristics = nullptr;
|
||||
DominatorTree* dominatorTree = nullptr;
|
||||
SideEffectAnalysisResult* sideEffectAnalysis = nullptr;
|
||||
AliasAnalysisResult* aliasAnalysis = nullptr;
|
||||
|
||||
// 死归纳变量存储
|
||||
std::vector<std::unique_ptr<DeadInductionVariable>> deadIVs;
|
||||
@ -90,12 +92,105 @@ private:
|
||||
isDeadInductionVariable(const InductionVarInfo* iv, Loop* loop);
|
||||
|
||||
/**
|
||||
* 检查归纳变量是否只用于自身更新
|
||||
* 递归分析phi指令及其使用链是否都是死代码
|
||||
* @param phiInst phi指令
|
||||
* @param loop 所在循环
|
||||
* @return 是否只用于自身更新
|
||||
* @return phi指令是否可以安全删除
|
||||
*/
|
||||
bool isUsedOnlyForSelfUpdate(PhiInst* phiInst, Loop* loop);
|
||||
bool isPhiInstructionDeadRecursively(PhiInst* phiInst, Loop* loop);
|
||||
|
||||
/**
|
||||
* 递归分析指令的使用链是否都是死代码
|
||||
* @param inst 要分析的指令
|
||||
* @param loop 所在循环
|
||||
* @param visited 已访问的指令集合(避免无限递归)
|
||||
* @param currentPath 当前递归路径(检测循环依赖)
|
||||
* @return 指令的使用链是否都是死代码
|
||||
*/
|
||||
bool isInstructionUseChainDeadRecursively(Instruction* inst, Loop* loop,
|
||||
std::set<Instruction*>& visited,
|
||||
std::set<Instruction*>& currentPath);
|
||||
|
||||
/**
|
||||
* 检查循环是否有副作用
|
||||
* @param loop 要检查的循环
|
||||
* @return 循环是否有副作用
|
||||
*/
|
||||
bool loopHasSideEffects(Loop* loop);
|
||||
|
||||
/**
|
||||
* 检查指令是否被用于循环退出条件
|
||||
* @param inst 要检查的指令
|
||||
* @param loop 所在循环
|
||||
* @return 是否被用于循环退出条件
|
||||
*/
|
||||
bool isUsedInLoopExitCondition(Instruction* inst, Loop* loop);
|
||||
|
||||
/**
|
||||
* 检查指令的结果是否未被有效使用
|
||||
* @param inst 要检查的指令
|
||||
* @param loop 所在循环
|
||||
* @return 指令结果是否未被有效使用
|
||||
*/
|
||||
bool isInstructionResultUnused(Instruction* inst, Loop* loop);
|
||||
|
||||
/**
|
||||
* 检查store指令是否存储到死地址(利用别名分析)
|
||||
* @param store store指令
|
||||
* @param loop 所在循环
|
||||
* @return 是否存储到死地址
|
||||
*/
|
||||
bool isStoreToDeadLocation(StoreInst* store, Loop* loop);
|
||||
|
||||
/**
|
||||
* 检查指令是否为死代码或只在循环内部使用
|
||||
* @param inst 要检查的指令
|
||||
* @param loop 所在循环
|
||||
* @return 是否为死代码或只在循环内部使用
|
||||
*/
|
||||
bool isInstructionDeadOrInternalOnly(Instruction* inst, Loop* loop);
|
||||
|
||||
/**
|
||||
* 检查指令是否有效地为死代码(带递归深度限制)
|
||||
* @param inst 要检查的指令
|
||||
* @param loop 所在循环
|
||||
* @param maxDepth 最大递归深度
|
||||
* @return 指令是否有效地为死代码
|
||||
*/
|
||||
bool isInstructionEffectivelyDead(Instruction* inst, Loop* loop, int maxDepth);
|
||||
|
||||
/**
|
||||
* 检查store指令是否有后续的load操作
|
||||
* @param store store指令
|
||||
* @param loop 所在循环
|
||||
* @return 是否有后续的load操作
|
||||
*/
|
||||
bool hasSubsequentLoad(StoreInst* store, Loop* loop);
|
||||
|
||||
/**
|
||||
* 检查指令是否在循环外有使用
|
||||
* @param inst 要检查的指令
|
||||
* @param loop 所在循环
|
||||
* @return 是否在循环外有使用
|
||||
*/
|
||||
bool hasUsageOutsideLoop(Instruction* inst, Loop* loop);
|
||||
|
||||
/**
|
||||
* 检查store指令是否在循环外有后续的load操作
|
||||
* @param store store指令
|
||||
* @param loop 所在循环
|
||||
* @return 是否在循环外有后续的load操作
|
||||
*/
|
||||
bool hasSubsequentLoadOutsideLoop(StoreInst* store, Loop* loop);
|
||||
|
||||
/**
|
||||
* 递归检查基本块子树中是否有对指定位置的load操作
|
||||
* @param bb 基本块
|
||||
* @param ptr 指针
|
||||
* @param visited 已访问的基本块集合
|
||||
* @return 是否有load操作
|
||||
*/
|
||||
bool hasLoadInSubtree(BasicBlock* bb, Value* ptr, std::set<BasicBlock*>& visited);
|
||||
|
||||
/**
|
||||
* 收集与归纳变量相关的所有指令
|
||||
|
||||
@ -127,13 +127,6 @@ private:
|
||||
*/
|
||||
bool analyzeInductionVariableRange(const InductionVarInfo* ivInfo, Loop* loop) const;
|
||||
|
||||
/**
|
||||
* 计算用于除法优化的魔数和移位量
|
||||
* @param divisor 除数
|
||||
* @return {魔数, 移位量}
|
||||
*/
|
||||
std::pair<int, int> computeMulhMagicNumbers(int divisor) const;
|
||||
|
||||
/**
|
||||
* 生成除法替换代码
|
||||
* @param candidate 优化候选项
|
||||
|
||||
@ -107,6 +107,190 @@ public:
|
||||
// 所以当AllocaInst的basetype是PointerType时(一维数组)或者是指向ArrayType的PointerType(多位数组)时,返回true
|
||||
return aval && (baseType->isPointer() || baseType->as<PointerType>()->getBaseType()->isArray());
|
||||
}
|
||||
|
||||
|
||||
//该实现参考了libdivide的算法
|
||||
static std::pair<int, int> computeMulhMagicNumbers(int divisor) {
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << "\n[SR] ===== Computing magic numbers for divisor " << divisor << " (libdivide algorithm) =====" << std::endl;
|
||||
}
|
||||
|
||||
if (divisor == 0) {
|
||||
if (DEBUG) std::cout << "[SR] Error: divisor must be != 0" << std::endl;
|
||||
return {-1, -1};
|
||||
}
|
||||
|
||||
// libdivide 常数
|
||||
const uint8_t LIBDIVIDE_ADD_MARKER = 0x40;
|
||||
const uint8_t LIBDIVIDE_NEGATIVE_DIVISOR = 0x80;
|
||||
|
||||
// 辅助函数:计算前导零个数
|
||||
auto count_leading_zeros32 = [](uint32_t val) -> uint32_t {
|
||||
if (val == 0) return 32;
|
||||
return __builtin_clz(val);
|
||||
};
|
||||
|
||||
// 辅助函数:64位除法返回32位商和余数
|
||||
auto div_64_32 = [](uint32_t high, uint32_t low, uint32_t divisor, uint32_t* rem) -> uint32_t {
|
||||
uint64_t dividend = ((uint64_t)high << 32) | low;
|
||||
uint32_t quotient = dividend / divisor;
|
||||
*rem = dividend % divisor;
|
||||
return quotient;
|
||||
};
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << "[SR] Input divisor: " << divisor << std::endl;
|
||||
}
|
||||
|
||||
// libdivide_internal_s32_gen 算法实现
|
||||
int32_t d = divisor;
|
||||
uint32_t ud = (uint32_t)d;
|
||||
uint32_t absD = (d < 0) ? -ud : ud;
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << "[SR] absD = " << absD << std::endl;
|
||||
}
|
||||
|
||||
uint32_t floor_log_2_d = 31 - count_leading_zeros32(absD);
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << "[SR] floor_log_2_d = " << floor_log_2_d << std::endl;
|
||||
}
|
||||
|
||||
// 检查 absD 是否为2的幂
|
||||
if ((absD & (absD - 1)) == 0) {
|
||||
if (DEBUG) {
|
||||
std::cout << "[SR] " << absD << " 是2的幂,使用移位方法" << std::endl;
|
||||
}
|
||||
|
||||
// 对于2的幂,我们只使用移位,不需要魔数
|
||||
int shift = floor_log_2_d;
|
||||
if (d < 0) shift |= 0x80; // 标记负数
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << "[SR] Power of 2 result: magic=0, shift=" << shift << std::endl;
|
||||
std::cout << "[SR] ===== End magic computation =====" << std::endl;
|
||||
}
|
||||
|
||||
// 对于我们的目的,我们将在IR生成中以不同方式处理2的幂
|
||||
// 返回特殊标记
|
||||
return {0, shift};
|
||||
}
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << "[SR] " << absD << " is not a power of 2, computing magic number" << std::endl;
|
||||
}
|
||||
|
||||
// 非2的幂除数的魔数计算
|
||||
uint8_t more;
|
||||
uint32_t rem, proposed_m;
|
||||
|
||||
// 计算 proposed_m = floor(2^(floor_log_2_d + 31) / absD)
|
||||
proposed_m = div_64_32((uint32_t)1 << (floor_log_2_d - 1), 0, absD, &rem);
|
||||
const uint32_t e = absD - rem;
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << "[SR] proposed_m = " << proposed_m << ", rem = " << rem << ", e = " << e << std::endl;
|
||||
}
|
||||
|
||||
// 确定是否需要"加法"版本
|
||||
const bool branchfree = false; // 使用分支版本
|
||||
|
||||
if (!branchfree && e < ((uint32_t)1 << floor_log_2_d)) {
|
||||
// 这个幂次有效
|
||||
more = (uint8_t)(floor_log_2_d - 1);
|
||||
if (DEBUG) {
|
||||
std::cout << "[SR] Using basic algorithm, shift = " << (int)more << std::endl;
|
||||
}
|
||||
} else {
|
||||
// 我们需要上升一个等级
|
||||
proposed_m += proposed_m;
|
||||
const uint32_t twice_rem = rem + rem;
|
||||
if (twice_rem >= absD || twice_rem < rem) {
|
||||
proposed_m += 1;
|
||||
}
|
||||
more = (uint8_t)(floor_log_2_d | LIBDIVIDE_ADD_MARKER);
|
||||
if (DEBUG) {
|
||||
std::cout << "[SR] Using add algorithm, proposed_m = " << proposed_m << ", more = " << (int)more << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
proposed_m += 1;
|
||||
int32_t magic = (int32_t)proposed_m;
|
||||
|
||||
// 处理负除数
|
||||
if (d < 0) {
|
||||
more |= LIBDIVIDE_NEGATIVE_DIVISOR;
|
||||
if (!branchfree) {
|
||||
magic = -magic;
|
||||
}
|
||||
if (DEBUG) {
|
||||
std::cout << "[SR] Negative divisor, magic = " << magic << ", more = " << (int)more << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
// 为我们的IR生成提取移位量和标志
|
||||
int shift = more & 0x3F; // 移除标志,保留移位量(位0-5)
|
||||
bool need_add = (more & LIBDIVIDE_ADD_MARKER) != 0;
|
||||
bool is_negative = (more & LIBDIVIDE_NEGATIVE_DIVISOR) != 0;
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << "[SR] Final result: magic = " << magic << ", more = " << (int)more
|
||||
<< " (0x" << std::hex << (int)more << std::dec << ")" << std::endl;
|
||||
std::cout << "[SR] Shift = " << shift << ", need_add = " << need_add
|
||||
<< ", is_negative = " << is_negative << std::endl;
|
||||
|
||||
// Test the magic number using the correct libdivide algorithm
|
||||
std::cout << "[SR] Testing magic number (libdivide algorithm):" << std::endl;
|
||||
int test_values[] = {1, 7, 37, 100, 999, -1, -7, -37, -100};
|
||||
|
||||
for (int test_val : test_values) {
|
||||
int64_t quotient;
|
||||
|
||||
// 实现正确的libdivide算法
|
||||
int64_t product = (int64_t)test_val * magic;
|
||||
int64_t high_bits = product >> 32;
|
||||
|
||||
if (need_add) {
|
||||
// ADD_MARKER情况:移位前加上被除数
|
||||
// 这是libdivide的关键洞察!
|
||||
high_bits += test_val;
|
||||
quotient = high_bits >> shift;
|
||||
} else {
|
||||
// 正常情况:只是移位
|
||||
quotient = high_bits >> shift;
|
||||
}
|
||||
|
||||
// 符号修正:这是libdivide有符号除法的关键部分!
|
||||
// 如果被除数为负,商需要加1来匹配C语言的截断除法语义
|
||||
if (test_val < 0) {
|
||||
quotient += 1;
|
||||
}
|
||||
|
||||
int expected = test_val / divisor;
|
||||
|
||||
bool correct = (quotient == expected);
|
||||
std::cout << "[SR] " << test_val << " / " << divisor << " = " << quotient
|
||||
<< " (expected " << expected << ") " << (correct ? "✓" : "✗") << std::endl;
|
||||
}
|
||||
|
||||
std::cout << "[SR] ===== End magic computation =====" << std::endl;
|
||||
}
|
||||
|
||||
// 返回魔数、移位量,并在移位中编码ADD_MARKER标志
|
||||
// 我们将使用移位的第6位表示ADD_MARKER,第7位表示负数(如果需要)
|
||||
int encoded_shift = shift;
|
||||
if (need_add) {
|
||||
encoded_shift |= 0x40; // 设置第6位表示ADD_MARKER
|
||||
if (DEBUG) {
|
||||
std::cout << "[SR] Encoding ADD_MARKER in shift: " << encoded_shift << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
return {magic, encoded_shift};
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
}// namespace sysy
|
||||
39
src/include/midend/Pass/Optimize/TailCallOpt.h
Normal file
39
src/include/midend/Pass/Optimize/TailCallOpt.h
Normal file
@ -0,0 +1,39 @@
|
||||
#pragma once
|
||||
|
||||
#include "Pass.h"
|
||||
#include "Dom.h"
|
||||
#include "Loop.h"
|
||||
|
||||
namespace sysy {
|
||||
|
||||
/**
|
||||
* @class TailCallOpt
|
||||
* @brief 优化尾调用的中端优化通道。
|
||||
*
|
||||
* 该类实现了一个针对函数级别的尾调用优化的优化通道(OptimizationPass)。
|
||||
* 通过分析和转换 IR(中间表示),将可优化的尾调用转换为更高效的形式,
|
||||
* 以减少函数调用的开销,提升程序性能。
|
||||
*
|
||||
* @note 需要传入 IRBuilder 指针用于 IR 构建和修改。
|
||||
*
|
||||
* @method runOnFunction
|
||||
* 对指定函数进行尾调用优化。
|
||||
*
|
||||
* @method getPassID
|
||||
* 获取当前优化通道的唯一标识符。
|
||||
*
|
||||
* @method getAnalysisUsage
|
||||
* 指定该优化通道所依赖和失效的分析集合。
|
||||
*/
|
||||
class TailCallOpt : public OptimizationPass {
|
||||
private:
|
||||
IRBuilder* builder;
|
||||
public:
|
||||
TailCallOpt(IRBuilder* builder) : OptimizationPass("TailCallOpt", Granularity::Function), builder(builder) {}
|
||||
static void *ID;
|
||||
bool runOnFunction(Function *F, AnalysisManager &AM) override;
|
||||
void *getPassID() const override { return &ID; }
|
||||
void getAnalysisUsage(std::set<void *> &analysisDependencies, std::set<void *> &analysisInvalidations) const override;
|
||||
};
|
||||
|
||||
} // namespace sysy
|
||||
@ -15,14 +15,17 @@ add_library(midend_lib STATIC
|
||||
Pass/Optimize/DCE.cpp
|
||||
Pass/Optimize/Mem2Reg.cpp
|
||||
Pass/Optimize/Reg2Mem.cpp
|
||||
Pass/Optimize/GVN.cpp
|
||||
Pass/Optimize/SysYIRCFGOpt.cpp
|
||||
Pass/Optimize/SCCP.cpp
|
||||
Pass/Optimize/LoopNormalization.cpp
|
||||
Pass/Optimize/LICM.cpp
|
||||
Pass/Optimize/LoopStrengthReduction.cpp
|
||||
Pass/Optimize/InductionVariableElimination.cpp
|
||||
Pass/Optimize/GlobalStrengthReduction.cpp
|
||||
Pass/Optimize/BuildCFG.cpp
|
||||
Pass/Optimize/LargeArrayToGlobal.cpp
|
||||
Pass/Optimize/TailCallOpt.cpp
|
||||
)
|
||||
|
||||
# 包含中端模块所需的头文件路径
|
||||
|
||||
@ -847,7 +847,7 @@ void CondBrInst::print(std::ostream &os) const {
|
||||
|
||||
os << "%tmp_cond_" << condName << "_" << uniqueSuffix << " = icmp ne i32 ";
|
||||
printOperand(os, condition);
|
||||
os << ", 0\n br i1 %tmp_cond_" << condName << "_" << uniqueSuffix;
|
||||
os << ", 0\n br i1 %tmp_cond_" << condName << "_" << uniqueSuffix;
|
||||
|
||||
os << ", label %";
|
||||
printBlockName(os, getThenBlock());
|
||||
@ -886,7 +886,7 @@ void MemsetInst::print(std::ostream &os) const {
|
||||
// This is done at print time to avoid modifying the IR structure
|
||||
os << "%tmp_bitcast_" << ptr->getName() << " = bitcast " << *ptr->getType() << " ";
|
||||
printOperand(os, ptr);
|
||||
os << " to i8*\n ";
|
||||
os << " to i8*\n ";
|
||||
|
||||
// Now call memset with the bitcast result
|
||||
os << "call void @llvm.memset.p0i8.i32(i8* %tmp_bitcast_" << ptr->getName() << ", i8 ";
|
||||
|
||||
@ -776,38 +776,324 @@ void LoopCharacteristicsPass::findDerivedInductionVars(
|
||||
}
|
||||
}
|
||||
|
||||
// 递归/推进式判定
|
||||
bool LoopCharacteristicsPass::isClassicLoopInvariant(Value* val, Loop* loop, const std::unordered_set<Value*>& invariants) {
|
||||
// 1. 常量
|
||||
if (auto* constval = dynamic_cast<ConstantValue*>(val)) return true;
|
||||
|
||||
// 2. 参数(函数参数)通常不在任何BasicBlock内,直接判定为不变量
|
||||
if (auto* arg = dynamic_cast<Argument*>(val)) return true;
|
||||
|
||||
// 3. 指令且定义在循环外
|
||||
if (auto* inst = dynamic_cast<Instruction*>(val)) {
|
||||
if (!loop->contains(inst->getParent()))
|
||||
return true;
|
||||
|
||||
// 4. 跳转 phi指令 副作用 不外提
|
||||
if (inst->isTerminator() || inst->isPhi() || sideEffectAnalysis->hasSideEffect(inst))
|
||||
// 检查操作数是否都是不变量
|
||||
bool LoopCharacteristicsPass::isInvariantOperands(Instruction* inst, Loop* loop, const std::unordered_set<Value*>& invariants) {
|
||||
for (size_t i = 0; i < inst->getNumOperands(); ++i) {
|
||||
Value* op = inst->getOperand(i);
|
||||
if (!isClassicLoopInvariant(op, loop, invariants) && !invariants.count(op)) {
|
||||
return false;
|
||||
|
||||
// 5. 所有操作数都是不变量
|
||||
for (size_t i = 0; i < inst->getNumOperands(); ++i) {
|
||||
Value* op = inst->getOperand(i);
|
||||
if (!isClassicLoopInvariant(op, loop, invariants) && !invariants.count(op))
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
// 其它情况
|
||||
return true;
|
||||
}
|
||||
|
||||
// 检查内存位置是否在循环中被修改
|
||||
bool LoopCharacteristicsPass::isMemoryLocationModifiedInLoop(Value* ptr, Loop* loop) {
|
||||
// 遍历循环中的所有指令,检查是否有对该内存位置的写入
|
||||
for (BasicBlock* bb : loop->getBlocks()) {
|
||||
for (auto& inst : bb->getInstructions()) {
|
||||
// 1. 检查直接的Store指令
|
||||
if (auto* storeInst = dynamic_cast<StoreInst*>(inst.get())) {
|
||||
Value* storeTar = storeInst->getPointer();
|
||||
|
||||
// 使用别名分析检查是否可能别名
|
||||
if (aliasAnalysis) {
|
||||
auto aliasType = aliasAnalysis->queryAlias(ptr, storeTar);
|
||||
if (aliasType != AliasType::NO_ALIAS) {
|
||||
if (DEBUG) {
|
||||
std::cout << " Memory location " << ptr->getName()
|
||||
<< " may be modified by store to " << storeTar->getName() << std::endl;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
} else {
|
||||
// 如果没有别名分析,保守处理 - 只检查精确匹配
|
||||
if (ptr == storeTar) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 2. 检查函数调用是否可能修改该内存位置
|
||||
else if (auto* callInst = dynamic_cast<CallInst*>(inst.get())) {
|
||||
Function* calledFunc = callInst->getCallee();
|
||||
|
||||
// 如果是纯函数,不会修改内存
|
||||
if (isPureFunction(calledFunc)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// 检查函数参数中是否有该内存位置的指针
|
||||
for (size_t i = 1; i < callInst->getNumOperands(); ++i) { // 跳过函数指针
|
||||
Value* arg = callInst->getOperand(i);
|
||||
|
||||
// 检查参数是否是指针类型且可能指向该内存位置
|
||||
if (auto* ptrType = dynamic_cast<PointerType*>(arg->getType())) {
|
||||
// 使用别名分析检查
|
||||
if (aliasAnalysis) {
|
||||
auto aliasType = aliasAnalysis->queryAlias(ptr, arg);
|
||||
if (aliasType != AliasType::NO_ALIAS) {
|
||||
if (DEBUG) {
|
||||
std::cout << " Memory location " << ptr->getName()
|
||||
<< " may be modified by function call " << calledFunc->getName()
|
||||
<< " through parameter " << arg->getName() << std::endl;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
} else {
|
||||
// 没有别名分析,检查精确匹配
|
||||
if (ptr == arg) {
|
||||
if (DEBUG) {
|
||||
std::cout << " Memory location " << ptr->getName()
|
||||
<< " may be modified by function call " << calledFunc->getName()
|
||||
<< " (exact match)" << std::endl;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool LoopCharacteristicsPass::hasSimpleMemoryPattern(Loop* loop) {
|
||||
// 检查是否有简单的内存访问模式
|
||||
return true; // 暂时简化处理
|
||||
// 检查内存位置是否在循环中被读取
|
||||
bool LoopCharacteristicsPass::isMemoryLocationLoadedInLoop(Value* ptr, Loop* loop, Instruction* excludeInst) {
|
||||
// 遍历循环中的所有Load指令,检查是否有对该内存位置的读取
|
||||
for (BasicBlock* bb : loop->getBlocks()) {
|
||||
for (auto& inst : bb->getInstructions()) {
|
||||
if (inst.get() == excludeInst) continue; // 排除当前指令本身
|
||||
|
||||
if (auto* loadInst = dynamic_cast<LoadInst*>(inst.get())) {
|
||||
Value* loadSrc = loadInst->getPointer();
|
||||
|
||||
// 使用别名分析检查是否可能别名
|
||||
if (aliasAnalysis) {
|
||||
auto aliasType = aliasAnalysis->queryAlias(ptr, loadSrc);
|
||||
if (aliasType != AliasType::NO_ALIAS) {
|
||||
return true;
|
||||
}
|
||||
} else {
|
||||
// 如果没有别名分析,保守处理 - 只检查精确匹配
|
||||
if (ptr == loadSrc) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// 检查函数调用是否为纯函数
|
||||
bool LoopCharacteristicsPass::isPureFunction(Function* calledFunc) {
|
||||
if (!calledFunc) return false;
|
||||
|
||||
// 使用副作用分析检查函数是否为纯函数
|
||||
if (sideEffectAnalysis && sideEffectAnalysis->isPureFunction(calledFunc)) {
|
||||
return true;
|
||||
}
|
||||
|
||||
// 检查是否为内置纯函数(如数学函数)
|
||||
std::string funcName = calledFunc->getName();
|
||||
static const std::set<std::string> pureFunctions = {
|
||||
"abs", "fabs", "sqrt", "sin", "cos", "tan", "exp", "log", "pow",
|
||||
"floor", "ceil", "round", "min", "max"
|
||||
};
|
||||
|
||||
return pureFunctions.count(funcName) > 0;
|
||||
}
|
||||
|
||||
// 递归/推进式判定 - 完善版本
|
||||
bool LoopCharacteristicsPass::isClassicLoopInvariant(Value* val, Loop* loop, const std::unordered_set<Value*>& invariants) {
|
||||
if (DEBUG >= 2) {
|
||||
std::cout << " Checking loop invariant for: " << val->getName() << std::endl;
|
||||
}
|
||||
|
||||
// 1. 常量
|
||||
if (auto* constval = dynamic_cast<ConstantValue*>(val)) {
|
||||
if (DEBUG >= 2) std::cout << " -> Constant: YES" << std::endl;
|
||||
return true;
|
||||
}
|
||||
|
||||
// 2. 参数(函数参数)通常不在任何BasicBlock内,直接判定为不变量
|
||||
// 在SSA形式下,参数不会被重新赋值
|
||||
if (auto* arg = dynamic_cast<Argument*>(val)) {
|
||||
if (DEBUG >= 2) std::cout << " -> Function argument: YES" << std::endl;
|
||||
return true;
|
||||
}
|
||||
|
||||
// 3. 指令且定义在循环外
|
||||
if (auto* inst = dynamic_cast<Instruction*>(val)) {
|
||||
if (!loop->contains(inst->getParent())) {
|
||||
if (DEBUG >= 2) std::cout << " -> Defined outside loop: YES" << std::endl;
|
||||
return true;
|
||||
}
|
||||
|
||||
// 4. 跳转指令、phi指令不能外提
|
||||
if (inst->isTerminator() || inst->isPhi()) {
|
||||
if (DEBUG >= 2) std::cout << " -> Terminator or PHI: NO" << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
// 5. 根据指令类型进行具体分析
|
||||
switch (inst->getKind()) {
|
||||
case Instruction::Kind::kStore: {
|
||||
// Store指令:检查循环内是否有对该内存的load
|
||||
auto* storeInst = dynamic_cast<StoreInst*>(inst);
|
||||
Value* storePtr = storeInst->getPointer();
|
||||
|
||||
// 首先检查操作数是否不变
|
||||
if (!isInvariantOperands(inst, loop, invariants)) {
|
||||
if (DEBUG >= 2) std::cout << " -> Store: operands not invariant: NO" << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
// 检查是否有对该内存位置的load
|
||||
if (isMemoryLocationLoadedInLoop(storePtr, loop, inst)) {
|
||||
if (DEBUG >= 2) std::cout << " -> Store: memory location loaded in loop: NO" << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
if (DEBUG >= 2) std::cout << " -> Store: safe to hoist: YES" << std::endl;
|
||||
return true;
|
||||
}
|
||||
|
||||
case Instruction::Kind::kLoad: {
|
||||
// Load指令:检查循环内是否有对该内存的store
|
||||
auto* loadInst = dynamic_cast<LoadInst*>(inst);
|
||||
Value* loadPtr = loadInst->getPointer();
|
||||
|
||||
// 首先检查指针操作数是否不变
|
||||
if (!isInvariantOperands(inst, loop, invariants)) {
|
||||
if (DEBUG >= 2) std::cout << " -> Load: pointer not invariant: NO" << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
// 检查是否有对该内存位置的store
|
||||
if (isMemoryLocationModifiedInLoop(loadPtr, loop)) {
|
||||
if (DEBUG >= 2) std::cout << " -> Load: memory location modified in loop: NO" << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
if (DEBUG >= 2) std::cout << " -> Load: safe to hoist: YES" << std::endl;
|
||||
return true;
|
||||
}
|
||||
|
||||
case Instruction::Kind::kCall: {
|
||||
// Call指令:检查是否为纯函数且参数不变
|
||||
auto* callInst = dynamic_cast<CallInst*>(inst);
|
||||
Function* calledFunc = callInst->getCallee();
|
||||
|
||||
// 检查是否为纯函数
|
||||
if (!isPureFunction(calledFunc)) {
|
||||
if (DEBUG >= 2) std::cout << " -> Call: not pure function: NO" << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
// 检查参数是否都不变
|
||||
if (!isInvariantOperands(inst, loop, invariants)) {
|
||||
if (DEBUG >= 2) std::cout << " -> Call: arguments not invariant: NO" << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
if (DEBUG >= 2) std::cout << " -> Call: pure function with invariant args: YES" << std::endl;
|
||||
return true;
|
||||
}
|
||||
|
||||
case Instruction::Kind::kGetElementPtr: {
|
||||
// GEP指令:检查基址和索引是否都不变
|
||||
if (!isInvariantOperands(inst, loop, invariants)) {
|
||||
if (DEBUG >= 2) std::cout << " -> GEP: base or indices not invariant: NO" << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
if (DEBUG >= 2) std::cout << " -> GEP: base and indices invariant: YES" << std::endl;
|
||||
return true;
|
||||
}
|
||||
|
||||
// 一元运算指令
|
||||
case Instruction::Kind::kNeg:
|
||||
case Instruction::Kind::kNot:
|
||||
case Instruction::Kind::kFNeg:
|
||||
case Instruction::Kind::kFNot:
|
||||
case Instruction::Kind::kFtoI:
|
||||
case Instruction::Kind::kItoF:
|
||||
case Instruction::Kind::kBitItoF:
|
||||
case Instruction::Kind::kBitFtoI: {
|
||||
// 检查操作数是否不变
|
||||
if (!isInvariantOperands(inst, loop, invariants)) {
|
||||
if (DEBUG >= 2) std::cout << " -> Unary op: operand not invariant: NO" << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
if (DEBUG >= 2) std::cout << " -> Unary op: operand invariant: YES" << std::endl;
|
||||
return true;
|
||||
}
|
||||
|
||||
// 二元运算指令
|
||||
case Instruction::Kind::kAdd:
|
||||
case Instruction::Kind::kSub:
|
||||
case Instruction::Kind::kMul:
|
||||
case Instruction::Kind::kDiv:
|
||||
case Instruction::Kind::kRem:
|
||||
case Instruction::Kind::kSll:
|
||||
case Instruction::Kind::kSrl:
|
||||
case Instruction::Kind::kSra:
|
||||
case Instruction::Kind::kAnd:
|
||||
case Instruction::Kind::kOr:
|
||||
case Instruction::Kind::kFAdd:
|
||||
case Instruction::Kind::kFSub:
|
||||
case Instruction::Kind::kFMul:
|
||||
case Instruction::Kind::kFDiv:
|
||||
case Instruction::Kind::kICmpEQ:
|
||||
case Instruction::Kind::kICmpNE:
|
||||
case Instruction::Kind::kICmpLT:
|
||||
case Instruction::Kind::kICmpGT:
|
||||
case Instruction::Kind::kICmpLE:
|
||||
case Instruction::Kind::kICmpGE:
|
||||
case Instruction::Kind::kFCmpEQ:
|
||||
case Instruction::Kind::kFCmpNE:
|
||||
case Instruction::Kind::kFCmpLT:
|
||||
case Instruction::Kind::kFCmpGT:
|
||||
case Instruction::Kind::kFCmpLE:
|
||||
case Instruction::Kind::kFCmpGE:
|
||||
case Instruction::Kind::kMulh: {
|
||||
// 检查所有操作数是否不变
|
||||
if (!isInvariantOperands(inst, loop, invariants)) {
|
||||
if (DEBUG >= 2) std::cout << " -> Binary op: operands not invariant: NO" << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
if (DEBUG >= 2) std::cout << " -> Binary op: operands invariant: YES" << std::endl;
|
||||
return true;
|
||||
}
|
||||
|
||||
default: {
|
||||
// 其他指令:使用副作用分析
|
||||
if (sideEffectAnalysis && sideEffectAnalysis->hasSideEffect(inst)) {
|
||||
if (DEBUG >= 2) std::cout << " -> Other inst: has side effect: NO" << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
// 检查操作数是否都不变
|
||||
if (!isInvariantOperands(inst, loop, invariants)) {
|
||||
if (DEBUG >= 2) std::cout << " -> Other inst: operands not invariant: NO" << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
if (DEBUG >= 2) std::cout << " -> Other inst: no side effect, operands invariant: YES" << std::endl;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 其它情况
|
||||
if (DEBUG >= 2) std::cout << " -> Other value type: NO" << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
} // namespace sysy
|
||||
|
||||
@ -26,10 +26,21 @@ const SideEffectInfo &SideEffectAnalysisResult::getInstructionSideEffect(Instruc
|
||||
}
|
||||
|
||||
const SideEffectInfo &SideEffectAnalysisResult::getFunctionSideEffect(Function *func) const {
|
||||
// 首先检查分析过的用户定义函数
|
||||
auto it = functionSideEffects.find(func);
|
||||
if (it != functionSideEffects.end()) {
|
||||
return it->second;
|
||||
}
|
||||
|
||||
// 如果没有找到,检查是否为已知的库函数
|
||||
if (func) {
|
||||
std::string funcName = func->getName();
|
||||
const SideEffectInfo *knownInfo = getKnownFunctionSideEffect(funcName);
|
||||
if (knownInfo) {
|
||||
return *knownInfo;
|
||||
}
|
||||
}
|
||||
|
||||
// 返回默认的无副作用信息
|
||||
static SideEffectInfo noEffect;
|
||||
return noEffect;
|
||||
|
||||
492
src/midend/Pass/Optimize/GVN.cpp
Normal file
492
src/midend/Pass/Optimize/GVN.cpp
Normal file
@ -0,0 +1,492 @@
|
||||
#include "GVN.h"
|
||||
#include "Dom.h"
|
||||
#include "SysYIROptUtils.h"
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
#include <iostream>
|
||||
#include <unordered_map>
|
||||
#include <unordered_set>
|
||||
|
||||
extern int DEBUG;
|
||||
|
||||
namespace sysy {
|
||||
|
||||
// GVN 遍的静态 ID
|
||||
void *GVN::ID = (void *)&GVN::ID;
|
||||
|
||||
// ======================================================================
|
||||
// GVN 类的实现
|
||||
// ======================================================================
|
||||
|
||||
bool GVN::runOnFunction(Function *func, AnalysisManager &AM) {
|
||||
if (func->getBasicBlocks().empty()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << "\n=== Running GVN on function: " << func->getName() << " ===" << std::endl;
|
||||
}
|
||||
|
||||
bool changed = false;
|
||||
GVNContext context;
|
||||
context.run(func, &AM, changed);
|
||||
|
||||
if (DEBUG) {
|
||||
if (changed) {
|
||||
std::cout << "GVN: Function " << func->getName() << " was modified" << std::endl;
|
||||
} else {
|
||||
std::cout << "GVN: Function " << func->getName() << " was not modified" << std::endl;
|
||||
}
|
||||
std::cout << "=== GVN completed for function: " << func->getName() << " ===" << std::endl;
|
||||
}
|
||||
|
||||
return changed;
|
||||
}
|
||||
|
||||
void GVN::getAnalysisUsage(std::set<void *> &analysisDependencies, std::set<void *> &analysisInvalidations) const {
|
||||
// GVN依赖以下分析:
|
||||
// 1. 支配树分析 - 用于检查指令的支配关系,确保替换的安全性
|
||||
analysisDependencies.insert(&DominatorTreeAnalysisPass::ID);
|
||||
|
||||
// 2. 副作用分析 - 用于判断函数调用是否可以进行GVN
|
||||
analysisDependencies.insert(&SysYSideEffectAnalysisPass::ID);
|
||||
|
||||
// GVN不会使任何分析失效,因为:
|
||||
// - GVN只删除冗余计算,不改变CFG结构
|
||||
// - GVN不修改程序的语义,只是消除重复计算
|
||||
// - 支配关系保持不变
|
||||
// - 副作用分析结果保持不变
|
||||
// analysisInvalidations 保持为空
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << "GVN: Declared analysis dependencies (DominatorTree, SideEffectAnalysis)" << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
// ======================================================================
|
||||
// GVNContext 类的实现 - 重构版本
|
||||
// ======================================================================
|
||||
|
||||
// 简单的表达式哈希结构
|
||||
struct ExpressionKey {
|
||||
enum Type { BINARY, UNARY, LOAD, GEP, CALL } type;
|
||||
int opcode;
|
||||
std::vector<Value*> operands;
|
||||
Type* resultType;
|
||||
|
||||
bool operator==(const ExpressionKey& other) const {
|
||||
return type == other.type && opcode == other.opcode &&
|
||||
operands == other.operands && resultType == other.resultType;
|
||||
}
|
||||
};
|
||||
|
||||
struct ExpressionKeyHash {
|
||||
size_t operator()(const ExpressionKey& key) const {
|
||||
size_t hash = std::hash<int>()(static_cast<int>(key.type)) ^
|
||||
std::hash<int>()(key.opcode);
|
||||
for (auto op : key.operands) {
|
||||
hash ^= std::hash<Value*>()(op) + 0x9e3779b9 + (hash << 6) + (hash >> 2);
|
||||
}
|
||||
return hash;
|
||||
}
|
||||
};
|
||||
|
||||
void GVNContext::run(Function *func, AnalysisManager *AM, bool &changed) {
|
||||
if (DEBUG) {
|
||||
std::cout << " Starting GVN analysis for function: " << func->getName() << std::endl;
|
||||
}
|
||||
|
||||
// 获取分析结果
|
||||
if (AM) {
|
||||
domTree = AM->getAnalysisResult<DominatorTree, DominatorTreeAnalysisPass>(func);
|
||||
sideEffectAnalysis = AM->getAnalysisResult<SideEffectAnalysisResult, SysYSideEffectAnalysisPass>();
|
||||
|
||||
if (DEBUG) {
|
||||
if (domTree) {
|
||||
std::cout << " GVN: Using dominator tree analysis" << std::endl;
|
||||
} else {
|
||||
std::cout << " GVN: Warning - dominator tree analysis not available" << std::endl;
|
||||
}
|
||||
if (sideEffectAnalysis) {
|
||||
std::cout << " GVN: Using side effect analysis" << std::endl;
|
||||
} else {
|
||||
std::cout << " GVN: Warning - side effect analysis not available" << std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 清空状态
|
||||
valueToNumber.clear();
|
||||
numberToValue.clear();
|
||||
expressionToNumber.clear();
|
||||
nextValueNumber = 1;
|
||||
visited.clear();
|
||||
rpoBlocks.clear();
|
||||
needRemove.clear();
|
||||
|
||||
// 计算逆后序遍历
|
||||
computeRPO(func);
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << " Computed RPO with " << rpoBlocks.size() << " blocks" << std::endl;
|
||||
}
|
||||
|
||||
// 按逆后序遍历基本块进行GVN
|
||||
int blockCount = 0;
|
||||
for (auto bb : rpoBlocks) {
|
||||
if (DEBUG) {
|
||||
std::cout << " Processing block " << ++blockCount << "/" << rpoBlocks.size()
|
||||
<< ": " << bb->getName() << std::endl;
|
||||
}
|
||||
|
||||
processBasicBlock(bb, changed);
|
||||
}
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << " Found " << needRemove.size() << " redundant instructions to remove" << std::endl;
|
||||
}
|
||||
|
||||
// 删除冗余指令
|
||||
eliminateRedundantInstructions(changed);
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << " GVN analysis completed for function: " << func->getName() << std::endl;
|
||||
std::cout << " Total values numbered: " << valueToNumber.size() << std::endl;
|
||||
std::cout << " Instructions eliminated: " << needRemove.size() << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
void GVNContext::computeRPO(Function *func) {
|
||||
rpoBlocks.clear();
|
||||
visited.clear();
|
||||
|
||||
auto entry = func->getEntryBlock();
|
||||
if (entry) {
|
||||
dfs(entry);
|
||||
std::reverse(rpoBlocks.begin(), rpoBlocks.end());
|
||||
}
|
||||
}
|
||||
|
||||
void GVNContext::dfs(BasicBlock *bb) {
|
||||
if (!bb || visited.count(bb)) {
|
||||
return;
|
||||
}
|
||||
|
||||
visited.insert(bb);
|
||||
|
||||
// 访问所有后继基本块
|
||||
for (auto succ : bb->getSuccessors()) {
|
||||
if (visited.find(succ) == visited.end()) {
|
||||
dfs(succ);
|
||||
}
|
||||
}
|
||||
|
||||
rpoBlocks.push_back(bb);
|
||||
}
|
||||
|
||||
unsigned GVNContext::getValueNumber(Value* value) {
|
||||
// 如果已经有值编号,直接返回
|
||||
auto it = valueToNumber.find(value);
|
||||
if (it != valueToNumber.end()) {
|
||||
return it->second;
|
||||
}
|
||||
|
||||
// 为新值分配编号
|
||||
return assignValueNumber(value);
|
||||
}
|
||||
|
||||
unsigned GVNContext::assignValueNumber(Value* value) {
|
||||
unsigned number = nextValueNumber++;
|
||||
valueToNumber[value] = number;
|
||||
numberToValue[number] = value;
|
||||
|
||||
if (DEBUG >= 2) {
|
||||
std::cout << " Assigned value number " << number
|
||||
<< " to " << value->getName() << std::endl;
|
||||
}
|
||||
|
||||
return number;
|
||||
}
|
||||
|
||||
void GVNContext::processBasicBlock(BasicBlock* bb, bool& changed) {
|
||||
int instCount = 0;
|
||||
for (auto &instPtr : bb->getInstructions()) {
|
||||
if (DEBUG) {
|
||||
std::cout << " Processing instruction " << ++instCount
|
||||
<< ": " << instPtr->getName() << std::endl;
|
||||
}
|
||||
|
||||
if (processInstruction(instPtr.get())) {
|
||||
changed = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bool GVNContext::processInstruction(Instruction* inst) {
|
||||
// 跳过分支指令和其他不可优化的指令
|
||||
if (inst->isBranch() || dynamic_cast<ReturnInst*>(inst) ||
|
||||
dynamic_cast<AllocaInst*>(inst) || dynamic_cast<StoreInst*>(inst)) {
|
||||
|
||||
// 如果是store指令,需要使相关的内存值失效
|
||||
if (auto store = dynamic_cast<StoreInst*>(inst)) {
|
||||
invalidateMemoryValues(store);
|
||||
}
|
||||
|
||||
// 为这些指令分配值编号但不尝试优化
|
||||
getValueNumber(inst);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << " Processing optimizable instruction: " << inst->getName()
|
||||
<< " (kind: " << static_cast<int>(inst->getKind()) << ")" << std::endl;
|
||||
}
|
||||
|
||||
// 构建表达式键
|
||||
std::string exprKey = buildExpressionKey(inst);
|
||||
if (exprKey.empty()) {
|
||||
// 不可优化的指令,只分配值编号
|
||||
getValueNumber(inst);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (DEBUG >= 2) {
|
||||
std::cout << " Expression key: " << exprKey << std::endl;
|
||||
}
|
||||
|
||||
// 查找已存在的等价值
|
||||
Value* existing = findExistingValue(exprKey, inst);
|
||||
if (existing && existing != inst) {
|
||||
// 检查支配关系
|
||||
if (auto existingInst = dynamic_cast<Instruction*>(existing)) {
|
||||
if (dominates(existingInst, inst)) {
|
||||
if (DEBUG) {
|
||||
std::cout << " GVN: Replacing " << inst->getName()
|
||||
<< " with existing " << existing->getName() << std::endl;
|
||||
}
|
||||
|
||||
// 用已存在的值替换当前指令
|
||||
inst->replaceAllUsesWith(existing);
|
||||
needRemove.insert(inst);
|
||||
|
||||
// 将当前指令的值编号指向已存在的值
|
||||
unsigned existingNumber = getValueNumber(existing);
|
||||
valueToNumber[inst] = existingNumber;
|
||||
|
||||
return true;
|
||||
} else {
|
||||
if (DEBUG) {
|
||||
std::cout << " Found equivalent but dominance check failed" << std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 没有找到等价值,为这个表达式分配新的值编号
|
||||
unsigned number = assignValueNumber(inst);
|
||||
expressionToNumber[exprKey] = number;
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << " Instruction " << inst->getName() << " is unique" << std::endl;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
std::string GVNContext::buildExpressionKey(Instruction* inst) {
|
||||
std::ostringstream oss;
|
||||
|
||||
if (auto binary = dynamic_cast<BinaryInst*>(inst)) {
|
||||
oss << "binary_" << static_cast<int>(binary->getKind()) << "_";
|
||||
oss << getValueNumber(binary->getLhs()) << "_" << getValueNumber(binary->getRhs());
|
||||
|
||||
// 对于可交换操作,确保操作数顺序一致
|
||||
if (binary->isCommutative()) {
|
||||
unsigned lhsNum = getValueNumber(binary->getLhs());
|
||||
unsigned rhsNum = getValueNumber(binary->getRhs());
|
||||
if (lhsNum > rhsNum) {
|
||||
oss.str("");
|
||||
oss << "binary_" << static_cast<int>(binary->getKind()) << "_";
|
||||
oss << rhsNum << "_" << lhsNum;
|
||||
}
|
||||
}
|
||||
} else if (auto unary = dynamic_cast<UnaryInst*>(inst)) {
|
||||
oss << "unary_" << static_cast<int>(unary->getKind()) << "_";
|
||||
oss << getValueNumber(unary->getOperand());
|
||||
} else if (auto gep = dynamic_cast<GetElementPtrInst*>(inst)) {
|
||||
oss << "gep_" << getValueNumber(gep->getBasePointer());
|
||||
for (unsigned i = 0; i < gep->getNumIndices(); ++i) {
|
||||
oss << "_" << getValueNumber(gep->getIndex(i));
|
||||
}
|
||||
} else if (auto load = dynamic_cast<LoadInst*>(inst)) {
|
||||
oss << "load_" << getValueNumber(load->getPointer());
|
||||
oss << "_" << reinterpret_cast<uintptr_t>(load->getType()); // 类型区分
|
||||
} else if (auto call = dynamic_cast<CallInst*>(inst)) {
|
||||
// 只为无副作用的函数调用建立表达式
|
||||
if (sideEffectAnalysis && sideEffectAnalysis->isPureFunction(call->getCallee())) {
|
||||
oss << "call_" << call->getCallee()->getName();
|
||||
for (size_t i = 1; i < call->getNumOperands(); ++i) { // 跳过函数指针
|
||||
oss << "_" << getValueNumber(call->getOperand(i));
|
||||
}
|
||||
} else {
|
||||
return ""; // 有副作用的函数调用不可优化
|
||||
}
|
||||
} else {
|
||||
return ""; // 不支持的指令类型
|
||||
}
|
||||
|
||||
return oss.str();
|
||||
}
|
||||
|
||||
Value* GVNContext::findExistingValue(const std::string& exprKey, Instruction* inst) {
|
||||
auto it = expressionToNumber.find(exprKey);
|
||||
if (it != expressionToNumber.end()) {
|
||||
unsigned number = it->second;
|
||||
auto valueIt = numberToValue.find(number);
|
||||
if (valueIt != numberToValue.end()) {
|
||||
Value* existing = valueIt->second;
|
||||
|
||||
// 对于load指令,需要额外检查内存安全性
|
||||
if (auto loadInst = dynamic_cast<LoadInst*>(inst)) {
|
||||
if (auto existingLoad = dynamic_cast<LoadInst*>(existing)) {
|
||||
if (!isMemorySafe(existingLoad, loadInst)) {
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return existing;
|
||||
}
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
bool GVNContext::dominates(Instruction* a, Instruction* b) {
|
||||
auto aBB = a->getParent();
|
||||
auto bBB = b->getParent();
|
||||
|
||||
// 同一基本块内的情况
|
||||
if (aBB == bBB) {
|
||||
auto &insts = aBB->getInstructions();
|
||||
auto aIt = std::find_if(insts.begin(), insts.end(),
|
||||
[a](const auto &ptr) { return ptr.get() == a; });
|
||||
auto bIt = std::find_if(insts.begin(), insts.end(),
|
||||
[b](const auto &ptr) { return ptr.get() == b; });
|
||||
|
||||
if (aIt == insts.end() || bIt == insts.end()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
return std::distance(insts.begin(), aIt) < std::distance(insts.begin(), bIt);
|
||||
}
|
||||
|
||||
// 不同基本块的情况,使用支配树
|
||||
if (domTree) {
|
||||
auto dominators = domTree->getDominators(bBB);
|
||||
return dominators && dominators->count(aBB);
|
||||
}
|
||||
|
||||
return false; // 保守做法
|
||||
}
|
||||
|
||||
bool GVNContext::isMemorySafe(LoadInst* earlierLoad, LoadInst* laterLoad) {
|
||||
// 检查两个load是否访问相同的内存位置
|
||||
unsigned earlierPtr = getValueNumber(earlierLoad->getPointer());
|
||||
unsigned laterPtr = getValueNumber(laterLoad->getPointer());
|
||||
|
||||
if (earlierPtr != laterPtr) {
|
||||
return false; // 不同的内存位置
|
||||
}
|
||||
|
||||
// 检查类型是否匹配
|
||||
if (earlierLoad->getType() != laterLoad->getType()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// 简单情况:如果在同一个基本块且没有中间的store,则安全
|
||||
auto earlierBB = earlierLoad->getParent();
|
||||
auto laterBB = laterLoad->getParent();
|
||||
|
||||
if (earlierBB != laterBB) {
|
||||
// 跨基本块的情况需要更复杂的分析,暂时保守处理
|
||||
return false;
|
||||
}
|
||||
|
||||
// 同一基本块内检查是否有中间的store
|
||||
auto &insts = earlierBB->getInstructions();
|
||||
auto earlierIt = std::find_if(insts.begin(), insts.end(),
|
||||
[earlierLoad](const auto &ptr) { return ptr.get() == earlierLoad; });
|
||||
auto laterIt = std::find_if(insts.begin(), insts.end(),
|
||||
[laterLoad](const auto &ptr) { return ptr.get() == laterLoad; });
|
||||
|
||||
if (earlierIt == insts.end() || laterIt == insts.end()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// 确保earlierLoad真的在laterLoad之前
|
||||
if (std::distance(insts.begin(), earlierIt) >= std::distance(insts.begin(), laterIt)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// 检查中间是否有store指令修改了相同的内存位置
|
||||
for (auto it = std::next(earlierIt); it != laterIt; ++it) {
|
||||
if (auto store = dynamic_cast<StoreInst*>(it->get())) {
|
||||
unsigned storePtr = getValueNumber(store->getPointer());
|
||||
if (storePtr == earlierPtr) {
|
||||
return false; // 找到中间的store
|
||||
}
|
||||
}
|
||||
|
||||
// 检查函数调用是否可能修改内存
|
||||
if (auto call = dynamic_cast<CallInst*>(it->get())) {
|
||||
if (sideEffectAnalysis && !sideEffectAnalysis->isPureFunction(call->getCallee())) {
|
||||
// 保守处理:有副作用的函数可能修改内存
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return true; // 安全
|
||||
}
|
||||
|
||||
void GVNContext::invalidateMemoryValues(StoreInst* store) {
|
||||
unsigned storePtr = getValueNumber(store->getPointer());
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << " Invalidating memory values affected by store" << std::endl;
|
||||
}
|
||||
|
||||
// 找到所有可能被这个store影响的load表达式
|
||||
std::vector<std::string> toRemove;
|
||||
|
||||
for (auto& [exprKey, number] : expressionToNumber) {
|
||||
if (exprKey.find("load_" + std::to_string(storePtr)) == 0) {
|
||||
toRemove.push_back(exprKey);
|
||||
if (DEBUG) {
|
||||
std::cout << " Invalidating expression: " << exprKey << std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 移除失效的表达式
|
||||
for (const auto& key : toRemove) {
|
||||
expressionToNumber.erase(key);
|
||||
}
|
||||
}
|
||||
|
||||
void GVNContext::eliminateRedundantInstructions(bool& changed) {
|
||||
int removeCount = 0;
|
||||
for (auto inst : needRemove) {
|
||||
if (DEBUG) {
|
||||
std::cout << " Removing redundant instruction " << ++removeCount
|
||||
<< "/" << needRemove.size() << ": " << inst->getName() << std::endl;
|
||||
}
|
||||
|
||||
// 删除指令前先断开所有使用关系
|
||||
// inst->replaceAllUsesWith 已在 processInstruction 中调用
|
||||
SysYIROptUtils::usedelete(inst);
|
||||
changed = true;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace sysy
|
||||
897
src/midend/Pass/Optimize/GlobalStrengthReduction.cpp
Normal file
897
src/midend/Pass/Optimize/GlobalStrengthReduction.cpp
Normal file
@ -0,0 +1,897 @@
|
||||
#include "GlobalStrengthReduction.h"
|
||||
#include "SysYIROptUtils.h"
|
||||
#include "IRBuilder.h"
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
#include <iostream>
|
||||
#include <cmath>
|
||||
|
||||
extern int DEBUG;
|
||||
|
||||
namespace sysy {
|
||||
|
||||
// 全局强度削弱优化遍的静态 ID
|
||||
void *GlobalStrengthReduction::ID = (void *)&GlobalStrengthReduction::ID;
|
||||
|
||||
// ======================================================================
|
||||
// GlobalStrengthReduction 类的实现
|
||||
// ======================================================================
|
||||
|
||||
bool GlobalStrengthReduction::runOnFunction(Function *func, AnalysisManager &AM) {
|
||||
if (func->getBasicBlocks().empty()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << "\n=== Running GlobalStrengthReduction on function: " << func->getName() << " ===" << std::endl;
|
||||
}
|
||||
|
||||
bool changed = false;
|
||||
GlobalStrengthReductionContext context(builder);
|
||||
context.run(func, &AM, changed);
|
||||
|
||||
if (DEBUG) {
|
||||
if (changed) {
|
||||
std::cout << "GlobalStrengthReduction: Function " << func->getName() << " was modified" << std::endl;
|
||||
} else {
|
||||
std::cout << "GlobalStrengthReduction: Function " << func->getName() << " was not modified" << std::endl;
|
||||
}
|
||||
std::cout << "=== GlobalStrengthReduction completed for function: " << func->getName() << " ===" << std::endl;
|
||||
}
|
||||
|
||||
return changed;
|
||||
}
|
||||
|
||||
void GlobalStrengthReduction::getAnalysisUsage(std::set<void *> &analysisDependencies, std::set<void *> &analysisInvalidations) const {
|
||||
// 强度削弱依赖副作用分析来判断指令是否可以安全优化
|
||||
analysisDependencies.insert(&SysYSideEffectAnalysisPass::ID);
|
||||
|
||||
// 强度削弱不会使分析失效,因为:
|
||||
// - 只替换计算指令,不改变控制流
|
||||
// - 不修改内存,不影响别名分析
|
||||
// - 保持程序语义不变
|
||||
// analysisInvalidations 保持为空
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << "GlobalStrengthReduction: Declared analysis dependencies (SideEffectAnalysis)" << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
// ======================================================================
|
||||
// GlobalStrengthReductionContext 类的实现
|
||||
// ======================================================================
|
||||
|
||||
void GlobalStrengthReductionContext::run(Function *func, AnalysisManager *AM, bool &changed) {
|
||||
if (DEBUG) {
|
||||
std::cout << " Starting GlobalStrengthReduction analysis for function: " << func->getName() << std::endl;
|
||||
}
|
||||
|
||||
// 获取分析结果
|
||||
if (AM) {
|
||||
sideEffectAnalysis = AM->getAnalysisResult<SideEffectAnalysisResult, SysYSideEffectAnalysisPass>();
|
||||
|
||||
if (DEBUG) {
|
||||
if (sideEffectAnalysis) {
|
||||
std::cout << " GlobalStrengthReduction: Using side effect analysis" << std::endl;
|
||||
} else {
|
||||
std::cout << " GlobalStrengthReduction: Warning - side effect analysis not available" << std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 重置计数器
|
||||
algebraicOptCount = 0;
|
||||
strengthReductionCount = 0;
|
||||
divisionOptCount = 0;
|
||||
|
||||
// 遍历所有基本块进行优化
|
||||
for (auto &bb_ptr : func->getBasicBlocks()) {
|
||||
if (processBasicBlock(bb_ptr.get())) {
|
||||
changed = true;
|
||||
}
|
||||
}
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << " GlobalStrengthReduction completed for function: " << func->getName() << std::endl;
|
||||
std::cout << " Algebraic optimizations: " << algebraicOptCount << std::endl;
|
||||
std::cout << " Strength reductions: " << strengthReductionCount << std::endl;
|
||||
std::cout << " Division optimizations: " << divisionOptCount << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
bool GlobalStrengthReductionContext::processBasicBlock(BasicBlock *bb) {
|
||||
bool changed = false;
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << " Processing block: " << bb->getName() << std::endl;
|
||||
}
|
||||
|
||||
// 收集需要处理的指令(避免迭代器失效)
|
||||
std::vector<Instruction*> instructions;
|
||||
for (auto &inst_ptr : bb->getInstructions()) {
|
||||
instructions.push_back(inst_ptr.get());
|
||||
}
|
||||
|
||||
// 处理每条指令
|
||||
for (auto inst : instructions) {
|
||||
if (processInstruction(inst)) {
|
||||
changed = true;
|
||||
}
|
||||
}
|
||||
|
||||
return changed;
|
||||
}
|
||||
|
||||
bool GlobalStrengthReductionContext::processInstruction(Instruction *inst) {
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << " Processing instruction: " << inst->getName() << std::endl;
|
||||
}
|
||||
|
||||
// 先尝试代数优化
|
||||
if (tryAlgebraicOptimization(inst)) {
|
||||
algebraicOptCount++;
|
||||
return true;
|
||||
}
|
||||
|
||||
// 再尝试强度削弱
|
||||
if (tryStrengthReduction(inst)) {
|
||||
strengthReductionCount++;
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
// ======================================================================
|
||||
// 代数优化方法
|
||||
// ======================================================================
|
||||
|
||||
bool GlobalStrengthReductionContext::tryAlgebraicOptimization(Instruction *inst) {
|
||||
auto binary = dynamic_cast<BinaryInst*>(inst);
|
||||
if (!binary) {
|
||||
return false;
|
||||
}
|
||||
|
||||
switch (binary->getKind()) {
|
||||
case Instruction::kAdd:
|
||||
return optimizeAddition(binary);
|
||||
case Instruction::kSub:
|
||||
return optimizeSubtraction(binary);
|
||||
case Instruction::kMul:
|
||||
return optimizeMultiplication(binary);
|
||||
case Instruction::kDiv:
|
||||
return optimizeDivision(binary);
|
||||
case Instruction::kICmpEQ:
|
||||
case Instruction::kICmpNE:
|
||||
case Instruction::kICmpLT:
|
||||
case Instruction::kICmpGT:
|
||||
case Instruction::kICmpLE:
|
||||
case Instruction::kICmpGE:
|
||||
return optimizeComparison(binary);
|
||||
case Instruction::kAnd:
|
||||
case Instruction::kOr:
|
||||
return optimizeLogical(binary);
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
bool GlobalStrengthReductionContext::optimizeAddition(BinaryInst *inst) {
|
||||
Value *lhs = inst->getLhs();
|
||||
Value *rhs = inst->getRhs();
|
||||
int constVal;
|
||||
|
||||
// x + 0 = x
|
||||
if (isConstantInt(rhs, constVal) && constVal == 0) {
|
||||
if (DEBUG) {
|
||||
std::cout << " Algebraic: " << inst->getName() << " = x + 0 -> x" << std::endl;
|
||||
}
|
||||
replaceWithOptimized(inst, lhs);
|
||||
return true;
|
||||
}
|
||||
|
||||
// 0 + x = x
|
||||
if (isConstantInt(lhs, constVal) && constVal == 0) {
|
||||
if (DEBUG) {
|
||||
std::cout << " Algebraic: " << inst->getName() << " = 0 + x -> x" << std::endl;
|
||||
}
|
||||
replaceWithOptimized(inst, rhs);
|
||||
return true;
|
||||
}
|
||||
|
||||
// x + (-y) = x - y
|
||||
if (auto rhsInst = dynamic_cast<UnaryInst*>(rhs)) {
|
||||
if (rhsInst->getKind() == Instruction::kNeg) {
|
||||
if (DEBUG) {
|
||||
std::cout << " Algebraic: " << inst->getName() << " = x + (-y) -> x - y" << std::endl;
|
||||
}
|
||||
// 创建减法指令
|
||||
builder->setPosition(inst->getParent(), inst->getParent()->findInstIterator(inst));
|
||||
auto subInst = builder->createSubInst(lhs, rhsInst->getOperand());
|
||||
replaceWithOptimized(inst, subInst);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
bool GlobalStrengthReductionContext::optimizeSubtraction(BinaryInst *inst) {
|
||||
Value *lhs = inst->getLhs();
|
||||
Value *rhs = inst->getRhs();
|
||||
int constVal;
|
||||
|
||||
// x - 0 = x
|
||||
if (isConstantInt(rhs, constVal) && constVal == 0) {
|
||||
if (DEBUG) {
|
||||
std::cout << " Algebraic: " << inst->getName() << " = x - 0 -> x" << std::endl;
|
||||
}
|
||||
replaceWithOptimized(inst, lhs);
|
||||
return true;
|
||||
}
|
||||
|
||||
// x - x = 0 (如果x没有副作用)
|
||||
if (lhs == rhs && hasOnlyLocalUses(dynamic_cast<Instruction*>(lhs))) {
|
||||
if (DEBUG) {
|
||||
std::cout << " Algebraic: " << inst->getName() << " = x - x -> 0" << std::endl;
|
||||
}
|
||||
replaceWithOptimized(inst, getConstantInt(0));
|
||||
return true;
|
||||
}
|
||||
|
||||
// x - (-y) = x + y
|
||||
if (auto rhsInst = dynamic_cast<UnaryInst*>(rhs)) {
|
||||
if (rhsInst->getKind() == Instruction::kNeg) {
|
||||
if (DEBUG) {
|
||||
std::cout << " Algebraic: " << inst->getName() << " = x - (-y) -> x + y" << std::endl;
|
||||
}
|
||||
builder->setPosition(inst->getParent(), inst->getParent()->findInstIterator(inst));
|
||||
auto addInst = builder->createAddInst(lhs, rhsInst->getOperand());
|
||||
replaceWithOptimized(inst, addInst);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
bool GlobalStrengthReductionContext::optimizeMultiplication(BinaryInst *inst) {
|
||||
Value *lhs = inst->getLhs();
|
||||
Value *rhs = inst->getRhs();
|
||||
int constVal;
|
||||
|
||||
// x * 0 = 0
|
||||
if (isConstantInt(rhs, constVal) && constVal == 0) {
|
||||
if (DEBUG) {
|
||||
std::cout << " Algebraic: " << inst->getName() << " = x * 0 -> 0" << std::endl;
|
||||
}
|
||||
replaceWithOptimized(inst, getConstantInt(0));
|
||||
return true;
|
||||
}
|
||||
|
||||
// 0 * x = 0
|
||||
if (isConstantInt(lhs, constVal) && constVal == 0) {
|
||||
if (DEBUG) {
|
||||
std::cout << " Algebraic: " << inst->getName() << " = 0 * x -> 0" << std::endl;
|
||||
}
|
||||
replaceWithOptimized(inst, getConstantInt(0));
|
||||
return true;
|
||||
}
|
||||
|
||||
// x * 1 = x
|
||||
if (isConstantInt(rhs, constVal) && constVal == 1) {
|
||||
if (DEBUG) {
|
||||
std::cout << " Algebraic: " << inst->getName() << " = x * 1 -> x" << std::endl;
|
||||
}
|
||||
replaceWithOptimized(inst, lhs);
|
||||
return true;
|
||||
}
|
||||
|
||||
// 1 * x = x
|
||||
if (isConstantInt(lhs, constVal) && constVal == 1) {
|
||||
if (DEBUG) {
|
||||
std::cout << " Algebraic: " << inst->getName() << " = 1 * x -> x" << std::endl;
|
||||
}
|
||||
replaceWithOptimized(inst, rhs);
|
||||
return true;
|
||||
}
|
||||
|
||||
// x * (-1) = -x
|
||||
if (isConstantInt(rhs, constVal) && constVal == -1) {
|
||||
if (DEBUG) {
|
||||
std::cout << " Algebraic: " << inst->getName() << " = x * (-1) -> -x" << std::endl;
|
||||
}
|
||||
builder->setPosition(inst->getParent(), inst->getParent()->findInstIterator(inst));
|
||||
auto negInst = builder->createNegInst(lhs);
|
||||
replaceWithOptimized(inst, negInst);
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
bool GlobalStrengthReductionContext::optimizeDivision(BinaryInst *inst) {
|
||||
Value *lhs = inst->getLhs();
|
||||
Value *rhs = inst->getRhs();
|
||||
int constVal;
|
||||
|
||||
// x / 1 = x
|
||||
if (isConstantInt(rhs, constVal) && constVal == 1) {
|
||||
if (DEBUG) {
|
||||
std::cout << " Algebraic: " << inst->getName() << " = x / 1 -> x" << std::endl;
|
||||
}
|
||||
replaceWithOptimized(inst, lhs);
|
||||
return true;
|
||||
}
|
||||
|
||||
// x / (-1) = -x
|
||||
if (isConstantInt(rhs, constVal) && constVal == -1) {
|
||||
if (DEBUG) {
|
||||
std::cout << " Algebraic: " << inst->getName() << " = x / (-1) -> -x" << std::endl;
|
||||
}
|
||||
builder->setPosition(inst->getParent(), inst->getParent()->findInstIterator(inst));
|
||||
auto negInst = builder->createNegInst(lhs);
|
||||
replaceWithOptimized(inst, negInst);
|
||||
return true;
|
||||
}
|
||||
|
||||
// x / x = 1 (如果x != 0且没有副作用)
|
||||
if (lhs == rhs && hasOnlyLocalUses(dynamic_cast<Instruction*>(lhs))) {
|
||||
if (DEBUG) {
|
||||
std::cout << " Algebraic: " << inst->getName() << " = x / x -> 1" << std::endl;
|
||||
}
|
||||
replaceWithOptimized(inst, getConstantInt(1));
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
bool GlobalStrengthReductionContext::optimizeComparison(BinaryInst *inst) {
|
||||
Value *lhs = inst->getLhs();
|
||||
Value *rhs = inst->getRhs();
|
||||
|
||||
// x == x = true (如果x没有副作用)
|
||||
if (inst->getKind() == Instruction::kICmpEQ && lhs == rhs &&
|
||||
hasOnlyLocalUses(dynamic_cast<Instruction*>(lhs))) {
|
||||
if (DEBUG) {
|
||||
std::cout << " Algebraic: " << inst->getName() << " = x == x -> true" << std::endl;
|
||||
}
|
||||
replaceWithOptimized(inst, getConstantInt(1));
|
||||
return true;
|
||||
}
|
||||
|
||||
// x != x = false (如果x没有副作用)
|
||||
if (inst->getKind() == Instruction::kICmpNE && lhs == rhs &&
|
||||
hasOnlyLocalUses(dynamic_cast<Instruction*>(lhs))) {
|
||||
if (DEBUG) {
|
||||
std::cout << " Algebraic: " << inst->getName() << " = x != x -> false" << std::endl;
|
||||
}
|
||||
replaceWithOptimized(inst, getConstantInt(0));
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
bool GlobalStrengthReductionContext::optimizeLogical(BinaryInst *inst) {
|
||||
Value *lhs = inst->getLhs();
|
||||
Value *rhs = inst->getRhs();
|
||||
int constVal;
|
||||
|
||||
if (inst->getKind() == Instruction::kAnd) {
|
||||
// x && 0 = 0
|
||||
if (isConstantInt(rhs, constVal) && constVal == 0) {
|
||||
if (DEBUG) {
|
||||
std::cout << " Algebraic: " << inst->getName() << " = x && 0 -> 0" << std::endl;
|
||||
}
|
||||
replaceWithOptimized(inst, getConstantInt(0));
|
||||
return true;
|
||||
}
|
||||
|
||||
// x && -1 = x
|
||||
if (isConstantInt(rhs, constVal) && constVal == -1) {
|
||||
if (DEBUG) {
|
||||
std::cout << " Algebraic: " << inst->getName() << " = x && 1 -> x" << std::endl;
|
||||
}
|
||||
replaceWithOptimized(inst, lhs);
|
||||
return true;
|
||||
}
|
||||
|
||||
// x && x = x
|
||||
if (lhs == rhs) {
|
||||
if (DEBUG) {
|
||||
std::cout << " Algebraic: " << inst->getName() << " = x && x -> x" << std::endl;
|
||||
}
|
||||
replaceWithOptimized(inst, lhs);
|
||||
return true;
|
||||
}
|
||||
} else if (inst->getKind() == Instruction::kOr) {
|
||||
// x || 0 = x
|
||||
if (isConstantInt(rhs, constVal) && constVal == 0) {
|
||||
if (DEBUG) {
|
||||
std::cout << " Algebraic: " << inst->getName() << " = x || 0 -> x" << std::endl;
|
||||
}
|
||||
replaceWithOptimized(inst, lhs);
|
||||
return true;
|
||||
}
|
||||
|
||||
// x || x = x
|
||||
if (lhs == rhs) {
|
||||
if (DEBUG) {
|
||||
std::cout << " Algebraic: " << inst->getName() << " = x || x -> x" << std::endl;
|
||||
}
|
||||
replaceWithOptimized(inst, lhs);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
// ======================================================================
|
||||
// 强度削弱方法
|
||||
// ======================================================================
|
||||
|
||||
bool GlobalStrengthReductionContext::tryStrengthReduction(Instruction *inst) {
|
||||
if (auto binary = dynamic_cast<BinaryInst*>(inst)) {
|
||||
switch (binary->getKind()) {
|
||||
case Instruction::kMul:
|
||||
return reduceMultiplication(binary);
|
||||
case Instruction::kDiv:
|
||||
return reduceDivision(binary);
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
} else if (auto call = dynamic_cast<CallInst*>(inst)) {
|
||||
return reducePower(call);
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
bool GlobalStrengthReductionContext::reduceMultiplication(BinaryInst *inst) {
|
||||
Value *lhs = inst->getLhs();
|
||||
Value *rhs = inst->getRhs();
|
||||
int constVal;
|
||||
|
||||
// 尝试右操作数为常数
|
||||
Value* variable = lhs;
|
||||
if (isConstantInt(rhs, constVal) && constVal > 0) {
|
||||
return tryComplexMultiplication(inst, variable, constVal);
|
||||
}
|
||||
|
||||
// 尝试左操作数为常数
|
||||
if (isConstantInt(lhs, constVal) && constVal > 0) {
|
||||
variable = rhs;
|
||||
return tryComplexMultiplication(inst, variable, constVal);
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
bool GlobalStrengthReductionContext::tryComplexMultiplication(BinaryInst* inst, Value* variable, int constant) {
|
||||
// 首先检查是否为2的幂,使用简单位移
|
||||
if (isPowerOfTwo(constant)) {
|
||||
int shiftAmount = log2OfPowerOfTwo(constant);
|
||||
if (DEBUG) {
|
||||
std::cout << " StrengthReduction: " << inst->getName()
|
||||
<< " = x * " << constant << " -> x << " << shiftAmount << std::endl;
|
||||
}
|
||||
|
||||
builder->setPosition(inst->getParent(), inst->getParent()->findInstIterator(inst));
|
||||
auto shiftInst = builder->createBinaryInst(Instruction::kSll, Type::getIntType(), variable, getConstantInt(shiftAmount));
|
||||
replaceWithOptimized(inst, shiftInst);
|
||||
return true;
|
||||
}
|
||||
|
||||
// 尝试分解为位移和加法的组合
|
||||
std::vector<int> shifts;
|
||||
if (findOptimalShiftDecomposition(constant, shifts)) {
|
||||
if (DEBUG) {
|
||||
std::cout << " StrengthReduction: " << inst->getName()
|
||||
<< " = x * " << constant << " -> shift decomposition with " << shifts.size() << " terms" << std::endl;
|
||||
}
|
||||
|
||||
Value* result = createShiftDecomposition(inst, variable, shifts);
|
||||
if (result) {
|
||||
replaceWithOptimized(inst, result);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
bool GlobalStrengthReductionContext::findOptimalShiftDecomposition(int constant, std::vector<int>& shifts) {
|
||||
shifts.clear();
|
||||
|
||||
// 常见的有效分解模式
|
||||
switch (constant) {
|
||||
case 3: // 3 = 2^1 + 2^0 -> (x << 1) + x
|
||||
shifts = {1, 0};
|
||||
return true;
|
||||
case 5: // 5 = 2^2 + 2^0 -> (x << 2) + x
|
||||
shifts = {2, 0};
|
||||
return true;
|
||||
case 6: // 6 = 2^2 + 2^1 -> (x << 2) + (x << 1)
|
||||
shifts = {2, 1};
|
||||
return true;
|
||||
case 7: // 7 = 2^2 + 2^1 + 2^0 -> (x << 2) + (x << 1) + x
|
||||
shifts = {2, 1, 0};
|
||||
return true;
|
||||
case 9: // 9 = 2^3 + 2^0 -> (x << 3) + x
|
||||
shifts = {3, 0};
|
||||
return true;
|
||||
case 10: // 10 = 2^3 + 2^1 -> (x << 3) + (x << 1)
|
||||
shifts = {3, 1};
|
||||
return true;
|
||||
case 11: // 11 = 2^3 + 2^1 + 2^0 -> (x << 3) + (x << 1) + x
|
||||
shifts = {3, 1, 0};
|
||||
return true;
|
||||
case 12: // 12 = 2^3 + 2^2 -> (x << 3) + (x << 2)
|
||||
shifts = {3, 2};
|
||||
return true;
|
||||
case 13: // 13 = 2^3 + 2^2 + 2^0 -> (x << 3) + (x << 2) + x
|
||||
shifts = {3, 2, 0};
|
||||
return true;
|
||||
case 14: // 14 = 2^3 + 2^2 + 2^1 -> (x << 3) + (x << 2) + (x << 1)
|
||||
shifts = {3, 2, 1};
|
||||
return true;
|
||||
case 15: // 15 = 2^3 + 2^2 + 2^1 + 2^0 -> (x << 3) + (x << 2) + (x << 1) + x
|
||||
shifts = {3, 2, 1, 0};
|
||||
return true;
|
||||
case 17: // 17 = 2^4 + 2^0 -> (x << 4) + x
|
||||
shifts = {4, 0};
|
||||
return true;
|
||||
case 18: // 18 = 2^4 + 2^1 -> (x << 4) + (x << 1)
|
||||
shifts = {4, 1};
|
||||
return true;
|
||||
case 20: // 20 = 2^4 + 2^2 -> (x << 4) + (x << 2)
|
||||
shifts = {4, 2};
|
||||
return true;
|
||||
case 24: // 24 = 2^4 + 2^3 -> (x << 4) + (x << 3)
|
||||
shifts = {4, 3};
|
||||
return true;
|
||||
case 25: // 25 = 2^4 + 2^3 + 2^0 -> (x << 4) + (x << 3) + x
|
||||
shifts = {4, 3, 0};
|
||||
return true;
|
||||
case 100: // 100 = 2^6 + 2^5 + 2^2 -> (x << 6) + (x << 5) + (x << 2)
|
||||
shifts = {6, 5, 2};
|
||||
return true;
|
||||
}
|
||||
|
||||
// 通用二进制分解(最多4个项,避免过度复杂化)
|
||||
if (constant > 0 && constant < 256) {
|
||||
std::vector<int> binaryShifts;
|
||||
int temp = constant;
|
||||
int bit = 0;
|
||||
|
||||
while (temp > 0 && binaryShifts.size() < 4) {
|
||||
if (temp & 1) {
|
||||
binaryShifts.push_back(bit);
|
||||
}
|
||||
temp >>= 1;
|
||||
bit++;
|
||||
}
|
||||
|
||||
// 只有当项数不超过3个时才使用二进制分解(比直接乘法更有效)
|
||||
if (binaryShifts.size() <= 3 && binaryShifts.size() >= 2) {
|
||||
shifts = binaryShifts;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
Value* GlobalStrengthReductionContext::createShiftDecomposition(BinaryInst* inst, Value* variable, const std::vector<int>& shifts) {
|
||||
if (shifts.empty()) return nullptr;
|
||||
|
||||
builder->setPosition(inst->getParent(), inst->getParent()->findInstIterator(inst));
|
||||
|
||||
Value* result = nullptr;
|
||||
|
||||
for (int shift : shifts) {
|
||||
Value* term;
|
||||
if (shift == 0) {
|
||||
// 0位移就是原变量
|
||||
term = variable;
|
||||
} else {
|
||||
// 创建位移指令
|
||||
term = builder->createBinaryInst(Instruction::kSll, Type::getIntType(), variable, getConstantInt(shift));
|
||||
}
|
||||
|
||||
if (result == nullptr) {
|
||||
result = term;
|
||||
} else {
|
||||
// 累加到结果中
|
||||
result = builder->createAddInst(result, term);
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
bool GlobalStrengthReductionContext::reduceDivision(BinaryInst *inst) {
|
||||
Value *lhs = inst->getLhs();
|
||||
Value *rhs = inst->getRhs();
|
||||
uint32_t constVal;
|
||||
|
||||
// x / 2^n = x >> n (对于无符号除法或已知为正数的情况)
|
||||
if (isConstantInt(rhs, constVal) && constVal > 0 && isPowerOfTwo(constVal)) {
|
||||
builder->setPosition(inst->getParent(), inst->getParent()->findInstIterator(inst));
|
||||
int shiftAmount = log2OfPowerOfTwo(constVal);
|
||||
// 有符号除法校正:(x + (x >> 31) & mask) >> k
|
||||
int maskValue = constVal - 1;
|
||||
|
||||
// x >> 31 (算术右移获取符号位)
|
||||
Value* signShift = ConstantInteger::get(31);
|
||||
Value* signBits = builder->createBinaryInst(
|
||||
Instruction::Kind::kSra, // 算术右移
|
||||
lhs->getType(),
|
||||
lhs,
|
||||
signShift
|
||||
);
|
||||
|
||||
// (x >> 31) & mask
|
||||
Value* mask = ConstantInteger::get(maskValue);
|
||||
Value* correction = builder->createBinaryInst(
|
||||
Instruction::Kind::kAnd,
|
||||
lhs->getType(),
|
||||
signBits,
|
||||
mask
|
||||
);
|
||||
|
||||
// x + correction
|
||||
Value* corrected = builder->createAddInst(lhs, correction);
|
||||
|
||||
// (x + correction) >> k
|
||||
Value* divShift = ConstantInteger::get(shiftAmount);
|
||||
Value* shiftInst = builder->createBinaryInst(
|
||||
Instruction::Kind::kSra, // 算术右移
|
||||
lhs->getType(),
|
||||
corrected,
|
||||
divShift
|
||||
);
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << " StrengthReduction: " << inst->getName()
|
||||
<< " = x / " << constVal << " -> (x + (x >> 31) & mask) >> " << shiftAmount << std::endl;
|
||||
}
|
||||
|
||||
// builder->setPosition(inst->getParent(), inst->getParent()->findInstIterator(inst));
|
||||
// Value* divisor_minus_1 = ConstantInteger::get(constVal - 1);
|
||||
// Value* adjusted = builder->createAddInst(lhs, divisor_minus_1);
|
||||
// Value* shiftInst = builder->createBinaryInst(Instruction::kSra, Type::getIntType(), adjusted, getConstantInt(shiftAmount));
|
||||
replaceWithOptimized(inst, shiftInst);
|
||||
strengthReductionCount++;
|
||||
return true;
|
||||
}
|
||||
|
||||
// x / c = x * magic_number (魔数乘法优化 - 使用libdivide算法)
|
||||
if (isConstantInt(rhs, constVal) && constVal > 1 && constVal != (uint32_t)(-1)) {
|
||||
// auto magicPair = computeMulhMagicNumbers(static_cast<int>(constVal));
|
||||
Value* magicResult = createMagicDivisionLibdivide(inst, static_cast<int>(constVal));
|
||||
replaceWithOptimized(inst, magicResult);
|
||||
divisionOptCount++;
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
bool GlobalStrengthReductionContext::reducePower(CallInst *inst) {
|
||||
// 检查是否是pow函数调用
|
||||
Function* callee = inst->getCallee();
|
||||
if (!callee || callee->getName() != "pow") {
|
||||
return false;
|
||||
}
|
||||
|
||||
// pow(x, 2) = x * x
|
||||
if (inst->getNumOperands() >= 2) {
|
||||
int exponent;
|
||||
if (isConstantInt(inst->getOperand(1), exponent)) {
|
||||
if (exponent == 2) {
|
||||
if (DEBUG) {
|
||||
std::cout << " StrengthReduction: pow(x, 2) -> x * x" << std::endl;
|
||||
}
|
||||
|
||||
Value* base = inst->getOperand(0);
|
||||
builder->setPosition(inst->getParent(), inst->getParent()->findInstIterator(inst));
|
||||
auto mulInst = builder->createMulInst(base, base);
|
||||
replaceWithOptimized(inst, mulInst);
|
||||
strengthReductionCount++;
|
||||
return true;
|
||||
} else if (exponent >= 3 && exponent <= 8) {
|
||||
// 对于小的指数,展开为连续乘法
|
||||
if (DEBUG) {
|
||||
std::cout << " StrengthReduction: pow(x, " << exponent << ") -> repeated multiplication" << std::endl;
|
||||
}
|
||||
|
||||
Value* base = inst->getOperand(0);
|
||||
Value* result = base;
|
||||
builder->setPosition(inst->getParent(), inst->getParent()->findInstIterator(inst));
|
||||
|
||||
for (int i = 1; i < exponent; i++) {
|
||||
result = builder->createMulInst(result, base);
|
||||
}
|
||||
|
||||
replaceWithOptimized(inst, result);
|
||||
strengthReductionCount++;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
Value* GlobalStrengthReductionContext::createMagicDivisionLibdivide(BinaryInst* divInst, int divisor) {
|
||||
builder->setPosition(divInst->getParent(), divInst->getParent()->findInstIterator(divInst));
|
||||
// 使用mulh指令优化任意常数除法
|
||||
auto [magic, shift] = SysYIROptUtils::computeMulhMagicNumbers(divisor);
|
||||
|
||||
// 检查是否无法优化(magic == -1, shift == -1 表示失败)
|
||||
if (magic == -1 && shift == -1) {
|
||||
if (DEBUG) {
|
||||
std::cout << "[SR] Cannot optimize division by " << divisor
|
||||
<< ", keeping original division" << std::endl;
|
||||
}
|
||||
// 返回 nullptr 表示无法优化,调用方应该保持原始除法
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// 2的幂次方除法可以用移位优化(但这不是魔数法的情况)这种情况应该不会被分类到这里但是还是做一个保护措施
|
||||
if ((divisor & (divisor - 1)) == 0 && divisor > 0) {
|
||||
// 是2的幂次方,可以用移位
|
||||
int shift_amount = 0;
|
||||
int temp = divisor;
|
||||
while (temp > 1) {
|
||||
temp >>= 1;
|
||||
shift_amount++;
|
||||
}
|
||||
|
||||
Value* shiftConstant = ConstantInteger::get(shift_amount);
|
||||
// 对于有符号除法,需要先加上除数-1然后再移位(为了正确处理负数舍入)
|
||||
Value* divisor_minus_1 = ConstantInteger::get(divisor - 1);
|
||||
Value* adjusted = builder->createAddInst(divInst->getOperand(0), divisor_minus_1);
|
||||
return builder->createBinaryInst(
|
||||
Instruction::Kind::kSra, // 算术右移
|
||||
divInst->getOperand(0)->getType(),
|
||||
adjusted,
|
||||
shiftConstant
|
||||
);
|
||||
}
|
||||
|
||||
// 创建魔数常量
|
||||
// 检查魔数是否能放入32位,如果不能,则不进行优化
|
||||
if (magic > INT32_MAX || magic < INT32_MIN) {
|
||||
if (DEBUG) {
|
||||
std::cout << "[SR] Magic number " << magic << " exceeds 32-bit range, skipping optimization" << std::endl;
|
||||
}
|
||||
return nullptr; // 无法优化,保持原始除法
|
||||
}
|
||||
|
||||
Value* magicConstant = ConstantInteger::get((int32_t)magic);
|
||||
|
||||
// 检查是否需要ADD_MARKER处理(加法调整)
|
||||
bool needAdd = (shift & 0x40) != 0;
|
||||
int actualShift = shift & 0x3F; // 提取真实的移位量
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << "[SR] IR Generation: magic=" << magic << ", needAdd=" << needAdd
|
||||
<< ", actualShift=" << actualShift << std::endl;
|
||||
}
|
||||
|
||||
// 执行高位乘法:mulh(x, magic)
|
||||
Value* mulhResult = builder->createBinaryInst(
|
||||
Instruction::Kind::kMulh, // 高位乘法
|
||||
divInst->getOperand(0)->getType(),
|
||||
divInst->getOperand(0),
|
||||
magicConstant
|
||||
);
|
||||
|
||||
if (needAdd) {
|
||||
// ADD_MARKER 情况:需要在移位前加上被除数
|
||||
// 这对应于 libdivide 的加法调整算法
|
||||
if (DEBUG) {
|
||||
std::cout << "[SR] Applying ADD_MARKER: adding dividend before shift" << std::endl;
|
||||
}
|
||||
mulhResult = builder->createAddInst(mulhResult, divInst->getOperand(0));
|
||||
}
|
||||
|
||||
if (actualShift > 0) {
|
||||
// 如果需要额外移位
|
||||
Value* shiftConstant = ConstantInteger::get(actualShift);
|
||||
mulhResult = builder->createBinaryInst(
|
||||
Instruction::Kind::kSra, // 算术右移
|
||||
divInst->getOperand(0)->getType(),
|
||||
mulhResult,
|
||||
shiftConstant
|
||||
);
|
||||
}
|
||||
|
||||
// 标准的有符号除法符号修正:如果被除数为负,商需要加1
|
||||
// 这对所有有符号除法都需要,不管是否可能有负数
|
||||
Value* isNegative = builder->createICmpLTInst(divInst->getOperand(0), ConstantInteger::get(0));
|
||||
// 将i1转换为i32:负数时为1,非负数时为0 ICmpLTInst的结果会默认转化为32位
|
||||
mulhResult = builder->createAddInst(mulhResult, isNegative);
|
||||
|
||||
return mulhResult;
|
||||
}
|
||||
|
||||
// ======================================================================
|
||||
// 辅助方法
|
||||
// ======================================================================
|
||||
|
||||
bool GlobalStrengthReductionContext::isPowerOfTwo(uint32_t n) {
|
||||
return n > 0 && (n & (n - 1)) == 0;
|
||||
}
|
||||
|
||||
int GlobalStrengthReductionContext::log2OfPowerOfTwo(uint32_t n) {
|
||||
int result = 0;
|
||||
while (n > 1) {
|
||||
n >>= 1;
|
||||
result++;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
bool GlobalStrengthReductionContext::isConstantInt(Value* val, int& constVal) {
|
||||
if (auto constInt = dynamic_cast<ConstantInteger*>(val)) {
|
||||
constVal = std::get<int>(constInt->getVal());
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool GlobalStrengthReductionContext::isConstantInt(Value* val, uint32_t& constVal) {
|
||||
if (auto constInt = dynamic_cast<ConstantInteger*>(val)) {
|
||||
int signedVal = std::get<int>(constInt->getVal());
|
||||
if (signedVal >= 0) {
|
||||
constVal = static_cast<uint32_t>(signedVal);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
ConstantInteger* GlobalStrengthReductionContext::getConstantInt(int val) {
|
||||
return ConstantInteger::get(val);
|
||||
}
|
||||
|
||||
bool GlobalStrengthReductionContext::hasOnlyLocalUses(Instruction* inst) {
|
||||
if (!inst) return true;
|
||||
|
||||
// 简单检查:如果指令没有副作用,则认为是本地的
|
||||
if (sideEffectAnalysis) {
|
||||
auto sideEffect = sideEffectAnalysis->getInstructionSideEffect(inst);
|
||||
return sideEffect.type == SideEffectType::NO_SIDE_EFFECT;
|
||||
}
|
||||
|
||||
// 没有副作用分析时,保守处理
|
||||
return !inst->isCall() && !inst->isStore() && !inst->isLoad();
|
||||
}
|
||||
|
||||
void GlobalStrengthReductionContext::replaceWithOptimized(Instruction* original, Value* replacement) {
|
||||
if (DEBUG) {
|
||||
std::cout << " Replacing " << original->getName()
|
||||
<< " with " << replacement->getName() << std::endl;
|
||||
}
|
||||
|
||||
original->replaceAllUsesWith(replacement);
|
||||
|
||||
// 如果替换值是新创建的指令,确保它有合适的名字
|
||||
// if (auto replInst = dynamic_cast<Instruction*>(replacement)) {
|
||||
// if (replInst->getName().empty()) {
|
||||
// replInst->setName(original->getName() + "_opt");
|
||||
// }
|
||||
// }
|
||||
|
||||
// 删除原指令,让调用者处理
|
||||
SysYIROptUtils::usedelete(original);
|
||||
}
|
||||
|
||||
} // namespace sysy
|
||||
@ -3,6 +3,7 @@
|
||||
#include "Loop.h"
|
||||
#include "Dom.h"
|
||||
#include "SideEffectAnalysis.h"
|
||||
#include "AliasAnalysis.h"
|
||||
#include "SysYIROptUtils.h"
|
||||
#include <iostream>
|
||||
#include <algorithm>
|
||||
@ -43,6 +44,7 @@ void InductionVariableElimination::getAnalysisUsage(std::set<void*>& analysisDep
|
||||
analysisDependencies.insert(&LoopCharacteristicsPass::ID);
|
||||
analysisDependencies.insert(&DominatorTreeAnalysisPass::ID);
|
||||
analysisDependencies.insert(&SysYSideEffectAnalysisPass::ID);
|
||||
analysisDependencies.insert(&SysYAliasAnalysisPass::ID);
|
||||
|
||||
// 会使失效的分析(归纳变量消除会修改IR结构)
|
||||
analysisInvalidations.insert(&LoopCharacteristicsPass::ID);
|
||||
@ -93,6 +95,18 @@ bool InductionVariableEliminationContext::run(Function* F, AnalysisManager& AM)
|
||||
}
|
||||
}
|
||||
|
||||
aliasAnalysis = AM.getAnalysisResult<AliasAnalysisResult, SysYAliasAnalysisPass>(F);
|
||||
if (!aliasAnalysis) {
|
||||
if (DEBUG) {
|
||||
std::cout << " AliasAnalysis not available, using conservative approach" << std::endl;
|
||||
}
|
||||
// 可以继续执行,但会使用更保守的策略
|
||||
} else {
|
||||
if (DEBUG) {
|
||||
std::cout << " Using AliasAnalysis for memory safety checks" << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
// 执行三个阶段的优化
|
||||
|
||||
// 阶段1:识别死归纳变量
|
||||
@ -179,9 +193,9 @@ InductionVariableEliminationContext::isDeadInductionVariable(const InductionVarI
|
||||
return nullptr; // 不是 phi 指令
|
||||
}
|
||||
|
||||
// 检查是否只用于自身更新
|
||||
if (!isUsedOnlyForSelfUpdate(phiInst, loop)) {
|
||||
return nullptr; // 有其他用途
|
||||
// 新的逻辑:递归分析整个use-def链,判断是否有真实的使用
|
||||
if (!isPhiInstructionDeadRecursively(phiInst, loop)) {
|
||||
return nullptr; // 有真实的使用,不能删除
|
||||
}
|
||||
|
||||
// 创建死归纳变量信息
|
||||
@ -191,9 +205,333 @@ InductionVariableEliminationContext::isDeadInductionVariable(const InductionVarI
|
||||
return deadIV;
|
||||
}
|
||||
|
||||
bool InductionVariableEliminationContext::isUsedOnlyForSelfUpdate(PhiInst* phiInst, Loop* loop) {
|
||||
// 检查 phi 指令的所有使用
|
||||
for (auto use : phiInst->getUses()) {
|
||||
// 递归分析phi指令及其使用链是否都是死代码
|
||||
bool InductionVariableEliminationContext::isPhiInstructionDeadRecursively(PhiInst* phiInst, Loop* loop) {
|
||||
if (DEBUG) {
|
||||
std::cout << " 递归分析归纳变量 " << phiInst->getName() << " 的完整使用链" << std::endl;
|
||||
}
|
||||
|
||||
// 使用访问集合避免无限递归
|
||||
std::set<Instruction*> visitedInstructions;
|
||||
std::set<Instruction*> currentPath; // 用于检测循环依赖
|
||||
|
||||
// 核心逻辑:递归分析使用链,寻找任何"逃逸点"
|
||||
return isInstructionUseChainDeadRecursively(phiInst, loop, visitedInstructions, currentPath);
|
||||
}
|
||||
|
||||
// 递归分析指令的使用链是否都是死代码
|
||||
bool InductionVariableEliminationContext::isInstructionUseChainDeadRecursively(
|
||||
Instruction* inst, Loop* loop,
|
||||
std::set<Instruction*>& visited,
|
||||
std::set<Instruction*>& currentPath) {
|
||||
|
||||
if (DEBUG && visited.size() < 10) { // 限制debug输出
|
||||
std::cout << " 分析指令 " << inst->getName() << " (" << inst->getKindString() << ")" << std::endl;
|
||||
}
|
||||
|
||||
// 避免无限递归
|
||||
if (currentPath.count(inst) > 0) {
|
||||
// 发现循环依赖,这在归纳变量中是正常的,继续分析其他路径
|
||||
if (DEBUG && visited.size() < 10) {
|
||||
std::cout << " 发现循环依赖,继续分析其他路径" << std::endl;
|
||||
}
|
||||
return true; // 循环依赖本身不是逃逸点
|
||||
}
|
||||
|
||||
if (visited.count(inst) > 0) {
|
||||
// 已经分析过这个指令
|
||||
return true; // 假设之前的分析是正确的
|
||||
}
|
||||
|
||||
visited.insert(inst);
|
||||
currentPath.insert(inst);
|
||||
|
||||
// 1. 检查是否有副作用(逃逸点)
|
||||
if (sideEffectAnalysis && sideEffectAnalysis->hasSideEffect(inst)) {
|
||||
if (DEBUG && visited.size() < 10) {
|
||||
std::cout << " 指令有副作用,是逃逸点" << std::endl;
|
||||
}
|
||||
currentPath.erase(inst);
|
||||
return false; // 有副作用的指令是逃逸点
|
||||
}
|
||||
|
||||
// 1.5. 特殊检查:控制流指令永远不是死代码
|
||||
auto instKind = inst->getKind();
|
||||
if (instKind == Instruction::Kind::kCondBr ||
|
||||
instKind == Instruction::Kind::kBr ||
|
||||
instKind == Instruction::Kind::kReturn) {
|
||||
if (DEBUG && visited.size() < 10) {
|
||||
std::cout << " 控制流指令,是逃逸点" << std::endl;
|
||||
}
|
||||
currentPath.erase(inst);
|
||||
return false; // 控制流指令是逃逸点
|
||||
}
|
||||
|
||||
// 2. 检查指令的所有使用
|
||||
bool allUsesAreDead = true;
|
||||
for (auto use : inst->getUses()) {
|
||||
auto user = use->getUser();
|
||||
auto* userInst = dynamic_cast<Instruction*>(user);
|
||||
|
||||
if (!userInst) {
|
||||
// 被非指令使用(如函数返回值),是逃逸点
|
||||
if (DEBUG && visited.size() < 10) {
|
||||
std::cout << " 被非指令使用,是逃逸点" << std::endl;
|
||||
}
|
||||
allUsesAreDead = false;
|
||||
break;
|
||||
}
|
||||
|
||||
// 检查使用是否在循环外(逃逸点)
|
||||
if (!loop->contains(userInst->getParent())) {
|
||||
if (DEBUG && visited.size() < 10) {
|
||||
std::cout << " 在循环外被 " << userInst->getName() << " 使用,是逃逸点" << std::endl;
|
||||
}
|
||||
allUsesAreDead = false;
|
||||
break;
|
||||
}
|
||||
|
||||
// 特殊检查:如果使用者是循环的退出条件,需要进一步分析
|
||||
// 对于用于退出条件的归纳变量,需要更谨慎的处理
|
||||
if (isUsedInLoopExitCondition(userInst, loop)) {
|
||||
// 修复逻辑:用于循环退出条件的归纳变量通常不应该被消除
|
||||
// 除非整个循环都可以被证明是完全无用的(这需要更复杂的分析)
|
||||
if (DEBUG && visited.size() < 10) {
|
||||
std::cout << " 被用于循环退出条件,是逃逸点(避免破坏循环语义)" << std::endl;
|
||||
}
|
||||
allUsesAreDead = false;
|
||||
break;
|
||||
}
|
||||
|
||||
// 递归分析使用者的使用链
|
||||
if (!isInstructionUseChainDeadRecursively(userInst, loop, visited, currentPath)) {
|
||||
allUsesAreDead = false;
|
||||
break; // 找到逃逸点,不需要继续分析
|
||||
}
|
||||
}
|
||||
|
||||
currentPath.erase(inst);
|
||||
|
||||
if (allUsesAreDead && DEBUG && visited.size() < 10) {
|
||||
std::cout << " 指令 " << inst->getName() << " 的所有使用都是死代码" << std::endl;
|
||||
}
|
||||
|
||||
return allUsesAreDead;
|
||||
}
|
||||
|
||||
// 检查循环是否有副作用
|
||||
bool InductionVariableEliminationContext::loopHasSideEffects(Loop* loop) {
|
||||
// 遍历循环中的所有指令,检查是否有副作用
|
||||
for (BasicBlock* bb : loop->getBlocks()) {
|
||||
for (auto& inst : bb->getInstructions()) {
|
||||
Instruction* instPtr = inst.get();
|
||||
|
||||
// 使用副作用分析(如果可用)
|
||||
if (sideEffectAnalysis && sideEffectAnalysis->hasSideEffect(instPtr)) {
|
||||
if (DEBUG) {
|
||||
std::cout << " 循环中发现有副作用的指令: " << instPtr->getName() << std::endl;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
// 如果没有副作用分析,使用保守的判断
|
||||
if (!sideEffectAnalysis) {
|
||||
auto kind = instPtr->getKind();
|
||||
// 这些指令通常有副作用
|
||||
if (kind == Instruction::Kind::kCall ||
|
||||
kind == Instruction::Kind::kStore ||
|
||||
kind == Instruction::Kind::kReturn) {
|
||||
if (DEBUG) {
|
||||
std::cout << " 循环中发现潜在有副作用的指令: " << instPtr->getName() << std::endl;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 重要修复:检查是否为嵌套循环的外层循环
|
||||
// 如果当前循环包含其他循环,那么它有潜在的副作用
|
||||
for (const auto& loop_ptr : loopAnalysis->getAllLoops()) {
|
||||
Loop* otherLoop = loop_ptr.get();
|
||||
if(loopAnalysis->getLowestCommonAncestor(otherLoop, loop) == loop) {
|
||||
if (DEBUG) {
|
||||
std::cout << " 循环 " << loop->getName() << " 是其他循环的外层循环,视为有副作用" << std::endl;
|
||||
}
|
||||
return true; // 外层循环被视为有副作用
|
||||
}
|
||||
// if (otherLoop != loop && loop->contains(otherLoop->getHeader())) {
|
||||
// if (DEBUG) {
|
||||
// std::cout << " 循环 " << loop->getName() << " 包含子循环 " << otherLoop->getName() << ",视为有副作用" << std::endl;
|
||||
// }
|
||||
// return true; // 包含子循环的外层循环被视为有副作用
|
||||
// }
|
||||
}
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << " 循环 " << loop->getName() << " 无副作用" << std::endl;
|
||||
}
|
||||
return false; // 循环无副作用
|
||||
}
|
||||
|
||||
// 检查指令是否被用于循环退出条件
|
||||
bool InductionVariableEliminationContext::isUsedInLoopExitCondition(Instruction* inst, Loop* loop) {
|
||||
// 检查指令是否被循环的退出条件使用
|
||||
for (BasicBlock* exitingBB : loop->getExitingBlocks()) {
|
||||
auto terminatorIt = exitingBB->terminator();
|
||||
if (terminatorIt != exitingBB->end()) {
|
||||
Instruction* terminator = terminatorIt->get();
|
||||
if (terminator) {
|
||||
// 检查终结指令的操作数
|
||||
for (size_t i = 0; i < terminator->getNumOperands(); ++i) {
|
||||
if (terminator->getOperand(i) == inst) {
|
||||
if (DEBUG) {
|
||||
std::cout << " 指令 " << inst->getName() << " 用于循环退出条件" << std::endl;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
// 对于条件分支,还需要检查条件指令的操作数
|
||||
if (terminator->getKind() == Instruction::Kind::kCondBr) {
|
||||
auto* condBr = dynamic_cast<CondBrInst*>(terminator);
|
||||
if (condBr) {
|
||||
Value* condition = condBr->getCondition();
|
||||
if (condition == inst) {
|
||||
if (DEBUG) {
|
||||
std::cout << " 指令 " << inst->getName() << " 是循环条件" << std::endl;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
// 递归检查条件指令的操作数(比如比较指令)
|
||||
auto* condInst = dynamic_cast<Instruction*>(condition);
|
||||
if (condInst) {
|
||||
for (size_t i = 0; i < condInst->getNumOperands(); ++i) {
|
||||
if (condInst->getOperand(i) == inst) {
|
||||
if (DEBUG) {
|
||||
std::cout << " 指令 " << inst->getName() << " 用于循环条件的操作数" << std::endl;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
// 检查指令的结果是否未被有效使用
|
||||
bool InductionVariableEliminationContext::isInstructionResultUnused(Instruction* inst, Loop* loop) {
|
||||
// 检查指令的所有使用
|
||||
if (inst->getUses().empty()) {
|
||||
return true; // 没有使用,肯定是未使用
|
||||
}
|
||||
|
||||
for (auto use : inst->getUses()) {
|
||||
auto user = use->getUser();
|
||||
auto* userInst = dynamic_cast<Instruction*>(user);
|
||||
|
||||
if (!userInst) {
|
||||
return false; // 被非指令使用,认为是有效使用
|
||||
}
|
||||
|
||||
// 如果在循环外被使用,认为是有效使用
|
||||
if (!loop->contains(userInst->getParent())) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// 递归检查使用这个结果的指令是否也是死代码
|
||||
// 为了避免无限递归,限制递归深度
|
||||
if (!isInstructionEffectivelyDead(userInst, loop, 3)) {
|
||||
return false; // 存在有效使用
|
||||
}
|
||||
}
|
||||
|
||||
return true; // 所有使用都是无效的
|
||||
}
|
||||
|
||||
// 检查store指令是否存储到死地址(利用别名分析)
|
||||
bool InductionVariableEliminationContext::isStoreToDeadLocation(StoreInst* store, Loop* loop) {
|
||||
if (!aliasAnalysis) {
|
||||
return false; // 没有别名分析,保守返回false
|
||||
}
|
||||
|
||||
Value* storePtr = store->getPointer();
|
||||
|
||||
// 检查是否存储到局部临时变量且该变量在循环外不被读取
|
||||
const MemoryLocation* memLoc = aliasAnalysis->getMemoryLocation(storePtr);
|
||||
if (!memLoc) {
|
||||
return false; // 无法确定内存位置
|
||||
}
|
||||
|
||||
// 如果是局部数组且只在循环内被访问
|
||||
if (memLoc->isLocalArray) {
|
||||
// 检查该内存位置是否在循环外被读取
|
||||
for (auto* accessInst : memLoc->accessInsts) {
|
||||
if (accessInst->getKind() == Instruction::Kind::kLoad) {
|
||||
if (!loop->contains(accessInst->getParent())) {
|
||||
return false; // 在循环外被读取,不是死存储
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << " 存储到局部数组且仅在循环内访问" << std::endl;
|
||||
}
|
||||
return true; // 存储到仅循环内访问的局部数组
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
// 检查指令是否有效死代码(带递归深度限制)
|
||||
bool InductionVariableEliminationContext::isInstructionEffectivelyDead(Instruction* inst, Loop* loop, int maxDepth) {
|
||||
if (maxDepth <= 0) {
|
||||
return false; // 达到递归深度限制,保守返回false
|
||||
}
|
||||
|
||||
// 利用副作用分析
|
||||
if (sideEffectAnalysis && sideEffectAnalysis->hasSideEffect(inst)) {
|
||||
return false; // 有副作用的指令不是死代码
|
||||
}
|
||||
|
||||
// 检查特殊指令类型
|
||||
switch (inst->getKind()) {
|
||||
case Instruction::Kind::kStore:
|
||||
// Store指令可能是死存储
|
||||
return isStoreToDeadLocation(dynamic_cast<StoreInst*>(inst), loop);
|
||||
|
||||
case Instruction::Kind::kCall:
|
||||
// 函数调用通常有副作用
|
||||
if (sideEffectAnalysis) {
|
||||
return !sideEffectAnalysis->hasSideEffect(inst);
|
||||
}
|
||||
return false; // 保守地认为函数调用有效果
|
||||
|
||||
case Instruction::Kind::kReturn:
|
||||
case Instruction::Kind::kBr:
|
||||
case Instruction::Kind::kCondBr:
|
||||
// 控制流指令不是死代码
|
||||
return false;
|
||||
|
||||
default:
|
||||
// 其他指令检查其使用是否有效
|
||||
break;
|
||||
}
|
||||
|
||||
// 检查指令的使用
|
||||
if (inst->getUses().empty()) {
|
||||
return true; // 没有使用的纯指令是死代码
|
||||
}
|
||||
|
||||
// 递归检查所有使用
|
||||
for (auto use : inst->getUses()) {
|
||||
auto user = use->getUser();
|
||||
auto* userInst = dynamic_cast<Instruction*>(user);
|
||||
|
||||
@ -201,35 +539,180 @@ bool InductionVariableEliminationContext::isUsedOnlyForSelfUpdate(PhiInst* phiIn
|
||||
return false; // 被非指令使用
|
||||
}
|
||||
|
||||
// 检查使用是否在循环内
|
||||
if (!loop->contains(userInst->getParent())) {
|
||||
return false; // 在循环外被使用
|
||||
}
|
||||
|
||||
// 检查是否为自身的更新指令
|
||||
bool isSelfUpdate = false;
|
||||
|
||||
// 检查是否为加法/减法指令(常见的归纳变量更新模式)
|
||||
if (userInst->getKind() == Instruction::Kind::kAdd ||
|
||||
userInst->getKind() == Instruction::Kind::kSub) {
|
||||
auto* binInst = dynamic_cast<BinaryInst*>(userInst);
|
||||
if (binInst && (binInst->getOperand(0) == phiInst || binInst->getOperand(1) == phiInst)) {
|
||||
// 检查这个指令的结果是否流回到 phi
|
||||
for (auto& [incomingBB, incomingVal] : phiInst->getIncomingValues()) {
|
||||
if (loop->contains(incomingBB) && incomingVal == binInst) {
|
||||
isSelfUpdate = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (!isSelfUpdate) {
|
||||
return false; // 有非自更新的使用
|
||||
// 递归检查使用者
|
||||
if (!isInstructionEffectivelyDead(userInst, loop, maxDepth - 1)) {
|
||||
return false; // 存在有效使用
|
||||
}
|
||||
}
|
||||
|
||||
return true; // 只用于自身更新
|
||||
return true; // 所有使用都是死代码
|
||||
}
|
||||
|
||||
// 原有的函数保持兼容,但现在使用增强的死代码分析
|
||||
bool InductionVariableEliminationContext::isInstructionDeadOrInternalOnly(Instruction* inst, Loop* loop) {
|
||||
return isInstructionEffectivelyDead(inst, loop, 5);
|
||||
}
|
||||
|
||||
// 检查store指令是否有后续的load操作
|
||||
bool InductionVariableEliminationContext::hasSubsequentLoad(StoreInst* store, Loop* loop) {
|
||||
if (!aliasAnalysis) {
|
||||
// 没有别名分析,保守地假设有后续读取
|
||||
return true;
|
||||
}
|
||||
|
||||
Value* storePtr = store->getPointer();
|
||||
const MemoryLocation* storeLoc = aliasAnalysis->getMemoryLocation(storePtr);
|
||||
|
||||
if (!storeLoc) {
|
||||
// 无法确定内存位置,保守处理
|
||||
return true;
|
||||
}
|
||||
|
||||
// 在循环中和循环后查找对同一位置的load操作
|
||||
std::vector<BasicBlock*> blocksToCheck;
|
||||
|
||||
// 添加循环内的所有基本块
|
||||
for (auto* bb : loop->getBlocks()) {
|
||||
blocksToCheck.push_back(bb);
|
||||
}
|
||||
|
||||
// 添加循环的退出块
|
||||
auto exitBlocks = loop->getExitBlocks();
|
||||
for (auto* exitBB : exitBlocks) {
|
||||
blocksToCheck.push_back(exitBB);
|
||||
}
|
||||
|
||||
// 搜索load操作
|
||||
for (auto* bb : blocksToCheck) {
|
||||
for (auto& inst : bb->getInstructions()) {
|
||||
if (inst->getKind() == Instruction::Kind::kLoad) {
|
||||
LoadInst* loadInst = static_cast<LoadInst*>(inst.get());
|
||||
Value* loadPtr = loadInst->getPointer();
|
||||
const MemoryLocation* loadLoc = aliasAnalysis->getMemoryLocation(loadPtr);
|
||||
|
||||
if (loadLoc && aliasAnalysis->queryAlias(storePtr, loadPtr) != AliasType::NO_ALIAS) {
|
||||
// 找到可能读取同一位置的load操作
|
||||
if (DEBUG) {
|
||||
std::cout << " 找到后续load操作: " << loadInst->getName() << std::endl;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 检查是否通过函数调用间接访问
|
||||
for (auto* bb : blocksToCheck) {
|
||||
for (auto& inst : bb->getInstructions()) {
|
||||
if (inst->getKind() == Instruction::Kind::kCall) {
|
||||
CallInst* callInst = static_cast<CallInst*>(inst.get());
|
||||
if (callInst && sideEffectAnalysis && sideEffectAnalysis->hasSideEffect(callInst)) {
|
||||
// 函数调用可能间接读取内存
|
||||
if (DEBUG) {
|
||||
std::cout << " 函数调用可能读取内存: " << callInst->getName() << std::endl;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << " 未找到后续load操作" << std::endl;
|
||||
}
|
||||
return false; // 没有找到后续读取
|
||||
}
|
||||
|
||||
// 检查指令是否在循环外有使用
|
||||
bool InductionVariableEliminationContext::hasUsageOutsideLoop(Instruction* inst, Loop* loop) {
|
||||
for (auto use : inst->getUses()) {
|
||||
auto user = use->getUser();
|
||||
auto* userInst = dynamic_cast<Instruction*>(user);
|
||||
|
||||
if (!userInst) {
|
||||
// 被非指令使用,可能在循环外
|
||||
return true;
|
||||
}
|
||||
|
||||
if (!loop->contains(userInst->getParent())) {
|
||||
// 在循环外被使用
|
||||
if (DEBUG) {
|
||||
std::cout << " 指令 " << inst->getName() << " 在循环外被 "
|
||||
<< userInst->getName() << " 使用" << std::endl;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
return false; // 没有循环外使用
|
||||
}
|
||||
|
||||
// 检查store指令是否在循环外有后续的load操作
|
||||
bool InductionVariableEliminationContext::hasSubsequentLoadOutsideLoop(StoreInst* store, Loop* loop) {
|
||||
if (!aliasAnalysis) {
|
||||
// 没有别名分析,保守地假设有后续读取
|
||||
return true;
|
||||
}
|
||||
|
||||
Value* storePtr = store->getPointer();
|
||||
|
||||
// 检查循环的退出块及其后继
|
||||
auto exitBlocks = loop->getExitBlocks();
|
||||
std::set<BasicBlock*> visitedBlocks;
|
||||
|
||||
for (auto* exitBB : exitBlocks) {
|
||||
if (hasLoadInSubtree(exitBB, storePtr, visitedBlocks)) {
|
||||
if (DEBUG) {
|
||||
std::cout << " 找到循环外的后续load操作" << std::endl;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
return false; // 没有找到循环外的后续读取
|
||||
}
|
||||
|
||||
// 递归检查基本块子树中是否有对指定位置的load操作
|
||||
bool InductionVariableEliminationContext::hasLoadInSubtree(BasicBlock* bb, Value* ptr, std::set<BasicBlock*>& visited) {
|
||||
if (visited.count(bb) > 0) {
|
||||
return false; // 已经访问过,避免无限循环
|
||||
}
|
||||
visited.insert(bb);
|
||||
|
||||
// 检查当前基本块中的指令
|
||||
for (auto& inst : bb->getInstructions()) {
|
||||
if (inst->getKind() == Instruction::Kind::kLoad) {
|
||||
LoadInst* loadInst = static_cast<LoadInst*>(inst.get());
|
||||
if (aliasAnalysis && aliasAnalysis->queryAlias(ptr, loadInst->getPointer()) != AliasType::NO_ALIAS) {
|
||||
return true; // 找到了对相同或别名位置的load
|
||||
}
|
||||
} else if (inst->getKind() == Instruction::Kind::kCall) {
|
||||
// 函数调用可能间接读取内存
|
||||
CallInst* callInst = static_cast<CallInst*>(inst.get());
|
||||
if (sideEffectAnalysis && sideEffectAnalysis->hasSideEffect(callInst)) {
|
||||
return true; // 保守地认为函数调用可能读取内存
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 递归检查后继基本块(限制深度以避免过度搜索)
|
||||
static int searchDepth = 0;
|
||||
if (searchDepth < 10) { // 限制搜索深度
|
||||
searchDepth++;
|
||||
for (auto* succ : bb->getSuccessors()) {
|
||||
if (hasLoadInSubtree(succ, ptr, visited)) {
|
||||
searchDepth--;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
searchDepth--;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
std::vector<Instruction*> InductionVariableEliminationContext::collectRelatedInstructions(
|
||||
|
||||
@ -18,62 +18,214 @@ bool LICMContext::hoistInstructions() {
|
||||
// 1. 先收集所有可外提指令
|
||||
std::unordered_set<Instruction *> workSet(chars->invariantInsts.begin(), chars->invariantInsts.end());
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << "LICM: Found " << workSet.size() << " candidate invariant instructions to hoist:" << std::endl;
|
||||
for (auto *inst : workSet) {
|
||||
std::cout << " - " << inst->getName() << " (kind: " << static_cast<int>(inst->getKind())
|
||||
<< ", in BB: " << inst->getParent()->getName() << ")" << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
// 2. 计算每个指令被依赖的次数(入度)
|
||||
std::unordered_map<Instruction *, int> indegree;
|
||||
std::unordered_map<Instruction *, std::vector<Instruction *>> dependencies; // 记录依赖关系
|
||||
std::unordered_map<Instruction *, std::vector<Instruction *>> dependents; // 记录被依赖关系
|
||||
|
||||
for (auto *inst : workSet) {
|
||||
indegree[inst] = 0;
|
||||
dependencies[inst] = {};
|
||||
dependents[inst] = {};
|
||||
}
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << "LICM: Analyzing dependencies between invariant instructions..." << std::endl;
|
||||
}
|
||||
|
||||
for (auto *inst : workSet) {
|
||||
for (size_t i = 0; i < inst->getNumOperands(); ++i) {
|
||||
if (auto *dep = dynamic_cast<Instruction *>(inst->getOperand(i))) {
|
||||
if (workSet.count(dep)) {
|
||||
indegree[inst]++;
|
||||
dependencies[inst].push_back(dep);
|
||||
dependents[dep].push_back(inst);
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << " Dependency: " << inst->getName() << " depends on " << dep->getName() << std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << "LICM: Initial indegree analysis:" << std::endl;
|
||||
for (auto &[inst, deg] : indegree) {
|
||||
std::cout << " " << inst->getName() << ": indegree=" << deg;
|
||||
if (deg > 0) {
|
||||
std::cout << ", depends on: ";
|
||||
for (auto *dep : dependencies[inst]) {
|
||||
std::cout << dep->getName() << " ";
|
||||
}
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
// 3. Kahn拓扑排序
|
||||
std::vector<Instruction *> sorted;
|
||||
std::queue<Instruction *> q;
|
||||
for (auto &[inst, deg] : indegree) {
|
||||
if (deg == 0)
|
||||
q.push(inst);
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << "LICM: Starting topological sort..." << std::endl;
|
||||
}
|
||||
|
||||
for (auto &[inst, deg] : indegree) {
|
||||
if (deg == 0) {
|
||||
q.push(inst);
|
||||
if (DEBUG) {
|
||||
std::cout << " Initial zero-indegree instruction: " << inst->getName() << std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int sortStep = 0;
|
||||
while (!q.empty()) {
|
||||
auto *inst = q.front();
|
||||
q.pop();
|
||||
sorted.push_back(inst);
|
||||
for (size_t i = 0; i < inst->getNumOperands(); ++i) {
|
||||
if (auto *dep = dynamic_cast<Instruction *>(inst->getOperand(i))) {
|
||||
if (workSet.count(dep)) {
|
||||
indegree[dep]--;
|
||||
if (indegree[dep] == 0)
|
||||
q.push(dep);
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << " Step " << (++sortStep) << ": Processing " << inst->getName() << std::endl;
|
||||
}
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << " Reducing indegree of dependents of " << inst->getName() << std::endl;
|
||||
}
|
||||
|
||||
// 正确的拓扑排序:当处理一个指令时,应该减少其所有使用者(dependents)的入度
|
||||
for (auto *dependent : dependents[inst]) {
|
||||
indegree[dependent]--;
|
||||
if (DEBUG) {
|
||||
std::cout << " Reducing indegree of " << dependent->getName() << " to " << indegree[dependent] << std::endl;
|
||||
}
|
||||
if (indegree[dependent] == 0) {
|
||||
q.push(dependent);
|
||||
if (DEBUG) {
|
||||
std::cout << " Adding " << dependent->getName() << " to queue (indegree=0)" << std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 检查是否全部排序,若未全部排序,说明有环(理论上不会)
|
||||
// 检查是否全部排序,若未全部排序,打印错误信息
|
||||
// 这可能是因为存在循环依赖或其他问题导致无法完成拓扑排序
|
||||
if (sorted.size() != workSet.size()) {
|
||||
if (DEBUG)
|
||||
std::cerr << "LICM: Topological sort failed, possible dependency cycle." << std::endl;
|
||||
if (DEBUG) {
|
||||
std::cout << "LICM: Topological sort failed! Sorted " << sorted.size()
|
||||
<< " instructions out of " << workSet.size() << " total." << std::endl;
|
||||
|
||||
// 找出未被排序的指令(形成循环依赖的指令)
|
||||
std::unordered_set<Instruction *> remaining;
|
||||
for (auto *inst : workSet) {
|
||||
bool found = false;
|
||||
for (auto *sortedInst : sorted) {
|
||||
if (inst == sortedInst) {
|
||||
found = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!found) {
|
||||
remaining.insert(inst);
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << "LICM: Instructions involved in dependency cycle:" << std::endl;
|
||||
for (auto *inst : remaining) {
|
||||
std::cout << " - " << inst->getName() << " (indegree=" << indegree[inst] << ")" << std::endl;
|
||||
std::cout << " Dependencies within cycle: ";
|
||||
for (auto *dep : dependencies[inst]) {
|
||||
if (remaining.count(dep)) {
|
||||
std::cout << dep->getName() << " ";
|
||||
}
|
||||
}
|
||||
std::cout << std::endl;
|
||||
std::cout << " Dependents within cycle: ";
|
||||
for (auto *dependent : dependents[inst]) {
|
||||
if (remaining.count(dependent)) {
|
||||
std::cout << dependent->getName() << " ";
|
||||
}
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
// 尝试找出一个具体的循环路径
|
||||
std::cout << "LICM: Attempting to trace a dependency cycle:" << std::endl;
|
||||
if (!remaining.empty()) {
|
||||
auto *start = *remaining.begin();
|
||||
std::unordered_set<Instruction *> visited;
|
||||
std::vector<Instruction *> path;
|
||||
|
||||
std::function<bool(Instruction *)> findCycle = [&](Instruction *current) -> bool {
|
||||
if (visited.count(current)) {
|
||||
// 找到环
|
||||
auto it = std::find(path.begin(), path.end(), current);
|
||||
if (it != path.end()) {
|
||||
std::cout << " Cycle found: ";
|
||||
for (auto cycleIt = it; cycleIt != path.end(); ++cycleIt) {
|
||||
std::cout << (*cycleIt)->getName() << " -> ";
|
||||
}
|
||||
std::cout << current->getName() << std::endl;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
visited.insert(current);
|
||||
path.push_back(current);
|
||||
|
||||
for (auto *dep : dependencies[current]) {
|
||||
if (remaining.count(dep)) {
|
||||
if (findCycle(dep)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
path.pop_back();
|
||||
return false;
|
||||
};
|
||||
|
||||
findCycle(start);
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// 4. 按拓扑序外提
|
||||
if (DEBUG) {
|
||||
std::cout << "LICM: Successfully completed topological sort. Hoisting instructions in order:" << std::endl;
|
||||
}
|
||||
|
||||
for (auto *inst : sorted) {
|
||||
if (!inst)
|
||||
continue;
|
||||
BasicBlock *parent = inst->getParent();
|
||||
if (parent && loop->contains(parent)) {
|
||||
if (DEBUG) {
|
||||
std::cout << " Hoisting " << inst->getName() << " from " << parent->getName()
|
||||
<< " to preheader " << preheader->getName() << std::endl;
|
||||
}
|
||||
auto sourcePos = parent->findInstIterator(inst);
|
||||
auto targetPos = preheader->terminator();
|
||||
parent->moveInst(sourcePos, targetPos, preheader);
|
||||
changed = true;
|
||||
}
|
||||
}
|
||||
|
||||
if (DEBUG && changed) {
|
||||
std::cout << "LICM: Successfully hoisted " << sorted.size() << " invariant instructions" << std::endl;
|
||||
}
|
||||
|
||||
return changed;
|
||||
}
|
||||
// ---- LICM Pass Implementation ----
|
||||
|
||||
@ -106,187 +106,6 @@ bool StrengthReductionContext::analyzeInductionVariableRange(
|
||||
return hasNegativePotential;
|
||||
}
|
||||
|
||||
//该实现参考了libdivide的算法
|
||||
std::pair<int, int> StrengthReductionContext::computeMulhMagicNumbers(int divisor) const {
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << "\n[SR] ===== Computing magic numbers for divisor " << divisor << " (libdivide algorithm) =====" << std::endl;
|
||||
}
|
||||
|
||||
if (divisor == 0) {
|
||||
if (DEBUG) std::cout << "[SR] Error: divisor must be != 0" << std::endl;
|
||||
return {-1, -1};
|
||||
}
|
||||
|
||||
// libdivide 常数
|
||||
const uint8_t LIBDIVIDE_ADD_MARKER = 0x40;
|
||||
const uint8_t LIBDIVIDE_NEGATIVE_DIVISOR = 0x80;
|
||||
|
||||
// 辅助函数:计算前导零个数
|
||||
auto count_leading_zeros32 = [](uint32_t val) -> uint32_t {
|
||||
if (val == 0) return 32;
|
||||
return __builtin_clz(val);
|
||||
};
|
||||
|
||||
// 辅助函数:64位除法返回32位商和余数
|
||||
auto div_64_32 = [](uint32_t high, uint32_t low, uint32_t divisor, uint32_t* rem) -> uint32_t {
|
||||
uint64_t dividend = ((uint64_t)high << 32) | low;
|
||||
uint32_t quotient = dividend / divisor;
|
||||
*rem = dividend % divisor;
|
||||
return quotient;
|
||||
};
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << "[SR] Input divisor: " << divisor << std::endl;
|
||||
}
|
||||
|
||||
// libdivide_internal_s32_gen 算法实现
|
||||
int32_t d = divisor;
|
||||
uint32_t ud = (uint32_t)d;
|
||||
uint32_t absD = (d < 0) ? -ud : ud;
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << "[SR] absD = " << absD << std::endl;
|
||||
}
|
||||
|
||||
uint32_t floor_log_2_d = 31 - count_leading_zeros32(absD);
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << "[SR] floor_log_2_d = " << floor_log_2_d << std::endl;
|
||||
}
|
||||
|
||||
// 检查 absD 是否为2的幂
|
||||
if ((absD & (absD - 1)) == 0) {
|
||||
if (DEBUG) {
|
||||
std::cout << "[SR] " << absD << " 是2的幂,使用移位方法" << std::endl;
|
||||
}
|
||||
|
||||
// 对于2的幂,我们只使用移位,不需要魔数
|
||||
int shift = floor_log_2_d;
|
||||
if (d < 0) shift |= 0x80; // 标记负数
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << "[SR] Power of 2 result: magic=0, shift=" << shift << std::endl;
|
||||
std::cout << "[SR] ===== End magic computation =====" << std::endl;
|
||||
}
|
||||
|
||||
// 对于我们的目的,我们将在IR生成中以不同方式处理2的幂
|
||||
// 返回特殊标记
|
||||
return {0, shift};
|
||||
}
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << "[SR] " << absD << " is not a power of 2, computing magic number" << std::endl;
|
||||
}
|
||||
|
||||
// 非2的幂除数的魔数计算
|
||||
uint8_t more;
|
||||
uint32_t rem, proposed_m;
|
||||
|
||||
// 计算 proposed_m = floor(2^(floor_log_2_d + 31) / absD)
|
||||
proposed_m = div_64_32((uint32_t)1 << (floor_log_2_d - 1), 0, absD, &rem);
|
||||
const uint32_t e = absD - rem;
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << "[SR] proposed_m = " << proposed_m << ", rem = " << rem << ", e = " << e << std::endl;
|
||||
}
|
||||
|
||||
// 确定是否需要"加法"版本
|
||||
const bool branchfree = false; // 使用分支版本
|
||||
|
||||
if (!branchfree && e < ((uint32_t)1 << floor_log_2_d)) {
|
||||
// 这个幂次有效
|
||||
more = (uint8_t)(floor_log_2_d - 1);
|
||||
if (DEBUG) {
|
||||
std::cout << "[SR] Using basic algorithm, shift = " << (int)more << std::endl;
|
||||
}
|
||||
} else {
|
||||
// 我们需要上升一个等级
|
||||
proposed_m += proposed_m;
|
||||
const uint32_t twice_rem = rem + rem;
|
||||
if (twice_rem >= absD || twice_rem < rem) {
|
||||
proposed_m += 1;
|
||||
}
|
||||
more = (uint8_t)(floor_log_2_d | LIBDIVIDE_ADD_MARKER);
|
||||
if (DEBUG) {
|
||||
std::cout << "[SR] Using add algorithm, proposed_m = " << proposed_m << ", more = " << (int)more << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
proposed_m += 1;
|
||||
int32_t magic = (int32_t)proposed_m;
|
||||
|
||||
// 处理负除数
|
||||
if (d < 0) {
|
||||
more |= LIBDIVIDE_NEGATIVE_DIVISOR;
|
||||
if (!branchfree) {
|
||||
magic = -magic;
|
||||
}
|
||||
if (DEBUG) {
|
||||
std::cout << "[SR] Negative divisor, magic = " << magic << ", more = " << (int)more << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
// 为我们的IR生成提取移位量和标志
|
||||
int shift = more & 0x3F; // 移除标志,保留移位量(位0-5)
|
||||
bool need_add = (more & LIBDIVIDE_ADD_MARKER) != 0;
|
||||
bool is_negative = (more & LIBDIVIDE_NEGATIVE_DIVISOR) != 0;
|
||||
|
||||
if (DEBUG) {
|
||||
std::cout << "[SR] Final result: magic = " << magic << ", more = " << (int)more
|
||||
<< " (0x" << std::hex << (int)more << std::dec << ")" << std::endl;
|
||||
std::cout << "[SR] Shift = " << shift << ", need_add = " << need_add
|
||||
<< ", is_negative = " << is_negative << std::endl;
|
||||
|
||||
// Test the magic number using the correct libdivide algorithm
|
||||
std::cout << "[SR] Testing magic number (libdivide algorithm):" << std::endl;
|
||||
int test_values[] = {1, 7, 37, 100, 999, -1, -7, -37, -100};
|
||||
|
||||
for (int test_val : test_values) {
|
||||
int64_t quotient;
|
||||
|
||||
// 实现正确的libdivide算法
|
||||
int64_t product = (int64_t)test_val * magic;
|
||||
int64_t high_bits = product >> 32;
|
||||
|
||||
if (need_add) {
|
||||
// ADD_MARKER情况:移位前加上被除数
|
||||
// 这是libdivide的关键洞察!
|
||||
high_bits += test_val;
|
||||
quotient = high_bits >> shift;
|
||||
} else {
|
||||
// 正常情况:只是移位
|
||||
quotient = high_bits >> shift;
|
||||
}
|
||||
|
||||
// 符号修正:这是libdivide有符号除法的关键部分!
|
||||
// 如果被除数为负,商需要加1来匹配C语言的截断除法语义
|
||||
if (test_val < 0) {
|
||||
quotient += 1;
|
||||
}
|
||||
|
||||
int expected = test_val / divisor;
|
||||
|
||||
bool correct = (quotient == expected);
|
||||
std::cout << "[SR] " << test_val << " / " << divisor << " = " << quotient
|
||||
<< " (expected " << expected << ") " << (correct ? "✓" : "✗") << std::endl;
|
||||
}
|
||||
|
||||
std::cout << "[SR] ===== End magic computation =====" << std::endl;
|
||||
}
|
||||
|
||||
// 返回魔数、移位量,并在移位中编码ADD_MARKER标志
|
||||
// 我们将使用移位的第6位表示ADD_MARKER,第7位表示负数(如果需要)
|
||||
int encoded_shift = shift;
|
||||
if (need_add) {
|
||||
encoded_shift |= 0x40; // 设置第6位表示ADD_MARKER
|
||||
if (DEBUG) {
|
||||
std::cout << "[SR] Encoding ADD_MARKER in shift: " << encoded_shift << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
return {magic, encoded_shift};
|
||||
}
|
||||
|
||||
bool LoopStrengthReduction::runOnFunction(Function* F, AnalysisManager& AM) {
|
||||
if (F->getBasicBlocks().empty()) {
|
||||
@ -1018,7 +837,7 @@ Value* StrengthReductionContext::generateConstantDivisionReplacement(
|
||||
IRBuilder* builder
|
||||
) const {
|
||||
// 使用mulh指令优化任意常数除法
|
||||
auto [magic, shift] = computeMulhMagicNumbers(candidate->multiplier);
|
||||
auto [magic, shift] = SysYIROptUtils::computeMulhMagicNumbers(candidate->multiplier);
|
||||
|
||||
// 检查是否无法优化(magic == -1, shift == -1 表示失败)
|
||||
if (magic == -1 && shift == -1) {
|
||||
|
||||
125
src/midend/Pass/Optimize/TailCallOpt.cpp
Normal file
125
src/midend/Pass/Optimize/TailCallOpt.cpp
Normal file
@ -0,0 +1,125 @@
|
||||
#include "TailCallOpt.h"
|
||||
#include "IR.h"
|
||||
#include "IRBuilder.h"
|
||||
#include "SysYIROptUtils.h"
|
||||
#include <vector>
|
||||
// #include <iostream>
|
||||
#include <algorithm>
|
||||
|
||||
namespace sysy {
|
||||
|
||||
void *TailCallOpt::ID = (void *)&TailCallOpt::ID;
|
||||
|
||||
void TailCallOpt::getAnalysisUsage(std::set<void *> &analysisDependencies, std::set<void *> &analysisInvalidations) const {
|
||||
analysisInvalidations.insert(&DominatorTreeAnalysisPass::ID);
|
||||
analysisInvalidations.insert(&LoopAnalysisPass::ID);
|
||||
}
|
||||
|
||||
bool TailCallOpt::runOnFunction(Function *F, AnalysisManager &AM) {
|
||||
std::vector<CallInst *> tailCallInsts;
|
||||
// 遍历函数的所有基本块
|
||||
for (auto &bb_ptr : F->getBasicBlocks()) {
|
||||
auto BB = bb_ptr.get();
|
||||
if (BB->getInstructions().empty()) continue; // 跳过空基本块
|
||||
|
||||
auto term_iter = BB->terminator();
|
||||
if (term_iter == BB->getInstructions().end()) continue; // 没有终结指令则跳过
|
||||
auto term = (*term_iter).get();
|
||||
|
||||
if (!term || !term->isReturn()) continue; // 不是返回指令则跳过
|
||||
auto retInst = static_cast<ReturnInst *>(term);
|
||||
|
||||
Instruction *prevInst = nullptr;
|
||||
if (BB->getInstructions().size() > 1) {
|
||||
auto it = term_iter;
|
||||
--it; // 获取返回指令前的指令
|
||||
prevInst = (*it).get();
|
||||
}
|
||||
|
||||
if (!prevInst || !prevInst->isCall()) continue; // 前一条不是调用指令则跳过
|
||||
auto callInst = static_cast<CallInst *>(prevInst);
|
||||
|
||||
// 检查是否为尾递归调用:被调用函数与当前函数相同且返回值与调用结果匹配
|
||||
if (callInst->getCallee() == F) {
|
||||
// 对于尾递归,返回值应为调用结果或为 void 类型
|
||||
if (retInst->getReturnValue() == callInst ||
|
||||
(retInst->getReturnValue() == nullptr && callInst->getType()->isVoid())) {
|
||||
tailCallInsts.push_back(callInst);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (tailCallInsts.empty()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// 创建一个新的入口基本块,作为循环的前置块
|
||||
auto original_entry = F->getEntryBlock();
|
||||
auto new_entry = F->addBasicBlock("tco.entry." + F->getName());
|
||||
auto loop_header = F->addBasicBlock("tco.loop_header." + F->getName());
|
||||
|
||||
// 将原入口块中的所有指令移动到循环头块
|
||||
loop_header->getInstructions().splice(loop_header->end(), original_entry->getInstructions());
|
||||
original_entry->setName("tco.pre_header");
|
||||
|
||||
// 为函数参数创建 phi 节点
|
||||
builder->setPosition(loop_header, loop_header->begin());
|
||||
std::vector<PhiInst *> phis;
|
||||
auto original_args = F->getArguments();
|
||||
for (auto &arg : original_args) {
|
||||
auto phi = builder->createPhiInst(arg->getType(), {}, {}, "tco.phi."+arg->getName());
|
||||
phis.push_back(phi);
|
||||
}
|
||||
|
||||
// 用 phi 节点替换所有原始参数的使用
|
||||
for (size_t i = 0; i < original_args.size(); ++i) {
|
||||
original_args[i]->replaceAllUsesWith(phis[i]);
|
||||
}
|
||||
|
||||
// 设置 phi 节点的输入值
|
||||
for (size_t i = 0; i < phis.size(); ++i) {
|
||||
phis[i]->addIncoming(original_args[i], new_entry);
|
||||
}
|
||||
|
||||
// 连接各个基本块
|
||||
builder->setPosition(original_entry, original_entry->end());
|
||||
builder->createUncondBrInst(new_entry);
|
||||
original_entry->addSuccessor(new_entry);
|
||||
|
||||
builder->setPosition(new_entry, new_entry->end());
|
||||
builder->createUncondBrInst(loop_header);
|
||||
new_entry->addSuccessor(loop_header);
|
||||
loop_header->addPredecessor(new_entry);
|
||||
|
||||
// 处理每一个尾递归调用
|
||||
for (auto callInst : tailCallInsts) {
|
||||
auto tail_call_block = callInst->getParent();
|
||||
|
||||
// 收集尾递归调用的参数
|
||||
auto args_range = callInst->getArguments();
|
||||
std::vector<Value*> args;
|
||||
std::transform(args_range.begin(), args_range.end(), std::back_inserter(args),
|
||||
[](auto& use_ptr){ return use_ptr->getValue(); });
|
||||
|
||||
// 用新的参数值更新 phi 节点
|
||||
for (size_t i = 0; i < phis.size(); ++i) {
|
||||
phis[i]->addIncoming(args[i], tail_call_block);
|
||||
}
|
||||
|
||||
// 移除原有的调用和返回指令
|
||||
auto term_iter = tail_call_block->terminator();
|
||||
SysYIROptUtils::usedelete(term_iter);
|
||||
auto call_iter = tail_call_block->findInstIterator(callInst);
|
||||
SysYIROptUtils::usedelete(call_iter);
|
||||
|
||||
// 添加跳转回循环头块的分支指令
|
||||
builder->setPosition(tail_call_block, tail_call_block->end());
|
||||
builder->createUncondBrInst(loop_header);
|
||||
tail_call_block->addSuccessor(loop_header);
|
||||
loop_header->addPredecessor(tail_call_block);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace sysy
|
||||
@ -10,6 +10,7 @@
|
||||
#include "DCE.h"
|
||||
#include "Mem2Reg.h"
|
||||
#include "Reg2Mem.h"
|
||||
#include "GVN.h"
|
||||
#include "SCCP.h"
|
||||
#include "BuildCFG.h"
|
||||
#include "LargeArrayToGlobal.h"
|
||||
@ -17,6 +18,8 @@
|
||||
#include "LICM.h"
|
||||
#include "LoopStrengthReduction.h"
|
||||
#include "InductionVariableElimination.h"
|
||||
#include "GlobalStrengthReduction.h"
|
||||
#include "TailCallOpt.h"
|
||||
#include "Pass.h"
|
||||
#include <iostream>
|
||||
#include <queue>
|
||||
@ -59,6 +62,8 @@ void PassManager::runOptimizationPipeline(Module* moduleIR, IRBuilder* builderIR
|
||||
// 注册优化遍
|
||||
registerOptimizationPass<BuildCFG>();
|
||||
registerOptimizationPass<LargeArrayToGlobalPass>();
|
||||
|
||||
registerOptimizationPass<GVN>();
|
||||
|
||||
registerOptimizationPass<SysYDelInstAfterBrPass>();
|
||||
registerOptimizationPass<SysYDelNoPreBLockPass>();
|
||||
@ -74,7 +79,10 @@ void PassManager::runOptimizationPipeline(Module* moduleIR, IRBuilder* builderIR
|
||||
registerOptimizationPass<LICM>(builderIR);
|
||||
registerOptimizationPass<LoopStrengthReduction>(builderIR);
|
||||
registerOptimizationPass<InductionVariableElimination>();
|
||||
|
||||
registerOptimizationPass<GlobalStrengthReduction>(builderIR);
|
||||
registerOptimizationPass<Reg2Mem>(builderIR);
|
||||
registerOptimizationPass<TailCallOpt>(builderIR);
|
||||
|
||||
registerOptimizationPass<SCCP>(builderIR);
|
||||
|
||||
@ -129,6 +137,25 @@ void PassManager::runOptimizationPipeline(Module* moduleIR, IRBuilder* builderIR
|
||||
printPasses();
|
||||
}
|
||||
|
||||
this->clearPasses();
|
||||
this->addPass(&GVN::ID);
|
||||
this->run();
|
||||
|
||||
this->clearPasses();
|
||||
this->addPass(&TailCallOpt::ID);
|
||||
this->run();
|
||||
|
||||
if(DEBUG) {
|
||||
std::cout << "=== IR After TailCallOpt ===\n";
|
||||
SysYPrinter printer(moduleIR);
|
||||
printer.printIR();
|
||||
}
|
||||
|
||||
if(DEBUG) {
|
||||
std::cout << "=== IR After GVN Optimizations ===\n";
|
||||
printPasses();
|
||||
}
|
||||
|
||||
this->clearPasses();
|
||||
this->addPass(&SCCP::ID);
|
||||
this->run();
|
||||
@ -140,19 +167,46 @@ void PassManager::runOptimizationPipeline(Module* moduleIR, IRBuilder* builderIR
|
||||
|
||||
this->clearPasses();
|
||||
this->addPass(&LoopNormalizationPass::ID);
|
||||
this->addPass(&LICM::ID);
|
||||
this->addPass(&LoopStrengthReduction::ID);
|
||||
this->addPass(&InductionVariableElimination::ID);
|
||||
this->run();
|
||||
|
||||
if(DEBUG) {
|
||||
std::cout << "=== IR After Loop Normalization, LICM, and Strength Reduction Optimizations ===\n";
|
||||
std::cout << "=== IR After Loop Normalization, Induction Variable Elimination ===\n";
|
||||
printPasses();
|
||||
}
|
||||
|
||||
|
||||
this->clearPasses();
|
||||
this->addPass(&LICM::ID);
|
||||
this->run();
|
||||
|
||||
if(DEBUG) {
|
||||
std::cout << "=== IR After LICM ===\n";
|
||||
printPasses();
|
||||
}
|
||||
|
||||
this->clearPasses();
|
||||
this->addPass(&LoopStrengthReduction::ID);
|
||||
this->run();
|
||||
|
||||
if(DEBUG) {
|
||||
std::cout << "=== IR After Loop Normalization, and Strength Reduction Optimizations ===\n";
|
||||
printPasses();
|
||||
}
|
||||
|
||||
// this->clearPasses();
|
||||
// this->addPass(&Reg2Mem::ID);
|
||||
// this->run();
|
||||
// 全局强度削弱优化,包括代数优化和魔数除法
|
||||
this->clearPasses();
|
||||
this->addPass(&GlobalStrengthReduction::ID);
|
||||
this->run();
|
||||
|
||||
if(DEBUG) {
|
||||
std::cout << "=== IR After Global Strength Reduction Optimizations ===\n";
|
||||
printPasses();
|
||||
}
|
||||
|
||||
this->clearPasses();
|
||||
this->addPass(&Reg2Mem::ID);
|
||||
this->run();
|
||||
|
||||
if(DEBUG) {
|
||||
std::cout << "=== IR After Reg2Mem Optimizations ===\n";
|
||||
|
||||
Reference in New Issue
Block a user