Compare commits

...

23 Commits

Author SHA1 Message Date
97d83d733e [midend-Funtioninline]ir增加函数复制方法,函数内联需要用 2025-08-18 23:58:39 +08:00
ad74e435ba [midend-GSR]修复错误的代数简化 2025-08-18 21:55:57 +08:00
5c34cbc7b8 [midend-GSR]将魔数求解移动到utils的静态方法中。 2025-08-18 20:37:20 +08:00
c9a0c700e1 [midend]增加全局强度削弱优化遍 2025-08-18 11:30:40 +08:00
f317010d76 [midend-Loop-LICM][fix]检查load能否外提时其内存地址在循环中是否会被修改,需要判断函数调用对load内存地址的影响。 2025-08-17 17:42:19 +08:00
8ca64610eb [midend-GVN]重构GVN的值编号系统 2025-08-17 16:33:15 +08:00
969a78a088 [midend-GVN]segmentation fault是GVN引入的已修复,LICM仍然有错误 2025-08-17 14:37:27 +08:00
8763c0a11a [midend-LICM][fix]修改计算循环不变量依赖关系的排序错误,但是引入了很多Segmentation fault。 2025-08-17 01:35:03 +08:00
d83dc7a2e7 [midend-LICM][fix]修复循环不变量的识别逻辑 2025-08-17 01:19:44 +08:00
e32585fd25 [midend-GVN]修复GVN中部分逻辑问题,LICM有bug待修复 2025-08-17 00:14:47 +08:00
c4eb1c3980 [midend-GVN&SideEffect]修复GVN的部分问题和副作用分析的缺陷 2025-08-16 18:52:29 +08:00
d038884ffb [midend-GVN] commit头文件 2025-08-16 15:43:51 +08:00
467f2f6b24 [midend-GVN]初步构建GVN,能够优化部分CSE无法处理的子表达式但是有错误需要debug。 2025-08-16 15:38:41 +08:00
fa33bf5134 [midend-Loop-IVE]修复循环的死IV消除逻辑 2025-08-15 01:19:45 +08:00
a3435e7c26 [midend-Loop-IVE]循环归纳变量消除逻辑重构,修改运行顺序 2025-08-14 17:27:53 +08:00
7547d34598 [midend-IVE]参考libdivide库,实现了魔数的正确求解,如果后续出错直接用API或者不要除法强度削弱了 2025-08-14 05:12:54 +08:00
06a368db39 [midend]修复创建新归纳变量的错误逻辑,避免生成悬空phi节点的现象 2025-08-13 20:00:43 +08:00
48865fa805 [midend-IVE]增加无用归纳变量消除遍 2025-08-13 17:42:34 +08:00
8b5123460b [midend-Loop-InductionVarStrengthReduction]支持了对部分除法运算取模运算的归纳变量的强度削弱策略。(mulh+魔数,负数2的幂次除法符号修正,2的幂次取模运算and优化)。增加了了Printer对移位指令的打印支持 2025-08-13 17:41:41 +08:00
cd27f5fda9 [midend]增加部分逻辑位移指令 2025-08-13 15:28:37 +08:00
60cb8d6e49 [midend]重命名Sra指令的kind标识 2025-08-13 14:55:46 +08:00
ea944f6ba0 [midend-Loop-InductionVarStrengthReduction]增加循环规约变量强度削弱优化 2025-08-13 01:13:01 +08:00
0c8a156485 [midend-LoopCharacteristics]强化归纳变量的识别 2025-08-12 22:33:16 +08:00
22 changed files with 5456 additions and 98 deletions

View File

@ -228,10 +228,193 @@ Branch 和 Return 指令: 这些是终结符指令,不产生一个可用于其
在提供的代码中SSAPValue 的 constantVal 是 int 类型。这使得浮点数常量传播变得复杂。对于浮点数相关的指令kFAdd, kFMul, kFCmp, kFNeg, kFNot, kItoF, kFtoI 等),如果不能将浮点值准确地存储在 int 中,或者不能可靠地执行浮点运算,那么通常会保守地将结果设置为 Bottom。一个更完善的 SCCP 实现会使用 std::variant<int, float> 或独立的浮点常量存储来处理浮点数。
## LoopSR循环归纳变量强度削弱 关于魔数计算的说明
魔数除法的核心思想是:将除法转换为乘法和移位
数学原理x / d ≈ (x * m) >> (32 + s)
m 是魔数 (magic number)
s 是额外的移位量 (shift)
>> 是算术右移
2^(32+s) / d ≤ m < 2^(32+s) / d + 2^s / d
cd /home/downright/Compiler_Opt/mysysy && python3 -c "
# 真正的迭代原因:精度要求
def explain_precision_requirement():
d = 10
print('魔数算法需要找到精确的边界值')
print('目标2^p > d * (2^31 - r)其中r是余数')
print()
# 模拟我们算法的迭代过程
p = 31
two_p = 2**p
r = two_p % d # 余数
m = two_p // d # 商
print(f'初始状态 (p={p}):')
print(f' 2^{p} = {two_p:,}')
print(f' 2^{p} / {d} = {m:,} 余 {r}')
print(f' 需要检查: 2^{p} > {d} * (2^31 - {r}) = {d * (2**31 - r):,}')
print(f' 条件满足: {two_p > d * (2**31 - r)}')
print()
# 继续迭代直到条件满足
iteration = 0
while r != 0 and m < 2**31:
iteration += 1
p += 1
two_p *= 2
m *= 2
r *= 2
if r >= d:
m += 1
r -= d
print(f'迭代 {iteration} (p={p}):')
print(f' m = {m:,}, r = {r}')
print(f' m < 2^31? {m < 2**31} (2^31 = {2**31:,})')
if m >= 2**31:
print(f' ✗ 魔数 {m:,} 超出32位范围!')
break
elif r == 0:
print(f' ✓ 余数为0找到精确解')
break
if iteration > 10: # 防止无限循环
print(' ... (限制迭代次数)')
break
explain_precision_requirement()
"
问题在于精度要求。理论魔数需要非常精确,不能简单地用 2^32 / d。让我展示真正的迭代原因
cd /home/downright/Compiler_Opt/mysysy && python3 -c "
# 真正的迭代原因:精度要求
def explain_precision_requirement():
d = 10
print('魔数算法需要找到精确的边界值:')
print('目标2^p > d * (2^31 - r)其中r是余数')
print()
# 模拟我们算法的迭代过程
p = 31
two_p = 2**p
r = two_p % d # 余数
m = two_p // d # 商
print(f'初始状态 (p={p}):')
print(f' 2^{p} = {two_p:,}')
print(f' 2^{p} / {d} = {m:,} 余 {r}')
print(f' 需要检查: 2^{p} > {d} * (2^31 - {r}) = {d * (2**31 - r):,}')
print(f' 条件满足: {two_p > d * (2**31 - r)}')
print()
# 继续迭代直到条件满足
iteration = 0
while r != 0 and m < 2**31:
iteration += 1
p += 1
two_p *= 2
m *= 2
r *= 2
if r >= d:
m += 1
r -= d
print(f'迭代 {iteration} (p={p}):')
print(f' m = {m:,}, r = {r}')
print(f' m < 2^31? {m < 2**31} (2^31 = {2**31:,})')
if m >= 2**31:
print(f' ✗ 魔数 {m:,} 超出32位范围!')
break
elif r == 0:
print(f' ✓ 余数为0找到精确解')
break
if iteration > 10: # 防止无限循环
print(' ... (限制迭代次数)')
break
explain_precision_requirement()
"
cd /home/downright/Compiler_Opt/mysysy && python3 -c "
# 检查初始状态是否会溢出
def check_initial_overflow():
int32_max = 2**31 - 1
print('检查不同除数的初始魔数是否会溢出:')
print(f'32位有符号整数最大值: {int32_max:,}')
print()
# 检查各种除数
divisors = [2, 3, 5, 7, 9, 10, 11, 13, 17, 25, 100, 1000]
for d in divisors:
# 初始魔数 = 2^31 / d
initial_magic = (2**31) // d
overflow = initial_magic > int32_max
status = \"溢出\" if overflow else \"安全\"
print(f'd={d:4d}: 初始魔数 = 2^31/{d} = {initial_magic:10,} [{status}]')
print()
print('结论: 初始状态下魔数不会溢出,溢出发生在迭代过程中')
check_initial_overflow()
"
总结
迭代的必要性:
不是为了避免初始溢出(初始状态安全)
是为了找到最精确的魔数,减少舍入误差
每次迭代提高一倍精度,但魔数也翻倍
溢出发生时机:
初始状态2^31 / d 总是在32位范围内
迭代过程2^32 / d, 2^33 / d, ... 逐渐超出32位范围
回退值的正确性:
回退值是基于数学理论和实践验证的标准值
来自LLVM、GCC等成熟编译器的实现
通过测试验证,对各种输入都能产生正确结果
算法设计哲学:
先尝试最优解:通过迭代寻找最精确的魔数
检测边界条件当超出32位范围时及时发现
智能回退:使用已验证的标准值保证正确性
保持通用性:对于没有预设值的除数仍然可以工作
## 死归纳变量消除
整体架构和工作流程
当前的归纳变量消除优化分为三个清晰的阶段:
识别阶段:找出所有潜在的死归纳变量
安全性分析阶段:验证每个变量消除的安全性
消除执行阶段:实际删除安全的死归纳变量
逃逸点检测 (已修复的关键安全机制)
数组索引检测GEP指令被正确识别为逃逸点
循环退出条件:用于比较和条件分支的归纳变量不会被消除
控制流指令condBr、br、return等被特殊处理为逃逸点
内存操作store/load指令经过别名分析检查
# 后续优化可能涉及的改动
## 1将所有的alloca集中到entryblock中
## 1将所有的alloca集中到entryblock中(已实现)
好处优化友好性方便mem2reg提升
目前没有实现这个机制,如果想要实现首先解决同一函数不同域的同名变量命名区分

View File

@ -517,7 +517,7 @@ void RISCv64ISel::selectNode(DAGNode* node) {
CurMBB->addInstruction(std::move(instr));
break;
}
case Instruction::kSRA: {
case Instruction::kSra: {
auto rhs_const = dynamic_cast<ConstantInteger*>(rhs);
auto instr = std::make_unique<MachineInstr>(RVOpcodes::SRAIW);
instr->addOperand(std::make_unique<RegOperand>(dest_vreg));

View File

@ -652,6 +652,13 @@ public:
} ///< 移除指定位置的指令
iterator moveInst(iterator sourcePos, iterator targetPos, BasicBlock *block);
static void bbdfs(BasicBlock* bb, std::function<bool(BasicBlock*)> func) {
if (func(bb))
return;
for (auto succ : bb->getSuccessors())
bbdfs(succ, func);
}
/// 清理基本块中的所有使用关系
void cleanup();
@ -727,6 +734,7 @@ class Instruction : public User {
kFCmpGE = 0x1UL << 20,
kAnd = 0x1UL << 21,
kOr = 0x1UL << 22,
// kXor = 0x1UL << 46,
// Unary
kNeg = 0x1UL << 23,
kNot = 0x1UL << 24,
@ -751,8 +759,10 @@ class Instruction : public User {
kPhi = 0x1UL << 39,
kBitItoF = 0x1UL << 40,
kBitFtoI = 0x1UL << 41,
kSRA = 0x1UL << 42,
kMulh = 0x1UL << 43
kSrl = 0x1UL << 42, // 逻辑右移
kSll = 0x1UL << 43, // 逻辑左移
kSra = 0x1UL << 44, // 算术右移
kMulh = 0x1UL << 45
};
protected:
@ -764,7 +774,7 @@ protected:
: User(type, name), kind(kind), parent(parent) {}
public:
virtual Instruction* copy(std::function<Value*(Value*)> getValue) const = 0;
public:
Kind getKind() const { return kind; }
std::string getKindString() const{
@ -855,8 +865,14 @@ public:
return "BitItoF";
case kBitFtoI:
return "BitFtoI";
case kSRA:
case kSrl:
return "lshr";
case kSll:
return "shl";
case kSra:
return "ashr";
case kMulh:
return "mulh";
default:
return "Unknown";
}
@ -868,7 +884,7 @@ public:
bool isBinary() const {
static constexpr uint64_t BinaryOpMask =
(kAdd | kSub | kMul | kDiv | kRem | kAnd | kOr | kSRA | kMulh) |
(kAdd | kSub | kMul | kDiv | kRem | kAnd | kOr | kSra | kSrl | kSll | kMulh) |
(kICmpEQ | kICmpNE | kICmpLT | kICmpGT | kICmpLE | kICmpGE);
return kind & BinaryOpMask;
}
@ -955,6 +971,18 @@ class PhiInst : public Instruction {
}
}
PhiInst(Type *type,
const std::vector<std::pair<BasicBlock*, Value*>> IncomingValues,
BasicBlock *parent = nullptr,
const std::string &name = "")
: Instruction(Kind::kPhi, type, parent, name), vsize(IncomingValues.size()) {
for(size_t i = 0; i < vsize; ++i) {
addOperand(IncomingValues[i].first);
addOperand(IncomingValues[i].second);
}
refreshMap(); ///< 刷新块到值的映射关系
}
public:
unsigned getNumIncomingValues() const { return vsize; } ///< 获取传入值的数量
Value *getIncomingValue(unsigned Idx) const { return getOperand(Idx * 2); } ///< 获取指定位置的传入值
@ -1004,6 +1032,7 @@ class PhiInst : public Instruction {
} ///< 刷新块到值的映射关系
auto getValues() { return make_range(std::next(operand_begin()), operand_end()); }
void print(std::ostream& os) const override;
Instruction* copy(std::function<Value*(Value*)> getValue) const override;
};
@ -1038,6 +1067,7 @@ protected:
public:
Value* getOperand() const { return User::getOperand(0); }
void print(std::ostream& os) const override;
Instruction* copy(std::function<Value*(Value*)> getValue) const override;
}; // class UnaryInst
//! Binary instruction, e.g., arithmatic, relation, logic, etc.
@ -1117,6 +1147,7 @@ public:
return new BinaryInst(kind, type, lhs, rhs, parent, name);
}
void print(std::ostream& os) const override;
Instruction* copy(std::function<Value*(Value*)> getValue) const override;
}; // class BinaryInst
//! The return statement
@ -1208,6 +1239,7 @@ public:
return succs;
}
void print(std::ostream& os) const override;
Instruction* copy(std::function<Value*(Value*)> getValue) const override;
}; // class CondBrInst
class UnreachableInst : public Instruction {
@ -1216,6 +1248,7 @@ public:
explicit UnreachableInst(const std::string& name, BasicBlock *parent = nullptr)
: Instruction(kUnreachable, Type::getVoidType(), parent, "") {}
void print(std::ostream& os) const { os << "unreachable"; }
Instruction* copy(std::function<Value*(Value*)> getValue) const override;
};
//! Allocate memory for stack variables, used for non-global variable declartion
@ -1234,6 +1267,7 @@ public:
return getType()->as<PointerType>()->getBaseType();
} ///< 获取分配的类型
void print(std::ostream& os) const override;
Instruction* copy(std::function<Value*(Value*)> getValue) const override;
}; // class AllocaInst
@ -1272,6 +1306,7 @@ public:
return new GetElementPtrInst(resultType, basePointer, indices, parent, name);
}
void print(std::ostream& os) const override;
Instruction* copy(std::function<Value*(Value*)> getValue) const override;
};
//! Load a value from memory address specified by a pointer value
@ -1290,6 +1325,7 @@ protected:
public:
Value* getPointer() const { return getOperand(0); }
void print(std::ostream& os) const override;
Instruction* copy(std::function<Value*(Value*)> getValue) const override;
}; // class LoadInst
//! Store a value to memory address specified by a pointer value
@ -1309,6 +1345,7 @@ public:
Value* getValue() const { return getOperand(0); }
Value* getPointer() const { return getOperand(1); }
void print(std::ostream& os) const override;
Instruction* copy(std::function<Value*(Value*)> getValue) const override;
}; // class StoreInst
//! Memset instruction
@ -1339,6 +1376,7 @@ public:
Value* getSize() const { return getOperand(2); }
Value* getValue() const { return getOperand(3); }
void print(std::ostream& os) const override;
Instruction* copy(std::function<Value*(Value*)> getValue) const override;
};
class GlobalValue;
@ -1376,19 +1414,11 @@ protected:
public:
using block_list = std::list<std::unique_ptr<BasicBlock>>;
using arg_list = std::vector<Argument *>;
enum FunctionAttribute : uint64_t {
PlaceHolder = 0x0UL,
Pure = 0x1UL << 0,
SelfRecursive = 0x1UL << 1,
SideEffect = 0x1UL << 2,
NoPureCauseMemRead = 0x1UL << 3
};
protected:
Module *parent; ///< 函数的父模块
block_list blocks; ///< 函数包含的基本块列表
arg_list arguments; ///< 函数参数列表
FunctionAttribute attribute = PlaceHolder; ///< 函数属性
std::set<Function *> callees; ///< 函数调用的函数集合
public:
static unsigned getcloneIndex() {
@ -1396,17 +1426,12 @@ protected:
cloneIndex += 1;
return cloneIndex - 1;
}
Function* clone(const std::string &suffix = "_" + std::to_string(getcloneIndex()) + "@") const;
Function* copy_func();
const std::set<Function *>& getCallees() { return callees; }
void addCallee(Function *callee) { callees.insert(callee); }
void removeCallee(Function *callee) { callees.erase(callee); }
void clearCallees() { callees.clear(); }
std::set<Function *> getCalleesWithNoExternalAndSelf();
FunctionAttribute getAttribute() const { return attribute; }
void setAttribute(FunctionAttribute attr) {
attribute = static_cast<FunctionAttribute>(attribute | attr);
}
void clearAttribute() { attribute = PlaceHolder; }
Type* getReturnType() const { return getType()->as<FunctionType>()->getReturnType(); }
auto getParamTypes() const { return getType()->as<FunctionType>()->getParamTypes(); }
auto getBasicBlocks() { return make_range(blocks); }

View File

@ -217,8 +217,14 @@ class IRBuilder {
BinaryInst * createOrInst(Value *lhs, Value *rhs, const std::string &name = "") {
return createBinaryInst(Instruction::kOr, Type::getIntType(), lhs, rhs, name);
} ///< 创建按位或指令
BinaryInst * createSRAInst(Value *lhs, Value *rhs, const std::string &name = "") {
return createBinaryInst(Instruction::kSRA, Type::getIntType(), lhs, rhs, name);
BinaryInst * createSllInst(Value *lhs, Value *rhs, const std::string &name = "") {
return createBinaryInst(Instruction::kSll, Type::getIntType(), lhs, rhs, name);
} ///< 创建逻辑左移指令
BinaryInst * createSrlInst(Value *lhs, Value *rhs, const std::string &name = "") {
return createBinaryInst(Instruction::kSrl, Type::getIntType(), lhs, rhs, name);
} ///< 创建逻辑右移指令
BinaryInst * createSraInst(Value *lhs, Value *rhs, const std::string &name = "") {
return createBinaryInst(Instruction::kSra, Type::getIntType(), lhs, rhs, name);
} ///< 创建算术右移指令
BinaryInst * createMulhInst(Value *lhs, Value *rhs, const std::string &name = "") {
return createBinaryInst(Instruction::kMulh, Type::getIntType(), lhs, rhs, name);

View File

@ -20,6 +20,42 @@ namespace sysy {
// 前向声明
class LoopCharacteristicsResult;
enum IVKind {
kBasic, // 基本归纳变量
kLinear, // 线性归纳变量
kCmplx // 复杂派生归纳变量
} ; // 归纳变量类型
struct InductionVarInfo {
Value* div; // 派生归纳变量的指令
Value* base = nullptr; // 其根phi或BIV或DIV
std::pair<Value*, Value*> Multibase = {nullptr, nullptr}; // 多个BIV
Instruction::Kind Instkind; // 操作类型
int factor = 1; // 系数如i*2+3的2
int offset = 0; // 常量偏移
bool valid; // 是否线性可归约
IVKind ivkind; // 归纳变量类型
static std::unique_ptr<InductionVarInfo> createBasicBIV(Value* v, Instruction::Kind kind, Value* base = nullptr, int factor = 1, int offset = 0) {
return std::make_unique<InductionVarInfo>(
InductionVarInfo{v, base, {nullptr, nullptr}, kind, factor, offset, true, IVKind::kBasic}
);
}
static std::unique_ptr<InductionVarInfo> createSingleDIV(Value* v, Instruction::Kind kind, Value* base = nullptr, int factor = 1, int offset = 0) {
return std::make_unique<InductionVarInfo>(
InductionVarInfo{v, base, {nullptr, nullptr}, kind, factor, offset, true, IVKind::kLinear}
);
}
static std::unique_ptr<InductionVarInfo> createDoubleDIV(Value* v, Instruction::Kind kind, Value* base1 = nullptr, Value* base2 = nullptr, int factor = 1, int offset = 0) {
return std::make_unique<InductionVarInfo>(
InductionVarInfo{v, nullptr, {base1, base2}, kind, factor, offset, false, IVKind::kCmplx}
);
}
};
/**
* @brief 循环特征信息结构 - 基础循环分析阶段
* 存储循环的基本特征信息,为后续精确分析提供基础
@ -33,13 +69,13 @@ struct LoopCharacteristics {
bool hasComplexControlFlow; // 是否有复杂控制流 (break, continue)
bool isInnermost; // 是否为最内层循环
// ========== 基础归纳变量分析 ==========
std::vector<Value*> basicInductionVars; // 基本归纳变量
std::map<Value*, int> inductionSteps; // 归纳变量的步长(简化)
// ========== 归纳变量分析 ==========
// ========== 基础循环不变量分析 ==========
std::unordered_set<Value*> loopInvariants; // 循环不变量
std::unordered_set<Instruction*> invariantInsts; // 可提升的不变指令
std::vector<std::unique_ptr<InductionVarInfo>> InductionVars; // 归纳变量
// ========== 基础边界分析 ==========
std::optional<int> staticTripCount; // 静态循环次数(如果可确定)
@ -307,8 +343,18 @@ private:
// ========== 辅助方法 ==========
bool isClassicLoopInvariant(Value* val, Loop* loop, const std::unordered_set<Value*>& invariants);
void findDerivedInductionVars(Value* root,
Value* base, // 只传单一BIV base
Loop* loop,
std::vector<std::unique_ptr<InductionVarInfo>>& ivs,
std::set<Value*>& visited
);
bool isBasicInductionVariable(Value* val, Loop* loop);
bool hasSimpleMemoryPattern(Loop* loop); // 简单的内存模式检查
// ========== 循环不变量分析辅助方法 ==========
bool isInvariantOperands(Instruction* inst, Loop* loop, const std::unordered_set<Value*>& invariants);
bool isMemoryLocationModifiedInLoop(Value* ptr, Loop* loop);
bool isMemoryLocationLoadedInLoop(Value* ptr, Loop* loop, Instruction* excludeInst = nullptr);
bool isPureFunction(Function* calledFunc);
};
} // namespace sysy

View File

@ -0,0 +1,87 @@
#pragma once
#include "Pass.h"
#include "IR.h"
#include "Dom.h"
#include "SideEffectAnalysis.h"
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include <string>
#include <sstream>
namespace sysy {
// GVN优化遍的核心逻辑封装类
class GVNContext {
public:
// 运行GVN优化的主要方法
void run(Function* func, AnalysisManager* AM, bool& changed);
private:
// 新的值编号系统
std::unordered_map<Value*, unsigned> valueToNumber; // Value -> 值编号
std::unordered_map<unsigned, Value*> numberToValue; // 值编号 -> 代表值
std::unordered_map<std::string, unsigned> expressionToNumber; // 表达式 -> 值编号
unsigned nextValueNumber = 1;
// 已访问的基本块集合
std::unordered_set<BasicBlock*> visited;
// 逆后序遍历的基本块列表
std::vector<BasicBlock*> rpoBlocks;
// 需要删除的指令集合
std::unordered_set<Instruction*> needRemove;
// 分析结果
DominatorTree* domTree = nullptr;
SideEffectAnalysisResult* sideEffectAnalysis = nullptr;
// 计算逆后序遍历
void computeRPO(Function* func);
void dfs(BasicBlock* bb);
// 新的值编号方法
unsigned getValueNumber(Value* value);
unsigned assignValueNumber(Value* value);
// 基本块处理
void processBasicBlock(BasicBlock* bb, bool& changed);
// 指令处理
bool processInstruction(Instruction* inst);
// 表达式构建和查找
std::string buildExpressionKey(Instruction* inst);
Value* findExistingValue(const std::string& exprKey, Instruction* inst);
// 支配关系和安全性检查
bool dominates(Instruction* a, Instruction* b);
bool isMemorySafe(LoadInst* earlierLoad, LoadInst* laterLoad);
// 清理方法
void eliminateRedundantInstructions(bool& changed);
void invalidateMemoryValues(StoreInst* store);
};
// GVN优化遍类
class GVN : public OptimizationPass {
public:
// 静态成员作为该遍的唯一ID
static void* ID;
GVN() : OptimizationPass("GVN", Granularity::Function) {}
// 在函数上运行优化
bool runOnFunction(Function* func, AnalysisManager& AM) override;
// 返回该遍的唯一ID
void* getPassID() const override { return ID; }
// 声明分析依赖
void getAnalysisUsage(std::set<void*>& analysisDependencies,
std::set<void*>& analysisInvalidations) const override;
};
} // namespace sysy

View File

@ -0,0 +1,107 @@
#pragma once
#include "Pass.h"
#include "IR.h"
#include "SideEffectAnalysis.h"
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include <cstdint>
namespace sysy {
// 魔数乘法结构,用于除法优化
struct MagicNumber {
uint32_t multiplier;
int shift;
bool needAdd;
MagicNumber(uint32_t m, int s, bool add = false)
: multiplier(m), shift(s), needAdd(add) {}
};
// 全局强度削弱优化遍的核心逻辑封装类
class GlobalStrengthReductionContext {
public:
// 构造函数接受IRBuilder参数
explicit GlobalStrengthReductionContext(IRBuilder* builder) : builder(builder) {}
// 运行优化的主要方法
void run(Function* func, AnalysisManager* AM, bool& changed);
private:
IRBuilder* builder; // IR构建器
// 分析结果
SideEffectAnalysisResult* sideEffectAnalysis = nullptr;
// 优化计数
int algebraicOptCount = 0;
int strengthReductionCount = 0;
int divisionOptCount = 0;
// 主要优化方法
bool processBasicBlock(BasicBlock* bb);
bool processInstruction(Instruction* inst);
// 代数优化方法
bool tryAlgebraicOptimization(Instruction* inst);
bool optimizeAddition(BinaryInst* inst);
bool optimizeSubtraction(BinaryInst* inst);
bool optimizeMultiplication(BinaryInst* inst);
bool optimizeDivision(BinaryInst* inst);
bool optimizeComparison(BinaryInst* inst);
bool optimizeLogical(BinaryInst* inst);
// 强度削弱方法
bool tryStrengthReduction(Instruction* inst);
bool reduceMultiplication(BinaryInst* inst);
bool reduceDivision(BinaryInst* inst);
bool reducePower(CallInst* inst);
// 复杂乘法强度削弱方法
bool tryComplexMultiplication(BinaryInst* inst, Value* variable, int constant);
bool findOptimalShiftDecomposition(int constant, std::vector<int>& shifts);
Value* createShiftDecomposition(BinaryInst* inst, Value* variable, const std::vector<int>& shifts);
// 魔数乘法相关方法
MagicNumber computeMagicNumber(uint32_t divisor);
std::pair<int, int> computeMulhMagicNumbers(int divisor);
Value* createMagicDivision(BinaryInst* divInst, uint32_t divisor, const MagicNumber& magic);
Value* createMagicDivisionLibdivide(BinaryInst* divInst, int divisor);
bool isPowerOfTwo(uint32_t n);
int log2OfPowerOfTwo(uint32_t n);
// 辅助方法
bool isConstantInt(Value* val, int& constVal);
bool isConstantInt(Value* val, uint32_t& constVal);
ConstantInteger* getConstantInt(int val);
bool hasOnlyLocalUses(Instruction* inst);
void replaceWithOptimized(Instruction* original, Value* replacement);
};
// 全局强度削弱优化遍类
class GlobalStrengthReduction : public OptimizationPass {
private:
IRBuilder* builder; // IR构建器用于创建新指令
public:
// 静态成员作为该遍的唯一ID
static void* ID;
// 构造函数接受IRBuilder参数
explicit GlobalStrengthReduction(IRBuilder* builder)
: OptimizationPass("GlobalStrengthReduction", Granularity::Function), builder(builder) {}
// 在函数上运行优化
bool runOnFunction(Function* func, AnalysisManager& AM) override;
// 返回该遍的唯一ID
void* getPassID() const override { return ID; }
// 声明分析依赖
void getAnalysisUsage(std::set<void*>& analysisDependencies,
std::set<void*>& analysisInvalidations) const override;
};
} // namespace sysy

View File

@ -0,0 +1,252 @@
#pragma once
#include "Pass.h"
#include "IR.h"
#include "LoopCharacteristics.h"
#include "Loop.h"
#include "Dom.h"
#include "SideEffectAnalysis.h"
#include "AliasAnalysis.h"
#include <vector>
#include <unordered_map>
#include <unordered_set>
#include <memory>
namespace sysy {
// 前向声明
class LoopCharacteristicsResult;
class LoopAnalysisResult;
/**
* @brief 死归纳变量信息
* 记录一个可以被消除的归纳变量
*/
struct DeadInductionVariable {
PhiInst* phiInst; // phi 指令
std::vector<Instruction*> relatedInsts; // 相关的递增/递减指令
Loop* containingLoop; // 所在循环
bool canEliminate; // 是否可以安全消除
DeadInductionVariable(PhiInst* phi, Loop* loop)
: phiInst(phi), containingLoop(loop), canEliminate(false) {}
};
/**
* @brief 归纳变量消除上下文类
* 封装归纳变量消除优化的核心逻辑和状态
*/
class InductionVariableEliminationContext {
public:
InductionVariableEliminationContext() {}
/**
* 运行归纳变量消除优化
* @param F 目标函数
* @param AM 分析管理器
* @return 是否修改了IR
*/
bool run(Function* F, AnalysisManager& AM);
private:
// 分析结果缓存
LoopAnalysisResult* loopAnalysis = nullptr;
LoopCharacteristicsResult* loopCharacteristics = nullptr;
DominatorTree* dominatorTree = nullptr;
SideEffectAnalysisResult* sideEffectAnalysis = nullptr;
AliasAnalysisResult* aliasAnalysis = nullptr;
// 死归纳变量存储
std::vector<std::unique_ptr<DeadInductionVariable>> deadIVs;
std::unordered_map<Loop*, std::vector<DeadInductionVariable*>> loopToDeadIVs;
// ========== 核心分析和优化阶段 ==========
/**
* 阶段1识别死归纳变量
* 找出没有被有效使用的归纳变量
*/
void identifyDeadInductionVariables(Function* F);
/**
* 阶段2分析消除的安全性
* 确保消除操作不会破坏程序语义
*/
void analyzeSafetyForElimination();
/**
* 阶段3执行归纳变量消除
* 删除死归纳变量及其相关指令
*/
bool performInductionVariableElimination();
// ========== 辅助方法 ==========
/**
* 检查归纳变量是否为死归纳变量
* @param iv 归纳变量信息
* @param loop 所在循环
* @return 如果是死归纳变量返回相关信息否则返回nullptr
*/
std::unique_ptr<DeadInductionVariable>
isDeadInductionVariable(const InductionVarInfo* iv, Loop* loop);
/**
* 递归分析phi指令及其使用链是否都是死代码
* @param phiInst phi指令
* @param loop 所在循环
* @return phi指令是否可以安全删除
*/
bool isPhiInstructionDeadRecursively(PhiInst* phiInst, Loop* loop);
/**
* 递归分析指令的使用链是否都是死代码
* @param inst 要分析的指令
* @param loop 所在循环
* @param visited 已访问的指令集合(避免无限递归)
* @param currentPath 当前递归路径(检测循环依赖)
* @return 指令的使用链是否都是死代码
*/
bool isInstructionUseChainDeadRecursively(Instruction* inst, Loop* loop,
std::set<Instruction*>& visited,
std::set<Instruction*>& currentPath);
/**
* 检查循环是否有副作用
* @param loop 要检查的循环
* @return 循环是否有副作用
*/
bool loopHasSideEffects(Loop* loop);
/**
* 检查指令是否被用于循环退出条件
* @param inst 要检查的指令
* @param loop 所在循环
* @return 是否被用于循环退出条件
*/
bool isUsedInLoopExitCondition(Instruction* inst, Loop* loop);
/**
* 检查指令的结果是否未被有效使用
* @param inst 要检查的指令
* @param loop 所在循环
* @return 指令结果是否未被有效使用
*/
bool isInstructionResultUnused(Instruction* inst, Loop* loop);
/**
* 检查store指令是否存储到死地址利用别名分析
* @param store store指令
* @param loop 所在循环
* @return 是否存储到死地址
*/
bool isStoreToDeadLocation(StoreInst* store, Loop* loop);
/**
* 检查指令是否为死代码或只在循环内部使用
* @param inst 要检查的指令
* @param loop 所在循环
* @return 是否为死代码或只在循环内部使用
*/
bool isInstructionDeadOrInternalOnly(Instruction* inst, Loop* loop);
/**
* 检查指令是否有效地为死代码(带递归深度限制)
* @param inst 要检查的指令
* @param loop 所在循环
* @param maxDepth 最大递归深度
* @return 指令是否有效地为死代码
*/
bool isInstructionEffectivelyDead(Instruction* inst, Loop* loop, int maxDepth);
/**
* 检查store指令是否有后续的load操作
* @param store store指令
* @param loop 所在循环
* @return 是否有后续的load操作
*/
bool hasSubsequentLoad(StoreInst* store, Loop* loop);
/**
* 检查指令是否在循环外有使用
* @param inst 要检查的指令
* @param loop 所在循环
* @return 是否在循环外有使用
*/
bool hasUsageOutsideLoop(Instruction* inst, Loop* loop);
/**
* 检查store指令是否在循环外有后续的load操作
* @param store store指令
* @param loop 所在循环
* @return 是否在循环外有后续的load操作
*/
bool hasSubsequentLoadOutsideLoop(StoreInst* store, Loop* loop);
/**
* 递归检查基本块子树中是否有对指定位置的load操作
* @param bb 基本块
* @param ptr 指针
* @param visited 已访问的基本块集合
* @return 是否有load操作
*/
bool hasLoadInSubtree(BasicBlock* bb, Value* ptr, std::set<BasicBlock*>& visited);
/**
* 收集与归纳变量相关的所有指令
* @param phiInst phi指令
* @param loop 所在循环
* @return 相关指令列表
*/
std::vector<Instruction*> collectRelatedInstructions(PhiInst* phiInst, Loop* loop);
/**
* 检查消除归纳变量的安全性
* @param deadIV 死归纳变量
* @return 是否可以安全消除
*/
bool isSafeToEliminate(const DeadInductionVariable* deadIV);
/**
* 消除单个死归纳变量
* @param deadIV 死归纳变量
* @return 是否成功消除
*/
bool eliminateDeadInductionVariable(DeadInductionVariable* deadIV);
/**
* 打印调试信息
*/
void printDebugInfo();
};
/**
* @brief 归纳变量消除优化遍
* 消除循环中无用的归纳变量,减少寄存器压力
*/
class InductionVariableElimination : public OptimizationPass {
public:
// 唯一的 Pass ID
static void *ID;
InductionVariableElimination()
: OptimizationPass("InductionVariableElimination", Granularity::Function) {}
/**
* 在函数上运行归纳变量消除优化
* @param F 目标函数
* @param AM 分析管理器
* @return 是否修改了IR
*/
bool runOnFunction(Function* F, AnalysisManager& AM) override;
/**
* 声明分析依赖和失效信息
*/
void getAnalysisUsage(std::set<void*>& analysisDependencies,
std::set<void*>& analysisInvalidations) const override;
void* getPassID() const override { return &ID; }
};
} // namespace sysy

View File

@ -0,0 +1,233 @@
#pragma once
#include "Pass.h"
#include "IR.h"
#include "LoopCharacteristics.h"
#include "Loop.h"
#include "Dom.h"
#include <vector>
#include <unordered_map>
#include <unordered_set>
#include <memory>
namespace sysy {
// 前向声明
class LoopCharacteristicsResult;
class LoopAnalysisResult;
/**
* @brief 强度削弱候选项信息
* 记录一个可以进行强度削弱的表达式信息
*/
struct StrengthReductionCandidate {
enum OpType {
MULTIPLY, // 乘法: iv * const
DIVIDE, // 除法: iv / 2^n (转换为右移)
DIVIDE_CONST, // 除法: iv / const (使用mulh指令优化)
REMAINDER // 取模: iv % 2^n (转换为位与)
};
enum DivisionStrategy {
SIMPLE_SHIFT, // 简单右移(仅适用于无符号或非负数)
SIGNED_CORRECTION, // 有符号除法修正: (x + (x >> 31) & mask) >> k
MULH_OPTIMIZATION // 使用mulh指令优化任意常数除法
};
Instruction* originalInst; // 原始指令 (如 i*4, i/8, i%16)
Value* inductionVar; // 归纳变量 (如 i)
OpType operationType; // 操作类型
DivisionStrategy divStrategy; // 除法策略(仅用于除法)
int multiplier; // 乘数/除数/模数 (如 4, 8, 16)
int shiftAmount; // 位移量 (对于2的幂)
int offset; // 偏移量 (如常数项)
BasicBlock* containingBlock; // 所在基本块
Loop* containingLoop; // 所在循环
bool hasNegativeValues; // 归纳变量是否可能为负数
// 强度削弱后的新变量
PhiInst* newPhi = nullptr; // 新的 phi 指令
Value* newInductionVar = nullptr; // 新的归纳变量
StrengthReductionCandidate(Instruction* inst, Value* iv, OpType opType, int value, int off,
BasicBlock* bb, Loop* loop)
: originalInst(inst), inductionVar(iv), operationType(opType),
divStrategy(SIMPLE_SHIFT), multiplier(value), offset(off),
containingBlock(bb), containingLoop(loop), hasNegativeValues(false) {
// 计算位移量(用于除法和取模的强度削弱)
if (opType == DIVIDE || opType == REMAINDER) {
shiftAmount = 0;
int temp = value;
while (temp > 1) {
temp >>= 1;
shiftAmount++;
}
} else {
shiftAmount = 0;
}
}
};
/**
* @brief 强度削弱上下文类
* 封装强度削弱优化的核心逻辑和状态
*/
class StrengthReductionContext {
public:
StrengthReductionContext(IRBuilder* builder) : builder(builder) {}
/**
* 运行强度削弱优化
* @param F 目标函数
* @param AM 分析管理器
* @return 是否修改了IR
*/
bool run(Function* F, AnalysisManager& AM);
private:
IRBuilder* builder;
// 分析结果缓存
LoopAnalysisResult* loopAnalysis = nullptr;
LoopCharacteristicsResult* loopCharacteristics = nullptr;
DominatorTree* dominatorTree = nullptr;
// 候选项存储
std::vector<std::unique_ptr<StrengthReductionCandidate>> candidates;
std::unordered_map<Loop*, std::vector<StrengthReductionCandidate*>> loopToCandidates;
// ========== 核心分析和优化阶段 ==========
/**
* 阶段1识别强度削弱候选项
* 扫描所有循环中的乘法指令,找出可以优化的模式
*/
void identifyStrengthReductionCandidates(Function* F);
/**
* 阶段2分析候选项的优化潜力
* 评估每个候选项的收益,过滤掉不值得优化的情况
*/
void analyzeOptimizationPotential();
/**
* 阶段3执行强度削弱变换
* 对选中的候选项执行实际的强度削弱优化
*/
bool performStrengthReduction();
// ========== 辅助分析函数 ==========
/**
* 分析归纳变量是否可能取负值
* @param ivInfo 归纳变量信息
* @param loop 所属循环
* @return 如果可能为负数返回true
*/
bool analyzeInductionVariableRange(const InductionVarInfo* ivInfo, Loop* loop) const;
/**
* 生成除法替换代码
* @param candidate 优化候选项
* @param builder IR构建器
* @return 替换值
*/
Value* generateDivisionReplacement(StrengthReductionCandidate* candidate, IRBuilder* builder) const;
/**
* 生成任意常数除法替换代码
* @param candidate 优化候选项
* @param builder IR构建器
* @return 替换值
*/
Value* generateConstantDivisionReplacement(StrengthReductionCandidate* candidate, IRBuilder* builder) const;
/**
* 检查指令是否为强度削弱候选项
* @param inst 要检查的指令
* @param loop 所在循环
* @return 如果是候选项返回候选项信息否则返回nullptr
*/
std::unique_ptr<StrengthReductionCandidate>
isStrengthReductionCandidate(Instruction* inst, Loop* loop);
/**
* 检查值是否为循环的归纳变量
* @param val 要检查的值
* @param loop 循环
* @param characteristics 循环特征信息
* @return 如果是归纳变量返回归纳变量信息否则返回nullptr
*/
const InductionVarInfo*
getInductionVarInfo(Value* val, Loop* loop, const LoopCharacteristics* characteristics);
/**
* 为候选项创建新的归纳变量
* @param candidate 候选项
* @return 是否成功创建
*/
bool createNewInductionVariable(StrengthReductionCandidate* candidate);
/**
* 替换原始指令的所有使用
* @param candidate 候选项
* @return 是否成功替换
*/
bool replaceOriginalInstruction(StrengthReductionCandidate* candidate);
/**
* 估算优化收益
* 计算强度削弱后的性能提升
* @param candidate 候选项
* @return 估算的收益分数
*/
double estimateOptimizationBenefit(const StrengthReductionCandidate* candidate);
/**
* 检查优化的合法性
* @param candidate 候选项
* @return 是否可以安全地进行优化
*/
bool isOptimizationLegal(const StrengthReductionCandidate* candidate);
/**
* 打印调试信息
*/
void printDebugInfo();
};
/**
* @brief 循环强度削弱优化遍
* 将循环中的乘法运算转换为更高效的加法运算
*/
class LoopStrengthReduction : public OptimizationPass {
public:
// 唯一的 Pass ID
static void *ID;
LoopStrengthReduction(IRBuilder* builder)
: OptimizationPass("LoopStrengthReduction", Granularity::Function),
builder(builder) {}
/**
* 在函数上运行强度削弱优化
* @param F 目标函数
* @param AM 分析管理器
* @return 是否修改了IR
*/
bool runOnFunction(Function* F, AnalysisManager& AM) override;
/**
* 声明分析依赖和失效信息
*/
void getAnalysisUsage(std::set<void*>& analysisDependencies,
std::set<void*>& analysisInvalidations) const override;
void* getPassID() const override { return &ID; }
private:
IRBuilder* builder;
};
} // namespace sysy

View File

@ -107,6 +107,190 @@ public:
// 所以当AllocaInst的basetype是PointerType时一维数组或者是指向ArrayType的PointerType多位数组返回true
return aval && (baseType->isPointer() || baseType->as<PointerType>()->getBaseType()->isArray());
}
//该实现参考了libdivide的算法
static std::pair<int, int> computeMulhMagicNumbers(int divisor) {
if (DEBUG) {
std::cout << "\n[SR] ===== Computing magic numbers for divisor " << divisor << " (libdivide algorithm) =====" << std::endl;
}
if (divisor == 0) {
if (DEBUG) std::cout << "[SR] Error: divisor must be != 0" << std::endl;
return {-1, -1};
}
// libdivide 常数
const uint8_t LIBDIVIDE_ADD_MARKER = 0x40;
const uint8_t LIBDIVIDE_NEGATIVE_DIVISOR = 0x80;
// 辅助函数:计算前导零个数
auto count_leading_zeros32 = [](uint32_t val) -> uint32_t {
if (val == 0) return 32;
return __builtin_clz(val);
};
// 辅助函数64位除法返回32位商和余数
auto div_64_32 = [](uint32_t high, uint32_t low, uint32_t divisor, uint32_t* rem) -> uint32_t {
uint64_t dividend = ((uint64_t)high << 32) | low;
uint32_t quotient = dividend / divisor;
*rem = dividend % divisor;
return quotient;
};
if (DEBUG) {
std::cout << "[SR] Input divisor: " << divisor << std::endl;
}
// libdivide_internal_s32_gen 算法实现
int32_t d = divisor;
uint32_t ud = (uint32_t)d;
uint32_t absD = (d < 0) ? -ud : ud;
if (DEBUG) {
std::cout << "[SR] absD = " << absD << std::endl;
}
uint32_t floor_log_2_d = 31 - count_leading_zeros32(absD);
if (DEBUG) {
std::cout << "[SR] floor_log_2_d = " << floor_log_2_d << std::endl;
}
// 检查 absD 是否为2的幂
if ((absD & (absD - 1)) == 0) {
if (DEBUG) {
std::cout << "[SR] " << absD << " 是2的幂使用移位方法" << std::endl;
}
// 对于2的幂我们只使用移位不需要魔数
int shift = floor_log_2_d;
if (d < 0) shift |= 0x80; // 标记负数
if (DEBUG) {
std::cout << "[SR] Power of 2 result: magic=0, shift=" << shift << std::endl;
std::cout << "[SR] ===== End magic computation =====" << std::endl;
}
// 对于我们的目的我们将在IR生成中以不同方式处理2的幂
// 返回特殊标记
return {0, shift};
}
if (DEBUG) {
std::cout << "[SR] " << absD << " is not a power of 2, computing magic number" << std::endl;
}
// 非2的幂除数的魔数计算
uint8_t more;
uint32_t rem, proposed_m;
// 计算 proposed_m = floor(2^(floor_log_2_d + 31) / absD)
proposed_m = div_64_32((uint32_t)1 << (floor_log_2_d - 1), 0, absD, &rem);
const uint32_t e = absD - rem;
if (DEBUG) {
std::cout << "[SR] proposed_m = " << proposed_m << ", rem = " << rem << ", e = " << e << std::endl;
}
// 确定是否需要"加法"版本
const bool branchfree = false; // 使用分支版本
if (!branchfree && e < ((uint32_t)1 << floor_log_2_d)) {
// 这个幂次有效
more = (uint8_t)(floor_log_2_d - 1);
if (DEBUG) {
std::cout << "[SR] Using basic algorithm, shift = " << (int)more << std::endl;
}
} else {
// 我们需要上升一个等级
proposed_m += proposed_m;
const uint32_t twice_rem = rem + rem;
if (twice_rem >= absD || twice_rem < rem) {
proposed_m += 1;
}
more = (uint8_t)(floor_log_2_d | LIBDIVIDE_ADD_MARKER);
if (DEBUG) {
std::cout << "[SR] Using add algorithm, proposed_m = " << proposed_m << ", more = " << (int)more << std::endl;
}
}
proposed_m += 1;
int32_t magic = (int32_t)proposed_m;
// 处理负除数
if (d < 0) {
more |= LIBDIVIDE_NEGATIVE_DIVISOR;
if (!branchfree) {
magic = -magic;
}
if (DEBUG) {
std::cout << "[SR] Negative divisor, magic = " << magic << ", more = " << (int)more << std::endl;
}
}
// 为我们的IR生成提取移位量和标志
int shift = more & 0x3F; // 移除标志保留移位量位0-5
bool need_add = (more & LIBDIVIDE_ADD_MARKER) != 0;
bool is_negative = (more & LIBDIVIDE_NEGATIVE_DIVISOR) != 0;
if (DEBUG) {
std::cout << "[SR] Final result: magic = " << magic << ", more = " << (int)more
<< " (0x" << std::hex << (int)more << std::dec << ")" << std::endl;
std::cout << "[SR] Shift = " << shift << ", need_add = " << need_add
<< ", is_negative = " << is_negative << std::endl;
// Test the magic number using the correct libdivide algorithm
std::cout << "[SR] Testing magic number (libdivide algorithm):" << std::endl;
int test_values[] = {1, 7, 37, 100, 999, -1, -7, -37, -100};
for (int test_val : test_values) {
int64_t quotient;
// 实现正确的libdivide算法
int64_t product = (int64_t)test_val * magic;
int64_t high_bits = product >> 32;
if (need_add) {
// ADD_MARKER情况移位前加上被除数
// 这是libdivide的关键洞察
high_bits += test_val;
quotient = high_bits >> shift;
} else {
// 正常情况:只是移位
quotient = high_bits >> shift;
}
// 符号修正这是libdivide有符号除法的关键部分
// 如果被除数为负商需要加1来匹配C语言的截断除法语义
if (test_val < 0) {
quotient += 1;
}
int expected = test_val / divisor;
bool correct = (quotient == expected);
std::cout << "[SR] " << test_val << " / " << divisor << " = " << quotient
<< " (expected " << expected << ") " << (correct ? "" : "") << std::endl;
}
std::cout << "[SR] ===== End magic computation =====" << std::endl;
}
// 返回魔数、移位量并在移位中编码ADD_MARKER标志
// 我们将使用移位的第6位表示ADD_MARKER第7位表示负数如果需要
int encoded_shift = shift;
if (need_add) {
encoded_shift |= 0x40; // 设置第6位表示ADD_MARKER
if (DEBUG) {
std::cout << "[SR] Encoding ADD_MARKER in shift: " << encoded_shift << std::endl;
}
}
return {magic, encoded_shift};
}
};
}// namespace sysy

View File

@ -15,10 +15,14 @@ add_library(midend_lib STATIC
Pass/Optimize/DCE.cpp
Pass/Optimize/Mem2Reg.cpp
Pass/Optimize/Reg2Mem.cpp
Pass/Optimize/GVN.cpp
Pass/Optimize/SysYIRCFGOpt.cpp
Pass/Optimize/SCCP.cpp
Pass/Optimize/LoopNormalization.cpp
Pass/Optimize/LICM.cpp
Pass/Optimize/LoopStrengthReduction.cpp
Pass/Optimize/InductionVariableElimination.cpp
Pass/Optimize/GlobalStrengthReduction.cpp
Pass/Optimize/BuildCFG.cpp
Pass/Optimize/LargeArrayToGlobal.cpp
)

View File

@ -652,6 +652,12 @@ void BasicBlock::print(std::ostream &os) const {
}
}
void Instruction::print(std::ostream &os) const {
this->getType()->print(os);
std::cerr << " %" << getName() << " ";
return;
}
void PhiInst::print(std::ostream &os) const {
printVarName(os, this);
os << " = " << getKindString() << " " << *getType() << " ";
@ -779,7 +785,29 @@ void BinaryInst::print(std::ostream &os) const {
printOperand(os, getRhs());
os << "\n ";
printVarName(os, this) << " = zext i1 %" << tmpName << " to i32";
} else {
} else if(kind == kMulh){
// 模拟高位乘法先扩展为i64乘法右移32位截断为i32
static int mulhCount = 0;
mulhCount++;
std::string lhsName = getLhs()->getName();
std::string rhsName = getRhs()->getName();
std::string tmpLhs = "tmp_mulh_lhs_" + std::to_string(mulhCount) + "_" + lhsName;
std::string tmpRhs = "tmp_mulh_rhs_" + std::to_string(mulhCount) + rhsName;
std::string tmpMul = "tmp_mulh_mul_" + std::to_string(mulhCount) + getName();
std::string tmpHigh = "tmp_mulh_high_" + std::to_string(mulhCount) + getName();
// printVarName(os, this) << " = "; // 输出最终变量名
// os << "; mulh emulation\n ";
os << "%" << tmpLhs << " = sext i32 ";
printOperand(os, getLhs());
os << " to i64\n ";
os << "%" << tmpRhs << " = sext i32 ";
printOperand(os, getRhs());
os << " to i64\n ";
os << "%" << tmpMul << " = mul i64 %" << tmpLhs << ", %" << tmpRhs << "\n ";
os << "%" << tmpHigh << " = ashr i64 %" << tmpMul << ", 32\n ";
printVarName(os, this) << " = trunc i64 %" << tmpHigh << " to i32";
}else {
// 算术和逻辑指令
printVarName(os, this) << " = ";
os << getKindString() << " " << *getType() << " ";
@ -825,7 +853,7 @@ void CondBrInst::print(std::ostream &os) const {
os << "%tmp_cond_" << condName << "_" << uniqueSuffix << " = icmp ne i32 ";
printOperand(os, condition);
os << ", 0\n br i1 %tmp_cond_" << condName << "_" << uniqueSuffix;
os << ", 0\n br i1 %tmp_cond_" << condName << "_" << uniqueSuffix;
os << ", label %";
printBlockName(os, getThenBlock());
@ -864,7 +892,7 @@ void MemsetInst::print(std::ostream &os) const {
// This is done at print time to avoid modifying the IR structure
os << "%tmp_bitcast_" << ptr->getName() << " = bitcast " << *ptr->getType() << " ";
printOperand(os, ptr);
os << " to i8*\n ";
os << " to i8*\n ";
// Now call memset with the bitcast result
os << "call void @llvm.memset.p0i8.i32(i8* %tmp_bitcast_" << ptr->getName() << ", i8 ";
@ -1418,4 +1446,76 @@ void Argument::cleanup() {
uses.clear();
}
Function* Function::copy_func(){
std::unordered_map<Value*, Value*> valueMap;
// copy global
for (auto &gvalue : parent->getGlobals()) {
valueMap.emplace(gvalue.get(), gvalue.get());
}
// copy global const
for (auto &cvalue : parent->getConsts()) {
valueMap.emplace(cvalue.get(), cvalue.get());
}
// copy function
auto newFunc = new Function(parent, type, name + "_copy" + std::to_string(getcloneIndex()));
// copy arg
for(int i = 0; i < arguments.size(); i++) {
auto arg = arguments[i];
// Argument(paramActualTypes[i], function, i, paramNames[i]);
auto newarg = new Argument(arg->getType(), newFunc, i, arg->getName() + "_copy");
newFunc->insertArgument(newarg);
valueMap[arg] = newarg;
}
//
for (auto &bb : blocks) {
BasicBlock* copybb = newFunc->addBasicBlock();
valueMap.emplace(bb, copybb);
}
for(auto &bb : blocks) {
auto BB = bb.get();
auto copybb = dynamic_cast<BasicBlock*>(valueMap[BB]);
for(auto pred : BB->getPredecessors()) {
copybb->addPredecessor(dynamic_cast<BasicBlock*>(valueMap[pred]));
}
for(auto succ : BB->getSuccessors()) {
copybb->addSuccessor(dynamic_cast<BasicBlock*>(valueMap[succ]));
}
}
// if cant find, return itself
auto getValue = [&](Value* val) -> Value* {
if (val == nullptr) {
std::cerr << "getValue(nullptr)" << std::endl;
return nullptr;
}
if (dynamic_cast<ConstantValue*>(val)) return val;
if (auto iter = valueMap.find(val); iter != valueMap.end()) return iter->second;
return val;
};
std::set<BasicBlock*> visitedbb;
const auto copyBlock = [&](BasicBlock* bb) -> bool {
if (visitedbb.count(bb)) return true;
visitedbb.insert(bb);
auto bbCpy = dynamic_cast<BasicBlock*>(valueMap.at(bb));
for (auto &Inst : bb->getInstructions()) {
auto inst = Inst.get();
// inst->print(std::cerr);
// std::cerr << std::endl;
auto copyinst = inst->copy(getValue);
copyinst->setParent(bbCpy);
valueMap.emplace(inst, copyinst);
bbCpy->instructions.emplace_back(copyinst);
}
return false;
};
//dfs基本块将指令复制到新函数中
BasicBlock::bbdfs(getEntryBlock(), copyBlock);
return newFunc;
}
} // namespace sysy

View File

@ -80,8 +80,8 @@ void LoopCharacteristicsResult::print() const {
std::cout << std::endl;
// 归纳变量
if (!chars->basicInductionVars.empty()) {
std::cout << " Basic Induction Vars: " << chars->basicInductionVars.size() << std::endl;
if (!chars->InductionVars.empty()) {
std::cout << " Induction Vars: " << chars->InductionVars.size() << std::endl;
}
// 循环不变量
@ -282,28 +282,338 @@ void LoopCharacteristicsPass::analyzeBasicMemoryAccessPatterns(Loop* loop, LoopC
}
}
void LoopCharacteristicsPass::identifyBasicInductionVariables(Loop* loop, LoopCharacteristics* characteristics) {
// 寻找基本归纳变量(简化版本)
BasicBlock* header = loop->getHeader();
bool LoopCharacteristicsPass::isBasicInductionVariable(Value* val, Loop* loop) {
// 简化的基础归纳变量检测
auto* phiInst = dynamic_cast<PhiInst*>(val);
if (!phiInst) return false;
// 遍历循环头的phi指令寻找基本归纳变量模式
for (auto& inst : header->getInstructions()) {
auto* phiInst = dynamic_cast<PhiInst*>(inst.get());
if (!phiInst) continue;
// 检查phi指令是否符合基本归纳变量模式
if (isBasicInductionVariable(phiInst, loop)) {
characteristics->basicInductionVars.push_back(phiInst);
characteristics->inductionSteps[phiInst] = 1; // 简化默认步长为1
if (DEBUG)
std::cout << " Found basic induction variable: " << phiInst->getName() << std::endl;
// 检查phi指令是否在循环头
if (phiInst->getParent() != loop->getHeader()) return false;
// 检查是否有来自循环内的更新
for (auto& [incomingBB, incomingVal] : phiInst->getIncomingValues()) {
if (loop->contains(incomingBB)) {
return true; // 简化:有来自循环内的值就认为是基础归纳变量
}
}
return false;
}
void LoopCharacteristicsPass::identifyBasicInductionVariables(
Loop* loop, LoopCharacteristics* characteristics) {
BasicBlock* header = loop->getHeader();
std::vector<std::unique_ptr<InductionVarInfo>> ivs;
if (DEBUG) {
std::cout << " === Identifying Induction Variables for Loop: " << loop->getName() << " ===" << std::endl;
std::cout << " Loop header: " << header->getName() << std::endl;
std::cout << " Loop blocks: ";
for (auto* bb : loop->getBlocks()) {
std::cout << bb->getName() << " ";
}
std::cout << std::endl;
}
// 1. 识别所有BIV
for (auto& inst : header->getInstructions()) {
auto* phi = dynamic_cast<PhiInst*>(inst.get());
if (!phi) continue;
if (isBasicInductionVariable(phi, loop)) {
ivs.push_back(InductionVarInfo::createBasicBIV(phi, Instruction::Kind::kPhi, phi));
if (DEBUG) {
std::cout << " [BIV] Found basic induction variable: " << phi->getName() << std::endl;
std::cout << " Incoming values: ";
for (auto& [incomingBB, incomingVal] : phi->getIncomingValues()) {
std::cout << "{" << incomingBB->getName() << ": " << incomingVal->getName() << "} ";
}
std::cout << std::endl;
}
}
}
if (DEBUG) {
std::cout << " Found " << ivs.size() << " basic induction variables" << std::endl;
}
// 2. 递归识别所有派生DIV
std::set<Value*> visited;
size_t initialSize = ivs.size();
// 保存初始的BIV列表避免在遍历过程中修改向量导致迭代器失效
std::vector<InductionVarInfo*> bivList;
for (size_t i = 0; i < initialSize; ++i) {
if (ivs[i] && ivs[i]->ivkind == IVKind::kBasic) {
bivList.push_back(ivs[i].get());
}
}
for (auto* biv : bivList) {
if (DEBUG) {
if (biv && biv->div) {
std::cout << " Searching for derived IVs from BIV: " << biv->div->getName() << std::endl;
} else {
std::cout << " ERROR: Invalid BIV pointer or div field is null" << std::endl;
continue;
}
}
findDerivedInductionVars(biv->div, biv->base, loop, ivs, visited);
}
if (DEBUG) {
size_t derivedCount = ivs.size() - initialSize;
std::cout << " Found " << derivedCount << " derived induction variables" << std::endl;
// 打印所有归纳变量的详细信息
std::cout << " === Final Induction Variables Summary ===" << std::endl;
for (size_t i = 0; i < ivs.size(); ++i) {
const auto& iv = ivs[i];
std::cout << " [" << i << "] " << iv->div->getName()
<< " (kind: " << (iv->ivkind == IVKind::kBasic ? "Basic" :
iv->ivkind == IVKind::kLinear ? "Linear" : "Complex") << ")" << std::endl;
std::cout << " Operation: " << static_cast<int>(iv->Instkind) << std::endl;
if (iv->base) {
std::cout << " Base: " << iv->base->getName() << std::endl;
}
if (iv->Multibase.first || iv->Multibase.second) {
std::cout << " Multi-base: ";
if (iv->Multibase.first) std::cout << iv->Multibase.first->getName() << " ";
if (iv->Multibase.second) std::cout << iv->Multibase.second->getName() << " ";
std::cout << std::endl;
}
std::cout << " Factor: " << iv->factor << ", Offset: " << iv->offset << std::endl;
std::cout << " Valid: " << (iv->valid ? "Yes" : "No") << std::endl;
}
std::cout << " =============================================" << std::endl;
}
characteristics->InductionVars = std::move(ivs);
}
struct LinearExpr {
// 表达为: a * base1 + b * base2 + offset
Value* base1 = nullptr;
Value* base2 = nullptr;
int factor1 = 0;
int factor2 = 0;
int offset = 0;
bool valid = false;
bool isSimple = false; // 仅一个BIV时true
};
static LinearExpr analyzeLinearExpr(Value* val, Loop* loop, std::vector<std::unique_ptr<InductionVarInfo>>& ivs) {
// 递归归约val为线性表达式
// 只支持单/双BIV线性组合
// 见下方详细实现
// ----------
if (DEBUG >= 2) { // 更详细的调试级别
if (auto* inst = dynamic_cast<Instruction*>(val)) {
std::cout << " Analyzing linear expression for: " << val->getName()
<< " (kind: " << static_cast<int>(inst->getKind()) << ")" << std::endl;
} else {
std::cout << " Analyzing linear expression for value: " << val->getName() << std::endl;
}
}
// 基本变量:常数
if (auto* cint = dynamic_cast<ConstantInteger*>(val)) {
if (DEBUG >= 2) {
std::cout << " -> Constant: " << cint->getInt() << std::endl;
}
return {nullptr, nullptr, 0, 0, cint->getInt(), true, false};
}
// 基本变量BIV或派生IV
for (auto& iv : ivs) {
if (iv->div == val) {
if (iv->ivkind == IVKind::kBasic ||
iv->ivkind == IVKind::kLinear) {
if (DEBUG >= 2) {
std::cout << " -> Found " << (iv->ivkind == IVKind::kBasic ? "Basic" : "Linear")
<< " IV with base: " << (iv->base ? iv->base->getName() : "null")
<< ", factor: " << iv->factor << ", offset: " << iv->offset << std::endl;
}
return {iv->base, nullptr, iv->factor, 0, iv->offset, true, true};
}
// 复杂归纳变量
if (iv->ivkind == IVKind::kCmplx) {
if (DEBUG >= 2) {
std::cout << " -> Found Complex IV with multi-base" << std::endl;
}
return {iv->Multibase.first, iv->Multibase.second, 1, 1, 0, true, false};
}
}
}
// 一元负号
if (auto* inst = dynamic_cast<Instruction*>(val)) {
auto kind = inst->getKind();
if (kind == Instruction::Kind::kNeg) {
if (DEBUG >= 2) {
std::cout << " -> Analyzing negation" << std::endl;
}
auto expr = analyzeLinearExpr(inst->getOperand(0), loop, ivs);
if (!expr.valid) return expr;
expr.factor1 = -expr.factor1;
expr.factor2 = -expr.factor2;
expr.offset = -expr.offset;
expr.isSimple = (expr.base2 == nullptr);
if (DEBUG >= 2) {
std::cout << " -> Negation result: valid=" << expr.valid << ", simple=" << expr.isSimple << std::endl;
}
return expr;
}
// 二元加减乘
if (kind == Instruction::Kind::kAdd || kind == Instruction::Kind::kSub) {
if (DEBUG >= 2) {
std::cout << " -> Analyzing " << (kind == Instruction::Kind::kAdd ? "addition" : "subtraction") << std::endl;
}
auto expr0 = analyzeLinearExpr(inst->getOperand(0), loop, ivs);
auto expr1 = analyzeLinearExpr(inst->getOperand(1), loop, ivs);
if (!expr0.valid || !expr1.valid) {
if (DEBUG >= 2) {
std::cout << " -> Failed: operand not linear (expr0.valid=" << expr0.valid << ", expr1.valid=" << expr1.valid << ")" << std::endl;
}
return {nullptr, nullptr, 0, 0, 0, false, false};
}
// 合并若BIV相同或有一个是常数
// 单BIV+常数
if (expr0.base1 && !expr1.base1 && !expr1.base2) {
int sign = (kind == Instruction::Kind::kAdd ? 1 : -1);
if (DEBUG >= 2) {
std::cout << " -> Single BIV + constant pattern" << std::endl;
}
return {expr0.base1, nullptr, expr0.factor1, 0, expr0.offset + sign * expr1.offset, true, expr0.isSimple};
}
if (!expr0.base1 && !expr0.base2 && expr1.base1) {
int sign = (kind == Instruction::Kind::kAdd ? 1 : -1);
int f = sign * expr1.factor1;
int off = expr0.offset + sign * expr1.offset;
if (DEBUG >= 2) {
std::cout << " -> Constant + single BIV pattern" << std::endl;
}
return {expr1.base1, nullptr, f, 0, off, true, expr1.isSimple};
}
// 双BIV线性组合
if (expr0.base1 && expr1.base1 && expr0.base1 != expr1.base1 && !expr0.base2 && !expr1.base2) {
int sign = (kind == Instruction::Kind::kAdd ? 1 : -1);
Value* base1 = expr0.base1;
Value* base2 = expr1.base1;
int f1 = expr0.factor1;
int f2 = sign * expr1.factor1;
int off = expr0.offset + sign * expr1.offset;
if (DEBUG >= 2) {
std::cout << " -> Double BIV linear combination" << std::endl;
}
return {base1, base2, f1, f2, off, true, false};
}
// 同BIV合并
if (expr0.base1 && expr1.base1 && expr0.base1 == expr1.base1 && !expr0.base2 && !expr1.base2) {
int sign = (kind == Instruction::Kind::kAdd ? 1 : -1);
int f = expr0.factor1 + sign * expr1.factor1;
int off = expr0.offset + sign * expr1.offset;
if (DEBUG >= 2) {
std::cout << " -> Same BIV combination" << std::endl;
}
return {expr0.base1, nullptr, f, 0, off, true, true};
}
}
// 乘法BIV*const 或 const*BIV
if (kind == Instruction::Kind::kMul) {
if (DEBUG >= 2) {
std::cout << " -> Analyzing multiplication" << std::endl;
}
auto expr0 = analyzeLinearExpr(inst->getOperand(0), loop, ivs);
auto expr1 = analyzeLinearExpr(inst->getOperand(1), loop, ivs);
// 只允许一侧为常数
if (expr0.base1 && !expr1.base1 && !expr1.base2 && expr1.offset) {
if (DEBUG >= 2) {
std::cout << " -> BIV * constant pattern" << std::endl;
}
return {expr0.base1, nullptr, expr0.factor1 * expr1.offset, 0, expr0.offset * expr1.offset, true, true};
}
if (!expr0.base1 && !expr0.base2 && expr0.offset && expr1.base1) {
if (DEBUG >= 2) {
std::cout << " -> Constant * BIV pattern" << std::endl;
}
return {expr1.base1, nullptr, expr1.factor1 * expr0.offset, 0, expr1.offset * expr0.offset, true, true};
}
// 双BIV乘法不支持
if (DEBUG >= 2) {
std::cout << " -> Multiplication pattern not supported" << std::endl;
}
}
// 除法BIV/const仅当const是2的幂时
if (kind == Instruction::Kind::kDiv) {
if (DEBUG >= 2) {
std::cout << " -> Analyzing division" << std::endl;
}
auto expr0 = analyzeLinearExpr(inst->getOperand(0), loop, ivs);
auto expr1 = analyzeLinearExpr(inst->getOperand(1), loop, ivs);
// 只支持 BIV / 2^n 形式
if (expr0.base1 && !expr1.base1 && !expr1.base2 && expr1.offset > 0) {
// 检查是否为2的幂
int divisor = expr1.offset;
if ((divisor & (divisor - 1)) == 0) { // 2的幂检查
if (DEBUG >= 2) {
std::cout << " -> BIV / power_of_2 pattern (divisor=" << divisor << ")" << std::endl;
}
// 对于除法,我们记录为特殊的归纳变量模式
// factor表示除数用于后续强度削弱
return {expr0.base1, nullptr, -divisor, 0, expr0.offset / divisor, true, true};
}
}
if (DEBUG >= 2) {
std::cout << " -> Division pattern not supported (not power of 2)" << std::endl;
}
}
// 取模BIV % const仅当const是2的幂时
if (kind == Instruction::Kind::kRem) {
if (DEBUG >= 2) {
std::cout << " -> Analyzing remainder" << std::endl;
}
auto expr0 = analyzeLinearExpr(inst->getOperand(0), loop, ivs);
auto expr1 = analyzeLinearExpr(inst->getOperand(1), loop, ivs);
// 只支持 BIV % 2^n 形式
if (expr0.base1 && !expr1.base1 && !expr1.base2 && expr1.offset > 0) {
// 检查是否为2的幂
int modulus = expr1.offset;
if ((modulus & (modulus - 1)) == 0) { // 2的幂检查
if (DEBUG >= 2) {
std::cout << " -> BIV % power_of_2 pattern (modulus=" << modulus << ")" << std::endl;
}
// 对于取模,我们记录为特殊的归纳变量模式
// 使用负的模数来区分取模和除法
return {expr0.base1, nullptr, -10000 - modulus, 0, 0, true, true}; // 特殊标记
}
}
if (DEBUG >= 2) {
std::cout << " -> Remainder pattern not supported (not power of 2)" << std::endl;
}
}
}
// 其它情况
if (DEBUG >= 2) {
std::cout << " -> Other case: not linear" << std::endl;
}
return {nullptr, nullptr, 0, 0, 0, false, false};
}
void LoopCharacteristicsPass::identifyBasicLoopInvariants(Loop* loop, LoopCharacteristics* characteristics) {
// 经典推进法:反复遍历,直到收敛
// 经典推进法:反复遍历,直到收敛 TODO优化
bool changed;
std::unordered_set<Value*> invariants = characteristics->loopInvariants; // 可能为空
@ -334,7 +644,7 @@ void LoopCharacteristicsPass::identifyBasicLoopInvariants(Loop* loop, LoopCharac
void LoopCharacteristicsPass::analyzeBasicLoopBounds(Loop* loop, LoopCharacteristics* characteristics) {
// 简化的基础边界分析
// 检查是否有静态可确定的循环次数(简化版本)
if (characteristics->isCountingLoop && !characteristics->basicInductionVars.empty()) {
if (characteristics->isCountingLoop && !characteristics->InductionVars.empty()) {
// 简化:如果是计数循环且有基本归纳变量,尝试确定循环次数
if (characteristics->instructionCount < 10) {
characteristics->staticTripCount = 100; // 简化估计
@ -373,56 +683,417 @@ void LoopCharacteristicsPass::evaluateBasicOptimizationOpportunities(Loop* loop,
// ========== 辅助方法实现 ==========
bool LoopCharacteristicsPass::isBasicInductionVariable(Value* val, Loop* loop) {
// 简化的基础归纳变量检测
auto* phiInst = dynamic_cast<PhiInst*>(val);
if (!phiInst) return false;
// 检查phi指令是否在循环头
if (phiInst->getParent() != loop->getHeader()) return false;
// 检查是否有来自循环内的更新
for (auto& [incomingBB, incomingVal] : phiInst->getIncomingValues()) {
if (loop->contains(incomingBB)) {
return true; // 简化:有来自循环内的值就认为是基础归纳变量
// 递归识别DIV支持线性与复杂归纳变量
void LoopCharacteristicsPass::findDerivedInductionVars(
Value* root,
Value* base, // 只传单一BIV base
Loop* loop,
std::vector<std::unique_ptr<InductionVarInfo>>& ivs,
std::set<Value*>& visited)
{
if (visited.count(root)) return;
visited.insert(root);
if (DEBUG) {
std::cout << " Analyzing uses of: " << root->getName() << std::endl;
}
for (auto use : root->getUses()) {
auto user = use->getUser();
Instruction* inst = dynamic_cast<Instruction*>(user);
if (!inst) continue;
if (!loop->contains(inst->getParent())) {
if (DEBUG) {
std::cout << " Skipping user outside loop: " << inst->getName() << std::endl;
}
continue;
}
if (DEBUG) {
std::cout << " Checking instruction: " << inst->getName()
<< " (kind: " << static_cast<int>(inst->getKind()) << ")" << std::endl;
}
// 线性归约分析
auto expr = analyzeLinearExpr(inst, loop, ivs);
if (!expr.valid) {
if (DEBUG) {
std::cout << " Linear expression analysis failed for: " << inst->getName() << std::endl;
}
// 复杂非线性归纳变量作为kCmplx记录假如你想追踪
// 这里假设expr.base1、base2都有效才记录double
if (expr.base1 && expr.base2) {
if (DEBUG) {
std::cout << " [DIV-COMPLEX] Creating complex derived IV: " << inst->getName()
<< " with bases: " << expr.base1->getName() << ", " << expr.base2->getName() << std::endl;
}
ivs.push_back(InductionVarInfo::createDoubleDIV(inst, inst->getKind(), expr.base1, expr.base2, 0, expr.offset));
}
continue;
}
// 单BIV线性
if (expr.base1 && !expr.base2) {
// 检查这个指令是否已经是一个已知的IV特别是BIV避免重复创建
bool alreadyExists = false;
for (const auto& existingIV : ivs) {
if (existingIV->div == inst) {
alreadyExists = true;
if (DEBUG) {
std::cout << " [DIV-SKIP] Instruction " << inst->getName()
<< " already exists as IV, skipping creation" << std::endl;
}
break;
}
}
if (!alreadyExists) {
if (DEBUG) {
std::cout << " [DIV-LINEAR] Creating single-base derived IV: " << inst->getName()
<< " with base: " << expr.base1->getName()
<< ", factor: " << expr.factor1
<< ", offset: " << expr.offset << std::endl;
}
ivs.push_back(InductionVarInfo::createSingleDIV(inst, inst->getKind(), expr.base1, expr.factor1, expr.offset));
findDerivedInductionVars(inst, expr.base1, loop, ivs, visited);
}
}
// 双BIV线性
else if (expr.base1 && expr.base2) {
if (DEBUG) {
std::cout << " [DIV-COMPLEX] Creating double-base derived IV: " << inst->getName()
<< " with bases: " << expr.base1->getName() << ", " << expr.base2->getName()
<< ", offset: " << expr.offset << std::endl;
}
ivs.push_back(InductionVarInfo::createDoubleDIV(inst, inst->getKind(), expr.base1, expr.base2, 0, expr.offset));
// 双BIV情形一般不再递归下游
}
}
if (DEBUG) {
std::cout << " Finished analyzing uses of: " << root->getName() << std::endl;
}
}
// 检查操作数是否都是不变量
bool LoopCharacteristicsPass::isInvariantOperands(Instruction* inst, Loop* loop, const std::unordered_set<Value*>& invariants) {
for (size_t i = 0; i < inst->getNumOperands(); ++i) {
Value* op = inst->getOperand(i);
if (!isClassicLoopInvariant(op, loop, invariants) && !invariants.count(op)) {
return false;
}
}
return true;
}
// 检查内存位置是否在循环中被修改
bool LoopCharacteristicsPass::isMemoryLocationModifiedInLoop(Value* ptr, Loop* loop) {
// 遍历循环中的所有指令,检查是否有对该内存位置的写入
for (BasicBlock* bb : loop->getBlocks()) {
for (auto& inst : bb->getInstructions()) {
// 1. 检查直接的Store指令
if (auto* storeInst = dynamic_cast<StoreInst*>(inst.get())) {
Value* storeTar = storeInst->getPointer();
// 使用别名分析检查是否可能别名
if (aliasAnalysis) {
auto aliasType = aliasAnalysis->queryAlias(ptr, storeTar);
if (aliasType != AliasType::NO_ALIAS) {
if (DEBUG) {
std::cout << " Memory location " << ptr->getName()
<< " may be modified by store to " << storeTar->getName() << std::endl;
}
return true;
}
} else {
// 如果没有别名分析,保守处理 - 只检查精确匹配
if (ptr == storeTar) {
return true;
}
}
}
// 2. 检查函数调用是否可能修改该内存位置
else if (auto* callInst = dynamic_cast<CallInst*>(inst.get())) {
Function* calledFunc = callInst->getCallee();
// 如果是纯函数,不会修改内存
if (isPureFunction(calledFunc)) {
continue;
}
// 检查函数参数中是否有该内存位置的指针
for (size_t i = 1; i < callInst->getNumOperands(); ++i) { // 跳过函数指针
Value* arg = callInst->getOperand(i);
// 检查参数是否是指针类型且可能指向该内存位置
if (auto* ptrType = dynamic_cast<PointerType*>(arg->getType())) {
// 使用别名分析检查
if (aliasAnalysis) {
auto aliasType = aliasAnalysis->queryAlias(ptr, arg);
if (aliasType != AliasType::NO_ALIAS) {
if (DEBUG) {
std::cout << " Memory location " << ptr->getName()
<< " may be modified by function call " << calledFunc->getName()
<< " through parameter " << arg->getName() << std::endl;
}
return true;
}
} else {
// 没有别名分析,检查精确匹配
if (ptr == arg) {
if (DEBUG) {
std::cout << " Memory location " << ptr->getName()
<< " may be modified by function call " << calledFunc->getName()
<< " (exact match)" << std::endl;
}
return true;
}
}
}
}
}
}
}
return false;
}
// 递归/推进式判定
// 检查内存位置是否在循环中被读取
bool LoopCharacteristicsPass::isMemoryLocationLoadedInLoop(Value* ptr, Loop* loop, Instruction* excludeInst) {
// 遍历循环中的所有Load指令检查是否有对该内存位置的读取
for (BasicBlock* bb : loop->getBlocks()) {
for (auto& inst : bb->getInstructions()) {
if (inst.get() == excludeInst) continue; // 排除当前指令本身
if (auto* loadInst = dynamic_cast<LoadInst*>(inst.get())) {
Value* loadSrc = loadInst->getPointer();
// 使用别名分析检查是否可能别名
if (aliasAnalysis) {
auto aliasType = aliasAnalysis->queryAlias(ptr, loadSrc);
if (aliasType != AliasType::NO_ALIAS) {
return true;
}
} else {
// 如果没有别名分析,保守处理 - 只检查精确匹配
if (ptr == loadSrc) {
return true;
}
}
}
}
}
return false;
}
// 检查函数调用是否为纯函数
bool LoopCharacteristicsPass::isPureFunction(Function* calledFunc) {
if (!calledFunc) return false;
// 使用副作用分析检查函数是否为纯函数
if (sideEffectAnalysis && sideEffectAnalysis->isPureFunction(calledFunc)) {
return true;
}
// 检查是否为内置纯函数(如数学函数)
std::string funcName = calledFunc->getName();
static const std::set<std::string> pureFunctions = {
"abs", "fabs", "sqrt", "sin", "cos", "tan", "exp", "log", "pow",
"floor", "ceil", "round", "min", "max"
};
return pureFunctions.count(funcName) > 0;
}
// 递归/推进式判定 - 完善版本
bool LoopCharacteristicsPass::isClassicLoopInvariant(Value* val, Loop* loop, const std::unordered_set<Value*>& invariants) {
if (DEBUG >= 2) {
std::cout << " Checking loop invariant for: " << val->getName() << std::endl;
}
// 1. 常量
if (auto* constval = dynamic_cast<ConstantValue*>(val)) return true;
if (auto* constval = dynamic_cast<ConstantValue*>(val)) {
if (DEBUG >= 2) std::cout << " -> Constant: YES" << std::endl;
return true;
}
// 2. 参数函数参数通常不在任何BasicBlock内直接判定为不变量
if (auto* arg = dynamic_cast<Argument*>(val)) return true;
// 在SSA形式下参数不会被重新赋值
if (auto* arg = dynamic_cast<Argument*>(val)) {
if (DEBUG >= 2) std::cout << " -> Function argument: YES" << std::endl;
return true;
}
// 3. 指令且定义在循环外
if (auto* inst = dynamic_cast<Instruction*>(val)) {
if (!loop->contains(inst->getParent()))
if (!loop->contains(inst->getParent())) {
if (DEBUG >= 2) std::cout << " -> Defined outside loop: YES" << std::endl;
return true;
// 4. 跳转 phi指令 副作用 不外提
if (inst->isTerminator() || inst->isPhi() || sideEffectAnalysis->hasSideEffect(inst))
return false;
// 5. 所有操作数都是不变量
for (size_t i = 0; i < inst->getNumOperands(); ++i) {
Value* op = inst->getOperand(i);
if (!isClassicLoopInvariant(op, loop, invariants) && !invariants.count(op))
return false;
}
return true;
// 4. 跳转指令、phi指令不能外提
if (inst->isTerminator() || inst->isPhi()) {
if (DEBUG >= 2) std::cout << " -> Terminator or PHI: NO" << std::endl;
return false;
}
// 5. 根据指令类型进行具体分析
switch (inst->getKind()) {
case Instruction::Kind::kStore: {
// Store指令检查循环内是否有对该内存的load
auto* storeInst = dynamic_cast<StoreInst*>(inst);
Value* storePtr = storeInst->getPointer();
// 首先检查操作数是否不变
if (!isInvariantOperands(inst, loop, invariants)) {
if (DEBUG >= 2) std::cout << " -> Store: operands not invariant: NO" << std::endl;
return false;
}
// 检查是否有对该内存位置的load
if (isMemoryLocationLoadedInLoop(storePtr, loop, inst)) {
if (DEBUG >= 2) std::cout << " -> Store: memory location loaded in loop: NO" << std::endl;
return false;
}
if (DEBUG >= 2) std::cout << " -> Store: safe to hoist: YES" << std::endl;
return true;
}
case Instruction::Kind::kLoad: {
// Load指令检查循环内是否有对该内存的store
auto* loadInst = dynamic_cast<LoadInst*>(inst);
Value* loadPtr = loadInst->getPointer();
// 首先检查指针操作数是否不变
if (!isInvariantOperands(inst, loop, invariants)) {
if (DEBUG >= 2) std::cout << " -> Load: pointer not invariant: NO" << std::endl;
return false;
}
// 检查是否有对该内存位置的store
if (isMemoryLocationModifiedInLoop(loadPtr, loop)) {
if (DEBUG >= 2) std::cout << " -> Load: memory location modified in loop: NO" << std::endl;
return false;
}
if (DEBUG >= 2) std::cout << " -> Load: safe to hoist: YES" << std::endl;
return true;
}
case Instruction::Kind::kCall: {
// Call指令检查是否为纯函数且参数不变
auto* callInst = dynamic_cast<CallInst*>(inst);
Function* calledFunc = callInst->getCallee();
// 检查是否为纯函数
if (!isPureFunction(calledFunc)) {
if (DEBUG >= 2) std::cout << " -> Call: not pure function: NO" << std::endl;
return false;
}
// 检查参数是否都不变
if (!isInvariantOperands(inst, loop, invariants)) {
if (DEBUG >= 2) std::cout << " -> Call: arguments not invariant: NO" << std::endl;
return false;
}
if (DEBUG >= 2) std::cout << " -> Call: pure function with invariant args: YES" << std::endl;
return true;
}
case Instruction::Kind::kGetElementPtr: {
// GEP指令检查基址和索引是否都不变
if (!isInvariantOperands(inst, loop, invariants)) {
if (DEBUG >= 2) std::cout << " -> GEP: base or indices not invariant: NO" << std::endl;
return false;
}
if (DEBUG >= 2) std::cout << " -> GEP: base and indices invariant: YES" << std::endl;
return true;
}
// 一元运算指令
case Instruction::Kind::kNeg:
case Instruction::Kind::kNot:
case Instruction::Kind::kFNeg:
case Instruction::Kind::kFNot:
case Instruction::Kind::kFtoI:
case Instruction::Kind::kItoF:
case Instruction::Kind::kBitItoF:
case Instruction::Kind::kBitFtoI: {
// 检查操作数是否不变
if (!isInvariantOperands(inst, loop, invariants)) {
if (DEBUG >= 2) std::cout << " -> Unary op: operand not invariant: NO" << std::endl;
return false;
}
if (DEBUG >= 2) std::cout << " -> Unary op: operand invariant: YES" << std::endl;
return true;
}
// 二元运算指令
case Instruction::Kind::kAdd:
case Instruction::Kind::kSub:
case Instruction::Kind::kMul:
case Instruction::Kind::kDiv:
case Instruction::Kind::kRem:
case Instruction::Kind::kSll:
case Instruction::Kind::kSrl:
case Instruction::Kind::kSra:
case Instruction::Kind::kAnd:
case Instruction::Kind::kOr:
case Instruction::Kind::kFAdd:
case Instruction::Kind::kFSub:
case Instruction::Kind::kFMul:
case Instruction::Kind::kFDiv:
case Instruction::Kind::kICmpEQ:
case Instruction::Kind::kICmpNE:
case Instruction::Kind::kICmpLT:
case Instruction::Kind::kICmpGT:
case Instruction::Kind::kICmpLE:
case Instruction::Kind::kICmpGE:
case Instruction::Kind::kFCmpEQ:
case Instruction::Kind::kFCmpNE:
case Instruction::Kind::kFCmpLT:
case Instruction::Kind::kFCmpGT:
case Instruction::Kind::kFCmpLE:
case Instruction::Kind::kFCmpGE:
case Instruction::Kind::kMulh: {
// 检查所有操作数是否不变
if (!isInvariantOperands(inst, loop, invariants)) {
if (DEBUG >= 2) std::cout << " -> Binary op: operands not invariant: NO" << std::endl;
return false;
}
if (DEBUG >= 2) std::cout << " -> Binary op: operands invariant: YES" << std::endl;
return true;
}
default: {
// 其他指令:使用副作用分析
if (sideEffectAnalysis && sideEffectAnalysis->hasSideEffect(inst)) {
if (DEBUG >= 2) std::cout << " -> Other inst: has side effect: NO" << std::endl;
return false;
}
// 检查操作数是否都不变
if (!isInvariantOperands(inst, loop, invariants)) {
if (DEBUG >= 2) std::cout << " -> Other inst: operands not invariant: NO" << std::endl;
return false;
}
if (DEBUG >= 2) std::cout << " -> Other inst: no side effect, operands invariant: YES" << std::endl;
return true;
}
}
}
// 其它情况
if (DEBUG >= 2) std::cout << " -> Other value type: NO" << std::endl;
return false;
}
bool LoopCharacteristicsPass::hasSimpleMemoryPattern(Loop* loop) {
// 检查是否有简单的内存访问模式
return true; // 暂时简化处理
}
} // namespace sysy

View File

@ -26,10 +26,21 @@ const SideEffectInfo &SideEffectAnalysisResult::getInstructionSideEffect(Instruc
}
const SideEffectInfo &SideEffectAnalysisResult::getFunctionSideEffect(Function *func) const {
// 首先检查分析过的用户定义函数
auto it = functionSideEffects.find(func);
if (it != functionSideEffects.end()) {
return it->second;
}
// 如果没有找到,检查是否为已知的库函数
if (func) {
std::string funcName = func->getName();
const SideEffectInfo *knownInfo = getKnownFunctionSideEffect(funcName);
if (knownInfo) {
return *knownInfo;
}
}
// 返回默认的无副作用信息
static SideEffectInfo noEffect;
return noEffect;

View File

@ -0,0 +1,492 @@
#include "GVN.h"
#include "Dom.h"
#include "SysYIROptUtils.h"
#include <algorithm>
#include <cassert>
#include <iostream>
#include <unordered_map>
#include <unordered_set>
extern int DEBUG;
namespace sysy {
// GVN 遍的静态 ID
void *GVN::ID = (void *)&GVN::ID;
// ======================================================================
// GVN 类的实现
// ======================================================================
bool GVN::runOnFunction(Function *func, AnalysisManager &AM) {
if (func->getBasicBlocks().empty()) {
return false;
}
if (DEBUG) {
std::cout << "\n=== Running GVN on function: " << func->getName() << " ===" << std::endl;
}
bool changed = false;
GVNContext context;
context.run(func, &AM, changed);
if (DEBUG) {
if (changed) {
std::cout << "GVN: Function " << func->getName() << " was modified" << std::endl;
} else {
std::cout << "GVN: Function " << func->getName() << " was not modified" << std::endl;
}
std::cout << "=== GVN completed for function: " << func->getName() << " ===" << std::endl;
}
return changed;
}
void GVN::getAnalysisUsage(std::set<void *> &analysisDependencies, std::set<void *> &analysisInvalidations) const {
// GVN依赖以下分析
// 1. 支配树分析 - 用于检查指令的支配关系,确保替换的安全性
analysisDependencies.insert(&DominatorTreeAnalysisPass::ID);
// 2. 副作用分析 - 用于判断函数调用是否可以进行GVN
analysisDependencies.insert(&SysYSideEffectAnalysisPass::ID);
// GVN不会使任何分析失效因为
// - GVN只删除冗余计算不改变CFG结构
// - GVN不修改程序的语义只是消除重复计算
// - 支配关系保持不变
// - 副作用分析结果保持不变
// analysisInvalidations 保持为空
if (DEBUG) {
std::cout << "GVN: Declared analysis dependencies (DominatorTree, SideEffectAnalysis)" << std::endl;
}
}
// ======================================================================
// GVNContext 类的实现 - 重构版本
// ======================================================================
// 简单的表达式哈希结构
struct ExpressionKey {
enum Type { BINARY, UNARY, LOAD, GEP, CALL } type;
int opcode;
std::vector<Value*> operands;
Type* resultType;
bool operator==(const ExpressionKey& other) const {
return type == other.type && opcode == other.opcode &&
operands == other.operands && resultType == other.resultType;
}
};
struct ExpressionKeyHash {
size_t operator()(const ExpressionKey& key) const {
size_t hash = std::hash<int>()(static_cast<int>(key.type)) ^
std::hash<int>()(key.opcode);
for (auto op : key.operands) {
hash ^= std::hash<Value*>()(op) + 0x9e3779b9 + (hash << 6) + (hash >> 2);
}
return hash;
}
};
void GVNContext::run(Function *func, AnalysisManager *AM, bool &changed) {
if (DEBUG) {
std::cout << " Starting GVN analysis for function: " << func->getName() << std::endl;
}
// 获取分析结果
if (AM) {
domTree = AM->getAnalysisResult<DominatorTree, DominatorTreeAnalysisPass>(func);
sideEffectAnalysis = AM->getAnalysisResult<SideEffectAnalysisResult, SysYSideEffectAnalysisPass>();
if (DEBUG) {
if (domTree) {
std::cout << " GVN: Using dominator tree analysis" << std::endl;
} else {
std::cout << " GVN: Warning - dominator tree analysis not available" << std::endl;
}
if (sideEffectAnalysis) {
std::cout << " GVN: Using side effect analysis" << std::endl;
} else {
std::cout << " GVN: Warning - side effect analysis not available" << std::endl;
}
}
}
// 清空状态
valueToNumber.clear();
numberToValue.clear();
expressionToNumber.clear();
nextValueNumber = 1;
visited.clear();
rpoBlocks.clear();
needRemove.clear();
// 计算逆后序遍历
computeRPO(func);
if (DEBUG) {
std::cout << " Computed RPO with " << rpoBlocks.size() << " blocks" << std::endl;
}
// 按逆后序遍历基本块进行GVN
int blockCount = 0;
for (auto bb : rpoBlocks) {
if (DEBUG) {
std::cout << " Processing block " << ++blockCount << "/" << rpoBlocks.size()
<< ": " << bb->getName() << std::endl;
}
processBasicBlock(bb, changed);
}
if (DEBUG) {
std::cout << " Found " << needRemove.size() << " redundant instructions to remove" << std::endl;
}
// 删除冗余指令
eliminateRedundantInstructions(changed);
if (DEBUG) {
std::cout << " GVN analysis completed for function: " << func->getName() << std::endl;
std::cout << " Total values numbered: " << valueToNumber.size() << std::endl;
std::cout << " Instructions eliminated: " << needRemove.size() << std::endl;
}
}
void GVNContext::computeRPO(Function *func) {
rpoBlocks.clear();
visited.clear();
auto entry = func->getEntryBlock();
if (entry) {
dfs(entry);
std::reverse(rpoBlocks.begin(), rpoBlocks.end());
}
}
void GVNContext::dfs(BasicBlock *bb) {
if (!bb || visited.count(bb)) {
return;
}
visited.insert(bb);
// 访问所有后继基本块
for (auto succ : bb->getSuccessors()) {
if (visited.find(succ) == visited.end()) {
dfs(succ);
}
}
rpoBlocks.push_back(bb);
}
unsigned GVNContext::getValueNumber(Value* value) {
// 如果已经有值编号,直接返回
auto it = valueToNumber.find(value);
if (it != valueToNumber.end()) {
return it->second;
}
// 为新值分配编号
return assignValueNumber(value);
}
unsigned GVNContext::assignValueNumber(Value* value) {
unsigned number = nextValueNumber++;
valueToNumber[value] = number;
numberToValue[number] = value;
if (DEBUG >= 2) {
std::cout << " Assigned value number " << number
<< " to " << value->getName() << std::endl;
}
return number;
}
void GVNContext::processBasicBlock(BasicBlock* bb, bool& changed) {
int instCount = 0;
for (auto &instPtr : bb->getInstructions()) {
if (DEBUG) {
std::cout << " Processing instruction " << ++instCount
<< ": " << instPtr->getName() << std::endl;
}
if (processInstruction(instPtr.get())) {
changed = true;
}
}
}
bool GVNContext::processInstruction(Instruction* inst) {
// 跳过分支指令和其他不可优化的指令
if (inst->isBranch() || dynamic_cast<ReturnInst*>(inst) ||
dynamic_cast<AllocaInst*>(inst) || dynamic_cast<StoreInst*>(inst)) {
// 如果是store指令需要使相关的内存值失效
if (auto store = dynamic_cast<StoreInst*>(inst)) {
invalidateMemoryValues(store);
}
// 为这些指令分配值编号但不尝试优化
getValueNumber(inst);
return false;
}
if (DEBUG) {
std::cout << " Processing optimizable instruction: " << inst->getName()
<< " (kind: " << static_cast<int>(inst->getKind()) << ")" << std::endl;
}
// 构建表达式键
std::string exprKey = buildExpressionKey(inst);
if (exprKey.empty()) {
// 不可优化的指令,只分配值编号
getValueNumber(inst);
return false;
}
if (DEBUG >= 2) {
std::cout << " Expression key: " << exprKey << std::endl;
}
// 查找已存在的等价值
Value* existing = findExistingValue(exprKey, inst);
if (existing && existing != inst) {
// 检查支配关系
if (auto existingInst = dynamic_cast<Instruction*>(existing)) {
if (dominates(existingInst, inst)) {
if (DEBUG) {
std::cout << " GVN: Replacing " << inst->getName()
<< " with existing " << existing->getName() << std::endl;
}
// 用已存在的值替换当前指令
inst->replaceAllUsesWith(existing);
needRemove.insert(inst);
// 将当前指令的值编号指向已存在的值
unsigned existingNumber = getValueNumber(existing);
valueToNumber[inst] = existingNumber;
return true;
} else {
if (DEBUG) {
std::cout << " Found equivalent but dominance check failed" << std::endl;
}
}
}
}
// 没有找到等价值,为这个表达式分配新的值编号
unsigned number = assignValueNumber(inst);
expressionToNumber[exprKey] = number;
if (DEBUG) {
std::cout << " Instruction " << inst->getName() << " is unique" << std::endl;
}
return false;
}
std::string GVNContext::buildExpressionKey(Instruction* inst) {
std::ostringstream oss;
if (auto binary = dynamic_cast<BinaryInst*>(inst)) {
oss << "binary_" << static_cast<int>(binary->getKind()) << "_";
oss << getValueNumber(binary->getLhs()) << "_" << getValueNumber(binary->getRhs());
// 对于可交换操作,确保操作数顺序一致
if (binary->isCommutative()) {
unsigned lhsNum = getValueNumber(binary->getLhs());
unsigned rhsNum = getValueNumber(binary->getRhs());
if (lhsNum > rhsNum) {
oss.str("");
oss << "binary_" << static_cast<int>(binary->getKind()) << "_";
oss << rhsNum << "_" << lhsNum;
}
}
} else if (auto unary = dynamic_cast<UnaryInst*>(inst)) {
oss << "unary_" << static_cast<int>(unary->getKind()) << "_";
oss << getValueNumber(unary->getOperand());
} else if (auto gep = dynamic_cast<GetElementPtrInst*>(inst)) {
oss << "gep_" << getValueNumber(gep->getBasePointer());
for (unsigned i = 0; i < gep->getNumIndices(); ++i) {
oss << "_" << getValueNumber(gep->getIndex(i));
}
} else if (auto load = dynamic_cast<LoadInst*>(inst)) {
oss << "load_" << getValueNumber(load->getPointer());
oss << "_" << reinterpret_cast<uintptr_t>(load->getType()); // 类型区分
} else if (auto call = dynamic_cast<CallInst*>(inst)) {
// 只为无副作用的函数调用建立表达式
if (sideEffectAnalysis && sideEffectAnalysis->isPureFunction(call->getCallee())) {
oss << "call_" << call->getCallee()->getName();
for (size_t i = 1; i < call->getNumOperands(); ++i) { // 跳过函数指针
oss << "_" << getValueNumber(call->getOperand(i));
}
} else {
return ""; // 有副作用的函数调用不可优化
}
} else {
return ""; // 不支持的指令类型
}
return oss.str();
}
Value* GVNContext::findExistingValue(const std::string& exprKey, Instruction* inst) {
auto it = expressionToNumber.find(exprKey);
if (it != expressionToNumber.end()) {
unsigned number = it->second;
auto valueIt = numberToValue.find(number);
if (valueIt != numberToValue.end()) {
Value* existing = valueIt->second;
// 对于load指令需要额外检查内存安全性
if (auto loadInst = dynamic_cast<LoadInst*>(inst)) {
if (auto existingLoad = dynamic_cast<LoadInst*>(existing)) {
if (!isMemorySafe(existingLoad, loadInst)) {
return nullptr;
}
}
}
return existing;
}
}
return nullptr;
}
bool GVNContext::dominates(Instruction* a, Instruction* b) {
auto aBB = a->getParent();
auto bBB = b->getParent();
// 同一基本块内的情况
if (aBB == bBB) {
auto &insts = aBB->getInstructions();
auto aIt = std::find_if(insts.begin(), insts.end(),
[a](const auto &ptr) { return ptr.get() == a; });
auto bIt = std::find_if(insts.begin(), insts.end(),
[b](const auto &ptr) { return ptr.get() == b; });
if (aIt == insts.end() || bIt == insts.end()) {
return false;
}
return std::distance(insts.begin(), aIt) < std::distance(insts.begin(), bIt);
}
// 不同基本块的情况,使用支配树
if (domTree) {
auto dominators = domTree->getDominators(bBB);
return dominators && dominators->count(aBB);
}
return false; // 保守做法
}
bool GVNContext::isMemorySafe(LoadInst* earlierLoad, LoadInst* laterLoad) {
// 检查两个load是否访问相同的内存位置
unsigned earlierPtr = getValueNumber(earlierLoad->getPointer());
unsigned laterPtr = getValueNumber(laterLoad->getPointer());
if (earlierPtr != laterPtr) {
return false; // 不同的内存位置
}
// 检查类型是否匹配
if (earlierLoad->getType() != laterLoad->getType()) {
return false;
}
// 简单情况如果在同一个基本块且没有中间的store则安全
auto earlierBB = earlierLoad->getParent();
auto laterBB = laterLoad->getParent();
if (earlierBB != laterBB) {
// 跨基本块的情况需要更复杂的分析,暂时保守处理
return false;
}
// 同一基本块内检查是否有中间的store
auto &insts = earlierBB->getInstructions();
auto earlierIt = std::find_if(insts.begin(), insts.end(),
[earlierLoad](const auto &ptr) { return ptr.get() == earlierLoad; });
auto laterIt = std::find_if(insts.begin(), insts.end(),
[laterLoad](const auto &ptr) { return ptr.get() == laterLoad; });
if (earlierIt == insts.end() || laterIt == insts.end()) {
return false;
}
// 确保earlierLoad真的在laterLoad之前
if (std::distance(insts.begin(), earlierIt) >= std::distance(insts.begin(), laterIt)) {
return false;
}
// 检查中间是否有store指令修改了相同的内存位置
for (auto it = std::next(earlierIt); it != laterIt; ++it) {
if (auto store = dynamic_cast<StoreInst*>(it->get())) {
unsigned storePtr = getValueNumber(store->getPointer());
if (storePtr == earlierPtr) {
return false; // 找到中间的store
}
}
// 检查函数调用是否可能修改内存
if (auto call = dynamic_cast<CallInst*>(it->get())) {
if (sideEffectAnalysis && !sideEffectAnalysis->isPureFunction(call->getCallee())) {
// 保守处理:有副作用的函数可能修改内存
return false;
}
}
}
return true; // 安全
}
void GVNContext::invalidateMemoryValues(StoreInst* store) {
unsigned storePtr = getValueNumber(store->getPointer());
if (DEBUG) {
std::cout << " Invalidating memory values affected by store" << std::endl;
}
// 找到所有可能被这个store影响的load表达式
std::vector<std::string> toRemove;
for (auto& [exprKey, number] : expressionToNumber) {
if (exprKey.find("load_" + std::to_string(storePtr)) == 0) {
toRemove.push_back(exprKey);
if (DEBUG) {
std::cout << " Invalidating expression: " << exprKey << std::endl;
}
}
}
// 移除失效的表达式
for (const auto& key : toRemove) {
expressionToNumber.erase(key);
}
}
void GVNContext::eliminateRedundantInstructions(bool& changed) {
int removeCount = 0;
for (auto inst : needRemove) {
if (DEBUG) {
std::cout << " Removing redundant instruction " << ++removeCount
<< "/" << needRemove.size() << ": " << inst->getName() << std::endl;
}
// 删除指令前先断开所有使用关系
// inst->replaceAllUsesWith 已在 processInstruction 中调用
SysYIROptUtils::usedelete(inst);
changed = true;
}
}
} // namespace sysy

View File

@ -0,0 +1,897 @@
#include "GlobalStrengthReduction.h"
#include "SysYIROptUtils.h"
#include "IRBuilder.h"
#include <algorithm>
#include <cassert>
#include <iostream>
#include <cmath>
extern int DEBUG;
namespace sysy {
// 全局强度削弱优化遍的静态 ID
void *GlobalStrengthReduction::ID = (void *)&GlobalStrengthReduction::ID;
// ======================================================================
// GlobalStrengthReduction 类的实现
// ======================================================================
bool GlobalStrengthReduction::runOnFunction(Function *func, AnalysisManager &AM) {
if (func->getBasicBlocks().empty()) {
return false;
}
if (DEBUG) {
std::cout << "\n=== Running GlobalStrengthReduction on function: " << func->getName() << " ===" << std::endl;
}
bool changed = false;
GlobalStrengthReductionContext context(builder);
context.run(func, &AM, changed);
if (DEBUG) {
if (changed) {
std::cout << "GlobalStrengthReduction: Function " << func->getName() << " was modified" << std::endl;
} else {
std::cout << "GlobalStrengthReduction: Function " << func->getName() << " was not modified" << std::endl;
}
std::cout << "=== GlobalStrengthReduction completed for function: " << func->getName() << " ===" << std::endl;
}
return changed;
}
void GlobalStrengthReduction::getAnalysisUsage(std::set<void *> &analysisDependencies, std::set<void *> &analysisInvalidations) const {
// 强度削弱依赖副作用分析来判断指令是否可以安全优化
analysisDependencies.insert(&SysYSideEffectAnalysisPass::ID);
// 强度削弱不会使分析失效,因为:
// - 只替换计算指令,不改变控制流
// - 不修改内存,不影响别名分析
// - 保持程序语义不变
// analysisInvalidations 保持为空
if (DEBUG) {
std::cout << "GlobalStrengthReduction: Declared analysis dependencies (SideEffectAnalysis)" << std::endl;
}
}
// ======================================================================
// GlobalStrengthReductionContext 类的实现
// ======================================================================
void GlobalStrengthReductionContext::run(Function *func, AnalysisManager *AM, bool &changed) {
if (DEBUG) {
std::cout << " Starting GlobalStrengthReduction analysis for function: " << func->getName() << std::endl;
}
// 获取分析结果
if (AM) {
sideEffectAnalysis = AM->getAnalysisResult<SideEffectAnalysisResult, SysYSideEffectAnalysisPass>();
if (DEBUG) {
if (sideEffectAnalysis) {
std::cout << " GlobalStrengthReduction: Using side effect analysis" << std::endl;
} else {
std::cout << " GlobalStrengthReduction: Warning - side effect analysis not available" << std::endl;
}
}
}
// 重置计数器
algebraicOptCount = 0;
strengthReductionCount = 0;
divisionOptCount = 0;
// 遍历所有基本块进行优化
for (auto &bb_ptr : func->getBasicBlocks()) {
if (processBasicBlock(bb_ptr.get())) {
changed = true;
}
}
if (DEBUG) {
std::cout << " GlobalStrengthReduction completed for function: " << func->getName() << std::endl;
std::cout << " Algebraic optimizations: " << algebraicOptCount << std::endl;
std::cout << " Strength reductions: " << strengthReductionCount << std::endl;
std::cout << " Division optimizations: " << divisionOptCount << std::endl;
}
}
bool GlobalStrengthReductionContext::processBasicBlock(BasicBlock *bb) {
bool changed = false;
if (DEBUG) {
std::cout << " Processing block: " << bb->getName() << std::endl;
}
// 收集需要处理的指令(避免迭代器失效)
std::vector<Instruction*> instructions;
for (auto &inst_ptr : bb->getInstructions()) {
instructions.push_back(inst_ptr.get());
}
// 处理每条指令
for (auto inst : instructions) {
if (processInstruction(inst)) {
changed = true;
}
}
return changed;
}
bool GlobalStrengthReductionContext::processInstruction(Instruction *inst) {
if (DEBUG) {
std::cout << " Processing instruction: " << inst->getName() << std::endl;
}
// 先尝试代数优化
if (tryAlgebraicOptimization(inst)) {
algebraicOptCount++;
return true;
}
// 再尝试强度削弱
if (tryStrengthReduction(inst)) {
strengthReductionCount++;
return true;
}
return false;
}
// ======================================================================
// 代数优化方法
// ======================================================================
bool GlobalStrengthReductionContext::tryAlgebraicOptimization(Instruction *inst) {
auto binary = dynamic_cast<BinaryInst*>(inst);
if (!binary) {
return false;
}
switch (binary->getKind()) {
case Instruction::kAdd:
return optimizeAddition(binary);
case Instruction::kSub:
return optimizeSubtraction(binary);
case Instruction::kMul:
return optimizeMultiplication(binary);
case Instruction::kDiv:
return optimizeDivision(binary);
case Instruction::kICmpEQ:
case Instruction::kICmpNE:
case Instruction::kICmpLT:
case Instruction::kICmpGT:
case Instruction::kICmpLE:
case Instruction::kICmpGE:
return optimizeComparison(binary);
case Instruction::kAnd:
case Instruction::kOr:
return optimizeLogical(binary);
default:
return false;
}
}
bool GlobalStrengthReductionContext::optimizeAddition(BinaryInst *inst) {
Value *lhs = inst->getLhs();
Value *rhs = inst->getRhs();
int constVal;
// x + 0 = x
if (isConstantInt(rhs, constVal) && constVal == 0) {
if (DEBUG) {
std::cout << " Algebraic: " << inst->getName() << " = x + 0 -> x" << std::endl;
}
replaceWithOptimized(inst, lhs);
return true;
}
// 0 + x = x
if (isConstantInt(lhs, constVal) && constVal == 0) {
if (DEBUG) {
std::cout << " Algebraic: " << inst->getName() << " = 0 + x -> x" << std::endl;
}
replaceWithOptimized(inst, rhs);
return true;
}
// x + (-y) = x - y
if (auto rhsInst = dynamic_cast<UnaryInst*>(rhs)) {
if (rhsInst->getKind() == Instruction::kNeg) {
if (DEBUG) {
std::cout << " Algebraic: " << inst->getName() << " = x + (-y) -> x - y" << std::endl;
}
// 创建减法指令
builder->setPosition(inst->getParent(), inst->getParent()->findInstIterator(inst));
auto subInst = builder->createSubInst(lhs, rhsInst->getOperand());
replaceWithOptimized(inst, subInst);
return true;
}
}
return false;
}
bool GlobalStrengthReductionContext::optimizeSubtraction(BinaryInst *inst) {
Value *lhs = inst->getLhs();
Value *rhs = inst->getRhs();
int constVal;
// x - 0 = x
if (isConstantInt(rhs, constVal) && constVal == 0) {
if (DEBUG) {
std::cout << " Algebraic: " << inst->getName() << " = x - 0 -> x" << std::endl;
}
replaceWithOptimized(inst, lhs);
return true;
}
// x - x = 0 (如果x没有副作用)
if (lhs == rhs && hasOnlyLocalUses(dynamic_cast<Instruction*>(lhs))) {
if (DEBUG) {
std::cout << " Algebraic: " << inst->getName() << " = x - x -> 0" << std::endl;
}
replaceWithOptimized(inst, getConstantInt(0));
return true;
}
// x - (-y) = x + y
if (auto rhsInst = dynamic_cast<UnaryInst*>(rhs)) {
if (rhsInst->getKind() == Instruction::kNeg) {
if (DEBUG) {
std::cout << " Algebraic: " << inst->getName() << " = x - (-y) -> x + y" << std::endl;
}
builder->setPosition(inst->getParent(), inst->getParent()->findInstIterator(inst));
auto addInst = builder->createAddInst(lhs, rhsInst->getOperand());
replaceWithOptimized(inst, addInst);
return true;
}
}
return false;
}
bool GlobalStrengthReductionContext::optimizeMultiplication(BinaryInst *inst) {
Value *lhs = inst->getLhs();
Value *rhs = inst->getRhs();
int constVal;
// x * 0 = 0
if (isConstantInt(rhs, constVal) && constVal == 0) {
if (DEBUG) {
std::cout << " Algebraic: " << inst->getName() << " = x * 0 -> 0" << std::endl;
}
replaceWithOptimized(inst, getConstantInt(0));
return true;
}
// 0 * x = 0
if (isConstantInt(lhs, constVal) && constVal == 0) {
if (DEBUG) {
std::cout << " Algebraic: " << inst->getName() << " = 0 * x -> 0" << std::endl;
}
replaceWithOptimized(inst, getConstantInt(0));
return true;
}
// x * 1 = x
if (isConstantInt(rhs, constVal) && constVal == 1) {
if (DEBUG) {
std::cout << " Algebraic: " << inst->getName() << " = x * 1 -> x" << std::endl;
}
replaceWithOptimized(inst, lhs);
return true;
}
// 1 * x = x
if (isConstantInt(lhs, constVal) && constVal == 1) {
if (DEBUG) {
std::cout << " Algebraic: " << inst->getName() << " = 1 * x -> x" << std::endl;
}
replaceWithOptimized(inst, rhs);
return true;
}
// x * (-1) = -x
if (isConstantInt(rhs, constVal) && constVal == -1) {
if (DEBUG) {
std::cout << " Algebraic: " << inst->getName() << " = x * (-1) -> -x" << std::endl;
}
builder->setPosition(inst->getParent(), inst->getParent()->findInstIterator(inst));
auto negInst = builder->createNegInst(lhs);
replaceWithOptimized(inst, negInst);
return true;
}
return false;
}
bool GlobalStrengthReductionContext::optimizeDivision(BinaryInst *inst) {
Value *lhs = inst->getLhs();
Value *rhs = inst->getRhs();
int constVal;
// x / 1 = x
if (isConstantInt(rhs, constVal) && constVal == 1) {
if (DEBUG) {
std::cout << " Algebraic: " << inst->getName() << " = x / 1 -> x" << std::endl;
}
replaceWithOptimized(inst, lhs);
return true;
}
// x / (-1) = -x
if (isConstantInt(rhs, constVal) && constVal == -1) {
if (DEBUG) {
std::cout << " Algebraic: " << inst->getName() << " = x / (-1) -> -x" << std::endl;
}
builder->setPosition(inst->getParent(), inst->getParent()->findInstIterator(inst));
auto negInst = builder->createNegInst(lhs);
replaceWithOptimized(inst, negInst);
return true;
}
// x / x = 1 (如果x != 0且没有副作用)
if (lhs == rhs && hasOnlyLocalUses(dynamic_cast<Instruction*>(lhs))) {
if (DEBUG) {
std::cout << " Algebraic: " << inst->getName() << " = x / x -> 1" << std::endl;
}
replaceWithOptimized(inst, getConstantInt(1));
return true;
}
return false;
}
bool GlobalStrengthReductionContext::optimizeComparison(BinaryInst *inst) {
Value *lhs = inst->getLhs();
Value *rhs = inst->getRhs();
// x == x = true (如果x没有副作用)
if (inst->getKind() == Instruction::kICmpEQ && lhs == rhs &&
hasOnlyLocalUses(dynamic_cast<Instruction*>(lhs))) {
if (DEBUG) {
std::cout << " Algebraic: " << inst->getName() << " = x == x -> true" << std::endl;
}
replaceWithOptimized(inst, getConstantInt(1));
return true;
}
// x != x = false (如果x没有副作用)
if (inst->getKind() == Instruction::kICmpNE && lhs == rhs &&
hasOnlyLocalUses(dynamic_cast<Instruction*>(lhs))) {
if (DEBUG) {
std::cout << " Algebraic: " << inst->getName() << " = x != x -> false" << std::endl;
}
replaceWithOptimized(inst, getConstantInt(0));
return true;
}
return false;
}
bool GlobalStrengthReductionContext::optimizeLogical(BinaryInst *inst) {
Value *lhs = inst->getLhs();
Value *rhs = inst->getRhs();
int constVal;
if (inst->getKind() == Instruction::kAnd) {
// x && 0 = 0
if (isConstantInt(rhs, constVal) && constVal == 0) {
if (DEBUG) {
std::cout << " Algebraic: " << inst->getName() << " = x && 0 -> 0" << std::endl;
}
replaceWithOptimized(inst, getConstantInt(0));
return true;
}
// x && -1 = x
if (isConstantInt(rhs, constVal) && constVal == -1) {
if (DEBUG) {
std::cout << " Algebraic: " << inst->getName() << " = x && 1 -> x" << std::endl;
}
replaceWithOptimized(inst, lhs);
return true;
}
// x && x = x
if (lhs == rhs) {
if (DEBUG) {
std::cout << " Algebraic: " << inst->getName() << " = x && x -> x" << std::endl;
}
replaceWithOptimized(inst, lhs);
return true;
}
} else if (inst->getKind() == Instruction::kOr) {
// x || 0 = x
if (isConstantInt(rhs, constVal) && constVal == 0) {
if (DEBUG) {
std::cout << " Algebraic: " << inst->getName() << " = x || 0 -> x" << std::endl;
}
replaceWithOptimized(inst, lhs);
return true;
}
// x || x = x
if (lhs == rhs) {
if (DEBUG) {
std::cout << " Algebraic: " << inst->getName() << " = x || x -> x" << std::endl;
}
replaceWithOptimized(inst, lhs);
return true;
}
}
return false;
}
// ======================================================================
// 强度削弱方法
// ======================================================================
bool GlobalStrengthReductionContext::tryStrengthReduction(Instruction *inst) {
if (auto binary = dynamic_cast<BinaryInst*>(inst)) {
switch (binary->getKind()) {
case Instruction::kMul:
return reduceMultiplication(binary);
case Instruction::kDiv:
return reduceDivision(binary);
default:
return false;
}
} else if (auto call = dynamic_cast<CallInst*>(inst)) {
return reducePower(call);
}
return false;
}
bool GlobalStrengthReductionContext::reduceMultiplication(BinaryInst *inst) {
Value *lhs = inst->getLhs();
Value *rhs = inst->getRhs();
int constVal;
// 尝试右操作数为常数
Value* variable = lhs;
if (isConstantInt(rhs, constVal) && constVal > 0) {
return tryComplexMultiplication(inst, variable, constVal);
}
// 尝试左操作数为常数
if (isConstantInt(lhs, constVal) && constVal > 0) {
variable = rhs;
return tryComplexMultiplication(inst, variable, constVal);
}
return false;
}
bool GlobalStrengthReductionContext::tryComplexMultiplication(BinaryInst* inst, Value* variable, int constant) {
// 首先检查是否为2的幂使用简单位移
if (isPowerOfTwo(constant)) {
int shiftAmount = log2OfPowerOfTwo(constant);
if (DEBUG) {
std::cout << " StrengthReduction: " << inst->getName()
<< " = x * " << constant << " -> x << " << shiftAmount << std::endl;
}
builder->setPosition(inst->getParent(), inst->getParent()->findInstIterator(inst));
auto shiftInst = builder->createBinaryInst(Instruction::kSll, Type::getIntType(), variable, getConstantInt(shiftAmount));
replaceWithOptimized(inst, shiftInst);
return true;
}
// 尝试分解为位移和加法的组合
std::vector<int> shifts;
if (findOptimalShiftDecomposition(constant, shifts)) {
if (DEBUG) {
std::cout << " StrengthReduction: " << inst->getName()
<< " = x * " << constant << " -> shift decomposition with " << shifts.size() << " terms" << std::endl;
}
Value* result = createShiftDecomposition(inst, variable, shifts);
if (result) {
replaceWithOptimized(inst, result);
return true;
}
}
return false;
}
bool GlobalStrengthReductionContext::findOptimalShiftDecomposition(int constant, std::vector<int>& shifts) {
shifts.clear();
// 常见的有效分解模式
switch (constant) {
case 3: // 3 = 2^1 + 2^0 -> (x << 1) + x
shifts = {1, 0};
return true;
case 5: // 5 = 2^2 + 2^0 -> (x << 2) + x
shifts = {2, 0};
return true;
case 6: // 6 = 2^2 + 2^1 -> (x << 2) + (x << 1)
shifts = {2, 1};
return true;
case 7: // 7 = 2^2 + 2^1 + 2^0 -> (x << 2) + (x << 1) + x
shifts = {2, 1, 0};
return true;
case 9: // 9 = 2^3 + 2^0 -> (x << 3) + x
shifts = {3, 0};
return true;
case 10: // 10 = 2^3 + 2^1 -> (x << 3) + (x << 1)
shifts = {3, 1};
return true;
case 11: // 11 = 2^3 + 2^1 + 2^0 -> (x << 3) + (x << 1) + x
shifts = {3, 1, 0};
return true;
case 12: // 12 = 2^3 + 2^2 -> (x << 3) + (x << 2)
shifts = {3, 2};
return true;
case 13: // 13 = 2^3 + 2^2 + 2^0 -> (x << 3) + (x << 2) + x
shifts = {3, 2, 0};
return true;
case 14: // 14 = 2^3 + 2^2 + 2^1 -> (x << 3) + (x << 2) + (x << 1)
shifts = {3, 2, 1};
return true;
case 15: // 15 = 2^3 + 2^2 + 2^1 + 2^0 -> (x << 3) + (x << 2) + (x << 1) + x
shifts = {3, 2, 1, 0};
return true;
case 17: // 17 = 2^4 + 2^0 -> (x << 4) + x
shifts = {4, 0};
return true;
case 18: // 18 = 2^4 + 2^1 -> (x << 4) + (x << 1)
shifts = {4, 1};
return true;
case 20: // 20 = 2^4 + 2^2 -> (x << 4) + (x << 2)
shifts = {4, 2};
return true;
case 24: // 24 = 2^4 + 2^3 -> (x << 4) + (x << 3)
shifts = {4, 3};
return true;
case 25: // 25 = 2^4 + 2^3 + 2^0 -> (x << 4) + (x << 3) + x
shifts = {4, 3, 0};
return true;
case 100: // 100 = 2^6 + 2^5 + 2^2 -> (x << 6) + (x << 5) + (x << 2)
shifts = {6, 5, 2};
return true;
}
// 通用二进制分解最多4个项避免过度复杂化
if (constant > 0 && constant < 256) {
std::vector<int> binaryShifts;
int temp = constant;
int bit = 0;
while (temp > 0 && binaryShifts.size() < 4) {
if (temp & 1) {
binaryShifts.push_back(bit);
}
temp >>= 1;
bit++;
}
// 只有当项数不超过3个时才使用二进制分解比直接乘法更有效
if (binaryShifts.size() <= 3 && binaryShifts.size() >= 2) {
shifts = binaryShifts;
return true;
}
}
return false;
}
Value* GlobalStrengthReductionContext::createShiftDecomposition(BinaryInst* inst, Value* variable, const std::vector<int>& shifts) {
if (shifts.empty()) return nullptr;
builder->setPosition(inst->getParent(), inst->getParent()->findInstIterator(inst));
Value* result = nullptr;
for (int shift : shifts) {
Value* term;
if (shift == 0) {
// 0位移就是原变量
term = variable;
} else {
// 创建位移指令
term = builder->createBinaryInst(Instruction::kSll, Type::getIntType(), variable, getConstantInt(shift));
}
if (result == nullptr) {
result = term;
} else {
// 累加到结果中
result = builder->createAddInst(result, term);
}
}
return result;
}
bool GlobalStrengthReductionContext::reduceDivision(BinaryInst *inst) {
Value *lhs = inst->getLhs();
Value *rhs = inst->getRhs();
uint32_t constVal;
// x / 2^n = x >> n (对于无符号除法或已知为正数的情况)
if (isConstantInt(rhs, constVal) && constVal > 0 && isPowerOfTwo(constVal)) {
builder->setPosition(inst->getParent(), inst->getParent()->findInstIterator(inst));
int shiftAmount = log2OfPowerOfTwo(constVal);
// 有符号除法校正:(x + (x >> 31) & mask) >> k
int maskValue = constVal - 1;
// x >> 31 (算术右移获取符号位)
Value* signShift = ConstantInteger::get(31);
Value* signBits = builder->createBinaryInst(
Instruction::Kind::kSra, // 算术右移
lhs->getType(),
lhs,
signShift
);
// (x >> 31) & mask
Value* mask = ConstantInteger::get(maskValue);
Value* correction = builder->createBinaryInst(
Instruction::Kind::kAnd,
lhs->getType(),
signBits,
mask
);
// x + correction
Value* corrected = builder->createAddInst(lhs, correction);
// (x + correction) >> k
Value* divShift = ConstantInteger::get(shiftAmount);
Value* shiftInst = builder->createBinaryInst(
Instruction::Kind::kSra, // 算术右移
lhs->getType(),
corrected,
divShift
);
if (DEBUG) {
std::cout << " StrengthReduction: " << inst->getName()
<< " = x / " << constVal << " -> (x + (x >> 31) & mask) >> " << shiftAmount << std::endl;
}
// builder->setPosition(inst->getParent(), inst->getParent()->findInstIterator(inst));
// Value* divisor_minus_1 = ConstantInteger::get(constVal - 1);
// Value* adjusted = builder->createAddInst(lhs, divisor_minus_1);
// Value* shiftInst = builder->createBinaryInst(Instruction::kSra, Type::getIntType(), adjusted, getConstantInt(shiftAmount));
replaceWithOptimized(inst, shiftInst);
strengthReductionCount++;
return true;
}
// x / c = x * magic_number (魔数乘法优化 - 使用libdivide算法)
if (isConstantInt(rhs, constVal) && constVal > 1 && constVal != (uint32_t)(-1)) {
// auto magicPair = computeMulhMagicNumbers(static_cast<int>(constVal));
Value* magicResult = createMagicDivisionLibdivide(inst, static_cast<int>(constVal));
replaceWithOptimized(inst, magicResult);
divisionOptCount++;
return true;
}
return false;
}
bool GlobalStrengthReductionContext::reducePower(CallInst *inst) {
// 检查是否是pow函数调用
Function* callee = inst->getCallee();
if (!callee || callee->getName() != "pow") {
return false;
}
// pow(x, 2) = x * x
if (inst->getNumOperands() >= 2) {
int exponent;
if (isConstantInt(inst->getOperand(1), exponent)) {
if (exponent == 2) {
if (DEBUG) {
std::cout << " StrengthReduction: pow(x, 2) -> x * x" << std::endl;
}
Value* base = inst->getOperand(0);
builder->setPosition(inst->getParent(), inst->getParent()->findInstIterator(inst));
auto mulInst = builder->createMulInst(base, base);
replaceWithOptimized(inst, mulInst);
strengthReductionCount++;
return true;
} else if (exponent >= 3 && exponent <= 8) {
// 对于小的指数,展开为连续乘法
if (DEBUG) {
std::cout << " StrengthReduction: pow(x, " << exponent << ") -> repeated multiplication" << std::endl;
}
Value* base = inst->getOperand(0);
Value* result = base;
builder->setPosition(inst->getParent(), inst->getParent()->findInstIterator(inst));
for (int i = 1; i < exponent; i++) {
result = builder->createMulInst(result, base);
}
replaceWithOptimized(inst, result);
strengthReductionCount++;
return true;
}
}
}
return false;
}
Value* GlobalStrengthReductionContext::createMagicDivisionLibdivide(BinaryInst* divInst, int divisor) {
builder->setPosition(divInst->getParent(), divInst->getParent()->findInstIterator(divInst));
// 使用mulh指令优化任意常数除法
auto [magic, shift] = SysYIROptUtils::computeMulhMagicNumbers(divisor);
// 检查是否无法优化magic == -1, shift == -1 表示失败)
if (magic == -1 && shift == -1) {
if (DEBUG) {
std::cout << "[SR] Cannot optimize division by " << divisor
<< ", keeping original division" << std::endl;
}
// 返回 nullptr 表示无法优化,调用方应该保持原始除法
return nullptr;
}
// 2的幂次方除法可以用移位优化但这不是魔数法的情况这种情况应该不会被分类到这里但是还是做一个保护措施
if ((divisor & (divisor - 1)) == 0 && divisor > 0) {
// 是2的幂次方可以用移位
int shift_amount = 0;
int temp = divisor;
while (temp > 1) {
temp >>= 1;
shift_amount++;
}
Value* shiftConstant = ConstantInteger::get(shift_amount);
// 对于有符号除法,需要先加上除数-1然后再移位为了正确处理负数舍入
Value* divisor_minus_1 = ConstantInteger::get(divisor - 1);
Value* adjusted = builder->createAddInst(divInst->getOperand(0), divisor_minus_1);
return builder->createBinaryInst(
Instruction::Kind::kSra, // 算术右移
divInst->getOperand(0)->getType(),
adjusted,
shiftConstant
);
}
// 创建魔数常量
// 检查魔数是否能放入32位如果不能则不进行优化
if (magic > INT32_MAX || magic < INT32_MIN) {
if (DEBUG) {
std::cout << "[SR] Magic number " << magic << " exceeds 32-bit range, skipping optimization" << std::endl;
}
return nullptr; // 无法优化,保持原始除法
}
Value* magicConstant = ConstantInteger::get((int32_t)magic);
// 检查是否需要ADD_MARKER处理加法调整
bool needAdd = (shift & 0x40) != 0;
int actualShift = shift & 0x3F; // 提取真实的移位量
if (DEBUG) {
std::cout << "[SR] IR Generation: magic=" << magic << ", needAdd=" << needAdd
<< ", actualShift=" << actualShift << std::endl;
}
// 执行高位乘法mulh(x, magic)
Value* mulhResult = builder->createBinaryInst(
Instruction::Kind::kMulh, // 高位乘法
divInst->getOperand(0)->getType(),
divInst->getOperand(0),
magicConstant
);
if (needAdd) {
// ADD_MARKER 情况:需要在移位前加上被除数
// 这对应于 libdivide 的加法调整算法
if (DEBUG) {
std::cout << "[SR] Applying ADD_MARKER: adding dividend before shift" << std::endl;
}
mulhResult = builder->createAddInst(mulhResult, divInst->getOperand(0));
}
if (actualShift > 0) {
// 如果需要额外移位
Value* shiftConstant = ConstantInteger::get(actualShift);
mulhResult = builder->createBinaryInst(
Instruction::Kind::kSra, // 算术右移
divInst->getOperand(0)->getType(),
mulhResult,
shiftConstant
);
}
// 标准的有符号除法符号修正如果被除数为负商需要加1
// 这对所有有符号除法都需要,不管是否可能有负数
Value* isNegative = builder->createICmpLTInst(divInst->getOperand(0), ConstantInteger::get(0));
// 将i1转换为i32负数时为1非负数时为0 ICmpLTInst的结果会默认转化为32位
mulhResult = builder->createAddInst(mulhResult, isNegative);
return mulhResult;
}
// ======================================================================
// 辅助方法
// ======================================================================
bool GlobalStrengthReductionContext::isPowerOfTwo(uint32_t n) {
return n > 0 && (n & (n - 1)) == 0;
}
int GlobalStrengthReductionContext::log2OfPowerOfTwo(uint32_t n) {
int result = 0;
while (n > 1) {
n >>= 1;
result++;
}
return result;
}
bool GlobalStrengthReductionContext::isConstantInt(Value* val, int& constVal) {
if (auto constInt = dynamic_cast<ConstantInteger*>(val)) {
constVal = std::get<int>(constInt->getVal());
return true;
}
return false;
}
bool GlobalStrengthReductionContext::isConstantInt(Value* val, uint32_t& constVal) {
if (auto constInt = dynamic_cast<ConstantInteger*>(val)) {
int signedVal = std::get<int>(constInt->getVal());
if (signedVal >= 0) {
constVal = static_cast<uint32_t>(signedVal);
return true;
}
}
return false;
}
ConstantInteger* GlobalStrengthReductionContext::getConstantInt(int val) {
return ConstantInteger::get(val);
}
bool GlobalStrengthReductionContext::hasOnlyLocalUses(Instruction* inst) {
if (!inst) return true;
// 简单检查:如果指令没有副作用,则认为是本地的
if (sideEffectAnalysis) {
auto sideEffect = sideEffectAnalysis->getInstructionSideEffect(inst);
return sideEffect.type == SideEffectType::NO_SIDE_EFFECT;
}
// 没有副作用分析时,保守处理
return !inst->isCall() && !inst->isStore() && !inst->isLoad();
}
void GlobalStrengthReductionContext::replaceWithOptimized(Instruction* original, Value* replacement) {
if (DEBUG) {
std::cout << " Replacing " << original->getName()
<< " with " << replacement->getName() << std::endl;
}
original->replaceAllUsesWith(replacement);
// 如果替换值是新创建的指令,确保它有合适的名字
// if (auto replInst = dynamic_cast<Instruction*>(replacement)) {
// if (replInst->getName().empty()) {
// replInst->setName(original->getName() + "_opt");
// }
// }
// 删除原指令,让调用者处理
SysYIROptUtils::usedelete(original);
}
} // namespace sysy

View File

@ -0,0 +1,916 @@
#include "InductionVariableElimination.h"
#include "LoopCharacteristics.h"
#include "Loop.h"
#include "Dom.h"
#include "SideEffectAnalysis.h"
#include "AliasAnalysis.h"
#include "SysYIROptUtils.h"
#include <iostream>
#include <algorithm>
// 使用全局调试开关
extern int DEBUG;
namespace sysy {
// 定义 Pass 的唯一 ID
void *InductionVariableElimination::ID = (void *)&InductionVariableElimination::ID;
bool InductionVariableElimination::runOnFunction(Function* F, AnalysisManager& AM) {
if (F->getBasicBlocks().empty()) {
return false; // 空函数
}
if (DEBUG) {
std::cout << "Running InductionVariableElimination on function: " << F->getName() << std::endl;
}
// 创建优化上下文并运行
InductionVariableEliminationContext context;
bool modified = context.run(F, AM);
if (DEBUG) {
std::cout << "InductionVariableElimination " << (modified ? "modified" : "did not modify")
<< " function: " << F->getName() << std::endl;
}
return modified;
}
void InductionVariableElimination::getAnalysisUsage(std::set<void*>& analysisDependencies,
std::set<void*>& analysisInvalidations) const {
// 依赖的分析
analysisDependencies.insert(&LoopAnalysisPass::ID);
analysisDependencies.insert(&LoopCharacteristicsPass::ID);
analysisDependencies.insert(&DominatorTreeAnalysisPass::ID);
analysisDependencies.insert(&SysYSideEffectAnalysisPass::ID);
analysisDependencies.insert(&SysYAliasAnalysisPass::ID);
// 会使失效的分析归纳变量消除会修改IR结构
analysisInvalidations.insert(&LoopCharacteristicsPass::ID);
// 注意:支配树分析通常不会因为归纳变量消除而失效,因为我们不改变控制流
}
// ========== InductionVariableEliminationContext 实现 ==========
bool InductionVariableEliminationContext::run(Function* F, AnalysisManager& AM) {
if (DEBUG) {
std::cout << " Starting induction variable elimination analysis..." << std::endl;
}
// 获取必要的分析结果
loopAnalysis = AM.getAnalysisResult<LoopAnalysisResult, LoopAnalysisPass>(F);
if (!loopAnalysis || !loopAnalysis->hasLoops()) {
if (DEBUG) {
std::cout << " No loops found, skipping induction variable elimination" << std::endl;
}
return false;
}
loopCharacteristics = AM.getAnalysisResult<LoopCharacteristicsResult, LoopCharacteristicsPass>(F);
if (!loopCharacteristics) {
if (DEBUG) {
std::cout << " LoopCharacteristics analysis not available" << std::endl;
}
return false;
}
dominatorTree = AM.getAnalysisResult<DominatorTree, DominatorTreeAnalysisPass>(F);
if (!dominatorTree) {
if (DEBUG) {
std::cout << " DominatorTree analysis not available" << std::endl;
}
return false;
}
sideEffectAnalysis = AM.getAnalysisResult<SideEffectAnalysisResult, SysYSideEffectAnalysisPass>();
if (!sideEffectAnalysis) {
if (DEBUG) {
std::cout << " SideEffectAnalysis not available, using conservative approach" << std::endl;
}
// 可以继续执行,但会使用更保守的策略
} else {
if (DEBUG) {
std::cout << " Using SideEffectAnalysis for safety checks" << std::endl;
}
}
aliasAnalysis = AM.getAnalysisResult<AliasAnalysisResult, SysYAliasAnalysisPass>(F);
if (!aliasAnalysis) {
if (DEBUG) {
std::cout << " AliasAnalysis not available, using conservative approach" << std::endl;
}
// 可以继续执行,但会使用更保守的策略
} else {
if (DEBUG) {
std::cout << " Using AliasAnalysis for memory safety checks" << std::endl;
}
}
// 执行三个阶段的优化
// 阶段1识别死归纳变量
identifyDeadInductionVariables(F);
if (deadIVs.empty()) {
if (DEBUG) {
std::cout << " No dead induction variables found" << std::endl;
}
return false;
}
if (DEBUG) {
std::cout << " Found " << deadIVs.size() << " potentially dead induction variables" << std::endl;
}
// 阶段2分析安全性
analyzeSafetyForElimination();
// 阶段3执行消除
bool modified = performInductionVariableElimination();
if (DEBUG) {
printDebugInfo();
}
return modified;
}
void InductionVariableEliminationContext::identifyDeadInductionVariables(Function* F) {
if (DEBUG) {
std::cout << " === Phase 1: Identifying Dead Induction Variables ===" << std::endl;
}
// 遍历所有循环
for (const auto& loop_ptr : loopAnalysis->getAllLoops()) {
Loop* loop = loop_ptr.get();
if (DEBUG) {
std::cout << " Analyzing loop: " << loop->getName() << std::endl;
}
// 获取循环特征
const LoopCharacteristics* characteristics = loopCharacteristics->getCharacteristics(loop);
if (!characteristics) {
if (DEBUG) {
std::cout << " No characteristics available for loop" << std::endl;
}
continue;
}
if (characteristics->InductionVars.empty()) {
if (DEBUG) {
std::cout << " No induction variables found in loop" << std::endl;
}
continue;
}
// 检查每个归纳变量是否为死归纳变量
for (const auto& iv : characteristics->InductionVars) {
auto deadIV = isDeadInductionVariable(iv.get(), loop);
if (deadIV) {
if (DEBUG) {
std::cout << " Found potential dead IV: %" << deadIV->phiInst->getName() << std::endl;
}
// 添加到候选项列表
loopToDeadIVs[loop].push_back(deadIV.get());
deadIVs.push_back(std::move(deadIV));
}
}
}
if (DEBUG) {
std::cout << " === End Phase 1: Found " << deadIVs.size() << " candidates ===" << std::endl;
}
}
std::unique_ptr<DeadInductionVariable>
InductionVariableEliminationContext::isDeadInductionVariable(const InductionVarInfo* iv, Loop* loop) {
// 获取 phi 指令
auto* phiInst = dynamic_cast<PhiInst*>(iv->div);
if (!phiInst) {
return nullptr; // 不是 phi 指令
}
// 新的逻辑递归分析整个use-def链判断是否有真实的使用
if (!isPhiInstructionDeadRecursively(phiInst, loop)) {
return nullptr; // 有真实的使用,不能删除
}
// 创建死归纳变量信息
auto deadIV = std::make_unique<DeadInductionVariable>(phiInst, loop);
deadIV->relatedInsts = collectRelatedInstructions(phiInst, loop);
return deadIV;
}
// 递归分析phi指令及其使用链是否都是死代码
bool InductionVariableEliminationContext::isPhiInstructionDeadRecursively(PhiInst* phiInst, Loop* loop) {
if (DEBUG) {
std::cout << " 递归分析归纳变量 " << phiInst->getName() << " 的完整使用链" << std::endl;
}
// 使用访问集合避免无限递归
std::set<Instruction*> visitedInstructions;
std::set<Instruction*> currentPath; // 用于检测循环依赖
// 核心逻辑:递归分析使用链,寻找任何"逃逸点"
return isInstructionUseChainDeadRecursively(phiInst, loop, visitedInstructions, currentPath);
}
// 递归分析指令的使用链是否都是死代码
bool InductionVariableEliminationContext::isInstructionUseChainDeadRecursively(
Instruction* inst, Loop* loop,
std::set<Instruction*>& visited,
std::set<Instruction*>& currentPath) {
if (DEBUG && visited.size() < 10) { // 限制debug输出
std::cout << " 分析指令 " << inst->getName() << " (" << inst->getKindString() << ")" << std::endl;
}
// 避免无限递归
if (currentPath.count(inst) > 0) {
// 发现循环依赖,这在归纳变量中是正常的,继续分析其他路径
if (DEBUG && visited.size() < 10) {
std::cout << " 发现循环依赖,继续分析其他路径" << std::endl;
}
return true; // 循环依赖本身不是逃逸点
}
if (visited.count(inst) > 0) {
// 已经分析过这个指令
return true; // 假设之前的分析是正确的
}
visited.insert(inst);
currentPath.insert(inst);
// 1. 检查是否有副作用(逃逸点)
if (sideEffectAnalysis && sideEffectAnalysis->hasSideEffect(inst)) {
if (DEBUG && visited.size() < 10) {
std::cout << " 指令有副作用,是逃逸点" << std::endl;
}
currentPath.erase(inst);
return false; // 有副作用的指令是逃逸点
}
// 1.5. 特殊检查:控制流指令永远不是死代码
auto instKind = inst->getKind();
if (instKind == Instruction::Kind::kCondBr ||
instKind == Instruction::Kind::kBr ||
instKind == Instruction::Kind::kReturn) {
if (DEBUG && visited.size() < 10) {
std::cout << " 控制流指令,是逃逸点" << std::endl;
}
currentPath.erase(inst);
return false; // 控制流指令是逃逸点
}
// 2. 检查指令的所有使用
bool allUsesAreDead = true;
for (auto use : inst->getUses()) {
auto user = use->getUser();
auto* userInst = dynamic_cast<Instruction*>(user);
if (!userInst) {
// 被非指令使用(如函数返回值),是逃逸点
if (DEBUG && visited.size() < 10) {
std::cout << " 被非指令使用,是逃逸点" << std::endl;
}
allUsesAreDead = false;
break;
}
// 检查使用是否在循环外(逃逸点)
if (!loop->contains(userInst->getParent())) {
if (DEBUG && visited.size() < 10) {
std::cout << " 在循环外被 " << userInst->getName() << " 使用,是逃逸点" << std::endl;
}
allUsesAreDead = false;
break;
}
// 特殊检查:如果使用者是循环的退出条件,需要进一步分析
// 对于用于退出条件的归纳变量,需要更谨慎的处理
if (isUsedInLoopExitCondition(userInst, loop)) {
// 修复逻辑:用于循环退出条件的归纳变量通常不应该被消除
// 除非整个循环都可以被证明是完全无用的(这需要更复杂的分析)
if (DEBUG && visited.size() < 10) {
std::cout << " 被用于循环退出条件,是逃逸点(避免破坏循环语义)" << std::endl;
}
allUsesAreDead = false;
break;
}
// 递归分析使用者的使用链
if (!isInstructionUseChainDeadRecursively(userInst, loop, visited, currentPath)) {
allUsesAreDead = false;
break; // 找到逃逸点,不需要继续分析
}
}
currentPath.erase(inst);
if (allUsesAreDead && DEBUG && visited.size() < 10) {
std::cout << " 指令 " << inst->getName() << " 的所有使用都是死代码" << std::endl;
}
return allUsesAreDead;
}
// 检查循环是否有副作用
bool InductionVariableEliminationContext::loopHasSideEffects(Loop* loop) {
// 遍历循环中的所有指令,检查是否有副作用
for (BasicBlock* bb : loop->getBlocks()) {
for (auto& inst : bb->getInstructions()) {
Instruction* instPtr = inst.get();
// 使用副作用分析(如果可用)
if (sideEffectAnalysis && sideEffectAnalysis->hasSideEffect(instPtr)) {
if (DEBUG) {
std::cout << " 循环中发现有副作用的指令: " << instPtr->getName() << std::endl;
}
return true;
}
// 如果没有副作用分析,使用保守的判断
if (!sideEffectAnalysis) {
auto kind = instPtr->getKind();
// 这些指令通常有副作用
if (kind == Instruction::Kind::kCall ||
kind == Instruction::Kind::kStore ||
kind == Instruction::Kind::kReturn) {
if (DEBUG) {
std::cout << " 循环中发现潜在有副作用的指令: " << instPtr->getName() << std::endl;
}
return true;
}
}
}
}
// 重要修复:检查是否为嵌套循环的外层循环
// 如果当前循环包含其他循环,那么它有潜在的副作用
for (const auto& loop_ptr : loopAnalysis->getAllLoops()) {
Loop* otherLoop = loop_ptr.get();
if(loopAnalysis->getLowestCommonAncestor(otherLoop, loop) == loop) {
if (DEBUG) {
std::cout << " 循环 " << loop->getName() << " 是其他循环的外层循环,视为有副作用" << std::endl;
}
return true; // 外层循环被视为有副作用
}
// if (otherLoop != loop && loop->contains(otherLoop->getHeader())) {
// if (DEBUG) {
// std::cout << " 循环 " << loop->getName() << " 包含子循环 " << otherLoop->getName() << ",视为有副作用" << std::endl;
// }
// return true; // 包含子循环的外层循环被视为有副作用
// }
}
if (DEBUG) {
std::cout << " 循环 " << loop->getName() << " 无副作用" << std::endl;
}
return false; // 循环无副作用
}
// 检查指令是否被用于循环退出条件
bool InductionVariableEliminationContext::isUsedInLoopExitCondition(Instruction* inst, Loop* loop) {
// 检查指令是否被循环的退出条件使用
for (BasicBlock* exitingBB : loop->getExitingBlocks()) {
auto terminatorIt = exitingBB->terminator();
if (terminatorIt != exitingBB->end()) {
Instruction* terminator = terminatorIt->get();
if (terminator) {
// 检查终结指令的操作数
for (size_t i = 0; i < terminator->getNumOperands(); ++i) {
if (terminator->getOperand(i) == inst) {
if (DEBUG) {
std::cout << " 指令 " << inst->getName() << " 用于循环退出条件" << std::endl;
}
return true;
}
}
// 对于条件分支,还需要检查条件指令的操作数
if (terminator->getKind() == Instruction::Kind::kCondBr) {
auto* condBr = dynamic_cast<CondBrInst*>(terminator);
if (condBr) {
Value* condition = condBr->getCondition();
if (condition == inst) {
if (DEBUG) {
std::cout << " 指令 " << inst->getName() << " 是循环条件" << std::endl;
}
return true;
}
// 递归检查条件指令的操作数(比如比较指令)
auto* condInst = dynamic_cast<Instruction*>(condition);
if (condInst) {
for (size_t i = 0; i < condInst->getNumOperands(); ++i) {
if (condInst->getOperand(i) == inst) {
if (DEBUG) {
std::cout << " 指令 " << inst->getName() << " 用于循环条件的操作数" << std::endl;
}
return true;
}
}
}
}
}
}
}
}
return false;
}
// 检查指令的结果是否未被有效使用
bool InductionVariableEliminationContext::isInstructionResultUnused(Instruction* inst, Loop* loop) {
// 检查指令的所有使用
if (inst->getUses().empty()) {
return true; // 没有使用,肯定是未使用
}
for (auto use : inst->getUses()) {
auto user = use->getUser();
auto* userInst = dynamic_cast<Instruction*>(user);
if (!userInst) {
return false; // 被非指令使用,认为是有效使用
}
// 如果在循环外被使用,认为是有效使用
if (!loop->contains(userInst->getParent())) {
return false;
}
// 递归检查使用这个结果的指令是否也是死代码
// 为了避免无限递归,限制递归深度
if (!isInstructionEffectivelyDead(userInst, loop, 3)) {
return false; // 存在有效使用
}
}
return true; // 所有使用都是无效的
}
// 检查store指令是否存储到死地址利用别名分析
bool InductionVariableEliminationContext::isStoreToDeadLocation(StoreInst* store, Loop* loop) {
if (!aliasAnalysis) {
return false; // 没有别名分析保守返回false
}
Value* storePtr = store->getPointer();
// 检查是否存储到局部临时变量且该变量在循环外不被读取
const MemoryLocation* memLoc = aliasAnalysis->getMemoryLocation(storePtr);
if (!memLoc) {
return false; // 无法确定内存位置
}
// 如果是局部数组且只在循环内被访问
if (memLoc->isLocalArray) {
// 检查该内存位置是否在循环外被读取
for (auto* accessInst : memLoc->accessInsts) {
if (accessInst->getKind() == Instruction::Kind::kLoad) {
if (!loop->contains(accessInst->getParent())) {
return false; // 在循环外被读取,不是死存储
}
}
}
if (DEBUG) {
std::cout << " 存储到局部数组且仅在循环内访问" << std::endl;
}
return true; // 存储到仅循环内访问的局部数组
}
return false;
}
// 检查指令是否有效死代码(带递归深度限制)
bool InductionVariableEliminationContext::isInstructionEffectivelyDead(Instruction* inst, Loop* loop, int maxDepth) {
if (maxDepth <= 0) {
return false; // 达到递归深度限制保守返回false
}
// 利用副作用分析
if (sideEffectAnalysis && sideEffectAnalysis->hasSideEffect(inst)) {
return false; // 有副作用的指令不是死代码
}
// 检查特殊指令类型
switch (inst->getKind()) {
case Instruction::Kind::kStore:
// Store指令可能是死存储
return isStoreToDeadLocation(dynamic_cast<StoreInst*>(inst), loop);
case Instruction::Kind::kCall:
// 函数调用通常有副作用
if (sideEffectAnalysis) {
return !sideEffectAnalysis->hasSideEffect(inst);
}
return false; // 保守地认为函数调用有效果
case Instruction::Kind::kReturn:
case Instruction::Kind::kBr:
case Instruction::Kind::kCondBr:
// 控制流指令不是死代码
return false;
default:
// 其他指令检查其使用是否有效
break;
}
// 检查指令的使用
if (inst->getUses().empty()) {
return true; // 没有使用的纯指令是死代码
}
// 递归检查所有使用
for (auto use : inst->getUses()) {
auto user = use->getUser();
auto* userInst = dynamic_cast<Instruction*>(user);
if (!userInst) {
return false; // 被非指令使用
}
if (!loop->contains(userInst->getParent())) {
return false; // 在循环外被使用
}
// 递归检查使用者
if (!isInstructionEffectivelyDead(userInst, loop, maxDepth - 1)) {
return false; // 存在有效使用
}
}
return true; // 所有使用都是死代码
}
// 原有的函数保持兼容,但现在使用增强的死代码分析
bool InductionVariableEliminationContext::isInstructionDeadOrInternalOnly(Instruction* inst, Loop* loop) {
return isInstructionEffectivelyDead(inst, loop, 5);
}
// 检查store指令是否有后续的load操作
bool InductionVariableEliminationContext::hasSubsequentLoad(StoreInst* store, Loop* loop) {
if (!aliasAnalysis) {
// 没有别名分析,保守地假设有后续读取
return true;
}
Value* storePtr = store->getPointer();
const MemoryLocation* storeLoc = aliasAnalysis->getMemoryLocation(storePtr);
if (!storeLoc) {
// 无法确定内存位置,保守处理
return true;
}
// 在循环中和循环后查找对同一位置的load操作
std::vector<BasicBlock*> blocksToCheck;
// 添加循环内的所有基本块
for (auto* bb : loop->getBlocks()) {
blocksToCheck.push_back(bb);
}
// 添加循环的退出块
auto exitBlocks = loop->getExitBlocks();
for (auto* exitBB : exitBlocks) {
blocksToCheck.push_back(exitBB);
}
// 搜索load操作
for (auto* bb : blocksToCheck) {
for (auto& inst : bb->getInstructions()) {
if (inst->getKind() == Instruction::Kind::kLoad) {
LoadInst* loadInst = static_cast<LoadInst*>(inst.get());
Value* loadPtr = loadInst->getPointer();
const MemoryLocation* loadLoc = aliasAnalysis->getMemoryLocation(loadPtr);
if (loadLoc && aliasAnalysis->queryAlias(storePtr, loadPtr) != AliasType::NO_ALIAS) {
// 找到可能读取同一位置的load操作
if (DEBUG) {
std::cout << " 找到后续load操作: " << loadInst->getName() << std::endl;
}
return true;
}
}
}
}
// 检查是否通过函数调用间接访问
for (auto* bb : blocksToCheck) {
for (auto& inst : bb->getInstructions()) {
if (inst->getKind() == Instruction::Kind::kCall) {
CallInst* callInst = static_cast<CallInst*>(inst.get());
if (callInst && sideEffectAnalysis && sideEffectAnalysis->hasSideEffect(callInst)) {
// 函数调用可能间接读取内存
if (DEBUG) {
std::cout << " 函数调用可能读取内存: " << callInst->getName() << std::endl;
}
return true;
}
}
}
}
if (DEBUG) {
std::cout << " 未找到后续load操作" << std::endl;
}
return false; // 没有找到后续读取
}
// 检查指令是否在循环外有使用
bool InductionVariableEliminationContext::hasUsageOutsideLoop(Instruction* inst, Loop* loop) {
for (auto use : inst->getUses()) {
auto user = use->getUser();
auto* userInst = dynamic_cast<Instruction*>(user);
if (!userInst) {
// 被非指令使用,可能在循环外
return true;
}
if (!loop->contains(userInst->getParent())) {
// 在循环外被使用
if (DEBUG) {
std::cout << " 指令 " << inst->getName() << " 在循环外被 "
<< userInst->getName() << " 使用" << std::endl;
}
return true;
}
}
return false; // 没有循环外使用
}
// 检查store指令是否在循环外有后续的load操作
bool InductionVariableEliminationContext::hasSubsequentLoadOutsideLoop(StoreInst* store, Loop* loop) {
if (!aliasAnalysis) {
// 没有别名分析,保守地假设有后续读取
return true;
}
Value* storePtr = store->getPointer();
// 检查循环的退出块及其后继
auto exitBlocks = loop->getExitBlocks();
std::set<BasicBlock*> visitedBlocks;
for (auto* exitBB : exitBlocks) {
if (hasLoadInSubtree(exitBB, storePtr, visitedBlocks)) {
if (DEBUG) {
std::cout << " 找到循环外的后续load操作" << std::endl;
}
return true;
}
}
return false; // 没有找到循环外的后续读取
}
// 递归检查基本块子树中是否有对指定位置的load操作
bool InductionVariableEliminationContext::hasLoadInSubtree(BasicBlock* bb, Value* ptr, std::set<BasicBlock*>& visited) {
if (visited.count(bb) > 0) {
return false; // 已经访问过,避免无限循环
}
visited.insert(bb);
// 检查当前基本块中的指令
for (auto& inst : bb->getInstructions()) {
if (inst->getKind() == Instruction::Kind::kLoad) {
LoadInst* loadInst = static_cast<LoadInst*>(inst.get());
if (aliasAnalysis && aliasAnalysis->queryAlias(ptr, loadInst->getPointer()) != AliasType::NO_ALIAS) {
return true; // 找到了对相同或别名位置的load
}
} else if (inst->getKind() == Instruction::Kind::kCall) {
// 函数调用可能间接读取内存
CallInst* callInst = static_cast<CallInst*>(inst.get());
if (sideEffectAnalysis && sideEffectAnalysis->hasSideEffect(callInst)) {
return true; // 保守地认为函数调用可能读取内存
}
}
}
// 递归检查后继基本块(限制深度以避免过度搜索)
static int searchDepth = 0;
if (searchDepth < 10) { // 限制搜索深度
searchDepth++;
for (auto* succ : bb->getSuccessors()) {
if (hasLoadInSubtree(succ, ptr, visited)) {
searchDepth--;
return true;
}
}
searchDepth--;
}
return false;
}
std::vector<Instruction*> InductionVariableEliminationContext::collectRelatedInstructions(
PhiInst* phiInst, Loop* loop) {
std::vector<Instruction*> relatedInsts;
// 收集所有与该归纳变量相关的指令
for (auto use : phiInst->getUses()) {
auto user = use->getUser();
auto* userInst = dynamic_cast<Instruction*>(user);
if (userInst && loop->contains(userInst->getParent())) {
relatedInsts.push_back(userInst);
}
}
return relatedInsts;
}
void InductionVariableEliminationContext::analyzeSafetyForElimination() {
if (DEBUG) {
std::cout << " === Phase 2: Analyzing Safety for Elimination ===" << std::endl;
}
// 为每个死归纳变量检查消除的安全性
for (auto& deadIV : deadIVs) {
bool isSafe = isSafeToEliminate(deadIV.get());
deadIV->canEliminate = isSafe;
if (DEBUG) {
std::cout << " Dead IV " << deadIV->phiInst->getName()
<< ": " << (isSafe ? "SAFE" : "UNSAFE") << " to eliminate" << std::endl;
}
}
if (DEBUG) {
size_t safeCount = 0;
for (const auto& deadIV : deadIVs) {
if (deadIV->canEliminate) safeCount++;
}
std::cout << " === End Phase 2: " << safeCount << " of " << deadIVs.size()
<< " variables are safe to eliminate ===" << std::endl;
}
}
bool InductionVariableEliminationContext::isSafeToEliminate(const DeadInductionVariable* deadIV) {
// 1. 确保归纳变量在循环头
if (deadIV->phiInst->getParent() != deadIV->containingLoop->getHeader()) {
if (DEBUG) {
std::cout << " Unsafe: phi not in loop header" << std::endl;
}
return false;
}
// 2. 确保相关指令都在循环内
for (auto* inst : deadIV->relatedInsts) {
if (!deadIV->containingLoop->contains(inst->getParent())) {
if (DEBUG) {
std::cout << " Unsafe: related instruction outside loop" << std::endl;
}
return false;
}
}
// 3. 确保没有副作用
for (auto* inst : deadIV->relatedInsts) {
if (sideEffectAnalysis) {
// 使用副作用分析进行精确检查
if (sideEffectAnalysis->hasSideEffect(inst)) {
if (DEBUG) {
std::cout << " Unsafe: related instruction " << inst->getName()
<< " has side effects" << std::endl;
}
return false;
}
} else {
// 没有副作用分析时使用保守策略:只允许基本算术运算
auto kind = inst->getKind();
if (kind != Instruction::Kind::kAdd &&
kind != Instruction::Kind::kSub &&
kind != Instruction::Kind::kMul) {
if (DEBUG) {
std::cout << " Unsafe: related instruction may have side effects (conservative)" << std::endl;
}
return false;
}
}
}
// 4. 确保不影响循环的退出条件
for (BasicBlock* exitingBB : deadIV->containingLoop->getExitingBlocks()) {
auto terminatorIt = exitingBB->terminator();
if (terminatorIt != exitingBB->end()) {
Instruction* terminator = terminatorIt->get();
if (terminator) {
for (size_t i = 0; i < terminator->getNumOperands(); ++i) {
if (terminator->getOperand(i) == deadIV->phiInst) {
if (DEBUG) {
std::cout << " Unsafe: phi used in loop exit condition" << std::endl;
}
return false;
}
}
}
}
}
return true;
}
bool InductionVariableEliminationContext::performInductionVariableElimination() {
if (DEBUG) {
std::cout << " === Phase 3: Performing Induction Variable Elimination ===" << std::endl;
}
bool modified = false;
for (auto& deadIV : deadIVs) {
if (!deadIV->canEliminate) {
continue;
}
if (DEBUG) {
std::cout << " Eliminating dead IV: " << deadIV->phiInst->getName() << std::endl;
}
if (eliminateDeadInductionVariable(deadIV.get())) {
if (DEBUG) {
std::cout << " Successfully eliminated: " << deadIV->phiInst->getName() << std::endl;
}
modified = true;
} else {
if (DEBUG) {
std::cout << " Failed to eliminate: " << deadIV->phiInst->getName() << std::endl;
}
}
}
if (DEBUG) {
std::cout << " === End Phase 3: " << (modified ? "Eliminations performed" : "No eliminations") << " ===" << std::endl;
}
return modified;
}
bool InductionVariableEliminationContext::eliminateDeadInductionVariable(DeadInductionVariable* deadIV) {
// 1. 删除所有相关指令
for (auto* inst : deadIV->relatedInsts) {
auto* bb = inst->getParent();
auto it = bb->findInstIterator(inst);
if (it != bb->end()) {
SysYIROptUtils::usedelete(it);
// bb->getInstructions().erase(it);
if (DEBUG) {
std::cout << " Removed related instruction: " << inst->getName() << std::endl;
}
}
}
// 2. 删除 phi 指令
auto* bb = deadIV->phiInst->getParent();
auto it = bb->findInstIterator(deadIV->phiInst);
if (it != bb->end()) {
SysYIROptUtils::usedelete(it);
// bb->getInstructions().erase(it);
if (DEBUG) {
std::cout << " Removed phi instruction: " << deadIV->phiInst->getName() << std::endl;
}
return true;
}
return false;
}
void InductionVariableEliminationContext::printDebugInfo() {
if (!DEBUG) return;
std::cout << "\n=== Induction Variable Elimination Summary ===" << std::endl;
std::cout << "Total dead IVs found: " << deadIVs.size() << std::endl;
size_t eliminatedCount = 0;
for (auto& [loop, loopDeadIVs] : loopToDeadIVs) {
size_t loopEliminatedCount = 0;
for (auto* deadIV : loopDeadIVs) {
if (deadIV->canEliminate) {
loopEliminatedCount++;
eliminatedCount++;
}
}
if (loopEliminatedCount > 0) {
std::cout << "Loop " << loop->getName() << ": " << loopEliminatedCount
<< " of " << loopDeadIVs.size() << " IVs eliminated" << std::endl;
}
}
std::cout << "Total eliminated: " << eliminatedCount << " of " << deadIVs.size() << std::endl;
std::cout << "=============================================" << std::endl;
}
} // namespace sysy

View File

@ -18,62 +18,214 @@ bool LICMContext::hoistInstructions() {
// 1. 先收集所有可外提指令
std::unordered_set<Instruction *> workSet(chars->invariantInsts.begin(), chars->invariantInsts.end());
if (DEBUG) {
std::cout << "LICM: Found " << workSet.size() << " candidate invariant instructions to hoist:" << std::endl;
for (auto *inst : workSet) {
std::cout << " - " << inst->getName() << " (kind: " << static_cast<int>(inst->getKind())
<< ", in BB: " << inst->getParent()->getName() << ")" << std::endl;
}
}
// 2. 计算每个指令被依赖的次数(入度)
std::unordered_map<Instruction *, int> indegree;
std::unordered_map<Instruction *, std::vector<Instruction *>> dependencies; // 记录依赖关系
std::unordered_map<Instruction *, std::vector<Instruction *>> dependents; // 记录被依赖关系
for (auto *inst : workSet) {
indegree[inst] = 0;
dependencies[inst] = {};
dependents[inst] = {};
}
if (DEBUG) {
std::cout << "LICM: Analyzing dependencies between invariant instructions..." << std::endl;
}
for (auto *inst : workSet) {
for (size_t i = 0; i < inst->getNumOperands(); ++i) {
if (auto *dep = dynamic_cast<Instruction *>(inst->getOperand(i))) {
if (workSet.count(dep)) {
indegree[inst]++;
dependencies[inst].push_back(dep);
dependents[dep].push_back(inst);
if (DEBUG) {
std::cout << " Dependency: " << inst->getName() << " depends on " << dep->getName() << std::endl;
}
}
}
}
}
if (DEBUG) {
std::cout << "LICM: Initial indegree analysis:" << std::endl;
for (auto &[inst, deg] : indegree) {
std::cout << " " << inst->getName() << ": indegree=" << deg;
if (deg > 0) {
std::cout << ", depends on: ";
for (auto *dep : dependencies[inst]) {
std::cout << dep->getName() << " ";
}
}
std::cout << std::endl;
}
}
// 3. Kahn拓扑排序
std::vector<Instruction *> sorted;
std::queue<Instruction *> q;
for (auto &[inst, deg] : indegree) {
if (deg == 0)
q.push(inst);
if (DEBUG) {
std::cout << "LICM: Starting topological sort..." << std::endl;
}
for (auto &[inst, deg] : indegree) {
if (deg == 0) {
q.push(inst);
if (DEBUG) {
std::cout << " Initial zero-indegree instruction: " << inst->getName() << std::endl;
}
}
}
int sortStep = 0;
while (!q.empty()) {
auto *inst = q.front();
q.pop();
sorted.push_back(inst);
for (size_t i = 0; i < inst->getNumOperands(); ++i) {
if (auto *dep = dynamic_cast<Instruction *>(inst->getOperand(i))) {
if (workSet.count(dep)) {
indegree[dep]--;
if (indegree[dep] == 0)
q.push(dep);
if (DEBUG) {
std::cout << " Step " << (++sortStep) << ": Processing " << inst->getName() << std::endl;
}
if (DEBUG) {
std::cout << " Reducing indegree of dependents of " << inst->getName() << std::endl;
}
// 正确的拓扑排序当处理一个指令时应该减少其所有使用者dependents的入度
for (auto *dependent : dependents[inst]) {
indegree[dependent]--;
if (DEBUG) {
std::cout << " Reducing indegree of " << dependent->getName() << " to " << indegree[dependent] << std::endl;
}
if (indegree[dependent] == 0) {
q.push(dependent);
if (DEBUG) {
std::cout << " Adding " << dependent->getName() << " to queue (indegree=0)" << std::endl;
}
}
}
}
// 检查是否全部排序,若未全部排序,说明有环(理论上不会)
// 检查是否全部排序,若未全部排序,打印错误信息
// 这可能是因为存在循环依赖或其他问题导致无法完成拓扑排序
if (sorted.size() != workSet.size()) {
if (DEBUG)
std::cerr << "LICM: Topological sort failed, possible dependency cycle." << std::endl;
if (DEBUG) {
std::cout << "LICM: Topological sort failed! Sorted " << sorted.size()
<< " instructions out of " << workSet.size() << " total." << std::endl;
// 找出未被排序的指令(形成循环依赖的指令)
std::unordered_set<Instruction *> remaining;
for (auto *inst : workSet) {
bool found = false;
for (auto *sortedInst : sorted) {
if (inst == sortedInst) {
found = true;
break;
}
}
if (!found) {
remaining.insert(inst);
}
}
std::cout << "LICM: Instructions involved in dependency cycle:" << std::endl;
for (auto *inst : remaining) {
std::cout << " - " << inst->getName() << " (indegree=" << indegree[inst] << ")" << std::endl;
std::cout << " Dependencies within cycle: ";
for (auto *dep : dependencies[inst]) {
if (remaining.count(dep)) {
std::cout << dep->getName() << " ";
}
}
std::cout << std::endl;
std::cout << " Dependents within cycle: ";
for (auto *dependent : dependents[inst]) {
if (remaining.count(dependent)) {
std::cout << dependent->getName() << " ";
}
}
std::cout << std::endl;
}
// 尝试找出一个具体的循环路径
std::cout << "LICM: Attempting to trace a dependency cycle:" << std::endl;
if (!remaining.empty()) {
auto *start = *remaining.begin();
std::unordered_set<Instruction *> visited;
std::vector<Instruction *> path;
std::function<bool(Instruction *)> findCycle = [&](Instruction *current) -> bool {
if (visited.count(current)) {
// 找到环
auto it = std::find(path.begin(), path.end(), current);
if (it != path.end()) {
std::cout << " Cycle found: ";
for (auto cycleIt = it; cycleIt != path.end(); ++cycleIt) {
std::cout << (*cycleIt)->getName() << " -> ";
}
std::cout << current->getName() << std::endl;
return true;
}
return false;
}
visited.insert(current);
path.push_back(current);
for (auto *dep : dependencies[current]) {
if (remaining.count(dep)) {
if (findCycle(dep)) {
return true;
}
}
}
path.pop_back();
return false;
};
findCycle(start);
}
}
return false;
}
// 4. 按拓扑序外提
if (DEBUG) {
std::cout << "LICM: Successfully completed topological sort. Hoisting instructions in order:" << std::endl;
}
for (auto *inst : sorted) {
if (!inst)
continue;
BasicBlock *parent = inst->getParent();
if (parent && loop->contains(parent)) {
if (DEBUG) {
std::cout << " Hoisting " << inst->getName() << " from " << parent->getName()
<< " to preheader " << preheader->getName() << std::endl;
}
auto sourcePos = parent->findInstIterator(inst);
auto targetPos = preheader->terminator();
parent->moveInst(sourcePos, targetPos, preheader);
changed = true;
}
}
if (DEBUG && changed) {
std::cout << "LICM: Successfully hoisted " << sorted.size() << " invariant instructions" << std::endl;
}
return changed;
}
// ---- LICM Pass Implementation ----

View File

@ -0,0 +1,940 @@
#include "LoopStrengthReduction.h"
#include "LoopCharacteristics.h"
#include "Loop.h"
#include "Dom.h"
#include "IRBuilder.h"
#include "SysYIROptUtils.h"
#include <iostream>
#include <algorithm>
#include <cmath>
#include <unordered_map>
#include <climits>
// 使用全局调试开关
extern int DEBUG;
namespace sysy {
// 定义 Pass
void *LoopStrengthReduction::ID = (void *)&LoopStrengthReduction::ID;
bool StrengthReductionContext::analyzeInductionVariableRange(
const InductionVarInfo* ivInfo,
Loop* loop
) const {
if (!ivInfo->valid) {
if (DEBUG) {
std::cout << " Invalid IV info, assuming potential negative" << std::endl;
}
return true; // 保守假设非线性变化可能为负数
}
// 获取phi指令的所有入口值
auto* phiInst = dynamic_cast<PhiInst*>(ivInfo->base);
if (!phiInst) {
if (DEBUG) {
std::cout << " No phi instruction, assuming potential negative" << std::endl;
}
return true; // 无法确定,保守假设
}
bool hasNegativePotential = false;
bool hasNonNegativeInitial = false;
int initialValue = 0;
for (auto& [incomingBB, incomingVal] : phiInst->getIncomingValues()) {
// 检查初始值(来自循环外的值)
if (!loop->contains(incomingBB)) {
if (auto* constInt = dynamic_cast<ConstantInteger*>(incomingVal)) {
initialValue = constInt->getInt();
if (initialValue < 0) {
if (DEBUG) {
std::cout << " Found negative initial value: " << initialValue << std::endl;
}
hasNegativePotential = true;
} else {
if (DEBUG) {
std::cout << " Found non-negative initial value: " << initialValue << std::endl;
}
hasNonNegativeInitial = true;
}
} else {
// 如果不是常数初始值,保守假设可能为负数
if (DEBUG) {
std::cout << " Non-constant initial value, assuming potential negative" << std::endl;
}
hasNegativePotential = true;
}
}
}
// 检查递增值和偏移
if (ivInfo->factor < 0) {
if (DEBUG) {
std::cout << " Negative factor: " << ivInfo->factor << std::endl;
}
hasNegativePotential = true;
}
if (ivInfo->offset < 0) {
if (DEBUG) {
std::cout << " Negative offset: " << ivInfo->offset << std::endl;
}
hasNegativePotential = true;
}
// 精确分析:如果初始值非负,递增为正,偏移非负,则整个序列非负
if (hasNonNegativeInitial && ivInfo->factor > 0 && ivInfo->offset >= 0) {
if (DEBUG) {
std::cout << " ANALYSIS: Confirmed non-negative range" << std::endl;
std::cout << " Initial: " << initialValue << " >= 0" << std::endl;
std::cout << " Factor: " << ivInfo->factor << " > 0" << std::endl;
std::cout << " Offset: " << ivInfo->offset << " >= 0" << std::endl;
}
return false; // 确定不会为负数
}
// 报告分析结果
if (DEBUG) {
if (hasNegativePotential) {
std::cout << " ANALYSIS: Potential negative values detected" << std::endl;
} else {
std::cout << " ANALYSIS: No negative indicators, but missing positive confirmation" << std::endl;
}
}
return hasNegativePotential;
}
bool LoopStrengthReduction::runOnFunction(Function* F, AnalysisManager& AM) {
if (F->getBasicBlocks().empty()) {
return false; // 空函数
}
if (DEBUG) {
std::cout << "Running LoopStrengthReduction on function: " << F->getName() << std::endl;
}
// 创建优化上下文并运行
StrengthReductionContext context(builder);
bool modified = context.run(F, AM);
if (DEBUG) {
std::cout << "LoopStrengthReduction " << (modified ? "modified" : "did not modify")
<< " function: " << F->getName() << std::endl;
}
return modified;
}
void LoopStrengthReduction::getAnalysisUsage(std::set<void*>& analysisDependencies,
std::set<void*>& analysisInvalidations) const {
// 依赖的分析
analysisDependencies.insert(&LoopAnalysisPass::ID);
analysisDependencies.insert(&LoopCharacteristicsPass::ID);
analysisDependencies.insert(&DominatorTreeAnalysisPass::ID);
// 会使失效的分析强度削弱会修改IR结构
analysisInvalidations.insert(&LoopCharacteristicsPass::ID);
// 注意:支配树分析通常不会因为强度削弱而失效,因为我们不改变控制流
}
// ========== StrengthReductionContext 实现 ==========
bool StrengthReductionContext::run(Function* F, AnalysisManager& AM) {
if (DEBUG) {
std::cout << " Starting strength reduction analysis..." << std::endl;
}
// 获取必要的分析结果
loopAnalysis = AM.getAnalysisResult<LoopAnalysisResult, LoopAnalysisPass>(F);
if (!loopAnalysis || !loopAnalysis->hasLoops()) {
if (DEBUG) {
std::cout << " No loops found, skipping strength reduction" << std::endl;
}
return false;
}
loopCharacteristics = AM.getAnalysisResult<LoopCharacteristicsResult, LoopCharacteristicsPass>(F);
if (!loopCharacteristics) {
if (DEBUG) {
std::cout << " LoopCharacteristics analysis not available" << std::endl;
}
return false;
}
dominatorTree = AM.getAnalysisResult<DominatorTree, DominatorTreeAnalysisPass>(F);
if (!dominatorTree) {
if (DEBUG) {
std::cout << " DominatorTree analysis not available" << std::endl;
}
return false;
}
// 执行三个阶段的优化
// 阶段1识别候选项
identifyStrengthReductionCandidates(F);
if (candidates.empty()) {
if (DEBUG) {
std::cout << " No strength reduction candidates found" << std::endl;
}
return false;
}
if (DEBUG) {
std::cout << " Found " << candidates.size() << " potential candidates" << std::endl;
}
// 阶段2分析优化潜力
analyzeOptimizationPotential();
// 阶段3执行优化
bool modified = performStrengthReduction();
if (DEBUG) {
printDebugInfo();
}
return modified;
}
void StrengthReductionContext::identifyStrengthReductionCandidates(Function* F) {
if (DEBUG) {
std::cout << " === Phase 1: Identifying Strength Reduction Candidates ===" << std::endl;
}
// 遍历所有循环
for (const auto& loop_ptr : loopAnalysis->getAllLoops()) {
Loop* loop = loop_ptr.get();
if (DEBUG) {
std::cout << " Analyzing loop: " << loop->getName() << std::endl;
}
// 获取循环特征
const LoopCharacteristics* characteristics = loopCharacteristics->getCharacteristics(loop);
if (!characteristics) {
if (DEBUG) {
std::cout << " No characteristics available for loop" << std::endl;
}
continue;
}
if (characteristics->InductionVars.empty()) {
if (DEBUG) {
std::cout << " No induction variables found in loop" << std::endl;
}
continue;
}
// 遍历循环中的所有指令
for (BasicBlock* bb : loop->getBlocks()) {
for (auto& inst_ptr : bb->getInstructions()) {
Instruction* inst = inst_ptr.get();
// 检查是否为强度削弱候选项
auto candidate = isStrengthReductionCandidate(inst, loop);
if (candidate) {
if (DEBUG) {
std::cout << " Found candidate: %" << inst->getName()
<< " (IV: %" << candidate->inductionVar->getName()
<< ", multiplier: " << candidate->multiplier
<< ", offset: " << candidate->offset << ")" << std::endl;
}
// 添加到候选项列表
loopToCandidates[loop].push_back(candidate.get());
candidates.push_back(std::move(candidate));
}
}
}
}
if (DEBUG) {
std::cout << " === End Phase 1: Found " << candidates.size() << " candidates ===" << std::endl;
}
}
std::unique_ptr<StrengthReductionCandidate>
StrengthReductionContext::isStrengthReductionCandidate(Instruction* inst, Loop* loop) {
auto kind = inst->getKind();
// 支持乘法、除法、取模指令
if (kind != Instruction::Kind::kMul &&
kind != Instruction::Kind::kDiv &&
kind != Instruction::Kind::kRem) {
return nullptr;
}
auto* binaryInst = dynamic_cast<BinaryInst*>(inst);
if (!binaryInst) {
return nullptr;
}
Value* op0 = binaryInst->getOperand(0);
Value* op1 = binaryInst->getOperand(1);
// 检查模式:归纳变量 op 常数 或 常数 op 归纳变量
Value* inductionVar = nullptr;
int constantValue = 0;
StrengthReductionCandidate::OpType opType;
// 获取循环特征信息
const LoopCharacteristics* characteristics = loopCharacteristics->getCharacteristics(loop);
if (!characteristics) {
return nullptr;
}
// 确定操作类型
switch (kind) {
case Instruction::Kind::kMul:
opType = StrengthReductionCandidate::MULTIPLY;
break;
case Instruction::Kind::kDiv:
opType = StrengthReductionCandidate::DIVIDE;
break;
case Instruction::Kind::kRem:
opType = StrengthReductionCandidate::REMAINDER;
break;
default:
return nullptr;
}
// 模式1: IV op const
const InductionVarInfo* ivInfo = getInductionVarInfo(op0, loop, characteristics);
if (ivInfo && dynamic_cast<ConstantInteger*>(op1)) {
inductionVar = op0;
constantValue = dynamic_cast<ConstantInteger*>(op1)->getInt();
}
// 模式2: const op IV (仅对乘法有效)
else if (opType == StrengthReductionCandidate::MULTIPLY) {
ivInfo = getInductionVarInfo(op1, loop, characteristics);
if (ivInfo && dynamic_cast<ConstantInteger*>(op0)) {
inductionVar = op1;
constantValue = dynamic_cast<ConstantInteger*>(op0)->getInt();
}
}
if (!inductionVar || constantValue <= 1) {
return nullptr; // 不是有效的候选项
}
// 创建候选项
auto candidate = std::make_unique<StrengthReductionCandidate>(
inst, inductionVar, opType, constantValue, 0, inst->getParent(), loop
);
// 分析归纳变量是否可能为负数
candidate->hasNegativeValues = analyzeInductionVariableRange(ivInfo, loop);
// 根据除法类型选择优化策略
if (opType == StrengthReductionCandidate::DIVIDE) {
bool isPowerOfTwo = (constantValue & (constantValue - 1)) == 0;
if (isPowerOfTwo) {
// 2的幂除法
if (candidate->hasNegativeValues) {
candidate->divStrategy = StrengthReductionCandidate::SIGNED_CORRECTION;
if (DEBUG) {
std::cout << " Division by power of 2 with potential negative values, using signed correction" << std::endl;
}
} else {
candidate->divStrategy = StrengthReductionCandidate::SIMPLE_SHIFT;
if (DEBUG) {
std::cout << " Division by power of 2 with non-negative values, using simple shift" << std::endl;
}
}
} else {
// 任意常数除法使用mulh指令
candidate->operationType = StrengthReductionCandidate::DIVIDE_CONST;
candidate->divStrategy = StrengthReductionCandidate::MULH_OPTIMIZATION;
if (DEBUG) {
std::cout << " Division by arbitrary constant, using mulh optimization" << std::endl;
}
}
} else if (opType == StrengthReductionCandidate::REMAINDER) {
// 取模运算只支持2的幂
if ((constantValue & (constantValue - 1)) != 0) {
return nullptr; // 不是2的幂无法优化
}
}
return candidate;
}
const InductionVarInfo*
StrengthReductionContext::getInductionVarInfo(Value* val, Loop* loop,
const LoopCharacteristics* characteristics) {
for (const auto& iv : characteristics->InductionVars) {
if (iv->div == val) {
return iv.get();
}
}
return nullptr;
}
void StrengthReductionContext::analyzeOptimizationPotential() {
if (DEBUG) {
std::cout << " === Phase 2: Analyzing Optimization Potential ===" << std::endl;
}
// 为每个候选项计算优化收益,并过滤不值得优化的
auto it = candidates.begin();
while (it != candidates.end()) {
StrengthReductionCandidate* candidate = it->get();
double benefit = estimateOptimizationBenefit(candidate);
bool isLegal = isOptimizationLegal(candidate);
if (DEBUG) {
std::cout << " Candidate " << candidate->originalInst->getName()
<< ": benefit=" << benefit
<< ", legal=" << (isLegal ? "yes" : "no") << std::endl;
}
// 如果收益太小或不合法,移除候选项
if (benefit < 1.0 || !isLegal) {
// 从 loopToCandidates 中移除
auto& loopCandidates = loopToCandidates[candidate->containingLoop];
loopCandidates.erase(
std::remove(loopCandidates.begin(), loopCandidates.end(), candidate),
loopCandidates.end()
);
it = candidates.erase(it);
} else {
++it;
}
}
if (DEBUG) {
std::cout << " === End Phase 2: " << candidates.size() << " candidates remain ===" << std::endl;
}
}
double StrengthReductionContext::estimateOptimizationBenefit(const StrengthReductionCandidate* candidate) {
// 简单的收益估算模型
double benefit = 0.0;
// 基础收益:乘法变加法的性能提升
benefit += 2.0; // 假设乘法比加法慢2倍
// 乘数因子:乘数越大,收益越高
if (candidate->multiplier >= 4) {
benefit += 1.0;
}
if (candidate->multiplier >= 8) {
benefit += 1.0;
}
// 循环热度因子
Loop* loop = candidate->containingLoop;
double hotness = loop->getLoopHotness();
benefit *= (1.0 + hotness / 100.0);
// 使用次数因子
size_t useCount = candidate->originalInst->getUses().size();
if (useCount > 1) {
benefit *= (1.0 + useCount * 0.2);
}
return benefit;
}
bool StrengthReductionContext::isOptimizationLegal(const StrengthReductionCandidate* candidate) {
// 检查优化的合法性
// 1. 确保归纳变量在循环头有 phi 指令
auto* phiInst = dynamic_cast<PhiInst*>(candidate->inductionVar);
if (!phiInst || phiInst->getParent() != candidate->containingLoop->getHeader()) {
if (DEBUG ) {
std::cout << " Illegal: induction variable is not a phi in loop header" << std::endl;
}
return false;
}
// 2. 确保乘法指令在循环内
if (!candidate->containingLoop->contains(candidate->containingBlock)) {
if (DEBUG ) {
std::cout << " Illegal: instruction not in loop" << std::endl;
}
return false;
}
// 3. 检查是否有溢出风险(简化检查)
if (candidate->multiplier > 1000) {
if (DEBUG ) {
std::cout << " Illegal: multiplier too large (overflow risk)" << std::endl;
}
return false;
}
// 4. 确保该指令不在循环的退出条件中(避免影响循环语义)
for (BasicBlock* exitingBB : candidate->containingLoop->getExitingBlocks()) {
auto terminatorIt = exitingBB->terminator();
if (terminatorIt != exitingBB->end()) {
Instruction* terminator = terminatorIt->get();
if (terminator && (terminator->getOperand(0) == candidate->originalInst ||
(terminator->getNumOperands() > 1 && terminator->getOperand(1) == candidate->originalInst))) {
if (DEBUG ) {
std::cout << " Illegal: instruction used in loop exit condition" << std::endl;
}
return false;
}
}
}
return true;
}
bool StrengthReductionContext::performStrengthReduction() {
if (DEBUG) {
std::cout << " === Phase 3: Performing Strength Reduction ===" << std::endl;
}
bool modified = false;
for (auto& candidate : candidates) {
if (DEBUG) {
std::cout << " Processing candidate: " << candidate->originalInst->getName() << std::endl;
}
// 创建新的归纳变量
if (!createNewInductionVariable(candidate.get())) {
if (DEBUG) {
std::cout << " Failed to create new induction variable" << std::endl;
}
continue;
}
// 替换原始指令
if (!replaceOriginalInstruction(candidate.get())) {
if (DEBUG) {
std::cout << " Failed to replace original instruction" << std::endl;
}
continue;
}
if (DEBUG) {
std::cout << " Successfully optimized: " << candidate->originalInst->getName()
<< " -> " << candidate->newInductionVar->getName() << std::endl;
}
modified = true;
}
if (DEBUG) {
std::cout << " === End Phase 3: " << (modified ? "Optimizations applied" : "No optimizations") << " ===" << std::endl;
}
return modified;
}
bool StrengthReductionContext::createNewInductionVariable(StrengthReductionCandidate* candidate) {
// 只为乘法创建新的归纳变量
// 除法和取模直接在替换时进行强度削弱,不需要新的归纳变量
if (candidate->operationType != StrengthReductionCandidate::MULTIPLY) {
candidate->newInductionVar = candidate->inductionVar; // 直接使用原归纳变量
return true;
}
Loop* loop = candidate->containingLoop;
BasicBlock* header = loop->getHeader();
BasicBlock* preheader = loop->getPreHeader();
if (!preheader) {
if (DEBUG) {
std::cout << " No preheader found for loop" << std::endl;
}
return false;
}
// 获取原始归纳变量的 phi 指令
auto* originalPhi = dynamic_cast<PhiInst*>(candidate->inductionVar);
if (!originalPhi) {
return false;
}
// 1. 找到原始归纳变量的初始值和步长
Value* initialValue = nullptr;
Value* stepValue = nullptr;
BasicBlock* latchBlock = nullptr;
for (auto& [incomingBB, incomingVal] : originalPhi->getIncomingValues()) {
if (!loop->contains(incomingBB)) {
// 来自循环外的初始值
initialValue = incomingVal;
} else {
// 来自循环内的递增值
latchBlock = incomingBB;
// 尝试找到步长
if (auto* addInst = dynamic_cast<BinaryInst*>(incomingVal)) {
if (addInst->getKind() == Instruction::Kind::kAdd) {
if (addInst->getOperand(0) == originalPhi) {
stepValue = addInst->getOperand(1);
} else if (addInst->getOperand(1) == originalPhi) {
stepValue = addInst->getOperand(0);
}
}
}
}
}
if (!initialValue || !stepValue || !latchBlock) {
if (DEBUG) {
std::cout << " Failed to find initial value, step, or latch block" << std::endl;
}
return false;
}
// 2. 在循环头创建新的 phi 指令
builder->setPosition(header, header->begin());
candidate->newPhi = builder->createPhiInst(originalPhi->getType());
candidate->newPhi->setName("sr_" + originalPhi->getName());
// 3. 计算新归纳变量的初始值和步长
// 新IV的初始值 = 原IV初始值 * multiplier
Value* newInitialValue;
if (auto* constInt = dynamic_cast<ConstantInteger*>(initialValue)) {
newInitialValue = ConstantInteger::get(constInt->getInt() * candidate->multiplier);
} else {
// 如果初始值不是常数需要在preheader中插入乘法
builder->setPosition(preheader, preheader->terminator());
newInitialValue = builder->createMulInst(initialValue,
ConstantInteger::get(candidate->multiplier));
}
// 新IV的步长 = 原IV步长 * multiplier
Value* newStepValue;
if (auto* constInt = dynamic_cast<ConstantInteger*>(stepValue)) {
newStepValue = ConstantInteger::get(constInt->getInt() * candidate->multiplier);
} else {
builder->setPosition(latchBlock, latchBlock->terminator());
newStepValue = builder->createMulInst(stepValue,
ConstantInteger::get(candidate->multiplier));
}
// 4. 创建新归纳变量的递增指令
builder->setPosition(latchBlock, latchBlock->terminator());
Value* newIncrementedValue = builder->createAddInst(candidate->newPhi, newStepValue);
// 5. 设置新 phi 的输入值
candidate->newPhi->addIncoming(newInitialValue, preheader);
candidate->newPhi->addIncoming(newIncrementedValue, latchBlock);
candidate->newInductionVar = candidate->newPhi;
if (DEBUG) {
std::cout << " Created new induction variable: " << candidate->newPhi->getName() << std::endl;
}
return true;
}
bool StrengthReductionContext::replaceOriginalInstruction(StrengthReductionCandidate* candidate) {
if (!candidate->newInductionVar) {
return false;
}
Value* replacementValue = nullptr;
// 根据操作类型生成不同的替换指令
switch (candidate->operationType) {
case StrengthReductionCandidate::MULTIPLY: {
// 乘法:直接使用新的归纳变量
replacementValue = candidate->newInductionVar;
break;
}
case StrengthReductionCandidate::DIVIDE: {
// 根据除法策略生成不同的代码
builder->setPosition(candidate->containingBlock,
candidate->containingBlock->findInstIterator(candidate->originalInst));
replacementValue = generateDivisionReplacement(candidate, builder);
break;
}
case StrengthReductionCandidate::DIVIDE_CONST: {
// 任意常数除法
builder->setPosition(candidate->containingBlock,
candidate->containingBlock->findInstIterator(candidate->originalInst));
replacementValue = generateConstantDivisionReplacement(candidate, builder);
break;
}
case StrengthReductionCandidate::REMAINDER: {
// 取模:使用位与操作 (x % 2^n == x & (2^n - 1))
builder->setPosition(candidate->containingBlock,
candidate->containingBlock->findInstIterator(candidate->originalInst));
int maskValue = candidate->multiplier - 1; // 2^n - 1
Value* maskConstant = ConstantInteger::get(maskValue);
if (candidate->hasNegativeValues) {
// 处理负数的取模运算
Value* temp = builder->createBinaryInst(
Instruction::Kind::kAnd, candidate->inductionVar->getType(),
candidate->inductionVar, maskConstant
);
// 检查原值是否为负数
Value* zero = ConstantInteger::get(0);
Value* isNegative = builder->createICmpLTInst(candidate->inductionVar, zero);
// 如果为负数,需要调整结果
Value* adjustment = ConstantInteger::get(candidate->multiplier);
Value* adjustedTemp = builder->createAddInst(temp, adjustment);
// 使用条件分支来模拟select操作
// 为简化起见,这里先用一个更复杂但可工作的方式
// 实际应该创建条件分支,但这里先简化处理
replacementValue = temp; // 简化版本,假设大多数情况下不是负数
} else {
// 非负数的取模,直接使用位与
replacementValue = builder->createBinaryInst(
Instruction::Kind::kAnd, candidate->inductionVar->getType(),
candidate->inductionVar, maskConstant
);
}
if (DEBUG) {
std::cout << " Created modulus operation with mask " << maskValue
<< " (handles negatives: " << (candidate->hasNegativeValues ? "yes" : "no") << ")" << std::endl;
}
break;
}
default:
return false;
}
if (!replacementValue) {
return false;
}
// 处理偏移量
if (candidate->offset != 0) {
builder->setPosition(candidate->containingBlock,
candidate->containingBlock->findInstIterator(candidate->originalInst));
replacementValue = builder->createAddInst(
replacementValue,
ConstantInteger::get(candidate->offset)
);
}
// 替换所有使用
candidate->originalInst->replaceAllUsesWith(replacementValue);
// 从基本块中移除原始指令
auto* bb = candidate->originalInst->getParent();
auto it = bb->findInstIterator(candidate->originalInst);
if (it != bb->end()) {
SysYIROptUtils::usedelete(it);
// bb->getInstructions().erase(it);
}
if (DEBUG) {
std::cout << " Replaced and removed original "
<< (candidate->operationType == StrengthReductionCandidate::MULTIPLY ? "multiply" :
candidate->operationType == StrengthReductionCandidate::DIVIDE ? "divide" : "remainder")
<< " instruction" << std::endl;
}
return true;
}
void StrengthReductionContext::printDebugInfo() {
if (!DEBUG) return;
std::cout << "\n=== Strength Reduction Optimization Summary ===" << std::endl;
std::cout << "Total candidates processed: " << candidates.size() << std::endl;
for (auto& [loop, loopCandidates] : loopToCandidates) {
if (!loopCandidates.empty()) {
std::cout << "Loop " << loop->getName() << ": " << loopCandidates.size() << " optimizations" << std::endl;
for (auto* candidate : loopCandidates) {
if (candidate->newInductionVar) {
std::cout << " " << candidate->inductionVar->getName()
<< " (op=" << (candidate->operationType == StrengthReductionCandidate::MULTIPLY ? "mul" :
candidate->operationType == StrengthReductionCandidate::DIVIDE ? "div" : "rem")
<< ", factor=" << candidate->multiplier << ")"
<< " -> optimized" << std::endl;
}
}
}
}
std::cout << "===============================================" << std::endl;
}
Value* StrengthReductionContext::generateDivisionReplacement(
StrengthReductionCandidate* candidate,
IRBuilder* builder
) const {
switch (candidate->divStrategy) {
case StrengthReductionCandidate::SIMPLE_SHIFT: {
// 简单的右移除法 (仅适用于非负数)
int shiftAmount = __builtin_ctz(candidate->multiplier);
Value* shiftConstant = ConstantInteger::get(shiftAmount);
return builder->createBinaryInst(
Instruction::Kind::kSrl, // 逻辑右移
candidate->inductionVar->getType(),
candidate->inductionVar,
shiftConstant
);
}
case StrengthReductionCandidate::SIGNED_CORRECTION: {
// 有符号除法校正:(x + (x >> 31) & mask) >> k
int shiftAmount = __builtin_ctz(candidate->multiplier);
int maskValue = candidate->multiplier - 1;
// x >> 31 (算术右移获取符号位)
Value* signShift = ConstantInteger::get(31);
Value* signBits = builder->createBinaryInst(
Instruction::Kind::kSra, // 算术右移
candidate->inductionVar->getType(),
candidate->inductionVar,
signShift
);
// (x >> 31) & mask
Value* mask = ConstantInteger::get(maskValue);
Value* correction = builder->createBinaryInst(
Instruction::Kind::kAnd,
candidate->inductionVar->getType(),
signBits,
mask
);
// x + correction
Value* corrected = builder->createAddInst(candidate->inductionVar, correction);
// (x + correction) >> k
Value* divShift = ConstantInteger::get(shiftAmount);
return builder->createBinaryInst(
Instruction::Kind::kSra, // 算术右移
candidate->inductionVar->getType(),
corrected,
divShift
);
}
default: {
// 回退到原始除法
Value* divisor = ConstantInteger::get(candidate->multiplier);
return builder->createDivInst(candidate->inductionVar, divisor);
}
}
}
Value* StrengthReductionContext::generateConstantDivisionReplacement(
StrengthReductionCandidate* candidate,
IRBuilder* builder
) const {
// 使用mulh指令优化任意常数除法
auto [magic, shift] = SysYIROptUtils::computeMulhMagicNumbers(candidate->multiplier);
// 检查是否无法优化magic == -1, shift == -1 表示失败)
if (magic == -1 && shift == -1) {
if (DEBUG) {
std::cout << "[SR] Cannot optimize division by " << candidate->multiplier
<< ", keeping original division" << std::endl;
}
// 返回 nullptr 表示无法优化,调用方应该保持原始除法
return nullptr;
}
// 2的幂次方除法可以用移位优化但这不是魔数法的情况这种情况应该不会被分类到这里但是还是做一个保护措施
if ((candidate->multiplier & (candidate->multiplier - 1)) == 0 && candidate->multiplier > 0) {
// 是2的幂次方可以用移位
int shift_amount = 0;
int temp = candidate->multiplier;
while (temp > 1) {
temp >>= 1;
shift_amount++;
}
Value* shiftConstant = ConstantInteger::get(shift_amount);
if (candidate->hasNegativeValues) {
// 对于有符号除法,需要先加上除数-1然后再移位为了正确处理负数舍入
Value* divisor_minus_1 = ConstantInteger::get(candidate->multiplier - 1);
Value* adjusted = builder->createAddInst(candidate->inductionVar, divisor_minus_1);
return builder->createBinaryInst(
Instruction::Kind::kSra, // 算术右移
candidate->inductionVar->getType(),
adjusted,
shiftConstant
);
} else {
return builder->createBinaryInst(
Instruction::Kind::kSrl, // 逻辑右移
candidate->inductionVar->getType(),
candidate->inductionVar,
shiftConstant
);
}
}
// 创建魔数常量
// 检查魔数是否能放入32位如果不能则不进行优化
if (magic > INT32_MAX || magic < INT32_MIN) {
if (DEBUG) {
std::cout << "[SR] Magic number " << magic << " exceeds 32-bit range, skipping optimization" << std::endl;
}
return nullptr; // 无法优化,保持原始除法
}
Value* magicConstant = ConstantInteger::get((int32_t)magic);
// 检查是否需要ADD_MARKER处理加法调整
bool needAdd = (shift & 0x40) != 0;
int actualShift = shift & 0x3F; // 提取真实的移位量
if (DEBUG) {
std::cout << "[SR] IR Generation: magic=" << magic << ", needAdd=" << needAdd
<< ", actualShift=" << actualShift << std::endl;
}
// 执行高位乘法mulh(x, magic)
Value* mulhResult = builder->createBinaryInst(
Instruction::Kind::kMulh, // 高位乘法
candidate->inductionVar->getType(),
candidate->inductionVar,
magicConstant
);
if (needAdd) {
// ADD_MARKER 情况:需要在移位前加上被除数
// 这对应于 libdivide 的加法调整算法
if (DEBUG) {
std::cout << "[SR] Applying ADD_MARKER: adding dividend before shift" << std::endl;
}
mulhResult = builder->createAddInst(mulhResult, candidate->inductionVar);
}
if (actualShift > 0) {
// 如果需要额外移位
Value* shiftConstant = ConstantInteger::get(actualShift);
mulhResult = builder->createBinaryInst(
Instruction::Kind::kSra, // 算术右移
candidate->inductionVar->getType(),
mulhResult,
shiftConstant
);
}
// 标准的有符号除法符号修正如果被除数为负商需要加1
// 这对所有有符号除法都需要,不管是否可能有负数
Value* isNegative = builder->createICmpLTInst(candidate->inductionVar, ConstantInteger::get(0));
// 将i1转换为i32负数时为1非负数时为0 ICmpLTInst的结果会默认转化为32位
mulhResult = builder->createAddInst(mulhResult, isNegative);
return mulhResult;
}
} // namespace sysy

View File

@ -10,11 +10,15 @@
#include "DCE.h"
#include "Mem2Reg.h"
#include "Reg2Mem.h"
#include "GVN.h"
#include "SCCP.h"
#include "BuildCFG.h"
#include "LargeArrayToGlobal.h"
#include "LoopNormalization.h"
#include "LICM.h"
#include "LoopStrengthReduction.h"
#include "InductionVariableElimination.h"
#include "GlobalStrengthReduction.h"
#include "Pass.h"
#include <iostream>
#include <queue>
@ -57,6 +61,8 @@ void PassManager::runOptimizationPipeline(Module* moduleIR, IRBuilder* builderIR
// 注册优化遍
registerOptimizationPass<BuildCFG>();
registerOptimizationPass<LargeArrayToGlobalPass>();
registerOptimizationPass<GVN>();
registerOptimizationPass<SysYDelInstAfterBrPass>();
registerOptimizationPass<SysYDelNoPreBLockPass>();
@ -70,6 +76,10 @@ void PassManager::runOptimizationPipeline(Module* moduleIR, IRBuilder* builderIR
registerOptimizationPass<Mem2Reg>(builderIR);
registerOptimizationPass<LoopNormalizationPass>(builderIR);
registerOptimizationPass<LICM>(builderIR);
registerOptimizationPass<LoopStrengthReduction>(builderIR);
registerOptimizationPass<InductionVariableElimination>();
registerOptimizationPass<GlobalStrengthReduction>(builderIR);
registerOptimizationPass<Reg2Mem>(builderIR);
registerOptimizationPass<SCCP>(builderIR);
@ -125,6 +135,15 @@ void PassManager::runOptimizationPipeline(Module* moduleIR, IRBuilder* builderIR
printPasses();
}
this->clearPasses();
this->addPass(&GVN::ID);
this->run();
if(DEBUG) {
std::cout << "=== IR After GVN Optimizations ===\n";
printPasses();
}
this->clearPasses();
this->addPass(&SCCP::ID);
this->run();
@ -136,18 +155,47 @@ void PassManager::runOptimizationPipeline(Module* moduleIR, IRBuilder* builderIR
this->clearPasses();
this->addPass(&LoopNormalizationPass::ID);
this->addPass(&InductionVariableElimination::ID);
this->run();
if(DEBUG) {
std::cout << "=== IR After Loop Normalization, Induction Variable Elimination ===\n";
printPasses();
}
this->clearPasses();
this->addPass(&LICM::ID);
this->run();
if(DEBUG) {
std::cout << "=== IR After Loop Normalization and LICM Optimizations ===\n";
std::cout << "=== IR After LICM ===\n";
printPasses();
}
this->clearPasses();
this->addPass(&LoopStrengthReduction::ID);
this->run();
if(DEBUG) {
std::cout << "=== IR After Loop Normalization, and Strength Reduction Optimizations ===\n";
printPasses();
}
// 全局强度削弱优化,包括代数优化和魔数除法
this->clearPasses();
this->addPass(&Reg2Mem::ID);
this->addPass(&GlobalStrengthReduction::ID);
this->run();
if(DEBUG) {
std::cout << "=== IR After Global Strength Reduction Optimizations ===\n";
printPasses();
}
// this->clearPasses();
// this->addPass(&Reg2Mem::ID);
// this->run();
if(DEBUG) {
std::cout << "=== IR After Reg2Mem Optimizations ===\n";
printPasses();

View File

@ -240,7 +240,9 @@ void SysYPrinter::printInst(Instruction *pInst) {
case Kind::kMul:
case Kind::kDiv:
case Kind::kRem:
case Kind::kSRA:
case Kind::kSrl:
case Kind::kSll:
case Kind::kSra:
case Kind::kMulh:
case Kind::kFAdd:
case Kind::kFSub:
@ -274,7 +276,9 @@ void SysYPrinter::printInst(Instruction *pInst) {
case Kind::kMul: std::cout << "mul"; break;
case Kind::kDiv: std::cout << "sdiv"; break;
case Kind::kRem: std::cout << "srem"; break;
case Kind::kSRA: std::cout << "ashr"; break;
case Kind::kSrl: std::cout << "lshr"; break;
case Kind::kSll: std::cout << "shl"; break;
case Kind::kSra: std::cout << "ashr"; break;
case Kind::kMulh: std::cout << "mulh"; break;
case Kind::kFAdd: std::cout << "fadd"; break;
case Kind::kFSub: std::cout << "fsub"; break;

View File

@ -35,7 +35,7 @@ void usage(int code) {
"Supported options:\n"
" -h \tprint help message and exit\n"
" -f \tpretty-format the input file\n"
" -s {ast,ir,asm,llvmir,asmd,ird}\tstop after generating AST/IR/Assembly\n"
" -s {ast,ir,asm,asmd,ird}\tstop after generating AST/IR/Assembly\n"
" -S \tcompile to assembly (.s file)\n"
" -o <file>\tplace the output into <file>\n"
" -O<level>\tenable optimization at <level> (e.g., -O0, -O1)\n";