Compare commits
127 Commits
deploy-202
...
deploy-202
| Author | SHA1 | Date | |
|---|---|---|---|
| 86c33eac05 | |||
| db00d02494 | |||
| 926e765451 | |||
| c4d1e31273 | |||
| de1f74c425 | |||
| 3ba12bf320 | |||
| 167c2ac2ae | |||
| 32684d8255 | |||
| f2477c4af3 | |||
| b1efd481b4 | |||
| 676880ca05 | |||
| df50eedaeb | |||
| dcc075b39c | |||
| f7f1cf2b41 | |||
| 881c2a9723 | |||
| b5f14d9385 | |||
| 72b06c67ca | |||
| 4db3cc3fb5 | |||
| 17f1bed310 | |||
| b848ffca5a | |||
| 603506d142 | |||
| 0179c13cf4 | |||
| 7e5f6800b7 | |||
| 64ba25a77e | |||
| 208d5528b5 | |||
| a269366ac5 | |||
| 1b9a7a4827 | |||
| b2c2f3289d | |||
| 0ecd47f0ac | |||
| 6550c8a25b | |||
| f24cc7ec88 | |||
| c8a8bf9a37 | |||
| 446a6a6fcb | |||
| d8b004e5e5 | |||
| cd814de495 | |||
| e4ad23a1a5 | |||
| 58c8cd53f5 | |||
| ec91a4e259 | |||
| 91f755959b | |||
| 92c89f7616 | |||
| 66047dc6a3 | |||
| 22cf18a1d6 | |||
| 19a433c94f | |||
| 45dfbc8d59 | |||
| f8e423f579 | |||
| 5b43f208ac | |||
| 845f969c2e | |||
| 9c5d9ea78c | |||
| 0ce742a86e | |||
| f312792fe9 | |||
| 32ea24df56 | |||
| a1cf60c420 | |||
| f879a0f521 | |||
| 004ef82488 | |||
| 8f1d592d4e | |||
| 537533ee43 | |||
| bfe218be07 | |||
| 384f7c548b | |||
| 57fe17dc21 | |||
| e48cddab9f | |||
| aef10b48e8 | |||
| 373726b02f | |||
| a0b69f20fb | |||
| 999f2c6615 | |||
| 1eedb55ca0 | |||
| 8fe9867f33 | |||
| 166d0fc372 | |||
| 873dbf64d0 | |||
| f387aecc03 | |||
| c268191826 | |||
| 03e88eee70 | |||
| 0f1fcc835d | |||
| c5af4f1c49 | |||
| 9a53e1b917 | |||
| ef09bc70d4 | |||
| aed4577490 | |||
| 35b421b60b | |||
| f3f603a032 | |||
| de0f8422e9 | |||
| 35691ab7bc | |||
| 61768fa180 | |||
| 520ebd96f0 | |||
| 6868f638d7 | |||
| e8699d6d25 | |||
| 0727d5a6d8 | |||
| fc7afdbb35 | |||
| bfe2b248cd | |||
| 6d60522ce2 | |||
| 807fb3f560 | |||
| 82288464c3 | |||
| 7e8b90ffd4 | |||
| b3cf3cba29 | |||
| 03b62b138f | |||
| 8e94f89931 | |||
| b388dc4542 | |||
| 48b0aec6c3 | |||
| 1fb5cd398d | |||
| 206a0af424 | |||
| 877a0f5dc2 | |||
| a3c4d5a2b8 | |||
| 39c13c46ec | |||
| dd38bdc133 | |||
| 38bee5d5ac | |||
| 98511efd91 | |||
| 507096a0f6 | |||
| 7f2e501cea | |||
| 860ebcd447 | |||
| 31b6711d74 | |||
| 42dce9820b | |||
| 09ae47924e | |||
| f5922d0178 | |||
| 63906d0648 | |||
| 6ba05e0d8c | |||
| e4fd16e36a | |||
| 32bdc17dc3 | |||
| 8deb4ed076 | |||
| 37e99e37a3 | |||
| 8e69992b29 | |||
| 15fe69187a | |||
| fff19ca1ea | |||
| 4a329eeaf2 | |||
| 3dc4b28c92 | |||
| 202e6d7cd8 | |||
| 3e4cac089e | |||
| 76d7b14b2e | |||
| 535a935bf1 | |||
| efe74cba6c |
1
.gitignore
vendored
1
.gitignore
vendored
@ -36,6 +36,7 @@ doxygen
|
||||
|
||||
!/testdata/functional/*.out
|
||||
!/testdata/h_functional/*.out
|
||||
!/testdata/performance/*.out
|
||||
build/
|
||||
.antlr
|
||||
.vscode/
|
||||
|
||||
272
CompilerDesign.md
Normal file
272
CompilerDesign.md
Normal file
@ -0,0 +1,272 @@
|
||||
# 编译器核心技术与优化详解
|
||||
|
||||
本文档深入剖析 mysysy 编译器的内部实现,重点阐述其在前端、中端和后端所采用的核心编译技术及优化算法,并结合具体实现函数进行说明。
|
||||
|
||||
## 1. 编译器整体架构
|
||||
|
||||
本编译器采用经典的三段式架构,将编译过程清晰地划分为前端、中端和后端三个主要部分。每个部分处理不同的抽象层级,并通过定义良好的接口(AST, IR)进行通信,实现了高度的模块化。
|
||||
|
||||
```mermaid
|
||||
graph TD
|
||||
A[源代码 .sy] --> B{前端 Frontend};
|
||||
B --> C[抽象语法树 AST];
|
||||
C --> D{中端 Midend};
|
||||
D --> E[SSA-based IR];
|
||||
E -- 优化 --> F[优化后的 IR];
|
||||
F --> G{后端 Backend};
|
||||
G --> H[目标机代码 MachineInstr];
|
||||
H --> I[RISC-V 64 汇编代码 .s];
|
||||
|
||||
subgraph 前端
|
||||
B
|
||||
end
|
||||
subgraph 中端
|
||||
D
|
||||
end
|
||||
subgraph 后端
|
||||
G
|
||||
end
|
||||
```
|
||||
|
||||
- **前端 (Frontend)**:负责词法、语法、语义分析,将 SysY 源代码解析为抽象语法树 (AST)。
|
||||
- **中端 (Midend)**:基于 AST 生成与具体机器无关的中间表示 (IR),并在此基础上进行深入的分析和优化。
|
||||
- **后端 (Backend)**:将优化后的 IR 翻译成目标平台(RISC-V 64)的汇编代码。
|
||||
|
||||
---
|
||||
|
||||
## 2. 前端技术 (Frontend)
|
||||
|
||||
前端的核心任务是进行语法和语义的分析与验证,其工作流程如下:
|
||||
|
||||
```mermaid
|
||||
graph TD
|
||||
subgraph "前端处理流程"
|
||||
Source["源文件 (.sy)"] --> Lexer["词法分析器 (SysYLexer)"];
|
||||
Lexer --> TokenStream["Token 流"];
|
||||
TokenStream --> Parser["语法分析器 (SysYParser)"];
|
||||
Parser --> ParseTree["解析树"];
|
||||
ParseTree --> Visitor["AST构建 (SysYVisitor)"];
|
||||
Visitor --> AST[抽象语法树];
|
||||
end
|
||||
```
|
||||
|
||||
- **词法与语法分析**:
|
||||
- **技术**: 采用 **ANTLR (ANother Tool for Language Recognition)** 框架。通过在 `frontend/SysY.g4` 文件中定义的上下文无关文法,ANTLR 能够自动生成高效的 LL(*) 词法分析器 (`SysYLexer.cpp`) 和语法分析器 (`SysYParser.cpp`)。
|
||||
- **实现**: 词法分析器将字符流转换为记号 (Token) 流,语法分析器则根据文法规则将记号流组织成一棵解析树 (Parse Tree)。这棵树精确地反映了源代码的语法结构。
|
||||
|
||||
- **AST 构建**:
|
||||
- **技术**: 应用 **访问者 (Visitor) 设计模式** 遍历 ANTLR 生成的解析树。该模式将数据结构(解析树)与作用于其上的操作(AST构建逻辑)解耦。
|
||||
- **实现**: `frontend/SysYVisitor.cpp` 中定义了具体的遍历逻辑。在遍历过程中,会构建一个比解析树更抽象、更面向编译需求的**抽象语法树 (Abstract Syntax Tree, AST)**。AST 忽略了纯粹的语法细节(如括号、分号),只保留了核心的语义结构,是前端传递给中端的接口。
|
||||
|
||||
---
|
||||
|
||||
## 3. 中端技术与优化 (Midend)
|
||||
|
||||
中端是编译器的核心,所有与目标机器无关的分析和优化都在此阶段完成。
|
||||
|
||||
### 3.1. 中间表示 (IR) 及设计要点
|
||||
|
||||
- **技术**: 设计了一种三地址码(Three-Address Code)风格的中间表示,其形式和设计哲学深受 **LLVM IR** 的启发。IR 的核心特征是采用了**静态单赋值 (Static Single Assignment, SSA)** 形式。
|
||||
- **实现**: `midend/IR.cpp` 定义了 IR 的核心数据结构,如 `Instruction`, `BasicBlock`, `Function` 和 `Module`。`midend/SysYIRGenerator.cpp` 负责将前端的 AST 转换为这种 IR。在 SSA 形式下,每个变量只被赋值一次,使得变量的定义-使用关系(Def-Use Chain)变得异常清晰,极大地简化了后续的优化算法。通过继承并重写 SysYBaseVisitor 类,遍历 AST 节点生成自定义 IR,并在 IR 生成阶段实现了简单的常量传播和公共子表达式消除(CSE)。
|
||||
- **设计要点**:
|
||||
- **`alloca` 指令集中管理**:
|
||||
所有 `alloca` 指令统一放置在入口基本块,并与实际计算指令分离。这有助于后续指令调度器专注于优化计算密集型指令的执行顺序,避免内存分配指令的干扰。
|
||||
- **消除 `fallthrough` 现象**:
|
||||
通过确保所有基本块均以终结指令结尾,消除基本块间的 `fallthrough`,简化了控制流图(CFG)的构建和分析。这一做法提升了编译器整体质量,使中端各类 Pass 的编写和维护更加规范和高效。
|
||||
|
||||
|
||||
### 3.2. 核心优化详解
|
||||
|
||||
编译器的分析和优化被组织成一系列独立的“遍”(Pass)。每个 Pass 都是一个独立的算法模块,对 IR 进行特定的分析或变换。这种设计具有高度的模块化和可扩展性。
|
||||
|
||||
#### 3.2.1. SSA 构建与解构
|
||||
|
||||
- **Mem2Reg (`Mem2Reg.cpp`)**:
|
||||
- **目标**: 将对栈内存 (`alloca`) 的 `load`/`store` 操作,提升为对虚拟寄存器的直接操作,并构建 SSA 形式。
|
||||
- **技术**: 该过程是实现 SSA 的关键。它依赖于**支配树 (Dominator Tree)** 分析,通过寻找变量定义块的**支配边界 (Dominance Frontier)** 来确定在何处插入 **Φ (Phi) 函数**。
|
||||
- **实现**: `Mem2RegContext::run` 驱动此过程。首先调用 `isPromotableAlloca` 识别所有仅被 `load`/`store` 使用的标量 `alloca`。然后,`insertPhis` 根据支配边界信息在必要的控制流汇合点插入 `phi` 指令。最后,`renameVariables` 递归地遍历支配树,用一个模拟的值栈来将 `load` 替换为栈顶的 SSA 值,将 `store` 视为对栈的一次 `push` 操作,从而完成重命名。值得一提的是,由于我们在IR生成阶段就将所有alloca指令统一放置在入口块,极大地简化了Mem2Reg遍的实现和支配树分析的计算。
|
||||
|
||||
- **Reg2Mem (`Reg2Mem.cpp`)**:
|
||||
- **目标**: 执行 `Mem2Reg` 的逆操作,将程序从 SSA 形式转换回基于内存的表示。这通常是为不支持 SSA 的后端做准备的**SSA解构 (SSA Destruction)** 步骤。
|
||||
- **技术**: 为每个 SSA 值(指令结果、函数参数)在函数入口创建一个 `alloca` 栈槽。然后,在每个 SSA 值的定义点之后插入一个 `store` 将其存入对应的栈槽;在每个使用点之前插入一个 `load` 从栈槽中取出值。
|
||||
- **实现**: `Reg2MemContext::run` 驱动此过程。`allocateMemoryForSSAValues` 为所有需要转换的 SSA 值创建 `alloca` 指令。`rewritePhis` 特殊处理 `phi` 指令,在每个前驱块的末尾插入 `store`。`insertLoadsAndStores` 则处理所有非 `phi` 指令的定义和使用,插入相应的 `store` 和 `load`。虽然
|
||||
|
||||
#### 3.2.2. 常量与死代码优化
|
||||
|
||||
- **SCCP (`SCCP.cpp`)**:
|
||||
- **目标**: 稀疏条件常量传播。在编译期计算常量表达式,并利用分支条件为常数的信息来消除死代码,比简单的常量传播更强大。
|
||||
- **技术**: 这是一种基于数据流分析的格理论(Lattice Theory)的优化。它为每个变量维护一个值状态,可能为 `Top` (未定义), `Constant` (某个常量值), 或 `Bottom` (非常量)。同时,它跟踪基本块的可达性,如果一个分支的条件被推断为常量,则其不可达的后继分支在分析中会被直接忽略。
|
||||
- **实现**: `SCCPContext::run` 驱动整个分析过程。它维护一个指令工作列表和一个边工作列表。`ProcessInstruction` 和 `ProcessEdge` 函数交替执行,不断地从 IR 中传播常量和可达性信息,直到达到不动点为止。最后,`PropagateConstants` 和 `SimplifyControlFlow` 将推断出的常量替换到代码中,并移除死块。
|
||||
|
||||
- **DCE (`DCE.cpp`)**:
|
||||
- **目标**: 简单死代码消除。移除那些计算结果对程序输出没有贡献的指令。
|
||||
- **技术**: 采用**标记-清除 (Mark and Sweep)** 算法。从具有副作用的指令(如 `store`, `call`, `return`)开始,反向追溯其操作数,标记所有相关的指令为“活跃”。
|
||||
- **实现**: `DCEContext::run` 实现了此算法。第一次遍历时,通过 `isAlive` 函数识别出具有副作用的“根”指令,然后调用 `addAlive` 递归地将所有依赖的指令加入 `alive_insts` 集合。第二次遍历时,所有未被标记为活跃的指令都将被删除。
|
||||
- **未来规划**: 后续开发更多分析遍会为DCE收集更多的IR信息,能够迭代出更健壮的DEC遍。
|
||||
|
||||
#### 3.2.3. 控制流图 (CFG) 优化
|
||||
|
||||
- **实现**: `SysYIRCFGOpt.cpp` 中定义了一系列用于清理和简化控制流图的 Pass。
|
||||
- **`SysYDelInstAfterBrPass`**: 删除分支指令后的死代码。
|
||||
- **`SysYDelNoPreBLockPass`**: 通过从入口块开始的图遍历(BFS),识别并删除所有不可达的基本块。
|
||||
- **`SysYDelEmptyBlockPass`**: 识别并删除仅包含一条无条件跳转指令的空块,将其前驱直接重定向到其后继。
|
||||
- **`SysYBlockMergePass`**: 如果一个块 A 只有一个后继 B,且 B 只有一个前驱 A,则将 A 和 B 合并为一个块。
|
||||
- **`SysYCondBr2BrPass`**: 如果一个条件分支的条件是常量,则将其转换为一个无条件分支。
|
||||
- **`SysYAddReturnPass`**: 确保所有没有终结指令的函数出口路径都有一个 `return` 指令,以保证 CFG 的完整性。
|
||||
|
||||
#### 3.2.4. 其他优化
|
||||
|
||||
- **LargeArrayToGlobal (`LargeArrayToGlobal.cpp`)**:
|
||||
- **目标**: 防止因大型局部数组导致的栈溢出,并可能改善数据局部性。
|
||||
- **技术**: 遍历函数中的 `alloca` 指令,如果通过 `calculateTypeSize` 计算出其分配的内存大小超过一个阈值(如 1024 字节),则将其转换为一个全局变量。
|
||||
- **实现**: `convertAllocaToGlobal` 函数负责创建一个新的 `GlobalValue`,并调用 `replaceAllUsesWith` 将原 `alloca` 的所有使用者重定向到新的全局变量,最后删除原 `alloca` 指令。
|
||||
|
||||
#### 3.3. 核心分析遍
|
||||
|
||||
为了为优化遍收集信息,最大程度发掘程序优化潜力,我们目前设计并实现了以下关键的分析遍:
|
||||
|
||||
- **支配树分析 (Dominator Tree Analysis)**:
|
||||
- **技术**: 通过计算每个基本块的支配节点,构建出一棵支配树结构。我们在计算支配节点时采用了**逆后序遍历(RPO, Reverse Post Order)**,以保证数据流分析的收敛速度和正确性。在计算直接支配者(Idom, Immediate Dominator)时,采用了经典的**Lengauer-Tarjan(LT)算法**,该算法以高效的并查集和路径压缩技术著称,能够在线性时间内准确计算出每个基本块的直接支配者关系。
|
||||
- **实现**: `Dom.cpp` 实现了支配树分析。该分析为每个基本块分配其直接支配者,并递归构建整棵支配树。支配树是许多高级优化(尤其是 SSA 形式下的优化)的基础。例如,Mem2Reg 需要依赖支配树来正确插入 Phi 指令,并在变量重命名阶段高效遍历控制流图。此外,循环相关优化(如循环不变量外提)也依赖于支配树信息来识别循环头和循环体的关系。
|
||||
|
||||
- **活跃性分析 (Liveness Analysis)**:
|
||||
- **技术**: 活跃性分析用于确定在程序的某一特定点上,哪些变量的值在未来会被用到。我们采用**经典的不动点迭代算法**,在数据流分析框架下,逆序遍历基本块,迭代计算每个基本块的 `live-in` 和 `live-out` 集合,直到收敛为止。这种方法简单且易于实现,能够满足大多数编译优化的需求。
|
||||
- **未来规划**: 若后续对分析效率有更高要求,可考虑引入如**工作列表算法**或者**转化为基于SSA的图可达性分析**等更高效的算法,以进一步提升大型函数或复杂控制流下的分析性能。
|
||||
- **实现**: `Liveness.cpp` 提供了活跃性分析。该分析采用经典的数据流分析框架,迭代计算每个基本块的 `live-in` 和 `live-out` 集合。活跃性信息是死代码消除(DCE)、寄存器分配等优化的必要前置步骤。通过准确的活跃性分析,可以识别出无用的变量和指令,从而为后续优化遍提供坚实的数据基础。
|
||||
|
||||
|
||||
### 3.4. 未来的规划
|
||||
|
||||
基于现有的成果,我们规划将中端能力进一步扩展,近期我们重点将放在循环相关的分析和函数内联的实现,以期大幅提升最终程序的性能。
|
||||
|
||||
- **循环优化**:
|
||||
我们正在开发一个健壮的分析遍来准确识别程序中的循环结构,并通过对已识别的循环进行规范化的转换遍,为后续的向量化、并行化工作做铺垫。并通过循环不变量提升、循环归纳变量分析与强度削减等优化提升循环相关代码的执行效率。
|
||||
- **函数内联**:
|
||||
函数内联能够将简单函数(可能需要收集更多信息)内联到call指令相应位置,减少栈空间相关变动,并且为其他遍发掘优化空间。
|
||||
- **`LLVM IR`格式化**:
|
||||
我们将为所有的IR设计并实现通用的打印器方法,使得IR能够显式化为可编译运行的LLVM IR,通过编排脚本和调用llvm相关工具链,我们能够绕过后端编译运行中间代码,为验证中端正确性提供系统化的方法,同时减轻后端开发bug溯源的压力。
|
||||
---
|
||||
|
||||
## 4. 后端技术与优化 (Backend)
|
||||
|
||||
后端负责将经过优化的、与机器无关的 IR 转换为针对 RISC-V 64 位架构的汇编代码。
|
||||
|
||||
### 4.1. 栈帧布局 (Stack Frame Layout)
|
||||
|
||||
在函数调用发生时,后端需要在栈上创建一个**栈帧 (Stack Frame)** 来存储局部变量、传递参数和保存寄存器。本编译器采用的栈帧布局遵循 RISC-V 调用约定,结构如下:
|
||||
|
||||
```
|
||||
高地址 +-----------------------------+
|
||||
| ... |
|
||||
| 函数参数 (8+) | <-- 调用者传入的、放不进寄存器的参数
|
||||
+-----------------------------+
|
||||
| 返回地址 (ra) | <-- sp 在函数入口指向的位置
|
||||
+-----------------------------+
|
||||
| 旧的帧指针 (s0/fp) |
|
||||
+-----------------------------+ <-- s0/fp 在函数序言后指向的位置
|
||||
| 被调用者保存的寄存器 |
|
||||
| (Callee-Saved Regs) |
|
||||
+-----------------------------+
|
||||
| 局部变量 (Alloca) |
|
||||
+-----------------------------+
|
||||
| 寄存器溢出区域 |
|
||||
| (Spill Slots) |
|
||||
+-----------------------------+
|
||||
| 为调用其他函数预留的 |
|
||||
| 出参空间 (Out-Args) |
|
||||
低地址 +-----------------------------+ <-- sp 在函数序言后指向的位置
|
||||
```
|
||||
|
||||
- **实现**: `PrologueEpilogueInsertion.h` 和 `EliminateFrameIndices.h` 中的 Pass 负责生成函数序言(prologue)和尾声(epilogue)代码,来构建和销毁上述栈帧。`EliminateFrameIndices` 会将所有对抽象栈槽(如局部变量、溢出槽)的访问,替换为对帧指针 `s0` 或栈指针 `sp` 的、带有具体偏移量的访问。
|
||||
|
||||
### 4.2. 指令选择 (Instruction Selection)
|
||||
|
||||
- **目标**: 将抽象的 IR 指令高效地翻译成具体的目标机指令序列。
|
||||
- **技术**: 采用 **基于 DAG (Directed Acyclic Graph) 的模式匹配** 算法。
|
||||
- **实现**: `RISCv64ISel.cpp` 中的 `RISCv64ISel::select()` 驱动此过程。`selectBasicBlock()` 为每个基本块调用 `build_dag()` 来构建一个操作的 DAG,然后通过 `select_recursive()` 对 DAG 进行自底向上的遍历和匹配。在 `selectNode()` 函数中,通过一个大的 `switch` 语句,为不同类型的 DAG 节点(如 `BINARY`, `LOAD`, `STORE`)匹配最优的指令序列。例如,一个 IR 的加法指令,如果其中一个操作数是小常数,会被直接匹配为一条 `ADDIW` 指令,而不是 `LI` 和 `ADDW` 两条指令。
|
||||
|
||||
### 4.3. 寄存器分配 (Register Allocation)
|
||||
|
||||
- **目标**: 将无限的虚拟寄存器映射到有限的物理寄存器上,并优雅地处理寄存器不足(溢出)的情况。
|
||||
- **技术**: 实现了经典的**基于图着色 (Graph Coloring) 的全局寄存器分配算法**,这是一种强大但复杂的全局优化方法。
|
||||
- **实现**: `RISCv64RegAlloc.cpp` 中的 `RISCv64RegAlloc::run()` 是主入口。它在一个循环中执行分配,直到没有寄存器需要溢出为止。其内部流程极其精密,如下图所示:
|
||||
|
||||
```mermaid
|
||||
graph TD
|
||||
subgraph "寄存器分配主循环 (RISCv64RegAlloc::run)"
|
||||
direction LR
|
||||
Start((Start)) --> Liveness[1. 活跃性分析 LivenessAnalysis]
|
||||
Liveness --> Build[2. 构建冲突图 Build]
|
||||
Build --> Worklist[3. 创建工作表 MakeWorklist]
|
||||
Worklist --> Loop{Main Loop}
|
||||
Loop -- simplifyWorklist 非空 --> Simplify[4a. 简化 Simplify]
|
||||
Simplify --> Loop
|
||||
Loop -- worklistMoves 非空 --> Coalesce[4b. 合并 Coalesce]
|
||||
Coalesce --> Loop
|
||||
Loop -- freezeWorklist 非空 --> Freeze[4c. 冻结 Freeze]
|
||||
Freeze --> Loop
|
||||
Loop -- spillWorklist 非空 --> Spill[4d. 选择溢出 SelectSpill]
|
||||
Spill --> Loop
|
||||
Loop -- 所有工作表为空 --> Assign[5. 分配颜色 AssignColors]
|
||||
Assign --> CheckSpill{有溢出?}
|
||||
CheckSpill -- Yes --> Rewrite[6. 重写代码 RewriteProgram]
|
||||
Rewrite --> Liveness
|
||||
CheckSpill -- No --> Finish((Finish))
|
||||
end
|
||||
```
|
||||
|
||||
1. **`analyzeLiveness()`**: 对机器指令进行数据流分析,计算出每个虚拟寄存器的活跃范围。
|
||||
2. **`build()`**: 根据活跃性信息构建**冲突图 (Interference Graph)**。如果两个虚拟寄存器同时活跃,则它们冲突,在图中连接一条边。
|
||||
3. **`makeWorklist()`**: 将图节点(虚拟寄存器)根据其度数放入不同的工作列表,为着色做准备。
|
||||
4. **核心着色阶段 (The Loop)**:
|
||||
- **`simplify()`**: 贪心地移除图中度数小于物理寄存器数量的节点,并将其压入栈中。这些节点保证可以被成功着色。
|
||||
- **`coalesce()`**: 尝试将传送指令 (`MV`) 的源和目标节点合并,以消除这条指令。合并的条件基于 **Briggs** 或 **George** 启发式,以避免使图变得不可着色。
|
||||
- **`freeze()`**: 当一个与传送指令相关的节点无法合并也无法简化时,放弃对该传送指令的合并希望,将其“冻结”为一个普通节点。
|
||||
- **`selectSpill()`**: 当所有节点都无法进行上述操作时(即图中只剩下高度数的节点),必须选择一个节点进行**溢出 (Spill)**,即决定将其存放在内存中。
|
||||
5. **`assignColors()`**: 在所有节点都被处理后,从栈中依次弹出节点,并根据其已着色邻居的颜色,为它选择一个可用的物理寄存器。
|
||||
6. **`rewriteProgram()`**: 如果 `assignColors()` 阶段发现有节点被标记为溢出,此函数会被调用。它会修改机器指令,为溢出的虚拟寄存器插入从内存加载(`lw`/`ld`)和存入内存(`sw`/`sd`)的代码。然后,整个分配过程从步骤 1 重新开始。
|
||||
|
||||
### 4.4. 后端特定优化
|
||||
|
||||
在寄存器分配前后,后端还会进行一系列针对目标机(RISC-V)特性的优化。
|
||||
|
||||
#### 4.4.1. 指令调度 (Instruction Scheduling)
|
||||
|
||||
- **寄存器分配前调度 (`PreRA_Scheduler.cpp`)**:
|
||||
- **目标**: 在寄存器分配前,通过重排指令来提升性能。主要目标是**隐藏加载延迟 (Load Latency)**,即尽早发出 `load` 指令,使其结果能在需要时及时准备好,避免流水线停顿。同时,由于此时使用的是无限的虚拟寄存器,调度器有较大的自由度,但也可能因为过度重排而延长虚拟寄存器的生命周期,从而增加寄存器压力。
|
||||
- **实现**: `scheduleBlock()` 函数会识别出基本块内的调度边界(如 `call` 或终结指令),然后在每个独立的区域内调用 `scheduleRegion()`。当前的实现是一种简化的列表调度,它会优先尝试将加载指令 (`LW`, `LD` 等) 在不违反数据依赖的前提下,尽可能地向前移动。
|
||||
|
||||
- **寄存器分配后调度 (`PostRA_Scheduler.cpp`)**:
|
||||
- **目标**: 在寄存器分配完成之后,对指令序列进行最后一轮微调。此阶段调度的主要目标与分配前不同,它旨在解决由寄存器分配过程本身引入的性能问题,例如:
|
||||
- **缓解溢出代价**: 将因溢出(Spill)而产生的 `load` 指令(从栈加载)尽可能地提前,远离其使用点;将 `store` 指令(存入栈)尽可能地推后,远离其定义点。
|
||||
- **消除伪依赖**: 寄存器分配器可能会为两个原本不相关的虚拟寄存器分配同一个物理寄存器,从而引入了虚假的写后读(WAR)或写后写(WAW)依赖。Post-RA 调度可以尝试解开这些伪依赖,为指令重排提供更多自由度。
|
||||
- **实现**: `scheduleBlock()` 函数实现了此调度器。它采用了一种非常保守的**局部交换 (Local Swapping)** 策略。它迭代地检查相邻的两条指令,在 `canSwapInstructions()` 函数确认交换不会违反任何数据依赖(RAW, WAR, WAW)或内存依赖后,才执行交换。这种方法虽然不如全局列表调度强大,但在严格的 Post-RA 约束下是一种安全有效的优化手段。
|
||||
|
||||
#### 4.4.2. 强度削减 (Strength Reduction)
|
||||
|
||||
- **除法强度削减 (`DivStrengthReduction.cpp`)**:
|
||||
- **目标**: 将机器指令中昂贵的 `DIV` 或 `DIVW` 指令(当除数为编译期常量时)替换为一系列更快、计算成本更低的指令组合。
|
||||
- **技术**: 基于数论中的**乘法逆元 (Multiplicative Inverse)** 思想。对于一个整数除法 `x / d`,可以找到一个“魔数” `m` 和一个移位数 `s`,使得该除法可以被近似替换为 `(x * m) >> s`。这个过程需要处理复杂的符号、取整和溢出问题。
|
||||
- **实现**: `runOnMachineFunction()` 实现了此优化。它会遍历机器指令,寻找以常量为除数的 `DIV`/`DIVW` 指令。`computeMagic()` 函数负责计算出对应的魔数和移位数。然后,根据除数是 2 的幂、1、-1 还是其他普通数字,生成不同的指令序列,包括 `MULH` (取高位乘积), `SRAI` (算术右移), `ADD`, `SUB` 等,来精确地模拟定点数除法的效果。
|
||||
|
||||
#### 4.4.3. 窥孔优化 (Peephole Optimization)
|
||||
|
||||
- **目标**: 在生成最终汇编代码之前,对相邻的机器指令序列进行局部优化,以消除冗余操作和利用目标机特性。
|
||||
- **技术**: 窥孔优化是一种简单而高效的局部优化技术。它通过一个固定大小的“窥孔”(通常是 2-3 条指令)来扫描指令序列,寻找可以被更优指令序列替换的模式。
|
||||
- **实现**: `PeepholeOptimizer::runOnMachineFunction()` 实现了此 Pass。它包含了一系列模式匹配和替换规则,主要包括:
|
||||
- **冗余移动消除**: `mv x, y` 后跟着一条使用 `x` 的指令 `op z, x, ...`,如果 `x` 之后不再活跃,则将 `op` 的操作数直接替换为 `y`,并移除 `mv` 指令。
|
||||
- **冗余加载消除**: `sw r1, mem; lw r2, mem` -> `sw r1, mem; mv r2, r1`。如果 `r1` 和 `r2` 是同一个寄存器,则直接移除 `lw`。
|
||||
- **地址计算优化**: `addi t1, base, imm1; lw t2, imm2(t1)` -> `lw t2, (imm1+imm2)(base)`。将两条指令合并为一条,减少了指令数量和中间寄存器的使用。
|
||||
- **指令合并**: `addi t1, t0, imm1; addi t2, t1, imm2` -> `addi t2, t0, (imm1+imm2)`。合并连续的立即数加法。
|
||||
|
||||
### 4.5. 局限性与未来工作
|
||||
|
||||
根据项目中的 `TODO` 列表和源代码分析,当前实现存在一些可改进之处:
|
||||
|
||||
- **寄存器分配**:
|
||||
- **`CALL` 指令处理**: 当前对 `CALL` 指令的 `use`/`def` 分析不完整,没有将所有调用者保存的寄存器标记为 `def`,这可能导致跨函数调用的值被错误破坏。
|
||||
- **溢出处理**: 当前所有溢出的虚拟寄存器都被简单地映射到同一个物理寄存器 `t6` 上,这会引入大量不必要的 `load`/`store`,并可能导致 `t6` 成为性能瓶颈。
|
||||
- **IR 设计**:
|
||||
- 随着 SSA 的引入,IR 中某些冗余信息(如基本块的 `args` 参数)可以被移除,以简化设计。
|
||||
- **优化**:
|
||||
- 当前的优化主要集中在标量上。可以引入更多面向循环的优化(如循环不变代码外提 LICM、归纳变量分析 IndVar)和过程间优化来进一步提升性能。
|
||||
242
Pass_ID_List.md
242
Pass_ID_List.md
@ -3,4 +3,244 @@
|
||||
| 名称 | 优化级别 | 开发进度 |
|
||||
| ------------ | ------------ | ---------- |
|
||||
| CFG优化 | 函数级 | 已完成 |
|
||||
| DCE | 函数级 | 待测试 |
|
||||
| DCE | 函数级 | 待正确性测试 |
|
||||
| Mem2Reg | 函数级 | 待正确性测试 |
|
||||
| Reg2Mem | 函数级 | 待正确性测试 |
|
||||
|
||||
|
||||
# 部分优化遍的说明
|
||||
|
||||
## Mem2Reg
|
||||
|
||||
Mem2Reg 遍的主要目标是将那些不必要的、只用于局部标量变量的内存分配 (alloca 指令) 消除,并将这些变量的值转换为 SSA 形式。这有助于减少内存访问,提高代码效率,并为后续的优化创造更好的条件。
|
||||
|
||||
通过Mem2Reg理解删除指令时对use关系的维护:
|
||||
|
||||
在 `Mem2Reg` 优化遍中,当 `load` 和 `store` 指令被删除时,其 `use` 关系(即它们作为操作数与其他 `Value` 对象之间的连接)的正确消除是一个关键问题,尤其涉及到 `AllocaInst`。
|
||||
|
||||
结合您提供的 `Mem2RegContext::renameVariables` 代码和我们之前讨论的 `usedelete` 逻辑,下面是 `use` 关系如何被正确消除的详细过程:
|
||||
|
||||
### 问题回顾:`Use` 关系的双向性
|
||||
|
||||
在您的 IR 设计中,`Use` 对象扮演着连接 `User`(使用者,如 `LoadInst`)和 `Value`(被使用者,如 `AllocaInst`)的双向角色:
|
||||
|
||||
* 一个 `User` 持有对其操作数 `Value` 的 `Use` 对象(通过 `User::operands` 列表)。
|
||||
* 一个 `Value` 持有所有使用它的 `User` 的 `Use` 对象(通过 `Value::uses` 列表)。
|
||||
|
||||
原始问题是:当一个 `LoadInst` 或 `StoreInst` 被删除时,如果不对其作为操作数与 `AllocaInst` 之间的 `Use` 关系进行明确清理,`AllocaInst` 的 `uses` 列表中就会留下指向已删除 `LoadInst` / `StoreInst` 的 `Use` 对象,导致内部的 `User*` 指针悬空,在后续访问时引发 `segmentation fault`。
|
||||
|
||||
### `Mem2Reg` 中 `load`/`store` 指令的删除行为
|
||||
|
||||
在 `Mem2RegContext::renameVariables` 函数中,`load` 和 `store` 指令被处理时,其行为如下:
|
||||
|
||||
1. **处理 `LoadInst`:**
|
||||
当找到一个指向可提升 `AllocaInst` 的 `LoadInst` 时,其用途会被 `replaceAllUsesWith(allocaToValueStackMap[alloca].top())` 替换。这意味着任何原本使用 `LoadInst` 本身计算结果的指令,现在都直接使用 SSA 值栈顶部的 `Value`。
|
||||
**重点:** 这一步处理的是 `LoadInst` 作为**被使用的值 (Value)** 时,其 `uses` 列表的清理。即,将 `LoadInst` 的所有使用者重定向到新的 SSA 值,并把这些 `Use` 对象从 `LoadInst` 的 `uses` 列表中移除。
|
||||
|
||||
2. **处理 `StoreInst`:**
|
||||
当找到一个指向可提升 `AllocaInst` 的 `StoreInst` 时,`StoreInst` 存储的值会被压入值栈。`StoreInst` 本身并不产生可被其他指令直接使用的值(其类型是 `void`),所以它没有 `uses` 列表需要替换。
|
||||
**重点:** `StoreInst` 的主要作用是更新内存状态,在 SSA 形式下,它被移除后需要清理它作为**使用者 (User)** 时的操作数关系。
|
||||
|
||||
在这两种情况下,一旦 `load` 或 `store` 指令的 SSA 转换完成,它们都会通过 `instIter = SysYIROptUtils::usedelete(instIter)` 被显式删除。
|
||||
|
||||
### `SysYIROptUtils::usedelete` 如何正确消除 `Use` 关系
|
||||
|
||||
关键在于对 `SysYIROptUtils::usedelete` 函数的修改,使其在删除指令时,同时处理该指令作为 `User` 和 `Value` 的两种 `Use` 关系:
|
||||
|
||||
1. **清理指令作为 `Value` 时的 `uses` 列表 (由 `replaceAllUsesWith` 完成):**
|
||||
在 `usedelete` 函数中,`inst->replaceAllUsesWith(UndefinedValue::get(inst->getType()))` 的调用至关重要。这确保了:
|
||||
* 如果被删除的 `Instruction`(例如 `LoadInst`)产生了结果值并被其他指令使用,所有这些使用者都会被重定向到 `UndefinedValue`(或者 `Mem2Reg` 中具体的 SSA 值)。
|
||||
* 这个过程会遍历 `LoadInst` 的 `uses` 列表,并将这些 `Use` 对象从 `LoadInst` 的 `uses` 列表中移除。这意味着 `LoadInst` 自己不再被任何其他指令使用。
|
||||
|
||||
2. **清理指令作为 `User` 时其操作数的 `uses` 列表 (由 `RemoveUserOperandUses` 完成):**
|
||||
这是您提出的、并已集成到 `usedelete` 中的关键改进点。对于一个被删除的 `Instruction`(它同时也是 `User`),我们需要清理它**自己使用的操作数**所维护的 `use` 关系。
|
||||
* 例如,`LoadInst %op1` 使用了 `%op1`(一个 `AllocaInst`)。当 `LoadInst` 被删除时,`AllocaInst` 的 `uses` 列表中有一个 `Use` 对象指向这个 `LoadInst`。
|
||||
* `RemoveUserOperandUses` 函数会遍历被删除 `User`(即 `LoadInst` 或 `StoreInst`)的 `operands` 列表。
|
||||
* 对于 `operands` 列表中的每个 `std::shared_ptr<Use> use_ptr`,它会获取 `Use` 对象内部指向的 `Value`(例如 `AllocaInst*`),然后调用 `value->removeUse(use_ptr)`。
|
||||
* 这个 `removeUse` 调用会负责将 `use_ptr` 从 `AllocaInst` 的 `uses` 列表中删除。
|
||||
|
||||
### 总结
|
||||
|
||||
通过在 `SysYIROptUtils::usedelete` 中同时执行这两个步骤:
|
||||
|
||||
* `replaceAllUsesWith`:处理被删除指令**作为结果被使用**时的 `use` 关系。
|
||||
* `RemoveUserOperandUses`:处理被删除指令**作为使用者(User)时,其操作数**的 `use` 关系。
|
||||
|
||||
这就确保了当 `Mem2Reg` 遍历并删除 `load` 和 `store` 指令时,无论是它们作为 `Value` 的使用者,还是它们作为 `User` 的操作数,所有相关的 `Use` 对象都能被正确地从 `Value` 的 `uses` 列表中移除,从而避免了悬空指针和后续的 `segmentation fault`。
|
||||
|
||||
最后,当所有指向某个 `AllocaInst` 的 `load` 和 `store` 指令都被移除后,`AllocaInst` 的 `uses` 列表将变得干净(只包含 Phi 指令,如果它们在 SSA 转换中需要保留 Alloca 作为操作数),这时在 `Mem2RegContext::cleanup()` 阶段,`SysYIROptUtils::usedelete(alloca)` 就可以安全地删除 `AllocaInst` 本身了。
|
||||
|
||||
## Reg2Mem
|
||||
|
||||
我们的Reg2Mem 遍的主要目标是作为 Mem2Reg 的一种逆操作,但更具体是解决后端无法识别 PhiInst 指令的问题。主要的速录是将函数参数和 PhiInst 指令的结果从 SSA 形式转换回内存形式,通过插入 alloca、load 和 store 指令来实现。其他非 Phi 的指令结果将保持 SSA 形式。
|
||||
|
||||
## SCCP
|
||||
|
||||
SCCP(稀疏条件常量传播)是一种编译器优化技术,它结合了常量传播和死代码消除。其核心思想是在程序执行过程中,尝试识别并替换那些在编译时就能确定其值的变量(常量),同时移除那些永远不会被执行到的代码块(不可达代码)。
|
||||
|
||||
以下是 SCCP 的实现思路:
|
||||
|
||||
1. 核心数据结构与工作列表:
|
||||
|
||||
Lattice 值(Lattice Value): SCCP 使用三值格(Three-Valued Lattice)来表示变量的状态:
|
||||
|
||||
Top (T): 初始状态,表示变量的值未知,但可能是一个常量。
|
||||
|
||||
Constant (C): 表示变量的值已经确定为一个具体的常量。
|
||||
|
||||
Bottom (⊥): 表示变量的值不确定或不是一个常量(例如,它可能在运行时有多个不同的值,或者从内存中加载)。一旦变量状态变为 Bottom,它就不能再变回 Constant 或 Top。
|
||||
|
||||
SSAPValue: 封装了 Lattice 值和常量具体值(如果状态是 Constant)。
|
||||
|
||||
*valState (map<Value, SSAPValue>):** 存储程序中每个 Value(变量、指令结果等)的当前 SCCP Lattice 状态。
|
||||
|
||||
*ExecutableBlocks (set<BasicBlock>):** 存储在分析过程中被确定为可执行的基本块。
|
||||
|
||||
工作列表 (Worklists):
|
||||
|
||||
cfgWorkList (queue<pair<BasicBlock, BasicBlock>>):** 存储待处理的控制流图(CFG)边。当一个块被标记为可执行时,它的后继边会被添加到这个列表。
|
||||
|
||||
*ssaWorkList (queue<Instruction>):** 存储待处理的 SSA (Static Single Assignment) 指令。当一个指令的任何操作数的状态发生变化时,该指令就会被添加到这个列表,需要重新评估。
|
||||
|
||||
2. 初始化:
|
||||
|
||||
所有 Value 的状态都被初始化为 Top。
|
||||
|
||||
所有基本块都被初始化为不可执行。
|
||||
|
||||
函数的入口基本块被标记为可执行,并且该块中的所有指令被添加到 ssaWorkList。
|
||||
|
||||
3. 迭代过程 (Fixed-Point Iteration):
|
||||
|
||||
SCCP 的核心是一个迭代过程,它交替处理 CFG 工作列表和 SSA 工作列表,直到达到一个不动点(即没有更多的状态变化)。
|
||||
|
||||
处理 cfgWorkList:
|
||||
|
||||
从 cfgWorkList 中取出一个边 (prev, next)。
|
||||
|
||||
如果 next 块之前是不可执行的,现在通过 prev 块可达,则将其标记为可执行 (markBlockExecutable)。
|
||||
|
||||
一旦 next 块变为可执行,其内部的所有指令(特别是 Phi 指令)都需要被重新评估,因此将它们添加到 ssaWorkList。
|
||||
|
||||
处理 ssaWorkList:
|
||||
|
||||
从 ssaWorkList 中取出一个指令 inst。
|
||||
|
||||
重要: 只有当 inst 所在的块是可执行的,才处理该指令。不可执行块中的指令不参与常量传播。
|
||||
|
||||
计算新的 Lattice 值 (computeLatticeValue): 根据指令类型和其操作数的当前 Lattice 状态,计算 inst 的新的 Lattice 状态。
|
||||
|
||||
常量折叠: 如果所有操作数都是常量,则可以直接执行运算并得到一个新的常量结果。
|
||||
|
||||
Bottom 传播: 如果任何操作数是 Bottom,或者运算规则导致不确定(例如除以零),则结果为 Bottom。
|
||||
|
||||
Phi 指令的特殊处理: Phi 指令的值取决于其所有可执行的前驱块传入的值。
|
||||
|
||||
如果所有可执行前驱都提供了相同的常量 C,则 Phi 结果为 C。
|
||||
|
||||
如果有任何可执行前驱提供了 Bottom,或者不同的可执行前驱提供了不同的常量,则 Phi 结果为 Bottom。
|
||||
|
||||
如果所有可执行前驱都提供了 Top,则 Phi 结果仍为 Top。
|
||||
|
||||
更新状态: 如果 inst 的新计算出的 Lattice 值与它当前存储的值不同,则更新 valState[inst]。
|
||||
|
||||
传播变化: 如果 inst 的状态发生变化,那么所有使用 inst 作为操作数的指令都可能受到影响,需要重新评估。因此,将 inst 的所有使用者添加到 ssaWorkList。
|
||||
|
||||
处理终结符指令 (BranchInst, ReturnInst):
|
||||
|
||||
对于条件分支 BranchInst,如果其条件操作数变为常量:
|
||||
|
||||
如果条件为真,则只有真分支的目标块是可达的,将该边添加到 cfgWorkList。
|
||||
|
||||
如果条件为假,则只有假分支的目标块是可达的,将该边添加到 cfgWorkList。
|
||||
|
||||
如果条件不是常量(Top 或 Bottom),则两个分支都可能被执行,将两边的边都添加到 cfgWorkList。
|
||||
|
||||
这会影响 CFG 的可达性分析,可能导致新的块被标记为可执行。
|
||||
|
||||
4. 应用优化 (Transformation):
|
||||
|
||||
当两个工作列表都为空,达到不动点后,程序代码开始进行实际的修改:
|
||||
|
||||
常量替换:
|
||||
|
||||
遍历所有指令。如果指令的 valState 为 Constant,则用相应的 ConstantValue 替换该指令的所有用途 (replaceAllUsesWith)。
|
||||
|
||||
将该指令标记为待删除。
|
||||
|
||||
对于指令的操作数,如果其 valState 为 Constant,则直接将操作数替换为对应的 ConstantValue(常量折叠)。
|
||||
|
||||
删除死指令: 遍历所有标记为待删除的指令,并从其父基本块中删除它们。
|
||||
|
||||
删除不可达基本块: 遍历函数中的所有基本块。如果一个基本块没有被标记为可执行 (ExecutableBlocks 中不存在),则将其从函数中删除。但入口块不能删除。
|
||||
|
||||
简化分支指令:
|
||||
|
||||
遍历所有可执行的基本块的终结符指令。
|
||||
|
||||
对于条件分支 BranchInst,如果其条件操作数在 valState 中是 Constant:
|
||||
|
||||
如果条件为真,则将该条件分支替换为一个无条件跳转到真分支目标块的指令。
|
||||
|
||||
如果条件为假,则将该条件分支替换为一个无条件跳转到假分支目标块的指令。
|
||||
|
||||
更新 CFG,移除不可达的分支边和其前驱信息。
|
||||
|
||||
computeLatticeValue 的具体逻辑:
|
||||
|
||||
这个函数是 SCCP 的核心逻辑,它定义了如何根据指令类型和操作数的当前 Lattice 状态来计算指令结果的 Lattice 状态。
|
||||
|
||||
二元运算 (Add, Sub, Mul, Div, Rem, ICmp, And, Or):
|
||||
|
||||
如果任何一个操作数是 Bottom,结果就是 Bottom。
|
||||
|
||||
如果任何一个操作数是 Top,结果就是 Top。
|
||||
|
||||
如果两个操作数都是 Constant,执行实际的常量运算,结果是一个新的 Constant。
|
||||
|
||||
一元运算 (Neg, Not):
|
||||
|
||||
如果操作数是 Bottom,结果就是 Bottom。
|
||||
|
||||
如果操作数是 Top,结果就是 Top。
|
||||
|
||||
如果操作数是 Constant,执行实际的常量运算,结果是一个新的 Constant。
|
||||
|
||||
Load 指令: 通常情况下,Load 的结果会被标记为 Bottom,因为内存内容通常在编译时无法确定。但如果加载的是已知的全局常量,可能可以确定。在提供的代码中,它通常返回 Bottom。
|
||||
|
||||
Store 指令: Store 不产生值,所以其 SSAPValue 保持 Top 或不关心。
|
||||
|
||||
Call 指令: 大多数 Call 指令(尤其是对外部或有副作用的函数)的结果都是 Bottom。对于纯函数,如果所有参数都是常量,理论上可以折叠,但这需要额外的分析。
|
||||
|
||||
GetElementPtr (GEP) 指令: GEP 计算内存地址。如果所有索引都是常量,地址本身是常量。但 SCCP 关注的是数据值,因此这里通常返回 Bottom,除非有特定的指针常量跟踪。
|
||||
|
||||
Phi 指令: 如上所述,基于所有可执行前驱的传入值进行聚合。
|
||||
|
||||
Alloc 指令: Alloc 分配内存,返回一个指针。其内容通常是 Bottom。
|
||||
|
||||
Branch 和 Return 指令: 这些是终结符指令,不产生一个可用于其他指令的值,通常 SSAPValue 保持 Top 或不关心。
|
||||
|
||||
类型转换 (ZExt, SExt, Trunc, FtoI, ItoF): 如果操作数是 Constant,则执行相应的类型转换,结果仍为 Constant。对于浮点数转换,由于 SSAPValue 的 constantVal 为 int 类型,所以对浮点数的操作会保守地返回 Bottom。
|
||||
|
||||
未处理的指令: 默认情况下,任何未明确处理的指令都被保守地假定为产生 Bottom 值。
|
||||
|
||||
浮点数处理的注意事项:
|
||||
|
||||
在提供的代码中,SSAPValue 的 constantVal 是 int 类型。这使得浮点数常量传播变得复杂。对于浮点数相关的指令(kFAdd, kFMul, kFCmp, kFNeg, kFNot, kItoF, kFtoI 等),如果不能将浮点值准确地存储在 int 中,或者不能可靠地执行浮点运算,那么通常会保守地将结果设置为 Bottom。一个更完善的 SCCP 实现会使用 std::variant<int, float> 或独立的浮点常量存储来处理浮点数。
|
||||
|
||||
|
||||
# 后续优化可能涉及的改动
|
||||
|
||||
## 1)将所有的alloca集中到entryblock中
|
||||
|
||||
好处:优化友好性,方便mem2reg提升
|
||||
目前没有实现这个机制,如果想要实现首先解决同一函数不同域的同名变量命名区分
|
||||
需要保证符号表能正确维护域中的局部变量
|
||||
|
||||
|
||||
# 关于中端优化提升编译器性能的TODO
|
||||
|
||||
## usedelete_withinstdelte方法
|
||||
|
||||
这个方法删除了use关系并移除了指令,逻辑是根据Instruction* inst去find对应的迭代器并erase
|
||||
有些情况下外部持有迭代器和inst,可以省略find过程
|
||||
2732
doc/Doxyfile
2732
doc/Doxyfile
File diff suppressed because it is too large
Load Diff
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
File diff suppressed because one or more lines are too long
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
Before Width: | Height: | Size: 346 KiB |
@ -1,169 +0,0 @@
|
||||
这个头文件定义了一个用于生成中间表示(IR)的数据结构,主要用于编译器前端将抽象语法树(AST)转换为中间代码。以下是文件中定义的主要类和功能的整理和解释:
|
||||
|
||||
---
|
||||
|
||||
### **1. 类型系统(Type System)**
|
||||
#### **1.1 `Type` 类**
|
||||
- **作用**:表示所有基本标量类型(如 `int`、`float`、`void` 等)以及指针类型和函数类型。
|
||||
- **成员**:
|
||||
- `Kind` 枚举:表示类型的种类(如 `kInt`、`kFloat`、`kPointer` 等)。
|
||||
- `kind`:当前类型的种类。
|
||||
- 构造函数:`Type(Kind kind)`,用于初始化类型。
|
||||
- 静态方法:如 `getIntType()`、`getFloatType()` 等,用于获取特定类型的单例对象。
|
||||
- 类型检查方法:如 `isInt()`、`isFloat()` 等,用于检查当前类型是否为某种类型。
|
||||
- `getSize()`:获取类型的大小。
|
||||
- `as<T>()`:将当前类型动态转换为派生类(如 `PointerType` 或 `FunctionType`)。
|
||||
|
||||
#### **1.2 `PointerType` 类**
|
||||
- **作用**:表示指针类型,派生自 `Type`。
|
||||
- **成员**:
|
||||
- `baseType`:指针指向的基础类型。
|
||||
- 静态方法:`get(Type *baseType)`,用于获取指向 `baseType` 的指针类型。
|
||||
- `getBaseType()`:获取指针指向的基础类型。
|
||||
|
||||
#### **1.3 `FunctionType` 类**
|
||||
- **作用**:表示函数类型,派生自 `Type`。
|
||||
- **成员**:
|
||||
- `returnType`:函数的返回类型。
|
||||
- `paramTypes`:函数的参数类型列表。
|
||||
- 静态方法:`get(Type *returnType, const std::vector<Type *> ¶mTypes)`,用于获取函数类型。
|
||||
- `getReturnType()`:获取函数的返回类型。
|
||||
- `getParamTypes()`:获取函数的参数类型列表。
|
||||
|
||||
---
|
||||
|
||||
### **2. 中间表示(IR)**
|
||||
#### **2.1 `Value` 类**
|
||||
- **作用**:表示 IR 中的所有值(如指令、常量、参数等)。
|
||||
- **成员**:
|
||||
- `Kind` 枚举:表示值的种类(如 `kAdd`、`kSub`、`kConstant` 等)。
|
||||
- `kind`:当前值的种类。
|
||||
- `type`:值的类型。
|
||||
- `name`:值的名称。
|
||||
- `uses`:值的用途列表(表示哪些指令使用了该值)。
|
||||
- 构造函数:`Value(Kind kind, Type *type, const std::string &name)`。
|
||||
- 类型检查方法:如 `isInt()`、`isFloat()` 等。
|
||||
- `getUses()`:获取值的用途列表。
|
||||
- `replaceAllUsesWith(Value *value)`:将该值的所有用途替换为另一个值。
|
||||
- `print(std::ostream &os)`:打印值的表示。
|
||||
|
||||
#### **2.2 `ConstantValue` 类**
|
||||
- **作用**:表示编译时常量(如整数常量、浮点数常量)。
|
||||
- **成员**:
|
||||
- `iScalar` 和 `fScalar`:分别存储整数和浮点数常量的值。
|
||||
- 静态方法:`get(int value)` 和 `get(float value)`,用于获取常量值。
|
||||
- `getInt()` 和 `getFloat()`:获取常量的值。
|
||||
|
||||
#### **2.3 `Argument` 类**
|
||||
- **作用**:表示函数或基本块的参数。
|
||||
- **成员**:
|
||||
- `block`:参数所属的基本块。
|
||||
- `index`:参数的索引。
|
||||
- 构造函数:`Argument(Type *type, BasicBlock *block, int index, const std::string &name)`。
|
||||
- `getParent()`:获取参数所属的基本块。
|
||||
- `getIndex()`:获取参数的索引。
|
||||
|
||||
#### **2.4 `BasicBlock` 类**
|
||||
- **作用**:表示基本块,包含一系列指令。
|
||||
- **成员**:
|
||||
- `parent`:基本块所属的函数。
|
||||
- `instructions`:基本块中的指令列表。
|
||||
- `arguments`:基本块的参数列表。
|
||||
- `successors` 和 `predecessors`:基本块的后继和前驱列表。
|
||||
- 构造函数:`BasicBlock(Function *parent, const std::string &name)`。
|
||||
- `getParent()`:获取基本块所属的函数。
|
||||
- `getInstructions()`:获取基本块中的指令列表。
|
||||
- `createArgument()`:为基本块创建一个参数。
|
||||
|
||||
#### **2.5 `Instruction` 类**
|
||||
- **作用**:表示 IR 中的指令,派生自 `User`。
|
||||
- **成员**:
|
||||
- `Kind` 枚举:表示指令的种类(如 `kAdd`、`kSub`、`kLoad` 等)。
|
||||
- `kind`:当前指令的种类。
|
||||
- `parent`:指令所属的基本块。
|
||||
- 构造函数:`Instruction(Kind kind, Type *type, BasicBlock *parent, const std::string &name)`。
|
||||
- `getParent()`:获取指令所属的基本块。
|
||||
- `getFunction()`:获取指令所属的函数。
|
||||
- 指令分类方法:如 `isBinary()`、`isUnary()`、`isMemory()` 等。
|
||||
|
||||
#### **2.6 `User` 类**
|
||||
- **作用**:表示使用其他值的指令或全局值,派生自 `Value`。
|
||||
- **成员**:
|
||||
- `operands`:指令的操作数列表。
|
||||
- 构造函数:`User(Kind kind, Type *type, const std::string &name)`。
|
||||
- `getOperand(int index)`:获取指定索引的操作数。
|
||||
- `addOperand(Value *value)`:添加一个操作数。
|
||||
- `replaceOperand(int index, Value *value)`:替换指定索引的操作数。
|
||||
|
||||
#### **2.7 具体指令类**
|
||||
- **`CallInst`**:表示函数调用指令。
|
||||
- **`UnaryInst`**:表示一元操作指令(如取反、类型转换)。
|
||||
- **`BinaryInst`**:表示二元操作指令(如加法、减法)。
|
||||
- **`ReturnInst`**:表示返回指令。
|
||||
- **`UncondBrInst`**:表示无条件跳转指令。
|
||||
- **`CondBrInst`**:表示条件跳转指令。
|
||||
- **`AllocaInst`**:表示栈内存分配指令。
|
||||
- **`LoadInst`**:表示从内存加载值的指令。
|
||||
- **`StoreInst`**:表示将值存储到内存的指令。
|
||||
|
||||
---
|
||||
|
||||
### **3. 模块和函数**
|
||||
#### **3.1 `Function` 类**
|
||||
- **作用**:表示函数,包含多个基本块。
|
||||
- **成员**:
|
||||
- `parent`:函数所属的模块。
|
||||
- `blocks`:函数中的基本块列表。
|
||||
- 构造函数:`Function(Module *parent, Type *type, const std::string &name)`。
|
||||
- `getReturnType()`:获取函数的返回类型。
|
||||
- `getParamTypes()`:获取函数的参数类型列表。
|
||||
- `addBasicBlock()`:为函数添加一个基本块。
|
||||
|
||||
#### **3.2 `GlobalValue` 类**
|
||||
- **作用**:表示全局变量或常量。
|
||||
- **成员**:
|
||||
- `parent`:全局值所属的模块。
|
||||
- `hasInit`:是否有初始化值。
|
||||
- `isConst`:是否是常量。
|
||||
- 构造函数:`GlobalValue(Module *parent, Type *type, const std::string &name, const std::vector<Value *> &dims, Value *init)`。
|
||||
- `init()`:获取全局值的初始化值。
|
||||
|
||||
#### **3.3 `Module` 类**
|
||||
- **作用**:表示整个编译单元(如一个源文件)。
|
||||
- **成员**:
|
||||
- `children`:模块中的所有值(如函数、全局变量)。
|
||||
- `functions`:模块中的函数列表。
|
||||
- `globals`:模块中的全局变量列表。
|
||||
- `createFunction()`:创建一个函数。
|
||||
- `createGlobalValue()`:创建一个全局变量。
|
||||
- `getFunction()`:获取指定名称的函数。
|
||||
- `getGlobalValue()`:获取指定名称的全局变量。
|
||||
|
||||
---
|
||||
|
||||
### **4. 工具类**
|
||||
#### **4.1 `Use` 类**
|
||||
- **作用**:表示值与其使用者之间的关系。
|
||||
- **成员**:
|
||||
- `index`:值在使用者操作数列表中的索引。
|
||||
- `user`:使用者。
|
||||
- `value`:被使用的值。
|
||||
- 构造函数:`Use(int index, User *user, Value *value)`。
|
||||
- `getValue()`:获取被使用的值。
|
||||
|
||||
#### **4.2 `range` 类**
|
||||
- **作用**:封装迭代器对 `[begin, end)`,用于遍历容器。
|
||||
- **成员**:
|
||||
- `begin()` 和 `end()`:返回范围的起始和结束迭代器。
|
||||
- `size()`:返回范围的大小。
|
||||
- `empty()`:判断范围是否为空。
|
||||
|
||||
---
|
||||
|
||||
### **5. 总结**
|
||||
- **类型系统**:`Type`、`PointerType`、`FunctionType` 用于表示 IR 中的类型。
|
||||
- **中间表示**:`Value`、`ConstantValue`、`Instruction` 等用于表示 IR 中的值和指令。
|
||||
- **模块和函数**:`Module`、`Function`、`GlobalValue` 用于组织 IR 的结构。
|
||||
- **工具类**:`Use` 和 `range` 用于辅助实现 IR 的数据结构和遍历。
|
||||
|
||||
这个头文件定义了一个完整的 IR 数据结构,适用于编译器前端将 AST 转换为中间代码,并支持后续的优化和目标代码生成。
|
||||
@ -1,156 +0,0 @@
|
||||
`IRBuilder.h` 文件定义了一个 `IRBuilder` 类,用于简化中间表示(IR)的构建过程。`IRBuilder` 提供了创建各种 IR 指令的便捷方法,并将这些指令插入到指定的基本块中。以下是对文件中主要内容的整理和解释:
|
||||
|
||||
---
|
||||
|
||||
### **1. `IRBuilder` 类的作用**
|
||||
`IRBuilder` 是一个工具类,用于在生成中间表示(IR)时简化指令的创建和插入操作。它的主要功能包括:
|
||||
- 提供创建各种 IR 指令的工厂方法。
|
||||
- 将创建的指令插入到指定的基本块中。
|
||||
- 支持在基本块的任意位置插入指令。
|
||||
|
||||
---
|
||||
|
||||
### **2. 主要成员**
|
||||
|
||||
#### **2.1 成员变量**
|
||||
- **`block`**:当前操作的基本块。
|
||||
- **`position`**:当前操作的插入位置(基本块中的迭代器)。
|
||||
|
||||
#### **2.2 构造函数**
|
||||
- **默认构造函数**:`IRBuilder()`。
|
||||
- **带参数的构造函数**:
|
||||
- `IRBuilder(BasicBlock *block)`:初始化 `IRBuilder`,并设置当前基本块和插入位置(默认在基本块末尾)。
|
||||
- `IRBuilder(BasicBlock *block, BasicBlock::iterator position)`:初始化 `IRBuilder`,并设置当前基本块和插入位置。
|
||||
|
||||
#### **2.3 设置方法**
|
||||
- **`setPosition(BasicBlock *block, BasicBlock::iterator position)`**:设置当前基本块和插入位置。
|
||||
- **`setPosition(BasicBlock::iterator position)`**:设置当前插入位置。
|
||||
|
||||
#### **2.4 获取方法**
|
||||
- **`getBasicBlock()`**:获取当前基本块。
|
||||
- **`getPosition()`**:获取当前插入位置。
|
||||
|
||||
---
|
||||
|
||||
### **3. 指令创建方法**
|
||||
`IRBuilder` 提供了多种工厂方法,用于创建不同类型的 IR 指令。这些方法会将创建的指令插入到当前基本块的指定位置。
|
||||
|
||||
#### **3.1 函数调用指令**
|
||||
- **`createCallInst(Function *callee, const std::vector<Value *> &args, const std::string &name)`**:
|
||||
- 创建一个函数调用指令。
|
||||
- 参数:
|
||||
- `callee`:被调用的函数。
|
||||
- `args`:函数参数列表。
|
||||
- `name`:指令的名称(可选)。
|
||||
- 返回:`CallInst*`。
|
||||
|
||||
#### **3.2 一元操作指令**
|
||||
- **`createUnaryInst(Instruction::Kind kind, Type *type, Value *operand, const std::string &name)`**:
|
||||
- 创建一个一元操作指令(如取反、类型转换)。
|
||||
- 参数:
|
||||
- `kind`:指令的类型(如 `kNeg`、`kFtoI` 等)。
|
||||
- `type`:指令的结果类型。
|
||||
- `operand`:操作数。
|
||||
- `name`:指令的名称(可选)。
|
||||
- 返回:`UnaryInst*`。
|
||||
|
||||
- **具体一元操作指令**:
|
||||
- `createNegInst(Value *operand, const std::string &name)`:创建整数取反指令。
|
||||
- `createNotInst(Value *operand, const std::string &name)`:创建逻辑取反指令。
|
||||
- `createFtoIInst(Value *operand, const std::string &name)`:创建浮点数转整数指令。
|
||||
- `createFNegInst(Value *operand, const std::string &name)`:创建浮点数取反指令。
|
||||
- `createIToFInst(Value *operand, const std::string &name)`:创建整数转浮点数指令。
|
||||
|
||||
#### **3.3 二元操作指令**
|
||||
- **`createBinaryInst(Instruction::Kind kind, Type *type, Value *lhs, Value *rhs, const std::string &name)`**:
|
||||
- 创建一个二元操作指令(如加法、减法)。
|
||||
- 参数:
|
||||
- `kind`:指令的类型(如 `kAdd`、`kSub` 等)。
|
||||
- `type`:指令的结果类型。
|
||||
- `lhs` 和 `rhs`:左操作数和右操作数。
|
||||
- `name`:指令的名称(可选)。
|
||||
- 返回:`BinaryInst*`。
|
||||
|
||||
- **具体二元操作指令**:
|
||||
- 整数运算:
|
||||
- `createAddInst(Value *lhs, Value *rhs, const std::string &name)`:创建整数加法指令。
|
||||
- `createSubInst(Value *lhs, Value *rhs, const std::string &name)`:创建整数减法指令。
|
||||
- `createMulInst(Value *lhs, Value *rhs, const std::string &name)`:创建整数乘法指令。
|
||||
- `createDivInst(Value *lhs, Value *rhs, const std::string &name)`:创建整数除法指令。
|
||||
- `createRemInst(Value *lhs, Value *rhs, const std::string &name)`:创建整数取余指令。
|
||||
- 整数比较:
|
||||
- `createICmpEQInst(Value *lhs, Value *rhs, const std::string &name)`:创建整数相等比较指令。
|
||||
- `createICmpNEInst(Value *lhs, Value *rhs, const std::string &name)`:创建整数不等比较指令。
|
||||
- `createICmpLTInst(Value *lhs, Value *rhs, const std::string &name)`:创建整数小于比较指令。
|
||||
- `createICmpLEInst(Value *lhs, Value *rhs, const std::string &name)`:创建整数小于等于比较指令。
|
||||
- `createICmpGTInst(Value *lhs, Value *rhs, const std::string &name)`:创建整数大于比较指令。
|
||||
- `createICmpGEInst(Value *lhs, Value *rhs, const std::string &name)`:创建整数大于等于比较指令。
|
||||
- 浮点数运算:
|
||||
- `createFAddInst(Value *lhs, Value *rhs, const std::string &name)`:创建浮点数加法指令。
|
||||
- `createFSubInst(Value *lhs, Value *rhs, const std::string &name)`:创建浮点数减法指令。
|
||||
- `createFMulInst(Value *lhs, Value *rhs, const std::string &name)`:创建浮点数乘法指令。
|
||||
- `createFDivInst(Value *lhs, Value *rhs, const std::string &name)`:创建浮点数除法指令。
|
||||
- `createFRemInst(Value *lhs, Value *rhs, const std::string &name)`:创建浮点数取余指令。
|
||||
- 浮点数比较:
|
||||
- `createFCmpEQInst(Value *lhs, Value *rhs, const std::string &name)`:创建浮点数相等比较指令。
|
||||
- `createFCmpNEInst(Value *lhs, Value *rhs, const std::string &name)`:创建浮点数不等比较指令。
|
||||
- `createFCmpLTInst(Value *lhs, Value *rhs, const std::string &name)`:创建浮点数小于比较指令。
|
||||
- `createFCmpLEInst(Value *lhs, Value *rhs, const std::string &name)`:创建浮点数小于等于比较指令。
|
||||
- `createFCmpGTInst(Value *lhs, Value *rhs, const std::string &name)`:创建浮点数大于比较指令。
|
||||
- `createFCmpGEInst(Value *lhs, Value *rhs, const std::string &name)`:创建浮点数大于等于比较指令。
|
||||
|
||||
#### **3.4 控制流指令**
|
||||
- **`createReturnInst(Value *value)`**:
|
||||
- 创建返回指令。
|
||||
- 参数:
|
||||
- `value`:返回值(可选)。
|
||||
- 返回:`ReturnInst*`。
|
||||
|
||||
- **`createUncondBrInst(BasicBlock *block, std::vector<Value *> args)`**:
|
||||
- 创建无条件跳转指令。
|
||||
- 参数:
|
||||
- `block`:目标基本块。
|
||||
- `args`:跳转参数(可选)。
|
||||
- 返回:`UncondBrInst*`。
|
||||
|
||||
- **`createCondBrInst(Value *condition, BasicBlock *thenBlock, BasicBlock *elseBlock, const std::vector<Value *> &thenArgs, const std::vector<Value *> &elseArgs)`**:
|
||||
- 创建条件跳转指令。
|
||||
- 参数:
|
||||
- `condition`:跳转条件。
|
||||
- `thenBlock`:条件为真时的目标基本块。
|
||||
- `elseBlock`:条件为假时的目标基本块。
|
||||
- `thenArgs` 和 `elseArgs`:跳转参数(可选)。
|
||||
- 返回:`CondBrInst*`。
|
||||
|
||||
#### **3.5 内存操作指令**
|
||||
- **`createAllocaInst(Type *type, const std::vector<Value *> &dims, const std::string &name)`**:
|
||||
- 创建栈内存分配指令。
|
||||
- 参数:
|
||||
- `type`:分配的类型。
|
||||
- `dims`:数组维度(可选)。
|
||||
- `name`:指令的名称(可选)。
|
||||
- 返回:`AllocaInst*`。
|
||||
|
||||
- **`createLoadInst(Value *pointer, const std::vector<Value *> &indices, const std::string &name)`**:
|
||||
- 创建加载指令。
|
||||
- 参数:
|
||||
- `pointer`:指针值。
|
||||
- `indices`:数组索引(可选)。
|
||||
- `name`:指令的名称(可选)。
|
||||
- 返回:`LoadInst*`。
|
||||
|
||||
- **`createStoreInst(Value *value, Value *pointer, const std::vector<Value *> &indices, const std::string &name)`**:
|
||||
- 创建存储指令。
|
||||
- 参数:
|
||||
- `value`:要存储的值。
|
||||
- `pointer`:指针值。
|
||||
- `indices`:数组索引(可选)。
|
||||
- `name`:指令的名称(可选)。
|
||||
- 返回:`StoreInst*`。
|
||||
|
||||
---
|
||||
|
||||
### **4. 总结**
|
||||
- `IRBuilder` 是一个用于简化 IR 构建的工具类,提供了创建各种 IR 指令的工厂方法。
|
||||
- 通过 `IRBuilder`,可以方便地在指定基本块的任意位置插入指令。
|
||||
- 该类的设计使得 IR 的生成更加模块化和易于维护。
|
||||
@ -1,121 +0,0 @@
|
||||
这个 `IR.cpp` 文件实现了 `IR.h` 中定义的中间表示(IR)数据结构的功能。它包含了类型系统、值、指令、基本块、函数和模块的具体实现,以及一些辅助函数用于打印 IR 的内容。以下是对文件中主要内容的整理和解释:
|
||||
|
||||
---
|
||||
|
||||
### **1. 辅助函数**
|
||||
#### **1.1 `interleave` 函数**
|
||||
- **作用**:用于在输出流中插入分隔符(如逗号)来打印容器中的元素。
|
||||
- **示例**:
|
||||
```cpp
|
||||
interleave(os, container, ", ");
|
||||
```
|
||||
|
||||
#### **1.2 打印函数**
|
||||
- **`printVarName`**:打印变量名,全局变量以 `@` 开头,局部变量以 `%` 开头。
|
||||
- **`printBlockName`**:打印基本块名,以 `^` 开头。
|
||||
- **`printFunctionName`**:打印函数名,以 `@` 开头。
|
||||
- **`printOperand`**:打印操作数,如果是常量则直接打印值,否则打印变量名。
|
||||
|
||||
---
|
||||
|
||||
### **2. 类型系统**
|
||||
#### **2.1 `Type` 类的实现**
|
||||
- **静态方法**:
|
||||
- `getIntType()`、`getFloatType()`、`getVoidType()`、`getLabelType()`:返回对应类型的单例对象。
|
||||
- `getPointerType(Type *baseType)`:返回指向 `baseType` 的指针类型。
|
||||
- `getFunctionType(Type *returnType, const vector<Type *> ¶mTypes)`:返回函数类型。
|
||||
- **`getSize()`**:返回类型的大小(如 `int` 和 `float` 为 4 字节,指针为 8 字节)。
|
||||
- **`print()`**:打印类型的表示。
|
||||
|
||||
#### **2.2 `PointerType` 类的实现**
|
||||
- **静态方法**:
|
||||
- `get(Type *baseType)`:返回指向 `baseType` 的指针类型,使用 `std::map` 缓存已创建的指针类型。
|
||||
- **`getBaseType()`**:返回指针指向的基础类型。
|
||||
|
||||
#### **2.3 `FunctionType` 类的实现**
|
||||
- **静态方法**:
|
||||
- `get(Type *returnType, const vector<Type *> ¶mTypes)`:返回函数类型,使用 `std::set` 缓存已创建的函数类型。
|
||||
- **`getReturnType()`** 和 `getParamTypes()`:分别返回函数的返回类型和参数类型列表。
|
||||
|
||||
---
|
||||
|
||||
### **3. 值(Value)**
|
||||
#### **3.1 `Value` 类的实现**
|
||||
- **`replaceAllUsesWith(Value *value)`**:将该值的所有用途替换为另一个值。
|
||||
- **`isConstant()`**:判断值是否为常量(包括常量值、全局值和函数)。
|
||||
|
||||
#### **3.2 `ConstantValue` 类的实现**
|
||||
- **静态方法**:
|
||||
- `get(int value)` 和 `get(float value)`:返回整数或浮点数常量,使用 `std::map` 缓存已创建的常量。
|
||||
- **`getInt()` 和 `getFloat()`**:返回常量的值。
|
||||
- **`print()`**:打印常量的值。
|
||||
|
||||
#### **3.3 `Argument` 类的实现**
|
||||
- **构造函数**:初始化参数的类型、所属基本块和索引。
|
||||
- **`print()`**:打印参数的表示。
|
||||
|
||||
---
|
||||
|
||||
### **4. 基本块(BasicBlock)**
|
||||
#### **4.1 `BasicBlock` 类的实现**
|
||||
- **构造函数**:初始化基本块的名称和所属函数。
|
||||
- **`print()`**:打印基本块的表示,包括参数和指令。
|
||||
|
||||
---
|
||||
|
||||
### **5. 指令(Instruction)**
|
||||
#### **5.1 `Instruction` 类的实现**
|
||||
- **构造函数**:初始化指令的类型、所属基本块和名称。
|
||||
- **`print()`**:由具体指令类实现。
|
||||
|
||||
#### **5.2 具体指令类的实现**
|
||||
- **`CallInst`**:表示函数调用指令。
|
||||
- **`print()`**:打印函数调用的表示。
|
||||
- **`UnaryInst`**:表示一元操作指令(如取反、类型转换)。
|
||||
- **`print()`**:打印一元操作的表示。
|
||||
- **`BinaryInst`**:表示二元操作指令(如加法、减法)。
|
||||
- **`print()`**:打印二元操作的表示。
|
||||
- **`ReturnInst`**:表示返回指令。
|
||||
- **`print()`**:打印返回指令的表示。
|
||||
- **`UncondBrInst`**:表示无条件跳转指令。
|
||||
- **`print()`**:打印无条件跳转的表示。
|
||||
- **`CondBrInst`**:表示条件跳转指令。
|
||||
- **`print()`**:打印条件跳转的表示。
|
||||
- **`AllocaInst`**:表示栈内存分配指令。
|
||||
- **`print()`**:打印内存分配的表示。
|
||||
- **`LoadInst`**:表示从内存加载值的指令。
|
||||
- **`print()`**:打印加载指令的表示。
|
||||
- **`StoreInst`**:表示将值存储到内存的指令。
|
||||
- **`print()`**:打印存储指令的表示。
|
||||
|
||||
---
|
||||
|
||||
### **6. 函数(Function)**
|
||||
#### **6.1 `Function` 类的实现**
|
||||
- **构造函数**:初始化函数的名称、返回类型和参数类型。
|
||||
- **`print()`**:打印函数的表示,包括基本块和指令。
|
||||
|
||||
---
|
||||
|
||||
### **7. 模块(Module)**
|
||||
#### **7.1 `Module` 类的实现**
|
||||
- **`print()`**:打印模块的表示,包括所有函数和全局变量。
|
||||
|
||||
---
|
||||
|
||||
### **8. 用户(User)**
|
||||
#### **8.1 `User` 类的实现**
|
||||
- **`setOperand(int index, Value *value)`**:设置指定索引的操作数。
|
||||
- **`replaceOperand(int index, Value *value)`**:替换指定索引的操作数,并更新用途列表。
|
||||
|
||||
---
|
||||
|
||||
### **9. 总结**
|
||||
- **类型系统**:实现了 `Type`、`PointerType` 和 `FunctionType`,用于表示 IR 中的类型。
|
||||
- **值**:实现了 `Value`、`ConstantValue` 和 `Argument`,用于表示 IR 中的值和参数。
|
||||
- **基本块**:实现了 `BasicBlock`,用于组织指令。
|
||||
- **指令**:实现了多种具体指令类(如 `CallInst`、`BinaryInst` 等),用于表示 IR 中的操作。
|
||||
- **函数和模块**:实现了 `Function` 和 `Module`,用于组织 IR 的结构。
|
||||
- **打印功能**:通过 `print()` 方法,可以将 IR 的内容输出为可读的文本格式。
|
||||
|
||||
这个文件是编译器中间表示的核心实现,能够将抽象语法树(AST)转换为中间代码,并支持后续的优化和目标代码生成。
|
||||
20878
doc/n1124.pdf
20878
doc/n1124.pdf
File diff suppressed because one or more lines are too long
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -14,6 +14,7 @@ TESTDATA_DIR="${SCRIPT_DIR}/testdata" # 用于查找 .in/.out 文件
|
||||
GCC_NATIVE="gcc" # VM 内部的原生 gcc
|
||||
|
||||
# --- 初始化变量 ---
|
||||
CLEAN_MODE=false
|
||||
GCC_TIMEOUT=10 # gcc 编译超时 (秒)
|
||||
EXEC_TIMEOUT=5 # 程序自动化执行超时 (秒)
|
||||
MAX_OUTPUT_LINES=50 # 对比失败时显示的最大行数
|
||||
@ -29,6 +30,7 @@ show_help() {
|
||||
echo "如果找到对应的 .in/.out 文件,则进行自动化测试。否则,进入交互模式。"
|
||||
echo ""
|
||||
echo "选项:"
|
||||
echo " -c, --clean 清理 tmp 临时目录下的所有文件。"
|
||||
echo " -ct N 设置 gcc 编译超时为 N 秒 (默认: 10)。"
|
||||
echo " -t N 设置程序自动化执行超时为 N 秒 (默认: 5)。"
|
||||
echo " -ml N, --max-lines N 当输出对比失败时,最多显示 N 行内容 (默认: 50)。"
|
||||
@ -57,10 +59,24 @@ display_file_content() {
|
||||
fi
|
||||
}
|
||||
|
||||
# --- 新增功能: 清理临时文件的函数 ---
|
||||
clean_tmp() {
|
||||
echo "正在清理临时目录: ${TMP_DIR}"
|
||||
if [ -d "${TMP_DIR}" ]; then
|
||||
rm -rf "${TMP_DIR}"/* 2>/dev/null
|
||||
echo "清理完成。"
|
||||
else
|
||||
echo "临时目录 ${TMP_DIR} 不存在,无需清理。"
|
||||
fi
|
||||
}
|
||||
|
||||
# --- 参数解析 ---
|
||||
# 从参数中分离出 .s 文件和选项
|
||||
for arg in "$@"; do
|
||||
case "$arg" in
|
||||
-c|--clean)
|
||||
CLEAN_MODE=true
|
||||
;;
|
||||
-ct|-t|-ml|--max-lines)
|
||||
# 选项和其值将在下一个循环中处理
|
||||
;;
|
||||
@ -74,6 +90,7 @@ for arg in "$@"; do
|
||||
args_processed=true # 标记已处理过参数
|
||||
while [[ "$#" -gt 0 ]]; do
|
||||
case "$1" in
|
||||
-c|--clean) ;; # 已在外部处理
|
||||
-ct) if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then GCC_TIMEOUT="$2"; shift; else echo "错误: -ct 需要一个正整数参数。" >&2; exit 1; fi ;;
|
||||
-t) if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then EXEC_TIMEOUT="$2"; shift; else echo "错误: -t 需要一个正整数参数。" >&2; exit 1; fi ;;
|
||||
-ml|--max-lines) if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then MAX_OUTPUT_LINES="$2"; shift; else echo "错误: --max-lines 需要一个正整数参数。" >&2; exit 1; fi ;;
|
||||
@ -95,6 +112,14 @@ for arg in "$@"; do
|
||||
done
|
||||
|
||||
# --- 主逻辑开始 ---
|
||||
if ${CLEAN_MODE}; then
|
||||
clean_tmp
|
||||
# 如果只提供了 -c 选项,则退出
|
||||
if [ ${#S_FILES[@]} -eq 0 ]; then
|
||||
exit 0
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ ${#S_FILES[@]} -eq 0 ]; then
|
||||
echo "错误: 未提供任何 .s 文件作为输入。"
|
||||
show_help
|
||||
@ -162,14 +187,17 @@ for s_file in "${S_FILES[@]}"; do
|
||||
EXPECTED_STDOUT_FILE="${TMP_DIR}/${base_name_from_s_file}.expected_stdout"
|
||||
head -n -1 "${output_reference_file}" > "${EXPECTED_STDOUT_FILE}"
|
||||
if [ "$ACTUAL_RETURN_CODE" -ne "$EXPECTED_RETURN_CODE" ]; then echo -e "\e[31m 返回码测试失败: 期望 ${EXPECTED_RETURN_CODE}, 实际 ${ACTUAL_RETURN_CODE}\e[0m"; is_passed=0; fi
|
||||
if ! diff -q <(sed ':a;N;$!ba;s/\n*$//' "${output_actual_file}") <(sed ':a;N;$!ba;s/\n*$//' "${EXPECTED_STDOUT_FILE}") >/dev/null 2>&1; then
|
||||
|
||||
# --- 本次修改点: 使用 tr 删除所有空白字符后再比较 ---
|
||||
if ! diff -q <(tr -d '[:space:]' < "${output_actual_file}") <(tr -d '[:space:]' < "${EXPECTED_STDOUT_FILE}") >/dev/null 2>&1; then
|
||||
echo -e "\e[31m 标准输出测试失败。\e[0m"; is_passed=0
|
||||
display_file_content "${EXPECTED_STDOUT_FILE}" " \e[36m--- 期望输出 ---\e[0m" "${MAX_OUTPUT_LINES}"
|
||||
display_file_content "${output_actual_file}" " \e[36m--- 实际输出 ---\e[0m" "${MAX_OUTPUT_LINES}"
|
||||
echo -e " \e[36m----------------\e[0m"
|
||||
fi
|
||||
else
|
||||
if ! diff -q <(sed ':a;N;$!ba;s/\n*$//' "${output_actual_file}") <(sed ':a;N;$!ba;s/\n*$//' "${output_reference_file}") >/dev/null 2>&1; then
|
||||
# --- 本次修改点: 使用 tr 删除所有空白字符后再比较 ---
|
||||
if diff -q <(tr -d '[:space:]' < "${output_actual_file}") <(tr -d '[:space:]' < "${output_reference_file}") >/dev/null 2>&1; then
|
||||
echo -e "\e[32m 标准输出测试成功。\e[0m"
|
||||
else
|
||||
echo -e "\e[31m 标准输出测试失败。\e[0m"; is_passed=0
|
||||
@ -60,11 +60,7 @@ display_file_content() {
|
||||
# 清理临时文件的函数
|
||||
clean_tmp() {
|
||||
echo "正在清理临时目录: ${TMP_DIR}"
|
||||
rm -rf "${TMP_DIR}"/*.s \
|
||||
"${TMP_DIR}"/*_sysyc_riscv64 \
|
||||
"${TMP_DIR}"/*_sysyc_riscv64.actual_out \
|
||||
"${TMP_DIR}"/*_sysyc_riscv64.expected_stdout \
|
||||
"${TMP_DIR}"/*_sysyc_riscv64.o
|
||||
rm -rf "${TMP_DIR}"/*
|
||||
echo "清理完成。"
|
||||
}
|
||||
|
||||
@ -175,7 +171,8 @@ while IFS= read -r s_file; do
|
||||
is_passed=0
|
||||
fi
|
||||
|
||||
if ! diff -q <(sed ':a;N;$!ba;s/\n*$//' "${output_actual_file}") <(sed ':a;N;$!ba;s/\n*$//' "${EXPECTED_STDOUT_FILE}") >/dev/null 2>&1; then
|
||||
# --- 本次修改点: 使用 tr 删除所有空白字符后再比较 ---
|
||||
if ! diff -q <(tr -d '[:space:]' < "${output_actual_file}") <(tr -d '[:space:]' < "${EXPECTED_STDOUT_FILE}") >/dev/null 2>&1; then
|
||||
echo -e "\e[31m 标准输出测试失败\e[0m"
|
||||
is_passed=0
|
||||
display_file_content "${EXPECTED_STDOUT_FILE}" " \e[36m---------- 期望输出 ----------\e[0m" "${MAX_OUTPUT_LINES}"
|
||||
@ -186,7 +183,9 @@ while IFS= read -r s_file; do
|
||||
if [ $ACTUAL_RETURN_CODE -ne 0 ]; then
|
||||
echo -e "\e[33m警告: 程序以非零状态 ${ACTUAL_RETURN_CODE} 退出 (纯输出比较模式)。\e[0m"
|
||||
fi
|
||||
if ! diff -q <(sed ':a;N;$!ba;s/\n*$//' "${output_actual_file}") <(sed ':a;N;$!ba;s/\n*$//' "${output_reference_file}") >/dev/null 2>&1; then
|
||||
|
||||
# --- 本次修改点: 使用 tr 删除所有空白字符后再比较 ---
|
||||
if diff -q <(tr -d '[:space:]' < "${output_actual_file}") <(tr -d '[:space:]' < "${output_reference_file}") >/dev/null 2>&1; then
|
||||
echo -e "\e[32m 成功: 输出与参考输出匹配\e[0m"
|
||||
else
|
||||
echo -e "\e[31m 失败: 输出不匹配\e[0m"
|
||||
@ -21,6 +21,7 @@ QEMU_RISCV64="qemu-riscv64"
|
||||
# --- 初始化变量 ---
|
||||
EXECUTE_MODE=false
|
||||
CLEAN_MODE=false
|
||||
OPTIMIZE_FLAG="" # 用于存储 -O1 标志
|
||||
SYSYC_TIMEOUT=10 # sysyc 编译超时 (秒)
|
||||
GCC_TIMEOUT=10 # gcc 编译超时 (秒)
|
||||
EXEC_TIMEOUT=5 # qemu 自动化执行超时 (秒)
|
||||
@ -39,6 +40,7 @@ show_help() {
|
||||
echo "选项:"
|
||||
echo " -e, --executable 编译为可执行文件并运行测试 (必须)。"
|
||||
echo " -c, --clean 清理 tmp 临时目录下的所有文件。"
|
||||
echo " -O1 启用 sysyc 的 -O1 优化。"
|
||||
echo " -sct N 设置 sysyc 编译超时为 N 秒 (默认: 10)。"
|
||||
echo " -gct N 设置 gcc 交叉编译超时为 N 秒 (默认: 10)。"
|
||||
echo " -et N 设置 qemu 自动化执行超时为 N 秒 (默认: 5)。"
|
||||
@ -68,66 +70,64 @@ display_file_content() {
|
||||
fi
|
||||
}
|
||||
|
||||
|
||||
# --- 参数解析 ---
|
||||
# 从参数中分离出 .sy 文件和选项
|
||||
for arg in "$@"; do
|
||||
case "$arg" in
|
||||
-e|--executable)
|
||||
EXECUTE_MODE=true
|
||||
;;
|
||||
-c|--clean)
|
||||
CLEAN_MODE=true
|
||||
shift
|
||||
;;
|
||||
-sct|-gct|-et|-ml|--max-lines)
|
||||
# 选项和其值将在下一个循环中处理
|
||||
;;
|
||||
-h|--help)
|
||||
show_help
|
||||
exit 0
|
||||
;;
|
||||
-*)
|
||||
# 检查是否是带值的选项
|
||||
if ! [[ ${args_processed+x} ]]; then
|
||||
args_processed=true # 标记已处理过参数
|
||||
# 重新处理所有参数
|
||||
while [[ "$#" -gt 0 ]]; do
|
||||
case "$1" in
|
||||
-sct) if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then SYSYC_TIMEOUT="$2"; shift; else echo "错误: -sct 需要一个正整数参数。" >&2; exit 1; fi ;;
|
||||
-gct) if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then GCC_TIMEOUT="$2"; shift; else echo "错误: -gct 需要一个正整数参数。" >&2; exit 1; fi ;;
|
||||
-et) if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then EXEC_TIMEOUT="$2"; shift; else echo "错误: -et 需要一个正整数参数。" >&2; exit 1; fi ;;
|
||||
-ml|--max-lines) if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then MAX_OUTPUT_LINES="$2"; shift; else echo "错误: --max-lines 需要一个正整数参数。" >&2; exit 1; fi ;;
|
||||
*.sy) SY_FILES+=("$1") ;;
|
||||
-e|--executable) ;; # 已在外部处理
|
||||
*) if ! [[ "$1" =~ ^[0-9]+$ ]]; then echo "未知选项或无效文件: $1"; show_help; exit 1; fi ;;
|
||||
esac
|
||||
shift
|
||||
done
|
||||
fi
|
||||
;;
|
||||
*.sy)
|
||||
if [[ -f "$arg" ]]; then
|
||||
SY_FILES+=("$arg")
|
||||
else
|
||||
echo "警告: 文件不存在,已忽略: $arg"
|
||||
fi
|
||||
;;
|
||||
esac
|
||||
# 使用标准的 while 循环来健壮地处理任意顺序的参数
|
||||
while [[ "$#" -gt 0 ]]; do
|
||||
case "$1" in
|
||||
-e|--executable)
|
||||
EXECUTE_MODE=true
|
||||
shift # 消耗选项
|
||||
;;
|
||||
-c|--clean)
|
||||
CLEAN_MODE=true
|
||||
shift # 消耗选项
|
||||
;;
|
||||
-O1)
|
||||
OPTIMIZE_FLAG="-O1"
|
||||
shift # 消耗选项
|
||||
;;
|
||||
-sct)
|
||||
if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then SYSYC_TIMEOUT="$2"; shift 2; else echo "错误: -sct 需要一个正整数参数。" >&2; exit 1; fi
|
||||
;;
|
||||
-gct)
|
||||
if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then GCC_TIMEOUT="$2"; shift 2; else echo "错误: -gct 需要一个正整数参数。" >&2; exit 1; fi
|
||||
;;
|
||||
-et)
|
||||
if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then EXEC_TIMEOUT="$2"; shift 2; else echo "错误: -et 需要一个正整数参数。" >&2; exit 1; fi
|
||||
;;
|
||||
-ml|--max-lines)
|
||||
if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then MAX_OUTPUT_LINES="$2"; shift 2; else echo "错误: --max-lines 需要一个正整数参数。" >&2; exit 1; fi
|
||||
;;
|
||||
-h|--help)
|
||||
show_help
|
||||
exit 0
|
||||
;;
|
||||
-*) # 未知选项
|
||||
echo "未知选项: $1"
|
||||
show_help
|
||||
exit 1
|
||||
;;
|
||||
*) # 其他参数被视为文件路径
|
||||
if [[ -f "$1" && "$1" == *.sy ]]; then
|
||||
SY_FILES+=("$1")
|
||||
else
|
||||
echo "警告: 无效文件或不是 .sy 文件,已忽略: $1"
|
||||
fi
|
||||
shift # 消耗文件参数
|
||||
;;
|
||||
esac
|
||||
done
|
||||
|
||||
|
||||
if ${CLEAN_MODE}; then
|
||||
echo "检测到 -c/--clean 选项,正在清空 ${TMP_DIR}..."
|
||||
if [ -d "${TMP_DIR}" ]; then
|
||||
# 使用 * 而不是 . 来确保只删除内容,不删除目录本身
|
||||
# 忽略 rm 可能因目录为空而报告的错误
|
||||
rm -rf "${TMP_DIR}"/* 2>/dev/null
|
||||
echo "清理完成。"
|
||||
else
|
||||
echo "临时目录 ${TMP_DIR} 不存在,无需清理。"
|
||||
fi
|
||||
|
||||
# 如果只提供了 -c 选项而没有其他 .sy 文件,则在清理后退出
|
||||
if [ ${#SY_FILES[@]} -eq 0 ] && ! ${EXECUTE_MODE}; then
|
||||
exit 0
|
||||
fi
|
||||
@ -150,6 +150,7 @@ mkdir -p "${TMP_DIR}"
|
||||
TOTAL_CASES=${#SY_FILES[@]}
|
||||
|
||||
echo "SysY 单例测试运行器启动..."
|
||||
if [ -n "$OPTIMIZE_FLAG" ]; then echo "优化等级: ${OPTIMIZE_FLAG}"; fi
|
||||
echo "超时设置: sysyc=${SYSYC_TIMEOUT}s, gcc=${GCC_TIMEOUT}s, qemu=${EXEC_TIMEOUT}s"
|
||||
echo "失败输出最大行数: ${MAX_OUTPUT_LINES}"
|
||||
echo ""
|
||||
@ -170,9 +171,21 @@ for sy_file in "${SY_FILES[@]}"; do
|
||||
echo "======================================================================"
|
||||
echo "正在处理: ${sy_file}"
|
||||
|
||||
# --- 本次修改点: 拷贝源文件到 tmp 目录 ---
|
||||
echo " 拷贝源文件到 ${TMP_DIR}..."
|
||||
cp "${sy_file}" "${TMP_DIR}/$(basename "${sy_file}")"
|
||||
if [ -f "${input_file}" ]; then
|
||||
cp "${input_file}" "${TMP_DIR}/$(basename "${input_file}")"
|
||||
fi
|
||||
if [ -f "${output_reference_file}" ]; then
|
||||
cp "${output_reference_file}" "${TMP_DIR}/$(basename "${output_reference_file}")"
|
||||
fi
|
||||
|
||||
# 步骤 1: sysyc 编译
|
||||
echo " 使用 sysyc 编译 (超时 ${SYSYC_TIMEOUT}s)..."
|
||||
timeout -s KILL ${SYSYC_TIMEOUT} "${SYSYC}" -s ir "${sy_file}" > "${ir_file}"
|
||||
timeout -s KILL ${SYSYC_TIMEOUT} "${SYSYC}" -S "${sy_file}" ${OPTIMIZE_FLAG} -o "${assembly_file}"
|
||||
timeout -s KILL ${SYSYC_TIMEOUT} "${SYSYC}" -s ir "${sy_file}" ${OPTIMIZE_FLAG} > "${ir_file}"
|
||||
# timeout -s KILL ${SYSYC_TIMEOUT} "${SYSYC}" -s asmd "${sy_file}" > "${assembly_debug_file}" 2>&1
|
||||
SYSYC_STATUS=$?
|
||||
if [ $SYSYC_STATUS -eq 124 ]; then
|
||||
echo -e "\e[31m错误: SysY 编译 ${sy_file} IR超时\e[0m"
|
||||
@ -181,12 +194,10 @@ for sy_file in "${SY_FILES[@]}"; do
|
||||
echo -e "\e[31m错误: SysY 编译 ${sy_file} IR失败,退出码: ${SYSYC_STATUS}\e[0m"
|
||||
is_passed=0
|
||||
fi
|
||||
timeout -s KILL ${SYSYC_TIMEOUT} "${SYSYC}" -S "${sy_file}" -o "${assembly_file}"
|
||||
if [ $? -ne 0 ]; then
|
||||
echo -e "\e[31m错误: SysY 编译失败或超时。\e[0m"
|
||||
is_passed=0
|
||||
fi
|
||||
# timeout -s KILL ${SYSYC_TIMEOUT} "${SYSYC}" -s asmd "${sy_file}" > "${assembly_debug_file}" 2>&1
|
||||
|
||||
# 步骤 2: GCC 编译
|
||||
if [ "$is_passed" -eq 1 ]; then
|
||||
@ -218,28 +229,26 @@ for sy_file in "${SY_FILES[@]}"; do
|
||||
is_passed=0
|
||||
else
|
||||
if [ -f "${output_reference_file}" ]; then
|
||||
# 此处逻辑与 runit.sh 相同
|
||||
LAST_LINE_TRIMMED=$(tail -n 1 "${output_reference_file}" | tr -d '[:space:]')
|
||||
if [[ "$LAST_LINE_TRIMMED" =~ ^[-+]?[0-9]+$ ]]; then
|
||||
EXPECTED_RETURN_CODE="$LAST_LINE_TRIMMED"
|
||||
EXPECTED_STDOUT_FILE="${TMP_DIR}/${base_name}.expected_stdout"
|
||||
head -n -1 "${output_reference_file}" > "${EXPECTED_STDOUT_FILE}"
|
||||
if [ "$ACTUAL_RETURN_CODE" -ne "$EXPECTED_RETURN_CODE" ]; then echo -e "\e[31m 返回码测试失败: 期望 ${EXPECTED_RETURN_CODE}, 实际 ${ACTUAL_RETURN_CODE}\e[0m"; is_passed=0; fi
|
||||
if ! diff -q <(sed ':a;N;$!ba;s/\n*$//' "${output_actual_file}") <(sed ':a;N;$!ba;s/\n*$//' "${EXPECTED_STDOUT_FILE}") >/dev/null 2>&1; then
|
||||
|
||||
if ! diff -q <(tr -d '[:space:]' < "${output_actual_file}") <(tr -d '[:space:]' < "${EXPECTED_STDOUT_FILE}") >/dev/null 2>&1; then
|
||||
echo -e "\e[31m 标准输出测试失败。\e[0m"
|
||||
is_passed=0
|
||||
# --- 本次修改点: 使用新函数显示输出 ---
|
||||
display_file_content "${EXPECTED_STDOUT_FILE}" " \e[36m--- 期望输出 ---\e[0m" "${MAX_OUTPUT_LINES}"
|
||||
display_file_content "${output_actual_file}" " \e[36m--- 实际输出 ---\e[0m" "${MAX_OUTPUT_LINES}"
|
||||
echo -e " \e[36m----------------\e[0m"
|
||||
fi
|
||||
else
|
||||
if ! diff -q <(sed ':a;N;$!ba;s/\n*$//' "${output_actual_file}") <(sed ':a;N;$!ba;s/\n*$//' "${output_reference_file}") >/dev/null 2>&1; then
|
||||
if diff -q <(tr -d '[:space:]' < "${output_actual_file}") <(tr -d '[:space:]' < "${output_reference_file}") >/dev/null 2>&1; then
|
||||
echo -e "\e[32m 标准输出测试成功。\e[0m"
|
||||
else
|
||||
echo -e "\e[31m 标准输出测试失败。\e[0m"
|
||||
is_passed=0
|
||||
# --- 本次修改点: 使用新函数显示输出 ---
|
||||
display_file_content "${output_reference_file}" " \e[36m--- 期望输出 ---\e[0m" "${MAX_OUTPUT_LINES}"
|
||||
display_file_content "${output_actual_file}" " \e[36m--- 实际输出 ---\e[0m" "${MAX_OUTPUT_LINES}"
|
||||
echo -e " \e[36m----------------\e[0m"
|
||||
@ -261,7 +270,6 @@ for sy_file in "${SY_FILES[@]}"; do
|
||||
"${QEMU_RISCV64}" "${executable_file}"
|
||||
INTERACTIVE_RET_CODE=$?
|
||||
echo -e "\e[33m\n 交互模式执行完毕,程序返回码: ${INTERACTIVE_RET_CODE}\e[0m"
|
||||
# 交互模式无法自动判断对错,默认算通过,但会提示
|
||||
echo " 注意: 交互模式的结果未经验证。"
|
||||
fi
|
||||
fi
|
||||
@ -16,12 +16,13 @@ SYSYC="${BUILD_BIN_DIR}/sysyc"
|
||||
GCC_RISCV64="riscv64-linux-gnu-gcc"
|
||||
QEMU_RISCV64="qemu-riscv64"
|
||||
|
||||
# --- 新增功能: 初始化变量 ---
|
||||
EXECUTE_MODE=false
|
||||
OPTIMIZE_FLAG="" # 用于存储 -O1 标志
|
||||
SYSYC_TIMEOUT=10 # sysyc 编译超时 (秒)
|
||||
GCC_TIMEOUT=10 # gcc 编译超时 (秒)
|
||||
EXEC_TIMEOUT=5 # qemu 执行超时 (秒)
|
||||
MAX_OUTPUT_LINES=50 # 对比失败时显示的最大行数
|
||||
TEST_SETS=() # 用于存储要运行的测试集
|
||||
TOTAL_CASES=0
|
||||
PASSED_CASES=0
|
||||
FAILED_CASES_LIST="" # 用于存储未通过的测例列表
|
||||
@ -34,6 +35,8 @@ show_help() {
|
||||
echo "选项:"
|
||||
echo " -e, --executable 编译为可执行文件并运行测试。"
|
||||
echo " -c, --clean 清理 'tmp' 目录下的所有生成文件。"
|
||||
echo " -O1 启用 sysyc 的 -O1 优化。"
|
||||
echo " -set [f|h|p|all]... 指定要运行的测试集 (functional, h_functional, performance)。可多选,默认为 all。"
|
||||
echo " -sct N 设置 sysyc 编译超时为 N 秒 (默认: 10)。"
|
||||
echo " -gct N 设置 gcc 交叉编译超时为 N 秒 (默认: 10)。"
|
||||
echo " -et N 设置 qemu 执行超时为 N 秒 (默认: 5)。"
|
||||
@ -77,22 +80,34 @@ while [[ "$#" -gt 0 ]]; do
|
||||
case "$1" in
|
||||
-e|--executable)
|
||||
EXECUTE_MODE=true
|
||||
shift
|
||||
;;
|
||||
-c|--clean)
|
||||
clean_tmp
|
||||
exit 0
|
||||
;;
|
||||
-O1)
|
||||
OPTIMIZE_FLAG="-O1"
|
||||
shift
|
||||
;;
|
||||
-set)
|
||||
shift # 移过 '-set'
|
||||
while [[ "$#" -gt 0 && ! "$1" =~ ^- ]]; do
|
||||
TEST_SETS+=("$1")
|
||||
shift
|
||||
done
|
||||
;;
|
||||
-sct)
|
||||
if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then SYSYC_TIMEOUT="$2"; shift; else echo "错误: -sct 需要一个正整数参数。" >&2; exit 1; fi
|
||||
if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then SYSYC_TIMEOUT="$2"; shift 2; else echo "错误: -sct 需要一个正整数参数。" >&2; exit 1; fi
|
||||
;;
|
||||
-gct)
|
||||
if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then GCC_TIMEOUT="$2"; shift; else echo "错误: -gct 需要一个正整数参数。" >&2; exit 1; fi
|
||||
if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then GCC_TIMEOUT="$2"; shift 2; else echo "错误: -gct 需要一个正整数参数。" >&2; exit 1; fi
|
||||
;;
|
||||
-et)
|
||||
if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then EXEC_TIMEOUT="$2"; shift; else echo "错误: -et 需要一个正整数参数。" >&2; exit 1; fi
|
||||
if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then EXEC_TIMEOUT="$2"; shift 2; else echo "错误: -et 需要一个正整数参数。" >&2; exit 1; fi
|
||||
;;
|
||||
-ml|--max-lines)
|
||||
if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then MAX_OUTPUT_LINES="$2"; shift; else echo "错误: --max-lines 需要一个正整数参数。" >&2; exit 1; fi
|
||||
if [[ -n "$2" && "$2" =~ ^[0-9]+$ ]]; then MAX_OUTPUT_LINES="$2"; shift 2; else echo "错误: --max-lines 需要一个正整数参数。" >&2; exit 1; fi
|
||||
;;
|
||||
-h|--help)
|
||||
show_help
|
||||
@ -104,11 +119,36 @@ while [[ "$#" -gt 0 ]]; do
|
||||
exit 1
|
||||
;;
|
||||
esac
|
||||
shift
|
||||
done
|
||||
|
||||
# --- 本次修改点: 根据 -set 参数构建查找路径 ---
|
||||
declare -A SET_MAP
|
||||
SET_MAP[f]="functional"
|
||||
SET_MAP[h]="h_functional"
|
||||
SET_MAP[p]="performance"
|
||||
|
||||
SEARCH_PATHS=()
|
||||
|
||||
if [ ${#TEST_SETS[@]} -eq 0 ] || [[ " ${TEST_SETS[@]} " =~ " all " ]]; then
|
||||
SEARCH_PATHS+=("${TESTDATA_DIR}")
|
||||
else
|
||||
for set in "${TEST_SETS[@]}"; do
|
||||
if [[ -v SET_MAP[$set] ]]; then
|
||||
SEARCH_PATHS+=("${TESTDATA_DIR}/${SET_MAP[$set]}")
|
||||
else
|
||||
echo -e "\e[33m警告: 未知的测试集 '$set',已忽略。\e[0m"
|
||||
fi
|
||||
done
|
||||
fi
|
||||
|
||||
if [ ${#SEARCH_PATHS[@]} -eq 0 ]; then
|
||||
echo -e "\e[31m错误: 没有找到有效的测试集目录,测试中止。\e[0m"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
echo "SysY 测试运行器启动..."
|
||||
echo "输入目录: ${TESTDATA_DIR}"
|
||||
if [ -n "$OPTIMIZE_FLAG" ]; then echo "优化等级: ${OPTIMIZE_FLAG}"; fi
|
||||
echo "输入目录: ${SEARCH_PATHS[@]}"
|
||||
echo "临时目录: ${TMP_DIR}"
|
||||
echo "执行模式: ${EXECUTE_MODE}"
|
||||
if ${EXECUTE_MODE}; then
|
||||
@ -117,11 +157,13 @@ if ${EXECUTE_MODE}; then
|
||||
fi
|
||||
echo ""
|
||||
|
||||
# --- 修改点: 查找所有 .sy 文件并按文件名前缀数字排序 ---
|
||||
sy_files=$(find "${TESTDATA_DIR}" -name "*.sy" | sort -V)
|
||||
sy_files=$(find "${SEARCH_PATHS[@]}" -name "*.sy" | sort -V)
|
||||
if [ -z "$sy_files" ]; then
|
||||
echo "在指定目录中未找到任何 .sy 文件。"
|
||||
exit 0
|
||||
fi
|
||||
TOTAL_CASES=$(echo "$sy_files" | wc -w)
|
||||
|
||||
# --- 修复: 使用 here-string (<<<) 代替管道 (|) 来避免子 shell 问题 ---
|
||||
while IFS= read -r sy_file; do
|
||||
is_passed=1 # 1 表示通过, 0 表示失败
|
||||
|
||||
@ -135,10 +177,8 @@ while IFS= read -r sy_file; do
|
||||
output_actual_file="${TMP_DIR}/${output_base_name}_sysyc_riscv64.actual_out"
|
||||
|
||||
echo "正在处理: $(basename "$sy_file") (路径: ${relative_path_no_ext}.sy)"
|
||||
|
||||
# 步骤 1: 使用 sysyc 编译 .sy 到 .s
|
||||
echo " 使用 sysyc 编译 (超时 ${SYSYC_TIMEOUT}s)..."
|
||||
timeout -s KILL ${SYSYC_TIMEOUT} "${SYSYC}" -S "${sy_file}" -o "${assembly_file}"
|
||||
timeout -s KILL ${SYSYC_TIMEOUT} "${SYSYC}" -S "${sy_file}" -o "${assembly_file}" ${OPTIMIZE_FLAG}
|
||||
SYSYC_STATUS=$?
|
||||
if [ $SYSYC_STATUS -eq 124 ]; then
|
||||
echo -e "\e[31m错误: SysY 编译 ${sy_file} 超时\e[0m"
|
||||
@ -148,9 +188,7 @@ while IFS= read -r sy_file; do
|
||||
is_passed=0
|
||||
fi
|
||||
|
||||
# 只有当 EXECUTE_MODE 为 true 且上一步成功时才继续
|
||||
if ${EXECUTE_MODE} && [ "$is_passed" -eq 1 ]; then
|
||||
# 步骤 2: 使用 riscv64-linux-gnu-gcc 编译 .s 到可执行文件
|
||||
echo " 使用 gcc 编译 (超时 ${GCC_TIMEOUT}s)..."
|
||||
timeout -s KILL ${GCC_TIMEOUT} "${GCC_RISCV64}" "${assembly_file}" -o "${executable_file}" -L"${LIB_DIR}" -lsysy_riscv -static
|
||||
GCC_STATUS=$?
|
||||
@ -172,7 +210,6 @@ while IFS= read -r sy_file; do
|
||||
continue
|
||||
fi
|
||||
|
||||
# 步骤 3, 4, 5: 只有当编译都成功时才执行
|
||||
if [ "$is_passed" -eq 1 ]; then
|
||||
echo " 正在执行 (超时 ${EXEC_TIMEOUT}s)..."
|
||||
|
||||
@ -203,7 +240,8 @@ while IFS= read -r sy_file; do
|
||||
echo -e "\e[31m 返回码测试失败: 期望: ${EXPECTED_RETURN_CODE}, 实际: ${ACTUAL_RETURN_CODE}\e[0m"
|
||||
is_passed=0
|
||||
fi
|
||||
if ! diff -q <(sed ':a;N;$!ba;s/\n*$//' "${output_actual_file}") <(sed ':a;N;$!ba;s/\n*$//' "${EXPECTED_STDOUT_FILE}") >/dev/null 2>&1; then
|
||||
|
||||
if ! diff -q <(tr -d '[:space:]' < "${output_actual_file}") <(tr -d '[:space:]' < "${EXPECTED_STDOUT_FILE}") >/dev/null 2>&1; then
|
||||
echo -e "\e[31m 标准输出测试失败\e[0m"
|
||||
is_passed=0
|
||||
display_file_content "${EXPECTED_STDOUT_FILE}" " \e[36m---------- 期望输出 ----------\e[0m" "${MAX_OUTPUT_LINES}"
|
||||
@ -214,7 +252,8 @@ while IFS= read -r sy_file; do
|
||||
if [ $ACTUAL_RETURN_CODE -ne 0 ]; then
|
||||
echo -e "\e[33m警告: 程序以非零状态 ${ACTUAL_RETURN_CODE} 退出 (纯输出比较模式)。\e[0m"
|
||||
fi
|
||||
if ! diff -q <(sed ':a;N;$!ba;s/\n*$//' "${output_actual_file}") <(sed ':a;N;$!ba;s/\n*$//' "${output_reference_file}") >/dev/null 2>&1; then
|
||||
|
||||
if diff -q <(tr -d '[:space:]' < "${output_actual_file}") <(tr -d '[:space:]' < "${output_reference_file}") >/dev/null 2>&1; then
|
||||
echo -e "\e[32m 成功: 输出与参考输出匹配\e[0m"
|
||||
else
|
||||
echo -e "\e[31m 失败: 输出不匹配\e[0m"
|
||||
@ -1,171 +0,0 @@
|
||||
#include "AddressCalculationExpansion.h"
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
#include "IR.h"
|
||||
#include "IRBuilder.h"
|
||||
|
||||
extern int DEBUG;
|
||||
|
||||
namespace sysy {
|
||||
|
||||
bool AddressCalculationExpansion::run() {
|
||||
bool changed = false;
|
||||
|
||||
for (auto& funcPair : pModule->getFunctions()) {
|
||||
Function* func = funcPair.second.get();
|
||||
for (auto& bb_ptr : func->getBasicBlocks()) {
|
||||
BasicBlock* bb = bb_ptr.get();
|
||||
for (auto it = bb->getInstructions().begin(); it != bb->getInstructions().end(); ) {
|
||||
Instruction* inst = it->get();
|
||||
|
||||
Value* basePointer = nullptr;
|
||||
Value* valueToStore = nullptr;
|
||||
size_t firstIndexOperandIdx = 0;
|
||||
size_t numBaseOperands = 0;
|
||||
|
||||
if (inst->isLoad()) {
|
||||
numBaseOperands = 1;
|
||||
basePointer = inst->getOperand(0);
|
||||
firstIndexOperandIdx = 1;
|
||||
} else if (inst->isStore()) {
|
||||
numBaseOperands = 2;
|
||||
valueToStore = inst->getOperand(0);
|
||||
basePointer = inst->getOperand(1);
|
||||
firstIndexOperandIdx = 2;
|
||||
} else {
|
||||
++it;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (inst->getNumOperands() <= numBaseOperands) {
|
||||
++it;
|
||||
continue;
|
||||
}
|
||||
|
||||
std::vector<int> dims;
|
||||
if (AllocaInst* allocaInst = dynamic_cast<AllocaInst*>(basePointer)) {
|
||||
for (const auto& use_ptr : allocaInst->getDims()) {
|
||||
Value* dimValue = use_ptr->getValue();
|
||||
if (ConstantValue* constVal = dynamic_cast<ConstantValue*>(dimValue)) {
|
||||
dims.push_back(constVal->getInt());
|
||||
} else {
|
||||
std::cerr << "Warning: AllocaInst dimension is not a constant integer. Skipping GEP expansion for: ";
|
||||
SysYPrinter::printValue(allocaInst);
|
||||
std::cerr << "\n";
|
||||
dims.clear();
|
||||
break;
|
||||
}
|
||||
}
|
||||
} else if (GlobalValue* globalValue = dynamic_cast<GlobalValue*>(basePointer)) {
|
||||
// 遍历 GlobalValue 的所有维度操作数
|
||||
for (const auto& use_ptr : globalValue->getDims()) {
|
||||
Value* dimValue = use_ptr->getValue();
|
||||
// 将维度值转换为常量整数
|
||||
if (ConstantInteger* constVal = dynamic_cast<ConstantInteger*>(dimValue)) {
|
||||
dims.push_back(constVal->getInt());
|
||||
} else {
|
||||
// 如果维度不是常量整数,则无法处理。
|
||||
// 根据 IR.h 中 GlobalValue 的构造函数,这种情况不应发生,但作为安全检查是好的。
|
||||
std::cerr << "Warning: GlobalValue dimension is not a constant integer. Skipping GEP expansion for: ";
|
||||
SysYPrinter::printValue(globalValue);
|
||||
std::cerr << "\n";
|
||||
dims.clear(); // 清空已收集的部分维度信息
|
||||
break;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
std::cerr << "Warning: Base pointer is not AllocaInst/GlobalValue or its array dimensions cannot be determined for GEP expansion. Skipping GEP for: ";
|
||||
SysYPrinter::printValue(basePointer);
|
||||
std::cerr << " in instruction ";
|
||||
SysYPrinter::printInst(inst);
|
||||
std::cerr << "\n";
|
||||
++it;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (dims.empty() && (inst->getNumOperands() > numBaseOperands)) {
|
||||
if (DEBUG) {
|
||||
std::cerr << "ACE Warning: Could not get valid array dimensions for ";
|
||||
SysYPrinter::printValue(basePointer);
|
||||
std::cerr << " in instruction ";
|
||||
SysYPrinter::printInst(inst);
|
||||
std::cerr << " (expected dimensions for indices, but got none).\n";
|
||||
}
|
||||
++it;
|
||||
continue;
|
||||
}
|
||||
|
||||
std::vector<Value*> indexOperands;
|
||||
for (size_t i = firstIndexOperandIdx; i < inst->getNumOperands(); ++i) {
|
||||
indexOperands.push_back(inst->getOperand(i));
|
||||
}
|
||||
|
||||
if (AllocaInst* allocaInst = dynamic_cast<AllocaInst*>(basePointer)) {
|
||||
if (allocaInst->getNumDims() != indexOperands.size()) {
|
||||
if (DEBUG) {
|
||||
std::cerr << "ACE Warning: Index count (" << indexOperands.size() << ") does not match AllocaInst dimensions (" << allocaInst->getNumDims() << ") for instruction ";
|
||||
SysYPrinter::printInst(inst);
|
||||
std::cerr << "\n";
|
||||
}
|
||||
++it;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
Value* totalOffset = ConstantInteger::get(0);
|
||||
pBuilder->setPosition(bb, it);
|
||||
|
||||
for (size_t i = 0; i < indexOperands.size(); ++i) {
|
||||
Value* index = indexOperands[i];
|
||||
int stride = calculateStride(dims, i);
|
||||
Value* strideConst = ConstantInteger::get(stride);
|
||||
Type* intType = Type::getIntType();
|
||||
BinaryInst* currentDimOffsetInst = pBuilder->createBinaryInst(Instruction::kMul, intType, index, strideConst);
|
||||
BinaryInst* newTotalOffsetInst = pBuilder->createBinaryInst(Instruction::kAdd, intType, totalOffset, currentDimOffsetInst);
|
||||
totalOffset = newTotalOffsetInst;
|
||||
}
|
||||
|
||||
// 计算有效地址:effective_address = basePointer + totalOffset
|
||||
Value* effective_address = pBuilder->createBinaryInst(Instruction::kAdd, basePointer->getType(), basePointer, totalOffset);
|
||||
|
||||
// 创建新的 LoadInst 或 StoreInst,indices 为空
|
||||
Instruction* newInst = nullptr;
|
||||
if (inst->isLoad()) {
|
||||
newInst = pBuilder->createLoadInst(effective_address, {});
|
||||
inst->replaceAllUsesWith(newInst);
|
||||
} else { // StoreInst
|
||||
newInst = pBuilder->createStoreInst(valueToStore, effective_address, {});
|
||||
}
|
||||
|
||||
Instruction* oldInst = it->get();
|
||||
++it;
|
||||
|
||||
for (size_t i = 0; i < oldInst->getNumOperands(); ++i) {
|
||||
Value* operandValue = oldInst->getOperand(i);
|
||||
if (operandValue) {
|
||||
for (auto use_it = operandValue->getUses().begin(); use_it != operandValue->getUses().end(); ++use_it) {
|
||||
if ((*use_it)->getUser() == oldInst && (*use_it)->getIndex() == i) {
|
||||
operandValue->removeUse(*use_it);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bb->getInstructions().erase(std::prev(it));
|
||||
changed = true;
|
||||
|
||||
if (DEBUG) {
|
||||
std::cerr << "ACE: Computed effective address:\n";
|
||||
SysYPrinter::printInst(dynamic_cast<Instruction*>(effective_address));
|
||||
std::cerr << "ACE: New Load/Store instruction:\n";
|
||||
SysYPrinter::printInst(newInst);
|
||||
std::cerr << "--------------------------------\n";
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return changed;
|
||||
}
|
||||
|
||||
} // namespace sysy
|
||||
@ -1,58 +1,24 @@
|
||||
# 移除 ANTLR 代码生成相关配置
|
||||
# list(APPEND CMAKE_MODULE_PATH "${ANTLR_RUNTIME}/cmake")
|
||||
# include(FindANTLR)
|
||||
# antlr_target(SysYGen SysY.g4
|
||||
# LEXER PARSER
|
||||
# OUTPUT_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}
|
||||
# VISITOR
|
||||
# )
|
||||
# src/CMakeLists.txt
|
||||
# add_subdirectory 命令会负责遍历子目录并查找其内部的 CMakeLists.txt 文件
|
||||
add_subdirectory(frontend)
|
||||
add_subdirectory(midend)
|
||||
add_subdirectory(backend/RISCv64)
|
||||
|
||||
# 移除 SysYParser 库的构建(如果不需要独立库)
|
||||
# add_library(SysYParser SHARED ${ANTLR_SysYGen_CXX_OUTPUTS})
|
||||
# target_include_directories(SysYParser PUBLIC ${ANTLR_RUNTIME}/runtime/src)
|
||||
# target_link_libraries(SysYParser PUBLIC antlr4_shared)
|
||||
|
||||
# 构建 sysyc 可执行文件,使用手动提供的 SysYLexer.cpp、SysYParser.cpp 等文件
|
||||
# 构建 sysyc 可执行文件,链接各个模块的库
|
||||
add_executable(sysyc
|
||||
sysyc.cpp
|
||||
SysYLexer.cpp # 手动提供的文件
|
||||
SysYParser.cpp # 手动提供的文件
|
||||
SysYVisitor.cpp # 手动提供的文件
|
||||
IR.cpp
|
||||
SysYIRGenerator.cpp
|
||||
SysYIRPrinter.cpp
|
||||
SysYIRCFGOpt.cpp
|
||||
Pass.cpp
|
||||
Dom.cpp
|
||||
Liveness.cpp
|
||||
DCE.cpp
|
||||
AddressCalculationExpansion.cpp
|
||||
# Mem2Reg.cpp
|
||||
# Reg2Mem.cpp
|
||||
RISCv64Backend.cpp
|
||||
RISCv64ISel.cpp
|
||||
RISCv64RegAlloc.cpp
|
||||
RISCv64AsmPrinter.cpp
|
||||
RISCv64Peephole.cpp
|
||||
PreRA_Scheduler.cpp
|
||||
PostRA_Scheduler.cpp
|
||||
CalleeSavedHandler.cpp
|
||||
RISCv64LLIR.cpp
|
||||
sysyc.cpp
|
||||
)
|
||||
|
||||
# 设置 include 路径,包含 ANTLR 运行时库和项目头文件
|
||||
# 链接各个模块的库
|
||||
target_link_libraries(sysyc PRIVATE
|
||||
frontend_lib
|
||||
midend_lib
|
||||
riscv64_backend_lib
|
||||
antlr4_shared
|
||||
)
|
||||
|
||||
# 设置 include 路径,包含项目顶层 include 目录
|
||||
target_include_directories(sysyc PRIVATE
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/include # 项目头文件目录
|
||||
${ANTLR_RUNTIME}/runtime/src # ANTLR 运行时库头文件
|
||||
)
|
||||
|
||||
# 保留 ANTLR 运行时库的链接
|
||||
target_link_libraries(sysyc PRIVATE antlr4_shared)
|
||||
|
||||
# 保留其他编译选项
|
||||
target_compile_options(sysyc PRIVATE -frtti)
|
||||
|
||||
# 可选:线程支持(如果需要,取消注释)
|
||||
# set(THREADS_PREFER_PTHREAD_FLAG ON)
|
||||
# find_package(Threads REQUIRED)
|
||||
# target_link_libraries(sysyc PRIVATE Threads::Threads)
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/include # 项目头文件目录
|
||||
${ANTLR_RUNTIME}/runtime/src # ANTLR运行时库头文件
|
||||
)
|
||||
@ -1,123 +0,0 @@
|
||||
#include "CalleeSavedHandler.h"
|
||||
#include <set>
|
||||
#include <algorithm>
|
||||
|
||||
namespace sysy {
|
||||
|
||||
char CalleeSavedHandler::ID = 0;
|
||||
|
||||
bool CalleeSavedHandler::runOnFunction(Function *F, AnalysisManager& AM) {
|
||||
// This pass works on MachineFunction level, not IR level
|
||||
return false;
|
||||
}
|
||||
|
||||
void CalleeSavedHandler::runOnMachineFunction(MachineFunction* mfunc) {
|
||||
// 【最终方案】: 此 Pass 负责分析、分配栈空间并插入 callee-saved 寄存器的保存/恢复指令。
|
||||
// 它通过与 FrameInfo 协作,确保为 callee-saved 寄存器分配的空间与局部变量/溢出槽的空间不冲突。
|
||||
// 这样做可以使生成的 sd/ld 指令能被后续的优化 Pass (如 PostRA-Scheduler) 处理。
|
||||
|
||||
StackFrameInfo& frame_info = mfunc->getFrameInfo();
|
||||
std::set<PhysicalReg> used_callee_saved;
|
||||
|
||||
// 1. 扫描所有指令,找出被使用的s寄存器 (s1-s11)
|
||||
for (auto& mbb : mfunc->getBlocks()) {
|
||||
for (auto& instr : mbb->getInstructions()) {
|
||||
for (auto& op : instr->getOperands()) {
|
||||
auto check_and_insert_reg = [&](RegOperand* reg_op) {
|
||||
if (!reg_op->isVirtual()) {
|
||||
PhysicalReg preg = reg_op->getPReg();
|
||||
if (preg >= PhysicalReg::S1 && preg <= PhysicalReg::S11) {
|
||||
used_callee_saved.insert(preg);
|
||||
}
|
||||
}
|
||||
};
|
||||
if (op->getKind() == MachineOperand::KIND_REG) {
|
||||
check_and_insert_reg(static_cast<RegOperand*>(op.get()));
|
||||
} else if (op->getKind() == MachineOperand::KIND_MEM) {
|
||||
check_and_insert_reg(static_cast<MemOperand*>(op.get())->getBase());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (used_callee_saved.empty()) {
|
||||
frame_info.callee_saved_size = 0; // 确保大小被初始化
|
||||
return; // 无需操作
|
||||
}
|
||||
|
||||
// 2. 计算为 callee-saved 寄存器分配的栈空间
|
||||
// 这里的关键是,偏移的基准点要在局部变量和溢出槽之下。
|
||||
int callee_saved_size = used_callee_saved.size() * 8;
|
||||
frame_info.callee_saved_size = callee_saved_size; // 将大小存入 FrameInfo
|
||||
|
||||
// 3. 计算无冲突的栈偏移
|
||||
// 栈向下增长,所以偏移是负数。
|
||||
// ra/s0 占用 -8 和 -16。局部变量和溢出区在它们之下。callee-saved 区在更下方。
|
||||
// 我们使用相对于 s0 的偏移。s0 将指向栈顶 (sp + total_size)。
|
||||
int base_offset = -16 - frame_info.locals_size - frame_info.spill_size;
|
||||
|
||||
// 为了栈帧布局确定性,对寄存器进行排序
|
||||
std::vector<PhysicalReg> sorted_regs(used_callee_saved.begin(), used_callee_saved.end());
|
||||
std::sort(sorted_regs.begin(), sorted_regs.end());
|
||||
|
||||
// 4. 在函数序言插入保存指令
|
||||
MachineBasicBlock* entry_block = mfunc->getBlocks().front().get();
|
||||
auto& entry_instrs = entry_block->getInstructions();
|
||||
auto prologue_end = entry_instrs.begin();
|
||||
|
||||
// 找到序言结束的位置(通常是addi s0, sp, size之后,但为了让优化器看到,我们插在更前面)
|
||||
// 合理的位置是在 IR 指令开始之前,即在任何非序言指令(如第一个标签)之前。
|
||||
// 为简单起见,我们直接插入到块的开头,后续重排 pass 会处理。
|
||||
// (更优的实现会寻找一个特定的插入点)
|
||||
|
||||
int current_offset = base_offset;
|
||||
for (PhysicalReg reg : sorted_regs) {
|
||||
auto sd = std::make_unique<MachineInstr>(RVOpcodes::SD);
|
||||
sd->addOperand(std::make_unique<RegOperand>(reg));
|
||||
sd->addOperand(std::make_unique<MemOperand>(
|
||||
std::make_unique<RegOperand>(PhysicalReg::S0), // 基址为帧指针 s0
|
||||
std::make_unique<ImmOperand>(current_offset)
|
||||
));
|
||||
// 从头部插入,但要放在函数标签之后
|
||||
entry_instrs.insert(entry_instrs.begin() + 1, std::move(sd));
|
||||
current_offset -= 8;
|
||||
}
|
||||
|
||||
// 5. 【已修复】在函数结尾(ret之前)插入恢复指令,使用反向遍历来避免迭代器失效
|
||||
for (auto& mbb : mfunc->getBlocks()) {
|
||||
// 使用手动控制的反向循环
|
||||
for (auto it = mbb->getInstructions().begin(); it != mbb->getInstructions().end(); ++it) {
|
||||
if ((*it)->getOpcode() == RVOpcodes::RET) {
|
||||
// 1. 创建一个临时vector来存储所有需要插入的恢复指令
|
||||
std::vector<std::unique_ptr<MachineInstr>> restore_instrs;
|
||||
|
||||
int current_offset_load = base_offset;
|
||||
// 以相同的顺序(例如 s1, s2, ...)创建恢复指令
|
||||
for (PhysicalReg reg : sorted_regs) {
|
||||
auto ld = std::make_unique<MachineInstr>(RVOpcodes::LD);
|
||||
ld->addOperand(std::make_unique<RegOperand>(reg));
|
||||
ld->addOperand(std::make_unique<MemOperand>(
|
||||
std::make_unique<RegOperand>(PhysicalReg::S0),
|
||||
std::make_unique<ImmOperand>(current_offset_load)
|
||||
));
|
||||
restore_instrs.push_back(std::move(ld));
|
||||
current_offset_load -= 8;
|
||||
}
|
||||
|
||||
// 2. 使用 make_move_iterator 一次性将所有恢复指令插入到 RET 指令之前
|
||||
// 这可以高效地转移指令的所有权,并且只让迭代器失效一次。
|
||||
if (!restore_instrs.empty()) {
|
||||
mbb->getInstructions().insert(it,
|
||||
std::make_move_iterator(restore_instrs.begin()),
|
||||
std::make_move_iterator(restore_instrs.end())
|
||||
);
|
||||
}
|
||||
|
||||
// 找到了RET并处理完毕后,就可以跳出内层循环,继续寻找下一个基本块
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace sysy
|
||||
180
src/Dom.cpp
180
src/Dom.cpp
@ -1,180 +0,0 @@
|
||||
#include "Dom.h"
|
||||
#include <limits> // for std::numeric_limits
|
||||
#include <queue>
|
||||
|
||||
namespace sysy {
|
||||
|
||||
// 初始化 支配树静态 ID
|
||||
void *DominatorTreeAnalysisPass::ID = (void *)&DominatorTreeAnalysisPass::ID;
|
||||
// ==============================================================
|
||||
// DominatorTree 结果类的实现
|
||||
// ==============================================================
|
||||
|
||||
DominatorTree::DominatorTree(Function *F) : AssociatedFunction(F) {
|
||||
// 构造时可以不计算,在分析遍运行里计算并填充
|
||||
}
|
||||
|
||||
const std::set<BasicBlock *> *DominatorTree::getDominators(BasicBlock *BB) const {
|
||||
auto it = Dominators.find(BB);
|
||||
if (it != Dominators.end()) {
|
||||
return &(it->second);
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
BasicBlock *DominatorTree::getImmediateDominator(BasicBlock *BB) const {
|
||||
auto it = IDoms.find(BB);
|
||||
if (it != IDoms.end()) {
|
||||
return it->second;
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
const std::set<BasicBlock *> *DominatorTree::getDominanceFrontier(BasicBlock *BB) const {
|
||||
auto it = DominanceFrontiers.find(BB);
|
||||
if (it != DominanceFrontiers.end()) {
|
||||
return &(it->second);
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
void DominatorTree::computeDominators(Function *F) {
|
||||
// 经典的迭代算法计算支配者集合
|
||||
// TODO: 可以替换为更高效的算法,如 Lengauer-Tarjan 算法
|
||||
BasicBlock *entryBlock = F->getEntryBlock();
|
||||
|
||||
for (const auto &bb_ptr : F->getBasicBlocks()) {
|
||||
BasicBlock *bb = bb_ptr.get();
|
||||
if (bb == entryBlock) {
|
||||
Dominators[bb].insert(bb);
|
||||
} else {
|
||||
for (const auto &all_bb_ptr : F->getBasicBlocks()) {
|
||||
Dominators[bb].insert(all_bb_ptr.get());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bool changed = true;
|
||||
while (changed) {
|
||||
changed = false;
|
||||
for (const auto &bb_ptr : F->getBasicBlocks()) {
|
||||
BasicBlock *bb = bb_ptr.get();
|
||||
if (bb == entryBlock)
|
||||
continue;
|
||||
|
||||
std::set<BasicBlock *> newDom;
|
||||
bool firstPred = true;
|
||||
for (BasicBlock *pred : bb->getPredecessors()) {
|
||||
if (Dominators.count(pred)) {
|
||||
if (firstPred) {
|
||||
newDom = Dominators[pred];
|
||||
firstPred = false;
|
||||
} else {
|
||||
std::set<BasicBlock *> intersection;
|
||||
std::set_intersection(newDom.begin(), newDom.end(), Dominators[pred].begin(), Dominators[pred].end(),
|
||||
std::inserter(intersection, intersection.begin()));
|
||||
newDom = intersection;
|
||||
}
|
||||
}
|
||||
}
|
||||
newDom.insert(bb);
|
||||
|
||||
if (newDom != Dominators[bb]) {
|
||||
Dominators[bb] = newDom;
|
||||
changed = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void DominatorTree::computeIDoms(Function *F) {
|
||||
// 采用与之前类似的简化实现。TODO:Lengauer-Tarjan等算法。
|
||||
BasicBlock *entryBlock = F->getEntryBlock();
|
||||
IDoms[entryBlock] = nullptr;
|
||||
|
||||
for (const auto &bb_ptr : F->getBasicBlocks()) {
|
||||
BasicBlock *bb = bb_ptr.get();
|
||||
if (bb == entryBlock)
|
||||
continue;
|
||||
|
||||
BasicBlock *currentIDom = nullptr;
|
||||
const std::set<BasicBlock *> *domsOfBB = getDominators(bb);
|
||||
if (!domsOfBB)
|
||||
continue;
|
||||
|
||||
for (BasicBlock *D : *domsOfBB) {
|
||||
if (D == bb)
|
||||
continue;
|
||||
|
||||
bool isCandidateIDom = true;
|
||||
for (BasicBlock *candidate : *domsOfBB) {
|
||||
if (candidate == bb || candidate == D)
|
||||
continue;
|
||||
const std::set<BasicBlock *> *domsOfCandidate = getDominators(candidate);
|
||||
if (domsOfCandidate && domsOfCandidate->count(D) == 0 && domsOfBB->count(candidate)) {
|
||||
isCandidateIDom = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (isCandidateIDom) {
|
||||
currentIDom = D;
|
||||
break;
|
||||
}
|
||||
}
|
||||
IDoms[bb] = currentIDom;
|
||||
}
|
||||
}
|
||||
|
||||
void DominatorTree::computeDominanceFrontiers(Function *F) {
|
||||
// 经典的支配边界计算算法
|
||||
for (const auto &bb_ptr_X : F->getBasicBlocks()) {
|
||||
BasicBlock *X = bb_ptr_X.get();
|
||||
DominanceFrontiers[X].clear();
|
||||
|
||||
for (BasicBlock *Y : X->getSuccessors()) {
|
||||
const std::set<BasicBlock *> *domsOfY = getDominators(Y);
|
||||
if (domsOfY && domsOfY->find(X) == domsOfY->end()) {
|
||||
DominanceFrontiers[X].insert(Y);
|
||||
}
|
||||
}
|
||||
|
||||
const std::set<BasicBlock *> *domsOfX = getDominators(X);
|
||||
if (!domsOfX)
|
||||
continue;
|
||||
for (const auto &bb_ptr_Z : F->getBasicBlocks()) {
|
||||
BasicBlock *Z = bb_ptr_Z.get();
|
||||
if (Z == X)
|
||||
continue;
|
||||
const std::set<BasicBlock *> *domsOfZ = getDominators(Z);
|
||||
if (domsOfZ && domsOfZ->count(X) && Z != X) {
|
||||
|
||||
for (BasicBlock *Y : Z->getSuccessors()) {
|
||||
const std::set<BasicBlock *> *domsOfY = getDominators(Y);
|
||||
if (domsOfY && domsOfY->find(X) == domsOfY->end()) {
|
||||
DominanceFrontiers[X].insert(Y);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// ==============================================================
|
||||
// DominatorTreeAnalysisPass 的实现
|
||||
// ==============================================================
|
||||
|
||||
|
||||
bool DominatorTreeAnalysisPass::runOnFunction(Function* F, AnalysisManager &AM) {
|
||||
CurrentDominatorTree = std::make_unique<DominatorTree>(F);
|
||||
CurrentDominatorTree->computeDominators(F);
|
||||
CurrentDominatorTree->computeIDoms(F);
|
||||
CurrentDominatorTree->computeDominanceFrontiers(F);
|
||||
return false;
|
||||
}
|
||||
|
||||
std::unique_ptr<AnalysisResultBase> DominatorTreeAnalysisPass::getResult() {
|
||||
// 返回计算好的 DominatorTree 实例,所有权转移给 AnalysisManager
|
||||
return std::move(CurrentDominatorTree);
|
||||
}
|
||||
|
||||
} // namespace sysy
|
||||
742
src/IR.cpp
742
src/IR.cpp
@ -1,742 +0,0 @@
|
||||
#include "IR.h"
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
#include <memory>
|
||||
#include <queue>
|
||||
#include <set>
|
||||
#include <sstream>
|
||||
#include <vector>
|
||||
#include "IRBuilder.h"
|
||||
|
||||
/**
|
||||
* @file IR.cpp
|
||||
*
|
||||
* @brief 定义IR相关类型与操作的源文件
|
||||
*/
|
||||
namespace sysy {
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Types
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
auto Type::getIntType() -> Type * {
|
||||
static Type intType(kInt);
|
||||
return &intType;
|
||||
}
|
||||
|
||||
auto Type::getFloatType() -> Type * {
|
||||
static Type floatType(kFloat);
|
||||
return &floatType;
|
||||
}
|
||||
|
||||
auto Type::getVoidType() -> Type * {
|
||||
static Type voidType(kVoid);
|
||||
return &voidType;
|
||||
}
|
||||
|
||||
auto Type::getLabelType() -> Type * {
|
||||
static Type labelType(kLabel);
|
||||
return &labelType;
|
||||
}
|
||||
|
||||
auto Type::getPointerType(Type *baseType) -> Type * {
|
||||
// forward to PointerType
|
||||
return PointerType::get(baseType);
|
||||
}
|
||||
|
||||
auto Type::getFunctionType(Type *returnType, const std::vector<Type *> ¶mTypes) -> Type * {
|
||||
// forward to FunctionType
|
||||
return FunctionType::get(returnType, paramTypes);
|
||||
}
|
||||
|
||||
auto Type::getArrayType(Type *elementType, unsigned numElements) -> Type * {
|
||||
// forward to ArrayType
|
||||
return ArrayType::get(elementType, numElements);
|
||||
}
|
||||
|
||||
auto Type::getSize() const -> unsigned {
|
||||
switch (kind) {
|
||||
case kInt:
|
||||
case kFloat:
|
||||
return 4;
|
||||
case kLabel:
|
||||
case kPointer:
|
||||
case kFunction:
|
||||
return 8;
|
||||
case Kind::kArray: {
|
||||
const ArrayType* arrType = static_cast<const ArrayType*>(this);
|
||||
return arrType->getElementType()->getSize() * arrType->getNumElements();
|
||||
}
|
||||
case kVoid:
|
||||
return 0;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
PointerType* PointerType::get(Type *baseType) {
|
||||
static std::map<Type *, std::unique_ptr<PointerType>> pointerTypes;
|
||||
auto iter = pointerTypes.find(baseType);
|
||||
if (iter != pointerTypes.end()) {
|
||||
return iter->second.get();
|
||||
}
|
||||
auto type = new PointerType(baseType);
|
||||
assert(type);
|
||||
auto result = pointerTypes.emplace(baseType, type);
|
||||
return result.first->second.get();
|
||||
}
|
||||
|
||||
FunctionType*FunctionType::get(Type *returnType, const std::vector<Type *> ¶mTypes) {
|
||||
static std::set<std::unique_ptr<FunctionType>> functionTypes;
|
||||
auto iter =
|
||||
std::find_if(functionTypes.begin(), functionTypes.end(), [&](const std::unique_ptr<FunctionType> &type) -> bool {
|
||||
if (returnType != type->getReturnType() ||
|
||||
paramTypes.size() != static_cast<size_t>(type->getParamTypes().size())) {
|
||||
return false;
|
||||
}
|
||||
return std::equal(paramTypes.begin(), paramTypes.end(), type->getParamTypes().begin());
|
||||
});
|
||||
if (iter != functionTypes.end()) {
|
||||
return iter->get();
|
||||
}
|
||||
auto type = new FunctionType(returnType, paramTypes);
|
||||
assert(type);
|
||||
auto result = functionTypes.emplace(type);
|
||||
return result.first->get();
|
||||
}
|
||||
|
||||
ArrayType *ArrayType::get(Type *elementType, unsigned numElements) {
|
||||
static std::set<std::unique_ptr<ArrayType>> arrayTypes;
|
||||
auto iter = std::find_if(arrayTypes.begin(), arrayTypes.end(), [&](const std::unique_ptr<ArrayType> &type) -> bool {
|
||||
return elementType == type->getElementType() && numElements == type->getNumElements();
|
||||
});
|
||||
if (iter != arrayTypes.end()) {
|
||||
return iter->get();
|
||||
}
|
||||
auto type = new ArrayType(elementType, numElements);
|
||||
assert(type);
|
||||
auto result = arrayTypes.emplace(type);
|
||||
return result.first->get();
|
||||
}
|
||||
|
||||
void Value::replaceAllUsesWith(Value *value) {
|
||||
for (auto &use : uses) {
|
||||
use->getUser()->setOperand(use->getIndex(), value);
|
||||
}
|
||||
uses.clear();
|
||||
}
|
||||
|
||||
|
||||
// Implementations for static members
|
||||
|
||||
std::unordered_map<ConstantValueKey, ConstantValue*, ConstantValueHash, ConstantValueEqual> ConstantValue::mConstantPool;
|
||||
std::unordered_map<Type*, UndefinedValue*> UndefinedValue::UndefValues;
|
||||
|
||||
ConstantValue* ConstantValue::get(Type* type, ConstantValVariant val) {
|
||||
ConstantValueKey key = {type, val};
|
||||
auto it = mConstantPool.find(key);
|
||||
if (it != mConstantPool.end()) {
|
||||
return it->second;
|
||||
}
|
||||
|
||||
ConstantValue* newConstant = nullptr;
|
||||
if (std::holds_alternative<int>(val)) {
|
||||
newConstant = new ConstantInteger(type, std::get<int>(val));
|
||||
} else if (std::holds_alternative<float>(val)) {
|
||||
newConstant = new ConstantFloating(type, std::get<float>(val));
|
||||
} else {
|
||||
assert(false && "Unsupported ConstantValVariant type");
|
||||
}
|
||||
|
||||
mConstantPool[key] = newConstant;
|
||||
return newConstant;
|
||||
}
|
||||
|
||||
ConstantInteger* ConstantInteger::get(Type* type, int val) {
|
||||
return dynamic_cast<ConstantInteger*>(ConstantValue::get(type, val));
|
||||
}
|
||||
|
||||
ConstantFloating* ConstantFloating::get(Type* type, float val) {
|
||||
return dynamic_cast<ConstantFloating*>(ConstantValue::get(type, val));
|
||||
}
|
||||
|
||||
UndefinedValue* UndefinedValue::get(Type* type) {
|
||||
assert(!type->isVoid() && "Cannot get UndefinedValue of void type!");
|
||||
|
||||
auto it = UndefValues.find(type);
|
||||
if (it != UndefValues.end()) {
|
||||
return it->second;
|
||||
}
|
||||
|
||||
UndefinedValue* newUndef = new UndefinedValue(type);
|
||||
UndefValues[type] = newUndef;
|
||||
return newUndef;
|
||||
}
|
||||
|
||||
|
||||
auto Function::getCalleesWithNoExternalAndSelf() -> std::set<Function *> {
|
||||
std::set<Function *> result;
|
||||
for (auto callee : callees) {
|
||||
if (parent->getExternalFunctions().count(callee->getName()) == 0U && callee != this) {
|
||||
result.insert(callee);
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
// 函数克隆,后续函数级优化(内联等)需要用到
|
||||
Function * Function::clone(const std::string &suffix) const {
|
||||
std::stringstream ss;
|
||||
std::map<BasicBlock *, BasicBlock *> oldNewBlockMap;
|
||||
IRBuilder builder;
|
||||
auto newFunction = new Function(parent, type, name);
|
||||
newFunction->getEntryBlock()->setName(blocks.front()->getName());
|
||||
oldNewBlockMap.emplace(blocks.front().get(), newFunction->getEntryBlock());
|
||||
auto oldBlockListIter = std::next(blocks.begin());
|
||||
while (oldBlockListIter != blocks.end()) {
|
||||
auto newBlock = newFunction->addBasicBlock(oldBlockListIter->get()->getName());
|
||||
oldNewBlockMap.emplace(oldBlockListIter->get(), newBlock);
|
||||
oldBlockListIter++;
|
||||
}
|
||||
|
||||
for (const auto &oldNewBlockItem : oldNewBlockMap) {
|
||||
auto oldBlock = oldNewBlockItem.first;
|
||||
auto newBlock = oldNewBlockItem.second;
|
||||
for (const auto &oldPred : oldBlock->getPredecessors()) {
|
||||
newBlock->addPredecessor(oldNewBlockMap.at(oldPred));
|
||||
}
|
||||
for (const auto &oldSucc : oldBlock->getSuccessors()) {
|
||||
newBlock->addSuccessor(oldNewBlockMap.at(oldSucc));
|
||||
}
|
||||
}
|
||||
|
||||
std::map<Value *, Value *> oldNewValueMap;
|
||||
std::map<Value *, bool> isAddedToCreate;
|
||||
std::map<Value *, bool> isCreated;
|
||||
std::queue<Value *> toCreate;
|
||||
|
||||
for (const auto &oldBlock : blocks) {
|
||||
for (const auto &inst : oldBlock->getInstructions()) {
|
||||
isAddedToCreate.emplace(inst.get(), false);
|
||||
isCreated.emplace(inst.get(), false);
|
||||
}
|
||||
}
|
||||
for (const auto &oldBlock : blocks) {
|
||||
for (const auto &inst : oldBlock->getInstructions()) {
|
||||
for (const auto &valueUse : inst->getOperands()) {
|
||||
auto value = valueUse->getValue();
|
||||
if (oldNewValueMap.find(value) == oldNewValueMap.end()) {
|
||||
auto oldAllocInst = dynamic_cast<AllocaInst *>(value);
|
||||
if (oldAllocInst != nullptr) {
|
||||
std::vector<Value *> dims;
|
||||
for (const auto &dim : oldAllocInst->getDims()) {
|
||||
dims.emplace_back(dim->getValue());
|
||||
}
|
||||
ss << oldAllocInst->getName() << suffix;
|
||||
auto newAllocInst =
|
||||
new AllocaInst(oldAllocInst->getType(), dims, oldNewBlockMap.at(oldAllocInst->getParent()), ss.str());
|
||||
ss.str("");
|
||||
oldNewValueMap.emplace(oldAllocInst, newAllocInst);
|
||||
if (isAddedToCreate.find(oldAllocInst) == isAddedToCreate.end()) {
|
||||
isAddedToCreate.emplace(oldAllocInst, true);
|
||||
} else {
|
||||
isAddedToCreate.at(oldAllocInst) = true;
|
||||
}
|
||||
if (isCreated.find(oldAllocInst) == isCreated.end()) {
|
||||
isCreated.emplace(oldAllocInst, true);
|
||||
} else {
|
||||
isCreated.at(oldAllocInst) = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if (inst->getKind() == Instruction::kAlloca) {
|
||||
if (oldNewValueMap.find(inst.get()) == oldNewValueMap.end()) {
|
||||
auto oldAllocInst = dynamic_cast<AllocaInst *>(inst.get());
|
||||
std::vector<Value *> dims;
|
||||
for (const auto &dim : oldAllocInst->getDims()) {
|
||||
dims.emplace_back(dim->getValue());
|
||||
}
|
||||
ss << oldAllocInst->getName() << suffix;
|
||||
auto newAllocInst =
|
||||
new AllocaInst(oldAllocInst->getType(), dims, oldNewBlockMap.at(oldAllocInst->getParent()), ss.str());
|
||||
ss.str("");
|
||||
oldNewValueMap.emplace(oldAllocInst, newAllocInst);
|
||||
if (isAddedToCreate.find(oldAllocInst) == isAddedToCreate.end()) {
|
||||
isAddedToCreate.emplace(oldAllocInst, true);
|
||||
} else {
|
||||
isAddedToCreate.at(oldAllocInst) = true;
|
||||
}
|
||||
if (isCreated.find(oldAllocInst) == isCreated.end()) {
|
||||
isCreated.emplace(oldAllocInst, true);
|
||||
} else {
|
||||
isCreated.at(oldAllocInst) = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
for (const auto &oldBlock : blocks) {
|
||||
for (const auto &inst : oldBlock->getInstructions()) {
|
||||
for (const auto &valueUse : inst->getOperands()) {
|
||||
auto value = valueUse->getValue();
|
||||
if (oldNewValueMap.find(value) == oldNewValueMap.end()) {
|
||||
auto globalValue = dynamic_cast<GlobalValue *>(value);
|
||||
auto constVariable = dynamic_cast<ConstantVariable *>(value);
|
||||
auto constantValue = dynamic_cast<ConstantValue *>(value);
|
||||
auto functionValue = dynamic_cast<Function *>(value);
|
||||
if (globalValue != nullptr || constantValue != nullptr || constVariable != nullptr ||
|
||||
functionValue != nullptr) {
|
||||
if (functionValue == this) {
|
||||
oldNewValueMap.emplace(value, newFunction);
|
||||
} else {
|
||||
oldNewValueMap.emplace(value, value);
|
||||
}
|
||||
isCreated.emplace(value, true);
|
||||
isAddedToCreate.emplace(value, true);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
for (const auto &oldBlock : blocks) {
|
||||
for (const auto &inst : oldBlock->getInstructions()) {
|
||||
if (inst->getKind() != Instruction::kAlloca) {
|
||||
bool isReady = true;
|
||||
for (const auto &use : inst->getOperands()) {
|
||||
auto value = use->getValue();
|
||||
if (dynamic_cast<BasicBlock *>(value) == nullptr && !isCreated.at(value)) {
|
||||
isReady = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (isReady) {
|
||||
toCreate.push(inst.get());
|
||||
isAddedToCreate.at(inst.get()) = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
while (!toCreate.empty()) {
|
||||
auto inst = dynamic_cast<Instruction *>(toCreate.front());
|
||||
toCreate.pop();
|
||||
|
||||
bool isReady = true;
|
||||
for (const auto &valueUse : inst->getOperands()) {
|
||||
auto value = dynamic_cast<Instruction *>(valueUse->getValue());
|
||||
if (value != nullptr && !isCreated.at(value)) {
|
||||
isReady = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (!isReady) {
|
||||
toCreate.push(inst);
|
||||
continue;
|
||||
}
|
||||
isCreated.at(inst) = true;
|
||||
switch (inst->getKind()) {
|
||||
case Instruction::kAdd:
|
||||
case Instruction::kSub:
|
||||
case Instruction::kMul:
|
||||
case Instruction::kDiv:
|
||||
case Instruction::kRem:
|
||||
case Instruction::kICmpEQ:
|
||||
case Instruction::kICmpNE:
|
||||
case Instruction::kICmpLT:
|
||||
case Instruction::kICmpGT:
|
||||
case Instruction::kICmpLE:
|
||||
case Instruction::kICmpGE:
|
||||
case Instruction::kAnd:
|
||||
case Instruction::kOr:
|
||||
case Instruction::kFAdd:
|
||||
case Instruction::kFSub:
|
||||
case Instruction::kFMul:
|
||||
case Instruction::kFDiv:
|
||||
case Instruction::kFCmpEQ:
|
||||
case Instruction::kFCmpNE:
|
||||
case Instruction::kFCmpLT:
|
||||
case Instruction::kFCmpGT:
|
||||
case Instruction::kFCmpLE:
|
||||
case Instruction::kFCmpGE: {
|
||||
auto oldBinaryInst = dynamic_cast<BinaryInst *>(inst);
|
||||
auto lhs = oldBinaryInst->getLhs();
|
||||
auto rhs = oldBinaryInst->getRhs();
|
||||
Value *newLhs;
|
||||
Value *newRhs;
|
||||
newLhs = oldNewValueMap[lhs];
|
||||
newRhs = oldNewValueMap[rhs];
|
||||
ss << oldBinaryInst->getName() << suffix;
|
||||
auto newBinaryInst = new BinaryInst(oldBinaryInst->getKind(), oldBinaryInst->getType(), newLhs, newRhs,
|
||||
oldNewBlockMap.at(oldBinaryInst->getParent()), ss.str());
|
||||
ss.str("");
|
||||
oldNewValueMap.emplace(oldBinaryInst, newBinaryInst);
|
||||
break;
|
||||
}
|
||||
|
||||
case Instruction::kNeg:
|
||||
case Instruction::kNot:
|
||||
case Instruction::kFNeg:
|
||||
case Instruction::kFNot:
|
||||
case Instruction::kItoF:
|
||||
case Instruction::kFtoI: {
|
||||
auto oldUnaryInst = dynamic_cast<UnaryInst *>(inst);
|
||||
auto hs = oldUnaryInst->getOperand();
|
||||
Value *newHs;
|
||||
newHs = oldNewValueMap.at(hs);
|
||||
ss << oldUnaryInst->getName() << suffix;
|
||||
auto newUnaryInst = new UnaryInst(oldUnaryInst->getKind(), oldUnaryInst->getType(), newHs,
|
||||
oldNewBlockMap.at(oldUnaryInst->getParent()), ss.str());
|
||||
ss.str("");
|
||||
oldNewValueMap.emplace(oldUnaryInst, newUnaryInst);
|
||||
break;
|
||||
}
|
||||
|
||||
case Instruction::kCall: {
|
||||
auto oldCallInst = dynamic_cast<CallInst *>(inst);
|
||||
std::vector<Value *> newArgumnts;
|
||||
for (const auto &arg : oldCallInst->getArguments()) {
|
||||
newArgumnts.emplace_back(oldNewValueMap.at(arg->getValue()));
|
||||
}
|
||||
|
||||
ss << oldCallInst->getName() << suffix;
|
||||
CallInst *newCallInst;
|
||||
newCallInst =
|
||||
new CallInst(oldCallInst->getCallee(), newArgumnts, oldNewBlockMap.at(oldCallInst->getParent()), ss.str());
|
||||
ss.str("");
|
||||
// if (oldCallInst->getCallee() != this) {
|
||||
// newCallInst = new CallInst(oldCallInst->getCallee(), newArgumnts,
|
||||
// oldNewBlockMap.at(oldCallInst->getParent()),
|
||||
// oldCallInst->getName());
|
||||
// } else {
|
||||
// newCallInst = new CallInst(newFunction, newArgumnts, oldNewBlockMap.at(oldCallInst->getParent()),
|
||||
// oldCallInst->getName());
|
||||
// }
|
||||
|
||||
oldNewValueMap.emplace(oldCallInst, newCallInst);
|
||||
break;
|
||||
}
|
||||
|
||||
case Instruction::kCondBr: {
|
||||
auto oldCondBrInst = dynamic_cast<CondBrInst *>(inst);
|
||||
auto oldCond = oldCondBrInst->getCondition();
|
||||
Value *newCond;
|
||||
newCond = oldNewValueMap.at(oldCond);
|
||||
auto newCondBrInst = new CondBrInst(newCond, oldNewBlockMap.at(oldCondBrInst->getThenBlock()),
|
||||
oldNewBlockMap.at(oldCondBrInst->getElseBlock()), {}, {},
|
||||
oldNewBlockMap.at(oldCondBrInst->getParent()));
|
||||
oldNewValueMap.emplace(oldCondBrInst, newCondBrInst);
|
||||
break;
|
||||
}
|
||||
|
||||
case Instruction::kBr: {
|
||||
auto oldBrInst = dynamic_cast<UncondBrInst *>(inst);
|
||||
auto newBrInst =
|
||||
new UncondBrInst(oldNewBlockMap.at(oldBrInst->getBlock()), {}, oldNewBlockMap.at(oldBrInst->getParent()));
|
||||
oldNewValueMap.emplace(oldBrInst, newBrInst);
|
||||
break;
|
||||
}
|
||||
|
||||
case Instruction::kReturn: {
|
||||
auto oldReturnInst = dynamic_cast<ReturnInst *>(inst);
|
||||
auto oldRval = oldReturnInst->getReturnValue();
|
||||
Value *newRval = nullptr;
|
||||
if (oldRval != nullptr) {
|
||||
newRval = oldNewValueMap.at(oldRval);
|
||||
}
|
||||
auto newReturnInst =
|
||||
new ReturnInst(newRval, oldNewBlockMap.at(oldReturnInst->getParent()), oldReturnInst->getName());
|
||||
oldNewValueMap.emplace(oldReturnInst, newReturnInst);
|
||||
break;
|
||||
}
|
||||
|
||||
case Instruction::kAlloca: {
|
||||
assert(false);
|
||||
}
|
||||
|
||||
case Instruction::kLoad: {
|
||||
auto oldLoadInst = dynamic_cast<LoadInst *>(inst);
|
||||
auto oldPointer = oldLoadInst->getPointer();
|
||||
Value *newPointer;
|
||||
newPointer = oldNewValueMap.at(oldPointer);
|
||||
|
||||
std::vector<Value *> newIndices;
|
||||
for (const auto &index : oldLoadInst->getIndices()) {
|
||||
newIndices.emplace_back(oldNewValueMap.at(index->getValue()));
|
||||
}
|
||||
ss << oldLoadInst->getName() << suffix;
|
||||
auto newLoadInst = new LoadInst(newPointer, newIndices, oldNewBlockMap.at(oldLoadInst->getParent()), ss.str());
|
||||
ss.str("");
|
||||
oldNewValueMap.emplace(oldLoadInst, newLoadInst);
|
||||
break;
|
||||
}
|
||||
|
||||
case Instruction::kStore: {
|
||||
auto oldStoreInst = dynamic_cast<StoreInst *>(inst);
|
||||
auto oldPointer = oldStoreInst->getPointer();
|
||||
auto oldValue = oldStoreInst->getValue();
|
||||
Value *newPointer;
|
||||
Value *newValue;
|
||||
std::vector<Value *> newIndices;
|
||||
newPointer = oldNewValueMap.at(oldPointer);
|
||||
newValue = oldNewValueMap.at(oldValue);
|
||||
for (const auto &index : oldStoreInst->getIndices()) {
|
||||
newIndices.emplace_back(oldNewValueMap.at(index->getValue()));
|
||||
}
|
||||
auto newStoreInst = new StoreInst(newValue, newPointer, newIndices,
|
||||
oldNewBlockMap.at(oldStoreInst->getParent()), oldStoreInst->getName());
|
||||
oldNewValueMap.emplace(oldStoreInst, newStoreInst);
|
||||
break;
|
||||
}
|
||||
|
||||
// TODO:复制GEP指令
|
||||
|
||||
case Instruction::kMemset: {
|
||||
auto oldMemsetInst = dynamic_cast<MemsetInst *>(inst);
|
||||
auto oldPointer = oldMemsetInst->getPointer();
|
||||
auto oldValue = oldMemsetInst->getValue();
|
||||
Value *newPointer;
|
||||
Value *newValue;
|
||||
newPointer = oldNewValueMap.at(oldPointer);
|
||||
newValue = oldNewValueMap.at(oldValue);
|
||||
|
||||
auto newMemsetInst = new MemsetInst(newPointer, oldMemsetInst->getBegin(), oldMemsetInst->getSize(), newValue,
|
||||
oldNewBlockMap.at(oldMemsetInst->getParent()), oldMemsetInst->getName());
|
||||
oldNewValueMap.emplace(oldMemsetInst, newMemsetInst);
|
||||
break;
|
||||
}
|
||||
|
||||
case Instruction::kInvalid:
|
||||
case Instruction::kPhi: {
|
||||
break;
|
||||
}
|
||||
|
||||
default:
|
||||
assert(false);
|
||||
}
|
||||
for (const auto &userUse : inst->getUses()) {
|
||||
auto user = userUse->getUser();
|
||||
if (!isAddedToCreate.at(user)) {
|
||||
toCreate.push(user);
|
||||
isAddedToCreate.at(user) = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (const auto &oldBlock : blocks) {
|
||||
auto newBlock = oldNewBlockMap.at(oldBlock.get());
|
||||
builder.setPosition(newBlock, newBlock->end());
|
||||
for (const auto &inst : oldBlock->getInstructions()) {
|
||||
builder.insertInst(dynamic_cast<Instruction *>(oldNewValueMap.at(inst.get())));
|
||||
}
|
||||
}
|
||||
|
||||
// for (const auto ¶m : blocks.front()->getArguments()) {
|
||||
// newFunction->getEntryBlock()->insertArgument(dynamic_cast<AllocaInst *>(oldNewValueMap.at(param)));
|
||||
// }
|
||||
for (const auto &arg : arguments) {
|
||||
auto newArg = dynamic_cast<Argument *>(oldNewValueMap.at(arg));
|
||||
if (newArg != nullptr) {
|
||||
newFunction->insertArgument(newArg);
|
||||
}
|
||||
}
|
||||
|
||||
return newFunction;
|
||||
}
|
||||
/**
|
||||
* 设置操作数
|
||||
*/
|
||||
void User::setOperand(unsigned index, Value *value) {
|
||||
assert(index < getNumOperands());
|
||||
operands[index]->setValue(value);
|
||||
value->addUse(operands[index]);
|
||||
}
|
||||
/**
|
||||
* 替换操作数
|
||||
*/
|
||||
void User::replaceOperand(unsigned index, Value *value) {
|
||||
assert(index < getNumOperands());
|
||||
auto &use = operands[index];
|
||||
use->getValue()->removeUse(use);
|
||||
use->setValue(value);
|
||||
value->addUse(use);
|
||||
}
|
||||
|
||||
/**
|
||||
* phi相关函数
|
||||
*/
|
||||
|
||||
Value* PhiInst::getvalfromBlk(BasicBlock* blk){
|
||||
refreshB2VMap();
|
||||
if( blk2val.find(blk) != blk2val.end()) {
|
||||
return blk2val.at(blk);
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
BasicBlock* PhiInst::getBlkfromVal(Value* val){
|
||||
// 返回第一个值对应的基本块
|
||||
for(unsigned i = 0; i < vsize; i++) {
|
||||
if(getValue(i) == val) {
|
||||
return getBlock(i);
|
||||
}
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
void PhiInst::delValue(Value* val){
|
||||
//根据value删除对应的基本块和值
|
||||
unsigned i = 0;
|
||||
BasicBlock* blk = getBlkfromVal(val);
|
||||
for(i = 0; i < vsize; i++) {
|
||||
if(getValue(i) == val) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
removeOperand(2 * i + 1); // 删除blk
|
||||
removeOperand(2 * i); // 删除val
|
||||
vsize--;
|
||||
blk2val.erase(blk); // 删除blk2val映射
|
||||
}
|
||||
|
||||
void PhiInst::delBlk(BasicBlock* blk){
|
||||
//根据Blk删除对应的基本块和值
|
||||
unsigned i = 0;
|
||||
Value* val = getvalfromBlk(blk);
|
||||
for(i = 0; i < vsize; i++) {
|
||||
if(getBlock(i) == blk) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
removeOperand(2 * i + 1); // 删除blk
|
||||
removeOperand(2 * i); // 删除val
|
||||
vsize--;
|
||||
blk2val.erase(blk); // 删除blk2val映射
|
||||
}
|
||||
|
||||
void PhiInst::replaceBlk(BasicBlock* newBlk, unsigned k){
|
||||
refreshB2VMap();
|
||||
Value* val = blk2val.at(getBlock(k));
|
||||
// 替换基本块
|
||||
setOperand(2 * k + 1, newBlk);
|
||||
// 替换blk2val映射
|
||||
blk2val.erase(getBlock(k));
|
||||
blk2val.emplace(newBlk, val);
|
||||
}
|
||||
|
||||
void PhiInst::replaceold2new(BasicBlock* oldBlk, BasicBlock* newBlk){
|
||||
refreshB2VMap();
|
||||
Value* val = blk2val.at(oldBlk);
|
||||
// 替换基本块
|
||||
delBlk(oldBlk);
|
||||
addIncoming(val, newBlk);
|
||||
}
|
||||
|
||||
void PhiInst::refreshB2VMap(){
|
||||
blk2val.clear();
|
||||
for(unsigned i = 0; i < vsize; i++) {
|
||||
blk2val.emplace(getBlock(i), getValue(i));
|
||||
}
|
||||
}
|
||||
|
||||
CallInst::CallInst(Function *callee, const std::vector<Value *> &args, BasicBlock *parent, const std::string &name)
|
||||
: Instruction(kCall, callee->getReturnType(), parent, name) {
|
||||
addOperand(callee);
|
||||
for (auto arg : args) {
|
||||
addOperand(arg);
|
||||
}
|
||||
}
|
||||
/**
|
||||
* 获取被调用函数的指针
|
||||
*/
|
||||
Function * CallInst::getCallee() const { return dynamic_cast<Function *>(getOperand(0)); }
|
||||
|
||||
/**
|
||||
* 获取变量指针
|
||||
*/
|
||||
auto SymbolTable::getVariable(const std::string &name) const -> Value * {
|
||||
auto node = curNode;
|
||||
while (node != nullptr) {
|
||||
auto iter = node->varList.find(name);
|
||||
if (iter != node->varList.end()) {
|
||||
return iter->second;
|
||||
}
|
||||
node = node->pNode;
|
||||
}
|
||||
|
||||
return nullptr;
|
||||
}
|
||||
/**
|
||||
* 添加变量到符号表
|
||||
*/
|
||||
auto SymbolTable::addVariable(const std::string &name, Value *variable) -> Value * {
|
||||
Value *result = nullptr;
|
||||
if (curNode != nullptr) {
|
||||
std::stringstream ss;
|
||||
auto iter = variableIndex.find(name);
|
||||
if (iter != variableIndex.end()) {
|
||||
ss << name << iter->second ;
|
||||
iter->second += 1;
|
||||
} else {
|
||||
variableIndex.emplace(name, 1);
|
||||
ss << name << 0 ;
|
||||
}
|
||||
|
||||
variable->setName(ss.str());
|
||||
curNode->varList.emplace(name, variable);
|
||||
auto global = dynamic_cast<GlobalValue *>(variable);
|
||||
auto constvar = dynamic_cast<ConstantVariable *>(variable);
|
||||
if (global != nullptr) {
|
||||
globals.emplace_back(global);
|
||||
} else if (constvar != nullptr) {
|
||||
consts.emplace_back(constvar);
|
||||
}
|
||||
|
||||
result = variable;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
/**
|
||||
* 获取全局变量
|
||||
*/
|
||||
auto SymbolTable::getGlobals() -> std::vector<std::unique_ptr<GlobalValue>> & { return globals; }
|
||||
/**
|
||||
* 获取常量
|
||||
*/
|
||||
auto SymbolTable::getConsts() const -> const std::vector<std::unique_ptr<ConstantVariable>> & { return consts; }
|
||||
/**
|
||||
* 进入新的作用域
|
||||
*/
|
||||
void SymbolTable::enterNewScope() {
|
||||
auto newNode = new SymbolTableNode;
|
||||
nodeList.emplace_back(newNode);
|
||||
if (curNode != nullptr) {
|
||||
curNode->children.emplace_back(newNode);
|
||||
}
|
||||
newNode->pNode = curNode;
|
||||
curNode = newNode;
|
||||
}
|
||||
/**
|
||||
* 进入全局作用域
|
||||
*/
|
||||
void SymbolTable::enterGlobalScope() { curNode = nodeList.front().get(); }
|
||||
/**
|
||||
* 离开作用域
|
||||
*/
|
||||
void SymbolTable::leaveScope() { curNode = curNode->pNode; }
|
||||
/**
|
||||
* 是否位于全局作用域
|
||||
*/
|
||||
auto SymbolTable::isInGlobalScope() const -> bool { return curNode->pNode == nullptr; }
|
||||
|
||||
/**
|
||||
*移动指令
|
||||
*/
|
||||
auto BasicBlock::moveInst(iterator sourcePos, iterator targetPos, BasicBlock *block) -> iterator {
|
||||
auto inst = sourcePos->release();
|
||||
inst->setParent(block);
|
||||
block->instructions.emplace(targetPos, inst);
|
||||
return instructions.erase(sourcePos);
|
||||
}
|
||||
|
||||
} // namespace sysy
|
||||
@ -1,383 +0,0 @@
|
||||
#include "PostRA_Scheduler.h"
|
||||
#include <set>
|
||||
#include <map>
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
#define MAX_SCHEDULING_BLOCK_SIZE 10000 // 限制调度块大小,避免过大导致性能问题
|
||||
|
||||
namespace sysy {
|
||||
|
||||
char PostRA_Scheduler::ID = 0;
|
||||
|
||||
// 检查指令是否是加载指令 (LW, LD)
|
||||
bool isLoadInstr(MachineInstr* instr) {
|
||||
RVOpcodes opcode = instr->getOpcode();
|
||||
return opcode == RVOpcodes::LW || opcode == RVOpcodes::LD ||
|
||||
opcode == RVOpcodes::LH || opcode == RVOpcodes::LB ||
|
||||
opcode == RVOpcodes::LHU || opcode == RVOpcodes::LBU ||
|
||||
opcode == RVOpcodes::LWU;
|
||||
}
|
||||
|
||||
// 检查指令是否是存储指令 (SW, SD)
|
||||
bool isStoreInstr(MachineInstr* instr) {
|
||||
RVOpcodes opcode = instr->getOpcode();
|
||||
return opcode == RVOpcodes::SW || opcode == RVOpcodes::SD ||
|
||||
opcode == RVOpcodes::SH || opcode == RVOpcodes::SB;
|
||||
}
|
||||
|
||||
// 检查指令是否为控制流指令
|
||||
bool isControlFlowInstr(MachineInstr* instr) {
|
||||
RVOpcodes opcode = instr->getOpcode();
|
||||
return opcode == RVOpcodes::RET || opcode == RVOpcodes::J ||
|
||||
opcode == RVOpcodes::BEQ || opcode == RVOpcodes::BNE ||
|
||||
opcode == RVOpcodes::BLT || opcode == RVOpcodes::BGE ||
|
||||
opcode == RVOpcodes::BLTU || opcode == RVOpcodes::BGEU ||
|
||||
opcode == RVOpcodes::CALL;
|
||||
}
|
||||
|
||||
// 获取指令定义的寄存器 - 修复版本
|
||||
std::set<PhysicalReg> getDefinedRegisters(MachineInstr* instr) {
|
||||
std::set<PhysicalReg> defined_regs;
|
||||
RVOpcodes opcode = instr->getOpcode();
|
||||
|
||||
// 特殊处理CALL指令
|
||||
if (opcode == RVOpcodes::CALL) {
|
||||
// CALL指令可能定义返回值寄存器
|
||||
if (!instr->getOperands().empty() &&
|
||||
instr->getOperands().front()->getKind() == MachineOperand::KIND_REG) {
|
||||
auto reg_op = static_cast<RegOperand*>(instr->getOperands().front().get());
|
||||
if (!reg_op->isVirtual()) {
|
||||
defined_regs.insert(reg_op->getPReg());
|
||||
}
|
||||
}
|
||||
return defined_regs;
|
||||
}
|
||||
|
||||
// 存储指令不定义寄存器
|
||||
if (isStoreInstr(instr)) {
|
||||
return defined_regs;
|
||||
}
|
||||
|
||||
// 分支指令不定义寄存器
|
||||
if (opcode == RVOpcodes::BEQ || opcode == RVOpcodes::BNE ||
|
||||
opcode == RVOpcodes::BLT || opcode == RVOpcodes::BGE ||
|
||||
opcode == RVOpcodes::BLTU || opcode == RVOpcodes::BGEU ||
|
||||
opcode == RVOpcodes::J || opcode == RVOpcodes::RET) {
|
||||
return defined_regs;
|
||||
}
|
||||
|
||||
// 对于其他指令,第一个寄存器操作数通常是定义的
|
||||
if (!instr->getOperands().empty() &&
|
||||
instr->getOperands().front()->getKind() == MachineOperand::KIND_REG) {
|
||||
auto reg_op = static_cast<RegOperand*>(instr->getOperands().front().get());
|
||||
if (!reg_op->isVirtual()) {
|
||||
defined_regs.insert(reg_op->getPReg());
|
||||
}
|
||||
}
|
||||
|
||||
return defined_regs;
|
||||
}
|
||||
|
||||
// 获取指令使用的寄存器 - 修复版本
|
||||
std::set<PhysicalReg> getUsedRegisters(MachineInstr* instr) {
|
||||
std::set<PhysicalReg> used_regs;
|
||||
RVOpcodes opcode = instr->getOpcode();
|
||||
|
||||
// 特殊处理CALL指令
|
||||
if (opcode == RVOpcodes::CALL) {
|
||||
bool first_reg_skipped = false;
|
||||
for (const auto& op : instr->getOperands()) {
|
||||
if (op->getKind() == MachineOperand::KIND_REG) {
|
||||
if (!first_reg_skipped) {
|
||||
first_reg_skipped = true;
|
||||
continue; // 跳过返回值寄存器
|
||||
}
|
||||
auto reg_op = static_cast<RegOperand*>(op.get());
|
||||
if (!reg_op->isVirtual()) {
|
||||
used_regs.insert(reg_op->getPReg());
|
||||
}
|
||||
}
|
||||
}
|
||||
return used_regs;
|
||||
}
|
||||
|
||||
// 对于存储指令,所有寄存器操作数都是使用的
|
||||
if (isStoreInstr(instr)) {
|
||||
for (const auto& op : instr->getOperands()) {
|
||||
if (op->getKind() == MachineOperand::KIND_REG) {
|
||||
auto reg_op = static_cast<RegOperand*>(op.get());
|
||||
if (!reg_op->isVirtual()) {
|
||||
used_regs.insert(reg_op->getPReg());
|
||||
}
|
||||
} else if (op->getKind() == MachineOperand::KIND_MEM) {
|
||||
auto mem_op = static_cast<MemOperand*>(op.get());
|
||||
if (!mem_op->getBase()->isVirtual()) {
|
||||
used_regs.insert(mem_op->getBase()->getPReg());
|
||||
}
|
||||
}
|
||||
}
|
||||
return used_regs;
|
||||
}
|
||||
|
||||
// 对于分支指令,所有寄存器操作数都是使用的
|
||||
if (opcode == RVOpcodes::BEQ || opcode == RVOpcodes::BNE ||
|
||||
opcode == RVOpcodes::BLT || opcode == RVOpcodes::BGE ||
|
||||
opcode == RVOpcodes::BLTU || opcode == RVOpcodes::BGEU) {
|
||||
for (const auto& op : instr->getOperands()) {
|
||||
if (op->getKind() == MachineOperand::KIND_REG) {
|
||||
auto reg_op = static_cast<RegOperand*>(op.get());
|
||||
if (!reg_op->isVirtual()) {
|
||||
used_regs.insert(reg_op->getPReg());
|
||||
}
|
||||
}
|
||||
}
|
||||
return used_regs;
|
||||
}
|
||||
|
||||
// 对于其他指令,除了第一个寄存器操作数(通常是定义),其余都是使用的
|
||||
bool first_reg = true;
|
||||
for (const auto& op : instr->getOperands()) {
|
||||
if (op->getKind() == MachineOperand::KIND_REG) {
|
||||
if (first_reg) {
|
||||
first_reg = false;
|
||||
continue; // 跳过第一个寄存器(定义)
|
||||
}
|
||||
auto reg_op = static_cast<RegOperand*>(op.get());
|
||||
if (!reg_op->isVirtual()) {
|
||||
used_regs.insert(reg_op->getPReg());
|
||||
}
|
||||
} else if (op->getKind() == MachineOperand::KIND_MEM) {
|
||||
auto mem_op = static_cast<MemOperand*>(op.get());
|
||||
if (!mem_op->getBase()->isVirtual()) {
|
||||
used_regs.insert(mem_op->getBase()->getPReg());
|
||||
}
|
||||
}
|
||||
}
|
||||
return used_regs;
|
||||
}
|
||||
|
||||
// 获取内存访问的基址和偏移
|
||||
struct MemoryAccess {
|
||||
PhysicalReg base_reg;
|
||||
int64_t offset;
|
||||
bool valid;
|
||||
|
||||
MemoryAccess() : valid(false) {}
|
||||
MemoryAccess(PhysicalReg base, int64_t off) : base_reg(base), offset(off), valid(true) {}
|
||||
};
|
||||
|
||||
MemoryAccess getMemoryAccess(MachineInstr* instr) {
|
||||
if (!isLoadInstr(instr) && !isStoreInstr(instr)) {
|
||||
return MemoryAccess();
|
||||
}
|
||||
|
||||
// 查找内存操作数
|
||||
for (const auto& op : instr->getOperands()) {
|
||||
if (op->getKind() == MachineOperand::KIND_MEM) {
|
||||
auto mem_op = static_cast<MemOperand*>(op.get());
|
||||
if (!mem_op->getBase()->isVirtual()) {
|
||||
return MemoryAccess(mem_op->getBase()->getPReg(), mem_op->getOffset()->getValue());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return MemoryAccess();
|
||||
}
|
||||
|
||||
// 检查内存依赖 - 加强版本
|
||||
bool hasMemoryDependency(MachineInstr* instr1, MachineInstr* instr2) {
|
||||
// 如果都不是内存指令,没有内存依赖
|
||||
if (!isLoadInstr(instr1) && !isStoreInstr(instr1) &&
|
||||
!isLoadInstr(instr2) && !isStoreInstr(instr2)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
MemoryAccess mem1 = getMemoryAccess(instr1);
|
||||
MemoryAccess mem2 = getMemoryAccess(instr2);
|
||||
|
||||
if (!mem1.valid || !mem2.valid) {
|
||||
// 如果无法确定内存访问模式,保守地认为存在依赖
|
||||
return true;
|
||||
}
|
||||
|
||||
// 如果访问相同的内存位置
|
||||
if (mem1.base_reg == mem2.base_reg && mem1.offset == mem2.offset) {
|
||||
// Store->Load: RAW依赖
|
||||
// Load->Store: WAR依赖
|
||||
// Store->Store: WAW依赖
|
||||
return isStoreInstr(instr1) || isStoreInstr(instr2);
|
||||
}
|
||||
|
||||
// 不同内存位置通常没有依赖,但为了安全起见,
|
||||
// 如果涉及store指令,我们需要更保守
|
||||
if (isStoreInstr(instr1) && isLoadInstr(instr2)) {
|
||||
// 保守处理:不同store和load之间可能有别名
|
||||
return false; // 这里可以根据需要调整策略
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
// 检查两个指令之间是否存在依赖关系 - 修复版本
|
||||
bool hasDependency(MachineInstr* instr1, MachineInstr* instr2) {
|
||||
// 检查RAW依赖:instr1定义的寄存器是否被instr2使用
|
||||
auto defined_regs1 = getDefinedRegisters(instr1);
|
||||
auto used_regs2 = getUsedRegisters(instr2);
|
||||
|
||||
for (const auto& reg : defined_regs1) {
|
||||
if (used_regs2.find(reg) != used_regs2.end()) {
|
||||
return true; // RAW依赖 - instr2读取instr1写入的值
|
||||
}
|
||||
}
|
||||
|
||||
// 检查WAR依赖:instr1使用的寄存器是否被instr2定义
|
||||
auto used_regs1 = getUsedRegisters(instr1);
|
||||
auto defined_regs2 = getDefinedRegisters(instr2);
|
||||
|
||||
for (const auto& reg : used_regs1) {
|
||||
if (defined_regs2.find(reg) != defined_regs2.end()) {
|
||||
return true; // WAR依赖 - instr2覆盖instr1需要的值
|
||||
}
|
||||
}
|
||||
|
||||
// 检查WAW依赖:两个指令定义相同寄存器
|
||||
for (const auto& reg : defined_regs1) {
|
||||
if (defined_regs2.find(reg) != defined_regs2.end()) {
|
||||
return true; // WAW依赖 - 两条指令写入同一寄存器
|
||||
}
|
||||
}
|
||||
|
||||
// 检查内存依赖
|
||||
if (hasMemoryDependency(instr1, instr2)) {
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
// 检查是否可以安全地将instr1和instr2交换位置
|
||||
bool canSwapInstructions(MachineInstr* instr1, MachineInstr* instr2) {
|
||||
// 不能移动控制流指令
|
||||
if (isControlFlowInstr(instr1) || isControlFlowInstr(instr2)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// 检查双向依赖关系
|
||||
return !hasDependency(instr1, instr2) && !hasDependency(instr2, instr1);
|
||||
}
|
||||
|
||||
// 新增:验证调度结果的正确性
|
||||
void validateSchedule(const std::vector<MachineInstr*>& instr_list) {
|
||||
for (int i = 0; i < (int)instr_list.size(); i++) {
|
||||
for (int j = i + 1; j < (int)instr_list.size(); j++) {
|
||||
MachineInstr* earlier = instr_list[i];
|
||||
MachineInstr* later = instr_list[j];
|
||||
|
||||
// 检查是否存在被违反的依赖关系
|
||||
auto defined_regs = getDefinedRegisters(earlier);
|
||||
auto used_regs = getUsedRegisters(later);
|
||||
|
||||
// 检查RAW依赖
|
||||
for (const auto& reg : defined_regs) {
|
||||
if (used_regs.find(reg) != used_regs.end()) {
|
||||
// 这是正常的依赖关系,earlier应该在later之前
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
// 检查内存依赖
|
||||
if (hasMemoryDependency(earlier, later)) {
|
||||
MemoryAccess mem1 = getMemoryAccess(earlier);
|
||||
MemoryAccess mem2 = getMemoryAccess(later);
|
||||
|
||||
if (mem1.valid && mem2.valid &&
|
||||
mem1.base_reg == mem2.base_reg && mem1.offset == mem2.offset) {
|
||||
if (isStoreInstr(earlier) && isLoadInstr(later)) {
|
||||
// Store->Load依赖,顺序正确
|
||||
continue;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 在基本块内对指令进行调度优化 - 完全重写版本
|
||||
void scheduleBlock(MachineBasicBlock* mbb) {
|
||||
auto& instructions = mbb->getInstructions();
|
||||
if (instructions.size() <= 1) return;
|
||||
if (instructions.size() > MAX_SCHEDULING_BLOCK_SIZE) {
|
||||
return; // 跳过超大块,防止卡住
|
||||
}
|
||||
|
||||
std::vector<MachineInstr*> instr_list;
|
||||
for (auto& instr : instructions) {
|
||||
instr_list.push_back(instr.get());
|
||||
}
|
||||
|
||||
// 使用更严格的调度策略,避免破坏依赖关系
|
||||
bool changed = true;
|
||||
int max_iterations = 10; // 限制迭代次数避免死循环
|
||||
int iteration = 0;
|
||||
|
||||
while (changed && iteration < max_iterations) {
|
||||
changed = false;
|
||||
iteration++;
|
||||
|
||||
for (int i = 0; i < (int)instr_list.size() - 1; i++) {
|
||||
MachineInstr* instr1 = instr_list[i];
|
||||
MachineInstr* instr2 = instr_list[i + 1];
|
||||
|
||||
// 只进行非常保守的优化
|
||||
bool should_swap = false;
|
||||
|
||||
// 策略1: 将load指令提前,减少load-use延迟
|
||||
if (isLoadInstr(instr2) && !isLoadInstr(instr1) && !isStoreInstr(instr1)) {
|
||||
should_swap = canSwapInstructions(instr1, instr2);
|
||||
}
|
||||
// 策略2: 将非关键store指令延后,为其他指令让路
|
||||
else if (isStoreInstr(instr1) && !isLoadInstr(instr2) && !isStoreInstr(instr2)) {
|
||||
should_swap = canSwapInstructions(instr1, instr2);
|
||||
}
|
||||
|
||||
if (should_swap) {
|
||||
std::swap(instr_list[i], instr_list[i + 1]);
|
||||
changed = true;
|
||||
|
||||
// 调试输出
|
||||
// std::cout << "Swapped instructions at positions " << i << " and " << (i+1) << std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 验证调度结果的正确性
|
||||
validateSchedule(instr_list);
|
||||
|
||||
// 将调度后的指令顺序写回
|
||||
std::map<MachineInstr*, std::unique_ptr<MachineInstr>> instr_map;
|
||||
for (auto& instr : instructions) {
|
||||
instr_map[instr.get()] = std::move(instr);
|
||||
}
|
||||
|
||||
instructions.clear();
|
||||
for (auto instr : instr_list) {
|
||||
instructions.push_back(std::move(instr_map[instr]));
|
||||
}
|
||||
}
|
||||
|
||||
bool PostRA_Scheduler::runOnFunction(Function *F, AnalysisManager& AM) {
|
||||
// 这个函数在IR级别运行,但我们需要在机器指令级别运行
|
||||
// 所以我们返回false,表示没有对IR进行修改
|
||||
return false;
|
||||
}
|
||||
|
||||
void PostRA_Scheduler::runOnMachineFunction(MachineFunction *mfunc) {
|
||||
// std::cout << "Running Post-RA Local Scheduler... " << std::endl;
|
||||
|
||||
// 遍历每个机器基本块
|
||||
for (auto& mbb : mfunc->getBlocks()) {
|
||||
scheduleBlock(mbb.get());
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace sysy
|
||||
@ -1,36 +0,0 @@
|
||||
#include "PreRA_Scheduler.h"
|
||||
|
||||
namespace sysy {
|
||||
|
||||
char PreRA_Scheduler::ID = 0;
|
||||
|
||||
bool PreRA_Scheduler::runOnFunction(Function *F, AnalysisManager& AM) {
|
||||
// TODO: 在此实现寄存器分配前的指令调度。
|
||||
// 遍历mfunc中的每一个MachineBasicBlock。
|
||||
// 对每个基本块内的MachineInstr列表进行重排。
|
||||
//
|
||||
// 实现思路:
|
||||
// 1. 分析每个基本块内指令的数据依赖关系,构建依赖图(DAG)。
|
||||
// 2.
|
||||
// 根据目标处理器的流水线特性(指令延迟等),使用列表调度等算法对指令进行重排。
|
||||
// 3. 此时操作的是虚拟寄存器,只存在真依赖,调度自由度最大。
|
||||
//
|
||||
// std::cout << "Running Pre-RA Instruction Scheduler..." << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
void PreRA_Scheduler::runOnMachineFunction(MachineFunction *mfunc) {
|
||||
// TODO: 在此实现寄存器分配前的指令调度。
|
||||
// 遍历mfunc中的每一个MachineBasicBlock。
|
||||
// 对每个基本块内的MachineInstr列表进行重排。
|
||||
//
|
||||
// 实现思路:
|
||||
// 1. 分析每个基本块内指令的数据依赖关系,构建依赖图(DAG)。
|
||||
// 2.
|
||||
// 根据目标处理器的流水线特性(指令延迟等),使用列表调度等算法对指令进行重排。
|
||||
// 3. 此时操作的是虚拟寄存器,只存在真依赖,调度自由度最大。
|
||||
//
|
||||
// std::cout << "Running Pre-RA Instruction Scheduler..." << std::endl;
|
||||
}
|
||||
|
||||
} // namespace sysy
|
||||
@ -1,142 +0,0 @@
|
||||
#include "RISCv64Backend.h"
|
||||
#include "RISCv64ISel.h"
|
||||
#include "RISCv64RegAlloc.h"
|
||||
#include "RISCv64AsmPrinter.h"
|
||||
#include "RISCv64Passes.h" // 包含优化Pass的头文件
|
||||
#include <sstream>
|
||||
|
||||
namespace sysy {
|
||||
|
||||
// 顶层入口
|
||||
std::string RISCv64CodeGen::code_gen() {
|
||||
return module_gen();
|
||||
}
|
||||
|
||||
// 模块级代码生成
|
||||
std::string RISCv64CodeGen::module_gen() {
|
||||
std::stringstream ss;
|
||||
|
||||
// --- [新逻辑] 步骤1:将全局变量分为.data和.bss两组 ---
|
||||
std::vector<GlobalValue*> data_globals;
|
||||
std::vector<GlobalValue*> bss_globals;
|
||||
|
||||
for (const auto& global_ptr : module->getGlobals()) {
|
||||
GlobalValue* global = global_ptr.get();
|
||||
const auto& init_values = global->getInitValues();
|
||||
|
||||
// 判断是否为大型零初始化数组,以便放入.bss段
|
||||
bool is_large_zero_array = false;
|
||||
// 规则:初始化列表只有一项,且该项是值为0的整数,且数量大于一个阈值(例如16)
|
||||
if (init_values.getValues().size() == 1) {
|
||||
if (auto const_val = dynamic_cast<ConstantValue*>(init_values.getValues()[0])) {
|
||||
if (const_val->isInt() && const_val->getInt() == 0 && init_values.getNumbers()[0] > 16) {
|
||||
is_large_zero_array = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (is_large_zero_array) {
|
||||
bss_globals.push_back(global);
|
||||
} else {
|
||||
data_globals.push_back(global);
|
||||
}
|
||||
}
|
||||
|
||||
// --- [新逻辑] 步骤2:生成 .bss 段的代码 ---
|
||||
if (!bss_globals.empty()) {
|
||||
ss << ".bss\n"; // 切换到 .bss 段
|
||||
for (GlobalValue* global : bss_globals) {
|
||||
// 获取数组总大小(元素个数 * 元素大小)
|
||||
// 在SysY中,我们假设元素都是4字节(int或float)
|
||||
unsigned count = global->getInitValues().getNumbers()[0];
|
||||
unsigned total_size = count * 4;
|
||||
|
||||
ss << " .align 3\n"; // 8字节对齐 (2^3)
|
||||
ss << ".globl " << global->getName() << "\n";
|
||||
ss << ".type " << global->getName() << ", @object\n";
|
||||
ss << ".size " << global->getName() << ", " << total_size << "\n";
|
||||
ss << global->getName() << ":\n";
|
||||
// 使用 .space 指令来预留指定大小的零填充空间
|
||||
ss << " .space " << total_size << "\n";
|
||||
}
|
||||
}
|
||||
|
||||
// --- [旧逻辑保留] 步骤3:生成 .data 段的代码 ---
|
||||
if (!data_globals.empty()) {
|
||||
ss << ".data\n"; // 切换到 .data 段
|
||||
for (GlobalValue* global : data_globals) {
|
||||
ss << ".globl " << global->getName() << "\n";
|
||||
ss << global->getName() << ":\n";
|
||||
const auto& init_values = global->getInitValues();
|
||||
// 使用您原有的逻辑来处理显式初始化的值
|
||||
for (size_t i = 0; i < init_values.getValues().size(); ++i) {
|
||||
auto val = init_values.getValues()[i];
|
||||
auto count = init_values.getNumbers()[i];
|
||||
if (auto constant = dynamic_cast<ConstantValue*>(val)) {
|
||||
for (unsigned j = 0; j < count; ++j) {
|
||||
if (constant->isInt()) {
|
||||
ss << " .word " << constant->getInt() << "\n";
|
||||
} else {
|
||||
float f = constant->getFloat();
|
||||
uint32_t float_bits = *(uint32_t*)&f;
|
||||
ss << " .word " << float_bits << "\n";
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// --- 处理函数 (.text段) 的逻辑保持不变 ---
|
||||
if (!module->getFunctions().empty()) {
|
||||
ss << ".text\n";
|
||||
for (const auto& func_pair : module->getFunctions()) {
|
||||
if (func_pair.second.get()) {
|
||||
ss << function_gen(func_pair.second.get());
|
||||
}
|
||||
}
|
||||
}
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
// function_gen 现在是包含具体优化名称的、完整的处理流水线
|
||||
std::string RISCv64CodeGen::function_gen(Function* func) {
|
||||
// === 完整的后端处理流水线 ===
|
||||
|
||||
// 阶段 1: 指令选择 (sysy::IR -> LLIR with virtual registers)
|
||||
RISCv64ISel isel;
|
||||
std::unique_ptr<MachineFunction> mfunc = isel.runOnFunction(func);
|
||||
|
||||
std::stringstream ss1;
|
||||
RISCv64AsmPrinter printer1(mfunc.get());
|
||||
printer1.run(ss1, true);
|
||||
|
||||
// 阶段 2: 指令调度 (Instruction Scheduling)
|
||||
PreRA_Scheduler scheduler;
|
||||
scheduler.runOnMachineFunction(mfunc.get());
|
||||
|
||||
// 阶段 3: 物理寄存器分配 (Register Allocation)
|
||||
RISCv64RegAlloc reg_alloc(mfunc.get());
|
||||
reg_alloc.run();
|
||||
|
||||
// 阶段 3.5: 处理被调用者保存寄存器
|
||||
CalleeSavedHandler callee_handler;
|
||||
callee_handler.runOnMachineFunction(mfunc.get());
|
||||
|
||||
// 阶段 4: 窥孔优化 (Peephole Optimization)
|
||||
PeepholeOptimizer peephole;
|
||||
peephole.runOnMachineFunction(mfunc.get());
|
||||
|
||||
// 阶段 5: 局部指令调度 (Local Scheduling)
|
||||
PostRA_Scheduler local_scheduler;
|
||||
local_scheduler.runOnMachineFunction(mfunc.get());
|
||||
|
||||
// 阶段 6: 代码发射 (Code Emission)
|
||||
std::stringstream ss;
|
||||
RISCv64AsmPrinter printer(mfunc.get());
|
||||
printer.run(ss);
|
||||
if (DEBUG) ss << "\n" << ss1.str(); // 将指令选择阶段的结果也包含在最终输出中
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
} // namespace sysy
|
||||
@ -1,6 +0,0 @@
|
||||
#include "RISCv64LLIR.h"
|
||||
#include <vector>
|
||||
|
||||
namespace sysy {
|
||||
|
||||
}
|
||||
@ -1,776 +0,0 @@
|
||||
#include "RISCv64RegAlloc.h"
|
||||
#include "RISCv64ISel.h"
|
||||
#include "RISCv64AsmPrinter.h" // For DEBUG output
|
||||
#include <algorithm>
|
||||
#include <vector>
|
||||
#include <iostream> // For DEBUG output
|
||||
#include <cassert> // For assert
|
||||
|
||||
namespace sysy {
|
||||
|
||||
RISCv64RegAlloc::RISCv64RegAlloc(MachineFunction* mfunc) : MFunc(mfunc) {
|
||||
allocable_int_regs = {
|
||||
PhysicalReg::T0, PhysicalReg::T1, PhysicalReg::T2, PhysicalReg::T3,
|
||||
PhysicalReg::T4, PhysicalReg::T5, PhysicalReg::T6,
|
||||
PhysicalReg::A0, PhysicalReg::A1, PhysicalReg::A2, PhysicalReg::A3,
|
||||
PhysicalReg::A4, PhysicalReg::A5, PhysicalReg::A6, PhysicalReg::A7,
|
||||
PhysicalReg::S0, PhysicalReg::S1, PhysicalReg::S2, PhysicalReg::S3,
|
||||
PhysicalReg::S4, PhysicalReg::S5, PhysicalReg::S6, PhysicalReg::S7,
|
||||
PhysicalReg::S8, PhysicalReg::S9, PhysicalReg::S10, PhysicalReg::S11,
|
||||
};
|
||||
|
||||
// 映射物理寄存器到特殊的虚拟寄存器ID,用于干扰图中的物理寄存器节点
|
||||
// 确保这些特殊ID不会与vreg_counter生成的常规虚拟寄存器ID冲突
|
||||
for (PhysicalReg preg : allocable_int_regs) {
|
||||
preg_to_vreg_id_map[preg] = static_cast<unsigned>(PhysicalReg::PHYS_REG_START_ID) + static_cast<unsigned>(preg);
|
||||
}
|
||||
}
|
||||
|
||||
// 寄存器分配的主入口点
|
||||
void RISCv64RegAlloc::run() {
|
||||
// 阶段 1: 处理函数调用约定(参数寄存器预着色)
|
||||
handleCallingConvention();
|
||||
// 阶段 2: 消除帧索引(为局部变量和栈参数分配栈偏移)
|
||||
eliminateFrameIndices();
|
||||
{ // 使用大括号创建一个局部作用域,避免printer变量泄露
|
||||
if (DEBUG) {
|
||||
std::cerr << "\n===== LLIR after eliminateFrameIndices for function: "
|
||||
<< MFunc->getName() << " =====\n";
|
||||
// 1. 创建一个 AsmPrinter 实例,传入当前的 MachineFunction
|
||||
RISCv64AsmPrinter printer(MFunc);
|
||||
// 2. 调用 run 方法,将结果打印到标准错误流 (std::cerr)
|
||||
// 3. 必须将 debug 参数设为 true!
|
||||
// 因为此时指令中仍然包含虚拟寄存器 (%vreg),
|
||||
// debug模式下的 AsmPrinter 才能正确处理它们而不会报错。
|
||||
printer.run(std::cerr, true);
|
||||
std::cerr << "===== End of LLIR =====\n\n";
|
||||
}
|
||||
}
|
||||
// 阶段 3: 活跃性分析
|
||||
analyzeLiveness();
|
||||
// 阶段 4: 构建干扰图(包含CALL指令对调用者保存寄存器的影响)
|
||||
buildInterferenceGraph();
|
||||
// 阶段 5: 图着色算法分配物理寄存器
|
||||
colorGraph();
|
||||
// 阶段 6: 重写函数(插入溢出/填充代码,替换虚拟寄存器为物理寄存器)
|
||||
rewriteFunction();
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 处理调用约定,预先为函数参数和调用返回值分配物理寄存器。
|
||||
* 这个函数现在负责处理调用约定的两个方面:
|
||||
* 1. 作为被调用者(callee),如何接收传入的参数。
|
||||
* 2. 作为调用者(caller),如何接收调用的其他函数的返回值。
|
||||
*/
|
||||
void RISCv64RegAlloc::handleCallingConvention() {
|
||||
Function* F = MFunc->getFunc();
|
||||
RISCv64ISel* isel = MFunc->getISel();
|
||||
|
||||
// --- 部分1:处理函数传入参数的预着色 ---
|
||||
// 获取函数的Argument对象列表
|
||||
if (F) {
|
||||
auto& args = F->getArguments();
|
||||
// RISC-V RV64G调用约定:前8个整型/指针参数通过 a0-a7 传递
|
||||
int arg_idx = 0;
|
||||
// 遍历 Argument* 列表
|
||||
for (Argument* arg : args) {
|
||||
if (arg_idx >= 8) {
|
||||
break;
|
||||
}
|
||||
// 获取该 Argument 对象对应的虚拟寄存器ID
|
||||
// 通过 MachineFunction -> RISCv64ISel -> vreg_map 来获取
|
||||
const auto& vreg_map_from_isel = MFunc->getISel()->getVRegMap();
|
||||
assert(vreg_map_from_isel.count(arg) && "Argument not found in ISel's vreg_map!");
|
||||
// 1. 获取该 Argument 对象对应的虚拟寄存器
|
||||
unsigned vreg = isel->getVReg(arg);
|
||||
|
||||
// 2. 根据参数索引,确定对应的物理寄存器 (a0, a1, ...)
|
||||
auto preg = static_cast<PhysicalReg>(static_cast<int>(PhysicalReg::A0) + arg_idx);
|
||||
|
||||
// 3. 在 color_map 中,将 vreg "预着色" 为对应的物理寄存器
|
||||
color_map[vreg] = preg;
|
||||
|
||||
arg_idx++;
|
||||
}
|
||||
}
|
||||
|
||||
// // --- 部分2:[新逻辑] 遍历所有指令,为CALL指令的返回值预着色为 a0 ---
|
||||
// // 这是为了强制寄存器分配器知道,call的结果物理上出现在a0寄存器。
|
||||
for (auto& mbb : MFunc->getBlocks()) {
|
||||
for (auto& instr : mbb->getInstructions()) {
|
||||
if (instr->getOpcode() == RVOpcodes::CALL) {
|
||||
// 根据协议,如果CALL有返回值,其目标vreg是第一个操作数
|
||||
if (!instr->getOperands().empty() &&
|
||||
instr->getOperands().front()->getKind() == MachineOperand::KIND_REG)
|
||||
{
|
||||
auto reg_op = static_cast<RegOperand*>(instr->getOperands().front().get());
|
||||
if (reg_op->isVirtual()) {
|
||||
unsigned ret_vreg = reg_op->getVRegNum();
|
||||
// 强制将这个虚拟寄存器预着色为 a0
|
||||
color_map[ret_vreg] = PhysicalReg::A0;
|
||||
if (DEBUG) {
|
||||
std::cout << "[DEBUG] Pre-coloring vreg" << ret_vreg
|
||||
<< " to a0 for CALL instruction." << std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 消除帧索引,为局部变量和栈参数分配栈偏移量,并展开伪指令。
|
||||
*/
|
||||
void RISCv64RegAlloc::eliminateFrameIndices() {
|
||||
StackFrameInfo& frame_info = MFunc->getFrameInfo();
|
||||
// 初始偏移量,为保存ra和s0留出空间。
|
||||
// 假设序言是 addi sp, sp, -stack_size; sd ra, stack_size-8(sp); sd s0, stack_size-16(sp);
|
||||
int current_offset = 16;
|
||||
|
||||
Function* F = MFunc->getFunc();
|
||||
RISCv64ISel* isel = MFunc->getISel();
|
||||
|
||||
// 在处理局部变量前,首先为栈参数计算偏移量。
|
||||
if (F) {
|
||||
int arg_idx = 0;
|
||||
for (Argument* arg : F->getArguments()) {
|
||||
// 我们只关心第8个索引及之后的参数(即第9个参数开始)
|
||||
if (arg_idx >= 8) {
|
||||
// 计算偏移量:第一个栈参数(idx=8)在0(s0),第二个(idx=9)在8(s0),以此类推。
|
||||
int offset = (arg_idx - 8) * 8;
|
||||
unsigned vreg = isel->getVReg(arg);
|
||||
|
||||
// 将这个vreg和它的栈偏移存入map。
|
||||
// 我们可以复用alloca_offsets,因为它们都代表“vreg到栈偏移”的映射。
|
||||
frame_info.alloca_offsets[vreg] = offset;
|
||||
}
|
||||
arg_idx++;
|
||||
}
|
||||
}
|
||||
|
||||
// 处理局部变量
|
||||
// 遍历AllocaInst来计算局部变量所需的总空间
|
||||
for (auto& bb : F->getBasicBlocks()) {
|
||||
for (auto& inst : bb->getInstructions()) {
|
||||
if (auto alloca = dynamic_cast<AllocaInst*>(inst.get())) {
|
||||
// 获取Alloca指令指向的类型 (例如 alloca i32* 中,获取 i32)
|
||||
Type* allocated_type = alloca->getType()->as<PointerType>()->getBaseType();
|
||||
int size = getTypeSizeInBytes(allocated_type);
|
||||
|
||||
// RISC-V要求栈地址8字节对齐
|
||||
size = (size + 7) & ~7;
|
||||
if (size == 0) size = 8; // 至少分配8字节
|
||||
|
||||
current_offset += size;
|
||||
unsigned alloca_vreg = isel->getVReg(alloca);
|
||||
// 局部变量使用相对于s0的负向偏移
|
||||
frame_info.alloca_offsets[alloca_vreg] = -current_offset;
|
||||
}
|
||||
}
|
||||
}
|
||||
frame_info.locals_size = current_offset;
|
||||
|
||||
// 遍历所有机器指令,将伪指令展开为真实指令
|
||||
for (auto& mbb : MFunc->getBlocks()) {
|
||||
std::vector<std::unique_ptr<MachineInstr>> new_instructions;
|
||||
for (auto& instr_ptr : mbb->getInstructions()) {
|
||||
RVOpcodes opcode = instr_ptr->getOpcode();
|
||||
|
||||
// --- MODIFICATION START: 处理区分宽度的伪指令 ---
|
||||
if (opcode == RVOpcodes::FRAME_LOAD_W || opcode == RVOpcodes::FRAME_LOAD_D) {
|
||||
// 确定要生成的真实加载指令是 lw 还是 ld
|
||||
RVOpcodes real_load_op = (opcode == RVOpcodes::FRAME_LOAD_W) ? RVOpcodes::LW : RVOpcodes::LD;
|
||||
|
||||
auto& operands = instr_ptr->getOperands();
|
||||
unsigned dest_vreg = static_cast<RegOperand*>(operands[0].get())->getVRegNum();
|
||||
unsigned alloca_vreg = static_cast<RegOperand*>(operands[1].get())->getVRegNum();
|
||||
int offset = frame_info.alloca_offsets.at(alloca_vreg);
|
||||
auto addr_vreg = isel->getNewVReg();
|
||||
|
||||
// 展开为: addi addr_vreg, s0, offset
|
||||
auto addi = std::make_unique<MachineInstr>(RVOpcodes::ADDI);
|
||||
addi->addOperand(std::make_unique<RegOperand>(addr_vreg));
|
||||
addi->addOperand(std::make_unique<RegOperand>(PhysicalReg::S0));
|
||||
addi->addOperand(std::make_unique<ImmOperand>(offset));
|
||||
new_instructions.push_back(std::move(addi));
|
||||
|
||||
// 展开为: lw/ld dest_vreg, 0(addr_vreg)
|
||||
auto load_instr = std::make_unique<MachineInstr>(real_load_op);
|
||||
load_instr->addOperand(std::make_unique<RegOperand>(dest_vreg));
|
||||
load_instr->addOperand(std::make_unique<MemOperand>(
|
||||
std::make_unique<RegOperand>(addr_vreg),
|
||||
std::make_unique<ImmOperand>(0)));
|
||||
new_instructions.push_back(std::move(load_instr));
|
||||
|
||||
} else if (opcode == RVOpcodes::FRAME_STORE_W || opcode == RVOpcodes::FRAME_STORE_D) {
|
||||
// 确定要生成的真实存储指令是 sw 还是 sd
|
||||
RVOpcodes real_store_op = (opcode == RVOpcodes::FRAME_STORE_W) ? RVOpcodes::SW : RVOpcodes::SD;
|
||||
|
||||
auto& operands = instr_ptr->getOperands();
|
||||
unsigned src_vreg = static_cast<RegOperand*>(operands[0].get())->getVRegNum();
|
||||
unsigned alloca_vreg = static_cast<RegOperand*>(operands[1].get())->getVRegNum();
|
||||
int offset = frame_info.alloca_offsets.at(alloca_vreg);
|
||||
auto addr_vreg = isel->getNewVReg();
|
||||
|
||||
// 展开为: addi addr_vreg, s0, offset
|
||||
auto addi = std::make_unique<MachineInstr>(RVOpcodes::ADDI);
|
||||
addi->addOperand(std::make_unique<RegOperand>(addr_vreg));
|
||||
addi->addOperand(std::make_unique<RegOperand>(PhysicalReg::S0));
|
||||
addi->addOperand(std::make_unique<ImmOperand>(offset));
|
||||
new_instructions.push_back(std::move(addi));
|
||||
|
||||
// 展开为: sw/sd src_vreg, 0(addr_vreg)
|
||||
auto store_instr = std::make_unique<MachineInstr>(real_store_op);
|
||||
store_instr->addOperand(std::make_unique<RegOperand>(src_vreg));
|
||||
store_instr->addOperand(std::make_unique<MemOperand>(
|
||||
std::make_unique<RegOperand>(addr_vreg),
|
||||
std::make_unique<ImmOperand>(0)));
|
||||
new_instructions.push_back(std::move(store_instr));
|
||||
|
||||
} else if (instr_ptr->getOpcode() == RVOpcodes::FRAME_ADDR) {
|
||||
auto& operands = instr_ptr->getOperands();
|
||||
unsigned dest_vreg = static_cast<RegOperand*>(operands[0].get())->getVRegNum();
|
||||
unsigned alloca_vreg = static_cast<RegOperand*>(operands[1].get())->getVRegNum();
|
||||
int offset = frame_info.alloca_offsets.at(alloca_vreg);
|
||||
|
||||
// 将 `frame_addr rd, rs` 展开为 `addi rd, s0, offset`
|
||||
auto addi = std::make_unique<MachineInstr>(RVOpcodes::ADDI);
|
||||
addi->addOperand(std::make_unique<RegOperand>(dest_vreg));
|
||||
addi->addOperand(std::make_unique<RegOperand>(PhysicalReg::S0));
|
||||
addi->addOperand(std::make_unique<ImmOperand>(offset));
|
||||
new_instructions.push_back(std::move(addi));
|
||||
} else {
|
||||
new_instructions.push_back(std::move(instr_ptr));
|
||||
}
|
||||
// --- MODIFICATION END ---
|
||||
}
|
||||
mbb->getInstructions() = std::move(new_instructions);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 计算给定 MachineInstr 的 Use (读取) 和 Def (写入) 寄存器集合。
|
||||
* 这是活跃性分析的基础。
|
||||
* @param instr 要分析的机器指令。
|
||||
* @param use 存储 Use 寄存器(虚拟寄存器 ID)的集合。
|
||||
* @param def 存储 Def 寄存器(虚拟寄存器 ID)的集合。
|
||||
*/
|
||||
void RISCv64RegAlloc::getInstrUseDef(MachineInstr* instr, LiveSet& use, LiveSet& def) {
|
||||
bool first_reg_is_def = true; // 默认情况下,指令的第一个寄存器操作数是定义 (def)
|
||||
auto opcode = instr->getOpcode();
|
||||
|
||||
// 1. 特殊指令的 `is_def` 标志调整
|
||||
// 这些指令的第一个寄存器操作数是源操作数 (use),而不是目标操作数 (def)。
|
||||
if (opcode == RVOpcodes::SW || opcode == RVOpcodes::SD ||
|
||||
opcode == RVOpcodes::BEQ || opcode == RVOpcodes::BNE ||
|
||||
opcode == RVOpcodes::BLT || opcode == RVOpcodes::BGE ||
|
||||
opcode == RVOpcodes::BLTU || opcode == RVOpcodes::BGEU ||
|
||||
opcode == RVOpcodes::RET || opcode == RVOpcodes::J) {
|
||||
first_reg_is_def = false;
|
||||
}
|
||||
|
||||
// JAL 和 JALR 指令定义 ra (x1)
|
||||
if (opcode == RVOpcodes::JAL || opcode == RVOpcodes::JALR) {
|
||||
// 使用 ra 对应的特殊虚拟寄存器ID
|
||||
def.insert(preg_to_vreg_id_map.at(PhysicalReg::RA));
|
||||
first_reg_is_def = false; // JAL/JALR 的第一个操作数是 ra,已经处理为 def
|
||||
}
|
||||
|
||||
// 2. CALL 指令的特殊处理
|
||||
if (opcode == RVOpcodes::CALL) {
|
||||
// 根据 s1 分支 ISel 定义的协议来解析操作数列表
|
||||
bool first_reg_operand_is_def = true;
|
||||
for (auto& op : instr->getOperands()) {
|
||||
if (op->getKind() == MachineOperand::KIND_REG) {
|
||||
auto reg_op = static_cast<RegOperand*>(op.get());
|
||||
if (reg_op->isVirtual()) {
|
||||
// 协议:第一个寄存器操作数是返回值 (def)
|
||||
if (first_reg_operand_is_def) {
|
||||
def.insert(reg_op->getVRegNum());
|
||||
first_reg_operand_is_def = false;
|
||||
} else {
|
||||
// 后续所有寄存器操作数都是参数 (use)
|
||||
use.insert(reg_op->getVRegNum());
|
||||
}
|
||||
} else { // [修复] CALL指令也可能定义物理寄存器(如a0)
|
||||
if (first_reg_operand_is_def) {
|
||||
if (preg_to_vreg_id_map.count(reg_op->getPReg())) {
|
||||
def.insert(preg_to_vreg_id_map.at(reg_op->getPReg()));
|
||||
}
|
||||
first_reg_operand_is_def = false;
|
||||
} else {
|
||||
if (preg_to_vreg_id_map.count(reg_op->getPReg())) {
|
||||
use.insert(preg_to_vreg_id_map.at(reg_op->getPReg()));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return; // CALL 指令处理完毕
|
||||
}
|
||||
|
||||
// 3. 对其他所有指令的通用处理逻辑 [已重构和修复]
|
||||
for (const auto& op : instr->getOperands()) {
|
||||
if (op->getKind() == MachineOperand::KIND_REG) {
|
||||
auto reg_op = static_cast<RegOperand*>(op.get());
|
||||
|
||||
if (first_reg_is_def) {
|
||||
// --- 处理定义(Def) ---
|
||||
if (reg_op->isVirtual()) {
|
||||
def.insert(reg_op->getVRegNum());
|
||||
} else { // 物理寄存器也可以是 Def
|
||||
if (preg_to_vreg_id_map.count(reg_op->getPReg())) {
|
||||
def.insert(preg_to_vreg_id_map.at(reg_op->getPReg()));
|
||||
}
|
||||
}
|
||||
first_reg_is_def = false; // **关键**:处理完第一个寄存器后,立即更新标志
|
||||
} else {
|
||||
// --- 处理使用(Use) ---
|
||||
if (reg_op->isVirtual()) {
|
||||
use.insert(reg_op->getVRegNum());
|
||||
} else { // 物理寄存器也可以是 Use
|
||||
if (preg_to_vreg_id_map.count(reg_op->getPReg())) {
|
||||
use.insert(preg_to_vreg_id_map.at(reg_op->getPReg()));
|
||||
}
|
||||
}
|
||||
}
|
||||
} else if (op->getKind() == MachineOperand::KIND_MEM) {
|
||||
// [保持不变] 内存操作数的处理逻辑看起来是正确的
|
||||
auto mem_op = static_cast<MemOperand*>(op.get());
|
||||
auto base_reg = mem_op->getBase();
|
||||
if (base_reg->isVirtual()) {
|
||||
use.insert(base_reg->getVRegNum());
|
||||
} else {
|
||||
PhysicalReg preg = base_reg->getPReg();
|
||||
if (preg_to_vreg_id_map.count(preg)) {
|
||||
use.insert(preg_to_vreg_id_map.at(preg));
|
||||
}
|
||||
}
|
||||
|
||||
// 对于存储内存指令 (SW, SD),要存储的值(第一个操作数)也是 `use`
|
||||
if ((opcode == RVOpcodes::SW || opcode == RVOpcodes::SD) &&
|
||||
!instr->getOperands().empty() &&
|
||||
instr->getOperands().front()->getKind() == MachineOperand::KIND_REG) {
|
||||
auto src_reg_op = static_cast<RegOperand*>(instr->getOperands().front().get());
|
||||
if (src_reg_op->isVirtual()) {
|
||||
use.insert(src_reg_op->getVRegNum());
|
||||
} else {
|
||||
if (preg_to_vreg_id_map.count(src_reg_op->getPReg())) {
|
||||
use.insert(preg_to_vreg_id_map.at(src_reg_op->getPReg()));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 计算一个类型在内存中占用的字节数。
|
||||
* @param type 需要计算大小的IR类型。
|
||||
* @return 该类型占用的字节数。
|
||||
*/
|
||||
unsigned RISCv64RegAlloc::getTypeSizeInBytes(Type* type) {
|
||||
if (!type) {
|
||||
assert(false && "Cannot get size of a null type.");
|
||||
return 0;
|
||||
}
|
||||
|
||||
switch (type->getKind()) {
|
||||
// 对于SysY语言,基本类型int和float都占用4字节
|
||||
case Type::kInt:
|
||||
case Type::kFloat:
|
||||
return 4;
|
||||
|
||||
// 指针类型在RISC-V 64位架构下占用8字节
|
||||
// 虽然SysY没有'int*'语法,但数组变量在IR层面本身就是指针类型
|
||||
case Type::kPointer:
|
||||
return 8;
|
||||
|
||||
// 数组类型的总大小 = 元素数量 * 单个元素的大小
|
||||
case Type::kArray: {
|
||||
auto arrayType = type->as<ArrayType>();
|
||||
// 递归调用以计算元素大小
|
||||
return arrayType->getNumElements() * getTypeSizeInBytes(arrayType->getElementType());
|
||||
}
|
||||
|
||||
// 其他类型,如Void, Label等不占用栈空间,或者不应该出现在这里
|
||||
default:
|
||||
// 如果遇到未处理的类型,触发断言,方便调试
|
||||
assert(false && "Unsupported type for size calculation.");
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
void RISCv64RegAlloc::analyzeLiveness() {
|
||||
// === 阶段 1: 预计算每个基本块的 use 和 def 集合 ===
|
||||
// 这样可以避免在主循环中重复计算
|
||||
std::map<MachineBasicBlock*, LiveSet> block_uses;
|
||||
std::map<MachineBasicBlock*, LiveSet> block_defs;
|
||||
for (auto& mbb_ptr : MFunc->getBlocks()) {
|
||||
MachineBasicBlock* mbb = mbb_ptr.get();
|
||||
LiveSet uses, defs;
|
||||
for (auto& instr_ptr : mbb->getInstructions()) {
|
||||
LiveSet instr_use, instr_def;
|
||||
getInstrUseDef(instr_ptr.get(), instr_use, instr_def);
|
||||
// use[B] = use[B] U (instr_use - def[B])
|
||||
for (unsigned u : instr_use) {
|
||||
if (defs.find(u) == defs.end()) {
|
||||
uses.insert(u);
|
||||
}
|
||||
}
|
||||
// def[B] = def[B] U instr_def
|
||||
defs.insert(instr_def.begin(), instr_def.end());
|
||||
}
|
||||
block_uses[mbb] = uses;
|
||||
block_defs[mbb] = defs;
|
||||
}
|
||||
|
||||
// === 阶段 2: 在“块”粒度上进行迭代数据流分析,直到收敛 ===
|
||||
std::map<MachineBasicBlock*, LiveSet> block_live_in;
|
||||
std::map<MachineBasicBlock*, LiveSet> block_live_out;
|
||||
bool changed = true;
|
||||
while (changed) {
|
||||
changed = false;
|
||||
// 以逆后序遍历基本块,可以加速收敛,但简单的逆序对于大多数情况也有效
|
||||
for (auto it = MFunc->getBlocks().rbegin(); it != MFunc->getBlocks().rend(); ++it) {
|
||||
auto& mbb = *it;
|
||||
|
||||
// 2.1 计算 live_out[B] = U_{S in succ(B)} live_in[S]
|
||||
LiveSet new_live_out;
|
||||
for (auto succ : mbb->successors) {
|
||||
new_live_out.insert(block_live_in[succ].begin(), block_live_in[succ].end());
|
||||
}
|
||||
|
||||
// 2.2 计算 live_in[B] = use[B] U (live_out[B] - def[B])
|
||||
LiveSet live_out_minus_def = new_live_out;
|
||||
for (unsigned d : block_defs[mbb.get()]) {
|
||||
live_out_minus_def.erase(d);
|
||||
}
|
||||
LiveSet new_live_in = block_uses[mbb.get()];
|
||||
new_live_in.insert(live_out_minus_def.begin(), live_out_minus_def.end());
|
||||
|
||||
// 2.3 检查 live_in 和 live_out 是否变化,以判断是否达到不动点
|
||||
if (block_live_out[mbb.get()] != new_live_out) {
|
||||
changed = true;
|
||||
block_live_out[mbb.get()] = new_live_out;
|
||||
}
|
||||
if (block_live_in[mbb.get()] != new_live_in) {
|
||||
changed = true;
|
||||
block_live_in[mbb.get()] = new_live_in;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// === 阶段 3: 进行一次指令粒度的遍历,填充最终的 live_in_map 和 live_out_map ===
|
||||
// 此时块级别的活跃信息已经稳定,我们只需遍历一次即可
|
||||
for (auto& mbb_ptr : MFunc->getBlocks()) {
|
||||
MachineBasicBlock* mbb = mbb_ptr.get();
|
||||
LiveSet live_out = block_live_out[mbb]; // 从已收敛的块级 live_out 开始
|
||||
|
||||
for (auto instr_it = mbb->getInstructions().rbegin(); instr_it != mbb->getInstructions().rend(); ++instr_it) {
|
||||
MachineInstr* instr = instr_it->get();
|
||||
live_out_map[instr] = live_out;
|
||||
|
||||
LiveSet use, def;
|
||||
getInstrUseDef(instr, use, def);
|
||||
|
||||
LiveSet live_in = use;
|
||||
LiveSet diff = live_out;
|
||||
for (auto vreg : def) {
|
||||
diff.erase(vreg);
|
||||
}
|
||||
live_in.insert(diff.begin(), diff.end());
|
||||
live_in_map[instr] = live_in;
|
||||
|
||||
// 更新 live_out,为块内的上一条指令做准备
|
||||
live_out = live_in;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 辅助函数,用于清晰地打印寄存器集合。可以放在 .cpp 文件的顶部。
|
||||
void RISCv64RegAlloc::printLiveSet(const LiveSet& s, const std::string& name, std::ostream& os) {
|
||||
os << " " << name << ": { ";
|
||||
for (unsigned vreg : s) {
|
||||
// 为了可读性,将物理寄存器对应的特殊ID进行转换
|
||||
if (vreg >= static_cast<unsigned>(sysy::PhysicalReg::PHYS_REG_START_ID)) {
|
||||
os << "preg(" << (vreg - static_cast<unsigned>(sysy::PhysicalReg::PHYS_REG_START_ID)) << ") ";
|
||||
} else {
|
||||
os << "%vreg" << vreg << " ";
|
||||
}
|
||||
}
|
||||
os << "}\n";
|
||||
}
|
||||
|
||||
void RISCv64RegAlloc::buildInterferenceGraph() {
|
||||
std::set<unsigned> all_vregs;
|
||||
// 收集所有虚拟寄存器和物理寄存器在干扰图中的节点ID
|
||||
for (auto& mbb : MFunc->getBlocks()) {
|
||||
for(auto& instr : mbb->getInstructions()) {
|
||||
LiveSet use, def;
|
||||
getInstrUseDef(instr.get(), use, def);
|
||||
for(auto u : use) all_vregs.insert(u);
|
||||
for(auto d : def) all_vregs.insert(d);
|
||||
}
|
||||
}
|
||||
// 添加所有物理寄存器对应的特殊虚拟寄存器ID到all_vregs,作为干扰图节点
|
||||
for (auto preg : allocable_int_regs) {
|
||||
all_vregs.insert(preg_to_vreg_id_map.at(preg));
|
||||
}
|
||||
|
||||
// 初始化干扰图邻接表
|
||||
for (auto vreg : all_vregs) { interference_graph[vreg] = {}; }
|
||||
|
||||
// 创建一个临时的AsmPrinter用于打印指令,方便调试
|
||||
RISCv64AsmPrinter temp_printer(MFunc);
|
||||
temp_printer.setStream(std::cerr);
|
||||
|
||||
for (auto& mbb : MFunc->getBlocks()) {
|
||||
if (DEEPDEBUG) std::cerr << "--- Building Graph for Basic Block: " << mbb->getName() << " ---\n";
|
||||
for (auto& instr_ptr : mbb->getInstructions()) {
|
||||
MachineInstr* instr = instr_ptr.get();
|
||||
if (DEEPDEBUG) {
|
||||
// 打印当前正在处理的指令
|
||||
std::cerr << " Instr: ";
|
||||
temp_printer.printInstruction(instr, true); // 使用 true 来打印虚拟寄存器
|
||||
}
|
||||
|
||||
LiveSet def, use;
|
||||
getInstrUseDef(instr, use, def);
|
||||
const LiveSet& live_out = live_out_map.at(instr);
|
||||
|
||||
// [新增调试逻辑] 打印所有相关的寄存器集合
|
||||
if (DEEPDEBUG) {
|
||||
printLiveSet(use, "Use ", std::cerr);
|
||||
printLiveSet(def, "Def ", std::cerr);
|
||||
printLiveSet(live_out, "Live_Out", std::cerr); // 这是我们最关心的信息
|
||||
}
|
||||
|
||||
// 标准干扰图构建:def 与 live_out 中的其他变量干扰
|
||||
for (unsigned d : def) {
|
||||
for (unsigned l : live_out) {
|
||||
if (d != l) {
|
||||
// [新增调试逻辑] 打印添加的干扰边及其原因
|
||||
if (DEEPDEBUG && interference_graph[d].find(l) == interference_graph[d].end()) {
|
||||
std::cerr << " Edge (Def-LiveOut): %vreg" << d << " <-> %vreg" << l << "\n";
|
||||
}
|
||||
interference_graph[d].insert(l);
|
||||
interference_graph[l].insert(d);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 在非move指令中,def 与 use 互相干扰
|
||||
if (instr->getOpcode() != RVOpcodes::MV) {
|
||||
for (unsigned d : def) {
|
||||
for (unsigned u : use) {
|
||||
if (d != u) {
|
||||
// [新增调试逻辑] 打印添加的干扰边及其原因
|
||||
if (DEEPDEBUG && interference_graph[d].find(u) == interference_graph[d].end()) {
|
||||
std::cerr << " Edge (Def-Use) : %vreg" << d << " <-> %vreg" << u << "\n";
|
||||
}
|
||||
interference_graph[d].insert(u);
|
||||
interference_graph[u].insert(d);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// *** 处理 CALL 指令的隐式 def ***
|
||||
if (instr->getOpcode() == RVOpcodes::CALL) {
|
||||
// 你的原始CALL调试信息
|
||||
if (DEEPDEBUG) {
|
||||
std::string live_out_str;
|
||||
for (unsigned vreg : live_out) {
|
||||
live_out_str += "%vreg" + std::to_string(vreg) + " ";
|
||||
}
|
||||
std::cerr << "[DEEPDEBUG] buildInterferenceGraph: CALL instruction found. Live out set is: {"
|
||||
<< live_out_str << "}" << std::endl;
|
||||
}
|
||||
// CALL 指令会定义(杀死)所有调用者保存的寄存器。
|
||||
// 因此,所有调用者保存的物理寄存器都与 CALL 指令的 live_out 中的所有变量冲突。
|
||||
const std::vector<PhysicalReg>& caller_saved_regs = getCallerSavedIntRegs();
|
||||
for (PhysicalReg cs_reg : caller_saved_regs) {
|
||||
unsigned cs_vreg_id = preg_to_vreg_id_map.at(cs_reg); // 获取物理寄存器对应的特殊vreg ID
|
||||
|
||||
// 将这个物理寄存器节点与 CALL 指令的 live_out 中的所有虚拟寄存器添加干扰边。
|
||||
for (unsigned live_vreg_out : live_out) {
|
||||
if (cs_vreg_id != live_vreg_out) { // 避免自己和自己干扰
|
||||
// [新增调试逻辑] 打印添加的干扰边及其原因
|
||||
if (DEEPDEBUG && interference_graph[cs_vreg_id].find(live_vreg_out) == interference_graph[cs_vreg_id].end()) {
|
||||
std::cerr << " Edge (CALL) : preg(" << static_cast<int>(cs_reg) << ") <-> %vreg" << live_vreg_out << "\n";
|
||||
}
|
||||
interference_graph[cs_vreg_id].insert(live_vreg_out);
|
||||
interference_graph[live_vreg_out].insert(cs_vreg_id);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if (DEEPDEBUG) std::cerr << " ----------------\n";
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void RISCv64RegAlloc::colorGraph() {
|
||||
std::vector<unsigned> sorted_vregs;
|
||||
for (auto const& [vreg, neighbors] : interference_graph) {
|
||||
// 只为未预着色的虚拟寄存器排序和着色
|
||||
if (color_map.find(vreg) == color_map.end() && vreg < static_cast<unsigned>(PhysicalReg::PHYS_REG_START_ID)) {
|
||||
sorted_vregs.push_back(vreg);
|
||||
}
|
||||
}
|
||||
|
||||
// 排序
|
||||
std::sort(sorted_vregs.begin(), sorted_vregs.end(), [&](unsigned a, unsigned b) {
|
||||
return interference_graph[a].size() > interference_graph[b].size();
|
||||
});
|
||||
|
||||
// 着色
|
||||
for (unsigned vreg : sorted_vregs) {
|
||||
std::set<PhysicalReg> used_colors;
|
||||
for (unsigned neighbor_id : interference_graph.at(vreg)) {
|
||||
// --- 关键改进 (来自 rec 分支) ---
|
||||
|
||||
// 情况 1: 邻居是一个已经被着色的虚拟寄存器
|
||||
if (color_map.count(neighbor_id)) {
|
||||
used_colors.insert(color_map.at(neighbor_id));
|
||||
}
|
||||
// 情况 2: 邻居本身就是一个代表物理寄存器的节点
|
||||
else if (neighbor_id >= static_cast<unsigned>(PhysicalReg::PHYS_REG_START_ID)) {
|
||||
// 从特殊ID反向解析出是哪个物理寄存器
|
||||
PhysicalReg neighbor_preg = static_cast<PhysicalReg>(neighbor_id - static_cast<unsigned>(PhysicalReg::PHYS_REG_START_ID));
|
||||
used_colors.insert(neighbor_preg);
|
||||
}
|
||||
}
|
||||
|
||||
bool colored = false;
|
||||
for (PhysicalReg preg : allocable_int_regs) {
|
||||
if (used_colors.find(preg) == used_colors.end()) {
|
||||
color_map[vreg] = preg;
|
||||
colored = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!colored) {
|
||||
spilled_vregs.insert(vreg);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void RISCv64RegAlloc::rewriteFunction() {
|
||||
StackFrameInfo& frame_info = MFunc->getFrameInfo();
|
||||
int current_offset = frame_info.locals_size;
|
||||
|
||||
// --- FIX 1: 动态计算溢出槽大小 ---
|
||||
// 根据溢出虚拟寄存器的真实类型,为其在栈上分配正确大小的空间。
|
||||
for (unsigned vreg : spilled_vregs) {
|
||||
// 从反向映射中查找 vreg 对应的 IR Value
|
||||
assert(vreg_to_value_map.count(vreg) && "Spilled vreg not found in map!");
|
||||
Value* val = vreg_to_value_map.at(vreg);
|
||||
|
||||
// 使用辅助函数获取类型大小
|
||||
int size = getTypeSizeInBytes(val->getType());
|
||||
|
||||
// 保持栈8字节对齐
|
||||
current_offset += size;
|
||||
current_offset = (current_offset + 7) & ~7;
|
||||
|
||||
frame_info.spill_offsets[vreg] = -current_offset;
|
||||
}
|
||||
frame_info.spill_size = current_offset - frame_info.locals_size;
|
||||
|
||||
for (auto& mbb : MFunc->getBlocks()) {
|
||||
std::vector<std::unique_ptr<MachineInstr>> new_instructions;
|
||||
for (auto& instr_ptr : mbb->getInstructions()) {
|
||||
LiveSet use, def;
|
||||
getInstrUseDef(instr_ptr.get(), use, def);
|
||||
|
||||
// --- FIX 2: 为溢出的 'use' 操作数插入正确的加载指令 ---
|
||||
for (unsigned vreg : use) {
|
||||
if (spilled_vregs.count(vreg)) {
|
||||
// 同样地,根据 vreg 的类型决定使用 lw 还是 ld
|
||||
assert(vreg_to_value_map.count(vreg));
|
||||
Value* val = vreg_to_value_map.at(vreg);
|
||||
RVOpcodes load_op = val->getType()->isPointer() ? RVOpcodes::LD : RVOpcodes::LW;
|
||||
|
||||
int offset = frame_info.spill_offsets.at(vreg);
|
||||
auto load = std::make_unique<MachineInstr>(load_op);
|
||||
load->addOperand(std::make_unique<RegOperand>(vreg));
|
||||
load->addOperand(std::make_unique<MemOperand>(
|
||||
std::make_unique<RegOperand>(PhysicalReg::S0),
|
||||
std::make_unique<ImmOperand>(offset)
|
||||
));
|
||||
new_instructions.push_back(std::move(load));
|
||||
}
|
||||
}
|
||||
|
||||
new_instructions.push_back(std::move(instr_ptr));
|
||||
|
||||
// --- FIX 3: 为溢出的 'def' 操作数插入正确的存储指令 ---
|
||||
for (unsigned vreg : def) {
|
||||
if (spilled_vregs.count(vreg)) {
|
||||
// 根据 vreg 的类型决定使用 sw 还是 sd
|
||||
assert(vreg_to_value_map.count(vreg));
|
||||
Value* val = vreg_to_value_map.at(vreg);
|
||||
RVOpcodes store_op = val->getType()->isPointer() ? RVOpcodes::SD : RVOpcodes::SW;
|
||||
|
||||
int offset = frame_info.spill_offsets.at(vreg);
|
||||
auto store = std::make_unique<MachineInstr>(store_op);
|
||||
store->addOperand(std::make_unique<RegOperand>(vreg));
|
||||
store->addOperand(std::make_unique<MemOperand>(
|
||||
std::make_unique<RegOperand>(PhysicalReg::S0),
|
||||
std::make_unique<ImmOperand>(offset)
|
||||
));
|
||||
new_instructions.push_back(std::move(store));
|
||||
}
|
||||
}
|
||||
}
|
||||
mbb->getInstructions() = std::move(new_instructions);
|
||||
}
|
||||
|
||||
// 最后的虚拟寄存器到物理寄存器的替换过程保持不变
|
||||
for (auto& mbb : MFunc->getBlocks()) {
|
||||
for (auto& instr_ptr : mbb->getInstructions()) {
|
||||
for (auto& op_ptr : instr_ptr->getOperands()) {
|
||||
|
||||
// 情况一:操作数本身就是一个寄存器 (例如 add rd, rs1, rs2 中的所有操作数)
|
||||
if(op_ptr->getKind() == MachineOperand::KIND_REG) {
|
||||
auto reg_op = static_cast<RegOperand*>(op_ptr.get());
|
||||
if (reg_op->isVirtual()) {
|
||||
unsigned vreg = reg_op->getVRegNum();
|
||||
if (color_map.count(vreg)) {
|
||||
PhysicalReg preg = color_map.at(vreg);
|
||||
reg_op->setPReg(preg);
|
||||
} else if (spilled_vregs.count(vreg)) {
|
||||
// 如果vreg被溢出,替换为专用的溢出物理寄存器t6
|
||||
reg_op->setPReg(PhysicalReg::T6);
|
||||
}
|
||||
}
|
||||
}
|
||||
// 情况二:操作数是一个内存地址 (例如 lw rd, offset(rs1) 中的 offset(rs1))
|
||||
else if (op_ptr->getKind() == MachineOperand::KIND_MEM) {
|
||||
auto mem_op = static_cast<MemOperand*>(op_ptr.get());
|
||||
// 获取内存操作数内部的“基址寄存器”
|
||||
auto base_reg_op = mem_op->getBase();
|
||||
|
||||
// 对这个基址寄存器,执行与情况一完全相同的替换逻辑
|
||||
if(base_reg_op->isVirtual()){
|
||||
unsigned vreg = base_reg_op->getVRegNum();
|
||||
if(color_map.count(vreg)) {
|
||||
// 如果基址vreg被成功着色,替换
|
||||
PhysicalReg preg = color_map.at(vreg);
|
||||
base_reg_op->setPReg(preg);
|
||||
|
||||
} else if (spilled_vregs.count(vreg)) {
|
||||
// 如果基址vreg被溢出,替换为t6
|
||||
base_reg_op->setPReg(PhysicalReg::T6);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace sysy
|
||||
@ -1,529 +0,0 @@
|
||||
#include "SysYIRAnalyser.h"
|
||||
#include <iostream>
|
||||
|
||||
|
||||
namespace sysy {
|
||||
|
||||
|
||||
void ControlFlowAnalysis::init() {
|
||||
// 初始化分析器
|
||||
auto &functions = pModule->getFunctions();
|
||||
for (const auto &function : functions) {
|
||||
auto func = function.second.get();
|
||||
auto basicBlocks = func->getBasicBlocks();
|
||||
for (auto &basicBlock : basicBlocks) {
|
||||
blockAnalysisInfo[basicBlock.get()] = new BlockAnalysisInfo();
|
||||
blockAnalysisInfo[basicBlock.get()]->clear();
|
||||
}
|
||||
functionAnalysisInfo[func] = new FunctionAnalysisInfo();
|
||||
functionAnalysisInfo[func]->clear();
|
||||
}
|
||||
}
|
||||
|
||||
void ControlFlowAnalysis::runControlFlowAnalysis() {
|
||||
// 运行控制流分析
|
||||
clear(); // 清空之前的分析结果
|
||||
init(); // 初始化分析器
|
||||
computeDomNode();
|
||||
computeDomTree();
|
||||
computeDomFrontierAllBlk();
|
||||
}
|
||||
|
||||
void ControlFlowAnalysis::intersectOP4Dom(std::unordered_set<BasicBlock *> &dom, const std::unordered_set<BasicBlock *> &other) {
|
||||
// 计算交集
|
||||
for (auto it = dom.begin(); it != dom.end();) {
|
||||
if (other.find(*it) == other.end()) {
|
||||
// 如果other中没有这个基本块,则从dom中删除
|
||||
it = dom.erase(it);
|
||||
} else {
|
||||
++it;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
auto ControlFlowAnalysis::findCommonDominator(BasicBlock *a, BasicBlock *b) -> BasicBlock * {
|
||||
// 查找两个基本块的共同支配结点
|
||||
while (a != b) {
|
||||
BlockAnalysisInfo* infoA = blockAnalysisInfo[a];
|
||||
BlockAnalysisInfo* infoB = blockAnalysisInfo[b];
|
||||
// 如果深度不同,则向上移动到直接支配结点
|
||||
// TODO:空间换时间倍增优化,优先级较低
|
||||
while (infoA->getDomDepth() > infoB->getDomDepth()) {
|
||||
a = const_cast<BasicBlock*>(infoA->getIdom());
|
||||
infoA = blockAnalysisInfo[a];
|
||||
}
|
||||
while (infoB->getDomDepth() > infoA->getDomDepth()) {
|
||||
b = const_cast<BasicBlock*>(infoB->getIdom());
|
||||
infoB = blockAnalysisInfo[b];
|
||||
}
|
||||
if (a == b) break;
|
||||
a = const_cast<BasicBlock*>(infoA->getIdom());
|
||||
b = const_cast<BasicBlock*>(infoB->getIdom());
|
||||
}
|
||||
return a;
|
||||
}
|
||||
|
||||
void ControlFlowAnalysis::computeDomNode(){
|
||||
auto &functions = pModule->getFunctions();
|
||||
// 分析每个函数内的基本块
|
||||
for (const auto &function : functions) {
|
||||
auto func = function.second.get();
|
||||
auto basicBlocks = func->getBasicBlocks();
|
||||
std::unordered_set<BasicBlock *> domSetTmp;
|
||||
// 一开始把domSetTmp置为所有block
|
||||
auto entry_block = func->getEntryBlock();
|
||||
entry_block->setName("Entry");
|
||||
blockAnalysisInfo[entry_block]->addDominants(entry_block);
|
||||
for (auto &basicBlock : basicBlocks) {
|
||||
domSetTmp.emplace(basicBlock.get());
|
||||
}
|
||||
// 初始化
|
||||
for (auto &basicBlock : basicBlocks) {
|
||||
if (basicBlock.get() != entry_block) {
|
||||
blockAnalysisInfo[basicBlock.get()]->setDominants(domSetTmp);
|
||||
// 先把所有block的必经结点都设为N
|
||||
}
|
||||
}
|
||||
|
||||
// 支配节点计算公式
|
||||
//DOM[B]={B}∪ {⋂P∈pred(B) DOM[P]}
|
||||
// 其中pred(B)是B的所有前驱结点
|
||||
// 迭代计算支配结点,直到不再变化
|
||||
// 这里使用迭代法,直到支配结点不再变化
|
||||
// TODO:Lengauer-Tarjan 算法可以更高效地计算支配结点
|
||||
// 或者按照CFG拓扑序遍历效率更高
|
||||
bool changed = true;
|
||||
while (changed) {
|
||||
changed = false;
|
||||
// 循环非start结点
|
||||
for (auto &basicBlock : basicBlocks) {
|
||||
if (basicBlock.get() != entry_block) {
|
||||
auto olddom =
|
||||
blockAnalysisInfo[basicBlock.get()]->getDominants();
|
||||
|
||||
std::unordered_set<BasicBlock *> dom =
|
||||
blockAnalysisInfo[basicBlock->getPredecessors().front()]->getDominants();
|
||||
|
||||
// 对于每个基本块,计算其支配结点
|
||||
// 取其前驱结点的支配结点的交集和自己
|
||||
for (auto pred : basicBlock->getPredecessors()) {
|
||||
intersectOP4Dom(dom, blockAnalysisInfo[pred]->getDominants());
|
||||
}
|
||||
dom.emplace(basicBlock.get());
|
||||
blockAnalysisInfo[basicBlock.get()]->setDominants(dom);
|
||||
|
||||
if (dom != olddom) {
|
||||
changed = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: SEMI-NCA算法改进
|
||||
void ControlFlowAnalysis::computeDomTree() {
|
||||
// 构造支配树
|
||||
auto &functions = pModule->getFunctions();
|
||||
for (const auto &function : functions) {
|
||||
auto func = function.second.get();
|
||||
auto basicBlocks = func->getBasicBlocks();
|
||||
auto entry_block = func->getEntryBlock();
|
||||
|
||||
blockAnalysisInfo[entry_block]->setIdom(entry_block);
|
||||
blockAnalysisInfo[entry_block]->setDomDepth(0); // 入口块深度为0
|
||||
|
||||
bool changed = true;
|
||||
while (changed) {
|
||||
changed = false;
|
||||
|
||||
for (auto &basicBlock : basicBlocks) {
|
||||
if (basicBlock.get() == entry_block) continue;
|
||||
|
||||
BasicBlock *new_idom = nullptr;
|
||||
for (auto pred : basicBlock->getPredecessors()) {
|
||||
// 跳过未处理的前驱
|
||||
if (blockAnalysisInfo[pred]->getIdom() == nullptr) continue;
|
||||
// new_idom = (new_idom == nullptr) ? pred : findCommonDominator(new_idom, pred);
|
||||
if (new_idom == nullptr)
|
||||
new_idom = pred;
|
||||
else
|
||||
new_idom = findCommonDominator(new_idom, pred);
|
||||
}
|
||||
// 更新直接支配节点
|
||||
if (new_idom && new_idom != blockAnalysisInfo[basicBlock.get()]->getIdom()) {
|
||||
// 移除旧的支配关系
|
||||
if (blockAnalysisInfo[basicBlock.get()]->getIdom()) {
|
||||
blockAnalysisInfo[const_cast<BasicBlock*>(blockAnalysisInfo[basicBlock.get()]->getIdom())]->removeSdoms(basicBlock.get());
|
||||
}
|
||||
// 设置新的支配关系
|
||||
|
||||
// std::cout << "Block: " << basicBlock->getName()
|
||||
// << " New Idom: " << new_idom->getName() << std::endl;
|
||||
|
||||
blockAnalysisInfo[basicBlock.get()]->setIdom(new_idom);
|
||||
blockAnalysisInfo[new_idom]->addSdoms(basicBlock.get());
|
||||
// 更新深度 = 直接支配节点深度 + 1
|
||||
blockAnalysisInfo[basicBlock.get()]->setDomDepth(
|
||||
blockAnalysisInfo[new_idom]->getDomDepth() + 1);
|
||||
|
||||
changed = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
// for (auto &basicBlock : basicBlocks) {
|
||||
// if (basicBlock.get() != func->getEntryBlock()) {
|
||||
// auto dominats =
|
||||
// blockAnalysisInfo[basicBlock.get()]->getDominants();
|
||||
// bool found = false;
|
||||
// // 从前驱结点开始寻找直接支配结点
|
||||
// std::queue<BasicBlock *> q;
|
||||
// for (auto pred : basicBlock->getPredecessors()) {
|
||||
// q.push(pred);
|
||||
// }
|
||||
// // BFS遍历前驱结点,直到找到直接支配结点
|
||||
// while (!found && !q.empty()) {
|
||||
// auto curr = q.front();
|
||||
// q.pop();
|
||||
// if (curr == basicBlock.get())
|
||||
// continue;
|
||||
// if (dominats.count(curr) != 0U) {
|
||||
// blockAnalysisInfo[basicBlock.get()]->setIdom(curr);
|
||||
// blockAnalysisInfo[curr]->addSdoms(basicBlock.get());
|
||||
// found = true;
|
||||
// } else {
|
||||
// for (auto pred : curr->getPredecessors()) {
|
||||
// q.push(pred);
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
}
|
||||
|
||||
// std::unordered_set<BasicBlock *> ControlFlowAnalysis::computeDomFrontier(BasicBlock *block) {
|
||||
// std::unordered_set<BasicBlock *> ret_list;
|
||||
// // 计算 localDF
|
||||
// for (auto local_successor : block->getSuccessors()) {
|
||||
// if (local_successor->getIdom() != block) {
|
||||
// ret_list.emplace(local_successor);
|
||||
// }
|
||||
// }
|
||||
// // 计算 upDF
|
||||
// for (auto up_successor : block->getSdoms()) {
|
||||
// auto childrenDF = computeDF(up_successor);
|
||||
// for (auto w : childrenDF) {
|
||||
// if (block != w->getIdom() || block == w) {
|
||||
// ret_list.emplace(w);
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
|
||||
// return ret_list;
|
||||
// }
|
||||
|
||||
void ControlFlowAnalysis::computeDomFrontierAllBlk() {
|
||||
auto &functions = pModule->getFunctions();
|
||||
for (const auto &function : functions) {
|
||||
auto func = function.second.get();
|
||||
auto basicBlocks = func->getBasicBlocks();
|
||||
|
||||
// 按支配树深度排序(从深到浅)
|
||||
std::vector<BasicBlock *> orderedBlocks;
|
||||
for (auto &bb : basicBlocks) {
|
||||
orderedBlocks.push_back(bb.get());
|
||||
}
|
||||
std::sort(orderedBlocks.begin(), orderedBlocks.end(),
|
||||
[this](BasicBlock *a, BasicBlock *b) {
|
||||
return blockAnalysisInfo[a]->getDomDepth() > blockAnalysisInfo[b]->getDomDepth();
|
||||
});
|
||||
|
||||
// 计算支配边界
|
||||
for (auto block : orderedBlocks) {
|
||||
std::unordered_set<BasicBlock *> df;
|
||||
|
||||
// Local DF: 直接后继中不被当前块支配的
|
||||
for (auto succ : block->getSuccessors()) {
|
||||
// 当前块不支配该后继(即不是其直接支配节点)
|
||||
if (blockAnalysisInfo[succ]->getIdom() != block) {
|
||||
df.insert(succ);
|
||||
}
|
||||
}
|
||||
|
||||
// Up DF: 从支配子树中继承
|
||||
for (auto child : blockAnalysisInfo[block]->getSdoms()) {
|
||||
for (auto w : blockAnalysisInfo[child]->getDomFrontiers()) {
|
||||
// 如果w不被当前块支配
|
||||
if (block != blockAnalysisInfo[w]->getIdom()) {
|
||||
df.insert(w);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
blockAnalysisInfo[block]->setDomFrontiers(df);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// ==========================
|
||||
// dataflow analysis utils
|
||||
// ==========================
|
||||
|
||||
// 先引用学长的代码
|
||||
// TODO: Worklist 增加逆后序遍历机制
|
||||
void DataFlowAnalysisUtils::forwardAnalyze(Module *pModule){
|
||||
std::map<DataFlowAnalysis *, bool> workAnalysis;
|
||||
for (auto &dataflow : forwardAnalysisList) {
|
||||
dataflow->init(pModule);
|
||||
}
|
||||
|
||||
for (const auto &function : pModule->getFunctions()) {
|
||||
for (auto &dataflow : forwardAnalysisList) {
|
||||
workAnalysis.emplace(dataflow, false);
|
||||
}
|
||||
while (!workAnalysis.empty()) {
|
||||
for (const auto &block : function.second->getBasicBlocks()) {
|
||||
for (auto &elem : workAnalysis) {
|
||||
if (elem.first->analyze(pModule, block.get())) {
|
||||
elem.second = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
std::map<DataFlowAnalysis *, bool> tmp;
|
||||
std::remove_copy_if(workAnalysis.begin(), workAnalysis.end(), std::inserter(tmp, tmp.end()),
|
||||
[](const std::pair<DataFlowAnalysis *, bool> &elem) -> bool { return !elem.second; });
|
||||
workAnalysis.swap(tmp);
|
||||
|
||||
for (auto &elem : workAnalysis) {
|
||||
elem.second = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void DataFlowAnalysisUtils::backwardAnalyze(Module *pModule) {
|
||||
std::map<DataFlowAnalysis *, bool> workAnalysis;
|
||||
for (auto &dataflow : backwardAnalysisList) {
|
||||
dataflow->init(pModule);
|
||||
}
|
||||
|
||||
for (const auto &function : pModule->getFunctions()) {
|
||||
for (auto &dataflow : backwardAnalysisList) {
|
||||
workAnalysis.emplace(dataflow, false);
|
||||
}
|
||||
while (!workAnalysis.empty()) {
|
||||
for (const auto &block : function.second->getBasicBlocks()) {
|
||||
for (auto &elem : workAnalysis) {
|
||||
if (elem.first->analyze(pModule, block.get())) {
|
||||
elem.second = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
std::map<DataFlowAnalysis *, bool> tmp;
|
||||
std::remove_copy_if(workAnalysis.begin(), workAnalysis.end(), std::inserter(tmp, tmp.end()),
|
||||
[](const std::pair<DataFlowAnalysis *, bool> &elem) -> bool { return !elem.second; });
|
||||
workAnalysis.swap(tmp);
|
||||
|
||||
for (auto &elem : workAnalysis) {
|
||||
elem.second = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
std::set<User *> ActiveVarAnalysis::getUsedSet(Instruction *inst) {
|
||||
using Kind = Instruction::Kind;
|
||||
std::vector<User *> operands;
|
||||
for (const auto &operand : inst->getOperands()) {
|
||||
operands.emplace_back(dynamic_cast<User *>(operand->getValue()));
|
||||
}
|
||||
std::set<User *> result;
|
||||
switch (inst->getKind()) {
|
||||
// phi op
|
||||
case Kind::kPhi:
|
||||
case Kind::kCall:
|
||||
result.insert(std::next(operands.begin()), operands.end());
|
||||
break;
|
||||
case Kind::kCondBr:
|
||||
result.insert(operands[0]);
|
||||
break;
|
||||
case Kind::kBr:
|
||||
case Kind::kAlloca:
|
||||
break;
|
||||
// mem op
|
||||
case Kind::kStore:
|
||||
// StoreInst 的第一个操作数是被存储的值,第二个操作数是存储的变量
|
||||
// 后续的是可能的数组维度
|
||||
result.insert(operands[0]);
|
||||
result.insert(operands.begin() + 2, operands.end());
|
||||
break;
|
||||
case Kind::kLoad:
|
||||
case Kind::kLa: {
|
||||
auto variable = dynamic_cast<AllocaInst *>(operands[0]);
|
||||
auto global = dynamic_cast<GlobalValue *>(operands[0]);
|
||||
auto constArray = dynamic_cast<ConstantVariable *>(operands[0]);
|
||||
if ((variable != nullptr && variable->getNumDims() == 0) || (global != nullptr && global->getNumDims() == 0) ||
|
||||
(constArray != nullptr && constArray->getNumDims() == 0)) {
|
||||
result.insert(operands[0]);
|
||||
}
|
||||
result.insert(std::next(operands.begin()), operands.end());
|
||||
break;
|
||||
}
|
||||
case Kind::kGetSubArray: {
|
||||
for (unsigned i = 2; i < operands.size(); i++) {
|
||||
// 数组的维度信息
|
||||
result.insert(operands[i]);
|
||||
}
|
||||
break;
|
||||
}
|
||||
case Kind::kMemset: {
|
||||
result.insert(std::next(operands.begin()), operands.end());
|
||||
break;
|
||||
}
|
||||
case Kind::kInvalid:
|
||||
// Binary
|
||||
case Kind::kAdd:
|
||||
case Kind::kSub:
|
||||
case Kind::kMul:
|
||||
case Kind::kDiv:
|
||||
case Kind::kRem:
|
||||
case Kind::kICmpEQ:
|
||||
case Kind::kICmpNE:
|
||||
case Kind::kICmpLT:
|
||||
case Kind::kICmpLE:
|
||||
case Kind::kICmpGT:
|
||||
case Kind::kICmpGE:
|
||||
case Kind::kFAdd:
|
||||
case Kind::kFSub:
|
||||
case Kind::kFMul:
|
||||
case Kind::kFDiv:
|
||||
case Kind::kFCmpEQ:
|
||||
case Kind::kFCmpNE:
|
||||
case Kind::kFCmpLT:
|
||||
case Kind::kFCmpLE:
|
||||
case Kind::kFCmpGT:
|
||||
case Kind::kFCmpGE:
|
||||
case Kind::kAnd:
|
||||
case Kind::kOr:
|
||||
// Unary
|
||||
case Kind::kNeg:
|
||||
case Kind::kNot:
|
||||
case Kind::kFNot:
|
||||
case Kind::kFNeg:
|
||||
case Kind::kFtoI:
|
||||
case Kind::kItoF:
|
||||
// terminator
|
||||
case Kind::kReturn:
|
||||
result.insert(operands.begin(), operands.end());
|
||||
break;
|
||||
default:
|
||||
assert(false);
|
||||
break;
|
||||
}
|
||||
result.erase(nullptr);
|
||||
return result;
|
||||
}
|
||||
|
||||
User * ActiveVarAnalysis::getDefine(Instruction *inst) {
|
||||
User *result = nullptr;
|
||||
if (inst->isStore()) {
|
||||
StoreInst* store = dynamic_cast<StoreInst *>(inst);
|
||||
auto operand = store->getPointer();
|
||||
AllocaInst* variable = dynamic_cast<AllocaInst *>(operand);
|
||||
GlobalValue* global = dynamic_cast<GlobalValue *>(operand);
|
||||
if ((variable != nullptr && variable->getNumDims() != 0) || (global != nullptr && global->getNumDims() != 0)) {
|
||||
// 如果是数组变量或者全局变量,则不返回定义
|
||||
// TODO:兼容数组变量
|
||||
result = nullptr;
|
||||
} else {
|
||||
result = dynamic_cast<User *>(operand);
|
||||
}
|
||||
} else if (inst->isPhi()) {
|
||||
result = dynamic_cast<User *>(inst->getOperand(0));
|
||||
} else if (inst->isBinary() || inst->isUnary() || inst->isCall() ||
|
||||
inst->isLoad() || inst->isLa()) {
|
||||
result = dynamic_cast<User *>(inst);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
void ActiveVarAnalysis::init(Module *pModule) {
|
||||
for (const auto &function : pModule->getFunctions()) {
|
||||
for (const auto &block : function.second->getBasicBlocks()) {
|
||||
activeTable.emplace(block.get(), std::vector<std::set<User *>>{});
|
||||
for (unsigned i = 0; i < block->getNumInstructions() + 1; i++)
|
||||
activeTable.at(block.get()).emplace_back();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 活跃变量分析公式 每个块内的分析动作供分析器调用
|
||||
bool ActiveVarAnalysis::analyze(Module *pModule, BasicBlock *block) {
|
||||
bool changed = false; // 标记数据流结果是否有变化
|
||||
std::set<User *> activeSet{}; // 当前计算的活跃变量集合
|
||||
|
||||
// 步骤1: 计算基本块出口的活跃变量集 (OUT[B])
|
||||
// 公式: OUT[B] = ∪_{S ∈ succ(B)} IN[S]
|
||||
for (const auto &succ : block->getSuccessors()) {
|
||||
// 获取后继块入口的活跃变量集 (IN[S])
|
||||
auto succActiveSet = activeTable.at(succ).front();
|
||||
// 合并所有后继块的入口活跃变量
|
||||
activeSet.insert(succActiveSet.begin(), succActiveSet.end());
|
||||
}
|
||||
|
||||
// 步骤2: 处理基本块出口处的活跃变量集
|
||||
const auto &instructions = block->getInstructions();
|
||||
const auto numInstructions = instructions.size();
|
||||
|
||||
// 获取旧的出口活跃变量集 (block出口对应索引numInstructions)
|
||||
const auto &oldEndActiveSet = activeTable.at(block)[numInstructions];
|
||||
|
||||
// 检查出口活跃变量集是否有变化
|
||||
if (!std::equal(activeSet.begin(), activeSet.end(),
|
||||
oldEndActiveSet.begin(), oldEndActiveSet.end()))
|
||||
{
|
||||
changed = true; // 标记变化
|
||||
activeTable.at(block)[numInstructions] = activeSet; // 更新出口活跃变量集
|
||||
}
|
||||
|
||||
// 步骤3: 逆序遍历基本块中的指令
|
||||
// 从最后一条指令开始向前计算每个程序点的活跃变量
|
||||
auto instructionIter = instructions.end();
|
||||
instructionIter--; // 指向最后一条指令
|
||||
|
||||
// 从出口向入口遍历 (索引从numInstructions递减到1)
|
||||
for (unsigned i = numInstructions; i > 0; i--) {
|
||||
auto inst = instructionIter->get(); // 当前指令
|
||||
|
||||
auto used = getUsedSet(inst);
|
||||
User *defined = getDefine(inst);
|
||||
|
||||
// 步骤3.3: 计算指令入口的活跃变量 (IN[i])
|
||||
// 公式: IN[i] = use_i ∪ (OUT[i] - def_i)
|
||||
activeSet.erase(defined); // 移除被定义的变量 (OUT[i] - def_i)
|
||||
activeSet.insert(used.begin(), used.end()); // 添加使用的变量
|
||||
|
||||
// 获取旧的入口活跃变量集 (位置i-1对应当前指令的入口)
|
||||
const auto &oldActiveSet = activeTable.at(block)[i - 1];
|
||||
|
||||
// 检查活跃变量集是否有变化
|
||||
if (!std::equal(activeSet.begin(), activeSet.end(),
|
||||
oldActiveSet.begin(), oldActiveSet.end()))
|
||||
{
|
||||
changed = true; // 标记变化
|
||||
activeTable.at(block)[i - 1] = activeSet; // 更新入口活跃变量集
|
||||
}
|
||||
|
||||
instructionIter--; // 移动到前一条指令
|
||||
}
|
||||
|
||||
return changed; // 返回数据流结果是否变化
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
} // namespace sysy
|
||||
|
||||
@ -1,600 +0,0 @@
|
||||
#include "SysYIRCFGOpt.h"
|
||||
#include "SysYIROptUtils.h"
|
||||
#include <cassert>
|
||||
#include <list>
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <iostream>
|
||||
#include <queue> // 引入队列,SysYDelNoPreBLock需要
|
||||
|
||||
namespace sysy {
|
||||
|
||||
// 定义静态ID
|
||||
void *SysYDelInstAfterBrPass::ID = (void *)&SysYDelInstAfterBrPass::ID;
|
||||
void *SysYDelEmptyBlockPass::ID = (void *)&SysYDelEmptyBlockPass::ID;
|
||||
void *SysYDelNoPreBLockPass::ID = (void *)&SysYDelNoPreBLockPass::ID;
|
||||
void *SysYBlockMergePass::ID = (void *)&SysYBlockMergePass::ID;
|
||||
void *SysYAddReturnPass::ID = (void *)&SysYAddReturnPass::ID;
|
||||
void *SysYCondBr2BrPass::ID = (void *)&SysYCondBr2BrPass::ID;
|
||||
|
||||
|
||||
// ======================================================================
|
||||
// SysYCFGOptUtils: 辅助工具类,包含实际的CFG优化逻辑
|
||||
// ======================================================================
|
||||
|
||||
// 删除br后的无用指令
|
||||
bool SysYCFGOptUtils::SysYDelInstAfterBr(Function *func) {
|
||||
bool changed = false;
|
||||
|
||||
auto basicBlocks = func->getBasicBlocks();
|
||||
for (auto &basicBlock : basicBlocks) {
|
||||
bool Branch = false;
|
||||
auto &instructions = basicBlock->getInstructions();
|
||||
auto Branchiter = instructions.end();
|
||||
for (auto iter = instructions.begin(); iter != instructions.end(); ++iter) {
|
||||
if ((*iter)->isTerminator()){
|
||||
Branch = true;
|
||||
Branchiter = iter;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (Branchiter != instructions.end()) ++Branchiter;
|
||||
while (Branchiter != instructions.end()) {
|
||||
changed = true;
|
||||
Branchiter = instructions.erase(Branchiter);
|
||||
}
|
||||
|
||||
if (Branch) { // 更新前驱后继关系
|
||||
auto thelastinstinst = basicBlock->getInstructions().end();
|
||||
--thelastinstinst;
|
||||
auto &Successors = basicBlock->getSuccessors();
|
||||
for (auto iterSucc = Successors.begin(); iterSucc != Successors.end();) {
|
||||
(*iterSucc)->removePredecessor(basicBlock.get());
|
||||
basicBlock->removeSuccessor(*iterSucc);
|
||||
}
|
||||
if (thelastinstinst->get()->isUnconditional()) {
|
||||
BasicBlock* branchBlock = dynamic_cast<BasicBlock *>(thelastinstinst->get()->getOperand(0));
|
||||
basicBlock->addSuccessor(branchBlock);
|
||||
branchBlock->addPredecessor(basicBlock.get());
|
||||
} else if (thelastinstinst->get()->isConditional()) {
|
||||
BasicBlock* thenBlock = dynamic_cast<BasicBlock *>(thelastinstinst->get()->getOperand(1));
|
||||
BasicBlock* elseBlock = dynamic_cast<BasicBlock *>(thelastinstinst->get()->getOperand(2));
|
||||
basicBlock->addSuccessor(thenBlock);
|
||||
basicBlock->addSuccessor(elseBlock);
|
||||
thenBlock->addPredecessor(basicBlock.get());
|
||||
elseBlock->addPredecessor(basicBlock.get());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return changed;
|
||||
}
|
||||
|
||||
// 合并基本块
|
||||
bool SysYCFGOptUtils::SysYBlockMerge(Function *func) {
|
||||
bool changed = false;
|
||||
|
||||
for (auto blockiter = func->getBasicBlocks().begin();
|
||||
blockiter != func->getBasicBlocks().end();) {
|
||||
if (blockiter->get()->getNumSuccessors() == 1) {
|
||||
// 如果当前块只有一个后继块
|
||||
// 且后继块只有一个前驱块
|
||||
// 则将当前块和后继块合并
|
||||
if (((blockiter->get())->getSuccessors()[0])->getNumPredecessors() == 1) {
|
||||
// std::cout << "merge block: " << blockiter->get()->getName() << std::endl;
|
||||
BasicBlock* block = blockiter->get();
|
||||
BasicBlock* nextBlock = blockiter->get()->getSuccessors()[0];
|
||||
// auto nextarguments = nextBlock->getArguments();
|
||||
// 删除br指令
|
||||
if (block->getNumInstructions() != 0) {
|
||||
auto thelastinstinst = block->end();
|
||||
(--thelastinstinst);
|
||||
if (thelastinstinst->get()->isUnconditional()) {
|
||||
SysYIROptUtils::usedelete(thelastinstinst->get());
|
||||
thelastinstinst = block->getInstructions().erase(thelastinstinst);
|
||||
} else if (thelastinstinst->get()->isConditional()) {
|
||||
// 如果是条件分支,判断条件是否相同,主要优化相同布尔表达式
|
||||
if (thelastinstinst->get()->getOperand(1)->getName() == thelastinstinst->get()->getOperand(1)->getName()) {
|
||||
SysYIROptUtils::usedelete(thelastinstinst->get());
|
||||
thelastinstinst = block->getInstructions().erase(thelastinstinst);
|
||||
}
|
||||
}
|
||||
}
|
||||
// 将后继块的指令移动到当前块
|
||||
// 并将后继块的父指针改为当前块
|
||||
for (auto institer = nextBlock->begin(); institer != nextBlock->end();) {
|
||||
institer->get()->setParent(block);
|
||||
block->getInstructions().emplace_back(institer->release());
|
||||
institer = nextBlock->getInstructions().erase(institer);
|
||||
}
|
||||
// 更新前驱后继关系,类似树节点操作
|
||||
block->removeSuccessor(nextBlock);
|
||||
nextBlock->removePredecessor(block);
|
||||
std::list<BasicBlock *> succshoulddel;
|
||||
for (auto &succ : nextBlock->getSuccessors()) {
|
||||
block->addSuccessor(succ);
|
||||
succ->replacePredecessor(nextBlock, block);
|
||||
succshoulddel.push_back(succ);
|
||||
}
|
||||
for (auto del : succshoulddel) {
|
||||
nextBlock->removeSuccessor(del);
|
||||
}
|
||||
|
||||
func->removeBasicBlock(nextBlock);
|
||||
changed = true;
|
||||
|
||||
} else {
|
||||
blockiter++;
|
||||
}
|
||||
} else {
|
||||
blockiter++;
|
||||
}
|
||||
}
|
||||
|
||||
return changed;
|
||||
}
|
||||
|
||||
// 删除无前驱块,兼容SSA后的处理
|
||||
bool SysYCFGOptUtils::SysYDelNoPreBLock(Function *func) {
|
||||
|
||||
bool changed = false;
|
||||
|
||||
for (auto &block : func->getBasicBlocks()) {
|
||||
block->setreachableFalse();
|
||||
}
|
||||
// 对函数基本块做一个拓扑排序,排查不可达基本块
|
||||
auto entryBlock = func->getEntryBlock();
|
||||
entryBlock->setreachableTrue();
|
||||
std::queue<BasicBlock *> blockqueue;
|
||||
blockqueue.push(entryBlock);
|
||||
while (!blockqueue.empty()) {
|
||||
auto block = blockqueue.front();
|
||||
blockqueue.pop();
|
||||
for (auto &succ : block->getSuccessors()) {
|
||||
if (!succ->getreachable()) {
|
||||
succ->setreachableTrue();
|
||||
blockqueue.push(succ);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 删除不可达基本块指令
|
||||
for (auto blockIter = func->getBasicBlocks().begin(); blockIter != func->getBasicBlocks().end(); blockIter++) {
|
||||
if (!blockIter->get()->getreachable()) {
|
||||
for (auto instIter = blockIter->get()->getInstructions().begin();
|
||||
instIter != blockIter->get()->getInstructions().end();) {
|
||||
SysYIROptUtils::usedelete(instIter->get());
|
||||
instIter = blockIter->get()->getInstructions().erase(instIter);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
for (auto blockIter = func->getBasicBlocks().begin(); blockIter != func->getBasicBlocks().end();) {
|
||||
if (!blockIter->get()->getreachable()) {
|
||||
for (auto succblock : blockIter->get()->getSuccessors()) {
|
||||
for (auto &phiinst : succblock->getInstructions()) {
|
||||
if (phiinst->getKind() != Instruction::kPhi) {
|
||||
break;
|
||||
}
|
||||
// 使用 delBlk 方法正确地删除对应于被删除基本块的传入值
|
||||
dynamic_cast<PhiInst *>(phiinst.get())->delBlk(blockIter->get());
|
||||
}
|
||||
}
|
||||
// 删除不可达基本块,注意迭代器不可达问题
|
||||
func->removeBasicBlock((blockIter++)->get());
|
||||
changed = true;
|
||||
} else {
|
||||
blockIter++;
|
||||
}
|
||||
}
|
||||
|
||||
return changed;
|
||||
}
|
||||
|
||||
// 删除空块
|
||||
bool SysYCFGOptUtils::SysYDelEmptyBlock(Function *func, IRBuilder* pBuilder) {
|
||||
bool changed = false;
|
||||
|
||||
// 收集不可达基本块
|
||||
// 这里的不可达基本块是指没有实际指令的基本块
|
||||
// 当一个基本块没有实际指令例如只有phi指令和一个uncondbr指令时,也会被视作不可达
|
||||
auto basicBlocks = func->getBasicBlocks();
|
||||
std::map<sysy::BasicBlock *, BasicBlock *> EmptyBlocks;
|
||||
// 空块儿和后继的基本块的映射
|
||||
for (auto &basicBlock : basicBlocks) {
|
||||
if (basicBlock->getNumInstructions() == 0) {
|
||||
if (basicBlock->getNumSuccessors() == 1) {
|
||||
EmptyBlocks[basicBlock.get()] = basicBlock->getSuccessors().front();
|
||||
}
|
||||
}
|
||||
else{
|
||||
// 如果只有phi指令和一个uncondbr。(phi)*(uncondbr)?
|
||||
// 判断除了最后一个指令之外是不是只有phi指令
|
||||
bool onlyPhi = true;
|
||||
for (auto &inst : basicBlock->getInstructions()) {
|
||||
if (!inst->isPhi() && !inst->isUnconditional()) {
|
||||
onlyPhi = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if(onlyPhi && basicBlock->getNumSuccessors() == 1) // 确保有后继且只有一个
|
||||
EmptyBlocks[basicBlock.get()] = basicBlock->getSuccessors().front();
|
||||
}
|
||||
}
|
||||
// 更新基本块信息,增加必要指令
|
||||
for (auto &basicBlock : basicBlocks) {
|
||||
// 把空块转换成只有跳转指令的不可达块 (这段逻辑在优化遍中可能需要调整,这里是原样保留)
|
||||
// 通常,DelEmptyBlock 应该在BlockMerge之后运行,如果存在完全空块,它会尝试填充一个Br指令。
|
||||
// 但是,它主要目的是重定向跳转。
|
||||
if (distance(basicBlock->begin(), basicBlock->end()) == 0) {
|
||||
if (basicBlock->getNumSuccessors() == 0) {
|
||||
continue;
|
||||
}
|
||||
if (basicBlock->getNumSuccessors() > 1) {
|
||||
// 如果一个空块有多个后继,说明CFG结构有问题或者需要特殊处理,这里简单assert
|
||||
assert(false && "Empty block with multiple successors found during SysYDelEmptyBlock");
|
||||
}
|
||||
// 这里的逻辑有点问题,如果一个块是空的,且只有一个后继,应该直接跳转到后继。
|
||||
// 如果这个块最终被删除了,那么其前驱也需要重定向。
|
||||
// 这个循环的目的是重定向现有的跳转指令,而不是创建新的。
|
||||
// 所以下面的逻辑才是核心。
|
||||
// pBuilder->setPosition(basicBlock.get(), basicBlock->end());
|
||||
// pBuilder->createUncondBrInst(basicBlock->getSuccessors()[0], {});
|
||||
continue;
|
||||
}
|
||||
|
||||
auto thelastinst = basicBlock->getInstructions().end();
|
||||
--thelastinst;
|
||||
|
||||
// 根据br指令传递的后继块信息,跳过空块链
|
||||
if (thelastinst->get()->isUnconditional()) {
|
||||
BasicBlock* OldBrBlock = dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(0));
|
||||
BasicBlock *thelastBlockOld = nullptr;
|
||||
// 如果空块链表为多个块
|
||||
while (EmptyBlocks.count(dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(0)))) {
|
||||
thelastBlockOld = dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(0));
|
||||
thelastinst->get()->replaceOperand(0, EmptyBlocks[thelastBlockOld]);
|
||||
}
|
||||
|
||||
// 如果有重定向发生
|
||||
if (thelastBlockOld != nullptr) {
|
||||
basicBlock->removeSuccessor(OldBrBlock);
|
||||
OldBrBlock->removePredecessor(basicBlock.get());
|
||||
basicBlock->addSuccessor(dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(0)));
|
||||
dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(0))->addPredecessor(basicBlock.get());
|
||||
changed = true; // 标记IR被修改
|
||||
}
|
||||
|
||||
|
||||
if (thelastBlockOld != nullptr) {
|
||||
for (auto &InstInNew : dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(0))->getInstructions()) {
|
||||
if (InstInNew->isPhi()) {
|
||||
// 使用 delBlk 方法删除 oldBlock 对应的传入值
|
||||
dynamic_cast<PhiInst *>(InstInNew.get())->delBlk(thelastBlockOld);
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} else if (thelastinst->get()->getKind() == Instruction::kCondBr) {
|
||||
auto OldThenBlock = dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(1));
|
||||
auto OldElseBlock = dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(2));
|
||||
bool thenChanged = false;
|
||||
bool elseChanged = false;
|
||||
|
||||
|
||||
BasicBlock *thelastBlockOld = nullptr;
|
||||
while (EmptyBlocks.count(dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(1)))) {
|
||||
thelastBlockOld = dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(1));
|
||||
thelastinst->get()->replaceOperand(
|
||||
1, EmptyBlocks[dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(1))]);
|
||||
thenChanged = true;
|
||||
}
|
||||
|
||||
if (thenChanged) {
|
||||
basicBlock->removeSuccessor(OldThenBlock);
|
||||
OldThenBlock->removePredecessor(basicBlock.get());
|
||||
basicBlock->addSuccessor(dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(1)));
|
||||
dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(1))->addPredecessor(basicBlock.get());
|
||||
changed = true; // 标记IR被修改
|
||||
}
|
||||
|
||||
// 处理 then 和 else 分支合并的情况
|
||||
if (dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(1)) ==
|
||||
dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(2))) {
|
||||
auto thebrBlock = dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(1));
|
||||
SysYIROptUtils::usedelete(thelastinst->get());
|
||||
thelastinst = basicBlock->getInstructions().erase(thelastinst);
|
||||
pBuilder->setPosition(basicBlock.get(), basicBlock->end());
|
||||
pBuilder->createUncondBrInst(thebrBlock, {});
|
||||
changed = true; // 标记IR被修改
|
||||
continue;
|
||||
}
|
||||
|
||||
if (thelastBlockOld != nullptr) {
|
||||
for (auto &InstInNew : dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(1))->getInstructions()) {
|
||||
if (InstInNew->isPhi()) {
|
||||
// 使用 delBlk 方法删除 oldBlock 对应的传入值
|
||||
dynamic_cast<PhiInst *>(InstInNew.get())->delBlk(thelastBlockOld);
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
thelastBlockOld = nullptr;
|
||||
while (EmptyBlocks.count(dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(2)))) {
|
||||
thelastBlockOld = dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(2));
|
||||
thelastinst->get()->replaceOperand(
|
||||
2, EmptyBlocks[dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(2))]);
|
||||
elseChanged = true;
|
||||
}
|
||||
|
||||
if (elseChanged) {
|
||||
basicBlock->removeSuccessor(OldElseBlock);
|
||||
OldElseBlock->removePredecessor(basicBlock.get());
|
||||
basicBlock->addSuccessor(dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(2)));
|
||||
dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(2))->addPredecessor(basicBlock.get());
|
||||
changed = true; // 标记IR被修改
|
||||
}
|
||||
|
||||
// 处理 then 和 else 分支合并的情况
|
||||
if (dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(1)) ==
|
||||
dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(2))) {
|
||||
auto thebrBlock = dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(1));
|
||||
SysYIROptUtils::usedelete(thelastinst->get());
|
||||
thelastinst = basicBlock->getInstructions().erase(thelastinst);
|
||||
pBuilder->setPosition(basicBlock.get(), basicBlock->end());
|
||||
pBuilder->createUncondBrInst(thebrBlock, {});
|
||||
changed = true; // 标记IR被修改
|
||||
continue;
|
||||
}
|
||||
|
||||
|
||||
// 如果有重定向发生
|
||||
// 需要更新后继块的前驱关系
|
||||
if (thelastBlockOld != nullptr) {
|
||||
for (auto &InstInNew : dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(2))->getInstructions()) {
|
||||
if (InstInNew->isPhi()) {
|
||||
// 使用 delBlk 方法删除 oldBlock 对应的传入值
|
||||
dynamic_cast<PhiInst *>(InstInNew.get())->delBlk(thelastBlockOld);
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} else {
|
||||
// 如果不是终止指令,但有后继 (例如,末尾没有显式终止指令的块)
|
||||
// 这段逻辑可能需要更严谨的CFG检查来确保正确性
|
||||
if (basicBlock->getNumSuccessors() == 1) {
|
||||
// 这里的逻辑似乎是想为没有terminator的块添加一个,但通常这应该在CFG构建阶段完成。
|
||||
// 如果这里仍然执行,确保它符合预期。
|
||||
// pBuilder->setPosition(basicBlock.get(), basicBlock->end());
|
||||
// pBuilder->createUncondBrInst(basicBlock->getSuccessors()[0], {});
|
||||
// auto thelastinst = basicBlock->getInstructions().end();
|
||||
// (--thelastinst);
|
||||
// auto OldBrBlock = dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(0));
|
||||
// sysy::BasicBlock *thelastBlockOld = nullptr;
|
||||
// while (EmptyBlocks.find(dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(0))) !=
|
||||
// EmptyBlocks.end()) {
|
||||
// thelastBlockOld = dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(0));
|
||||
|
||||
// thelastinst->get()->replaceOperand(
|
||||
// 0, EmptyBlocks[dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(0))]);
|
||||
// }
|
||||
|
||||
// basicBlock->removeSuccessor(OldBrBlock);
|
||||
// OldBrBlock->removePredecessor(basicBlock.get());
|
||||
// basicBlock->addSuccessor(dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(0)));
|
||||
// dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(0))->addPredecessor(basicBlock.get());
|
||||
// changed = true; // 标记IR被修改
|
||||
// if (thelastBlockOld != nullptr) {
|
||||
// int indexphi = 0;
|
||||
// for (auto &pred : dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(0))->getPredecessors()) {
|
||||
// if (pred == thelastBlockOld) {
|
||||
// break;
|
||||
// }
|
||||
// indexphi++;
|
||||
// }
|
||||
|
||||
// for (auto &InstInNew : dynamic_cast<BasicBlock *>(thelastinst->get()->getOperand(0))->getInstructions()) {
|
||||
// if (InstInNew->isPhi()) {
|
||||
// dynamic_cast<PhiInst *>(InstInNew.get())->removeOperand(indexphi + 1);
|
||||
// } else {
|
||||
// break;
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 真正的删除空块
|
||||
for (auto iter = func->getBasicBlocks().begin(); iter != func->getBasicBlocks().end();) {
|
||||
|
||||
if (EmptyBlocks.count(iter->get())) {
|
||||
// EntryBlock跳过
|
||||
if (iter->get() == func->getEntryBlock()) {
|
||||
++iter;
|
||||
continue;
|
||||
}
|
||||
|
||||
for (auto instIter = iter->get()->getInstructions().begin();
|
||||
instIter != iter->get()->getInstructions().end();) {
|
||||
SysYIROptUtils::usedelete(instIter->get()); // 仅删除 use 关系
|
||||
// 显式地从基本块中删除指令并更新迭代器
|
||||
instIter = iter->get()->getInstructions().erase(instIter);
|
||||
}
|
||||
// 删除不可达基本块的phi指令的操作数
|
||||
for (auto &succ : iter->get()->getSuccessors()) {
|
||||
for (auto &instinsucc : succ->getInstructions()) {
|
||||
if (instinsucc->isPhi()) {
|
||||
// iter->get() 就是当前被删除的空基本块,它作为前驱连接到这里的Phi指令
|
||||
dynamic_cast<PhiInst *>(instinsucc.get())->delBlk(iter->get());
|
||||
} else {
|
||||
// Phi 指令通常在基本块的开头,如果不是 Phi 指令就停止检查
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func->removeBasicBlock((iter++)->get());
|
||||
changed = true;
|
||||
} else {
|
||||
++iter;
|
||||
}
|
||||
}
|
||||
|
||||
return changed;
|
||||
}
|
||||
|
||||
// 如果函数没有返回指令,则添加一个默认返回指令(主要解决void函数没有返回指令的问题)
|
||||
bool SysYCFGOptUtils::SysYAddReturn(Function *func, IRBuilder* pBuilder) {
|
||||
bool changed = false;
|
||||
auto basicBlocks = func->getBasicBlocks();
|
||||
for (auto &block : basicBlocks) {
|
||||
if (block->getNumSuccessors() == 0) {
|
||||
// 如果基本块没有后继块,则添加一个返回指令
|
||||
if (block->getNumInstructions() == 0) {
|
||||
pBuilder->setPosition(block.get(), block->end());
|
||||
pBuilder->createReturnInst();
|
||||
changed = true; // 标记IR被修改
|
||||
} else {
|
||||
auto thelastinst = block->getInstructions().end();
|
||||
--thelastinst;
|
||||
if (thelastinst->get()->getKind() != Instruction::kReturn) {
|
||||
// std::cout << "Warning: Function " << func->getName() << " has no return instruction, adding default return." << std::endl;
|
||||
|
||||
pBuilder->setPosition(block.get(), block->end());
|
||||
// TODO: 如果int float函数缺少返回值是否需要报错
|
||||
if (func->getReturnType()->isInt()) {
|
||||
pBuilder->createReturnInst(ConstantInteger::get(0));
|
||||
} else if (func->getReturnType()->isFloat()) {
|
||||
pBuilder->createReturnInst(ConstantFloating::get(0.0F));
|
||||
} else {
|
||||
pBuilder->createReturnInst();
|
||||
}
|
||||
changed = true; // 标记IR被修改
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return changed;
|
||||
}
|
||||
|
||||
// 条件分支转换为无条件分支
|
||||
// 主要针对已知条件值的分支转换为无条件分支
|
||||
// 例如 if (cond) { ... } else { ... } 中的 cond 已经
|
||||
// 确定为 true 或 false 的情况
|
||||
bool SysYCFGOptUtils::SysYCondBr2Br(Function *func, IRBuilder* pBuilder) {
|
||||
bool changed = false;
|
||||
|
||||
for (auto &basicblock : func->getBasicBlocks()) {
|
||||
if (basicblock->getNumInstructions() == 0)
|
||||
continue;
|
||||
|
||||
auto thelast = basicblock->getInstructions().end();
|
||||
--thelast;
|
||||
|
||||
if (thelast->get()->isConditional()){
|
||||
ConstantValue *constOperand = dynamic_cast<ConstantValue *>(thelast->get()->getOperand(0));
|
||||
std::string opname;
|
||||
int constint = 0;
|
||||
float constfloat = 0.0F;
|
||||
bool constint_Use = false;
|
||||
bool constfloat_Use = false;
|
||||
if (constOperand != nullptr) {
|
||||
if (constOperand->isFloat()) {
|
||||
constfloat = constOperand->getFloat();
|
||||
constfloat_Use = true;
|
||||
} else {
|
||||
constint = constOperand->getInt();
|
||||
constint_Use = true;
|
||||
}
|
||||
}
|
||||
// 如果可以计算
|
||||
if (constfloat_Use || constint_Use) {
|
||||
changed = true;
|
||||
|
||||
auto thenBlock = dynamic_cast<BasicBlock *>(thelast->get()->getOperand(1));
|
||||
auto elseBlock = dynamic_cast<BasicBlock *>(thelast->get()->getOperand(2));
|
||||
SysYIROptUtils::usedelete(thelast->get());
|
||||
thelast = basicblock->getInstructions().erase(thelast);
|
||||
if ((constfloat_Use && constfloat == 1.0F) || (constint_Use && constint == 1)) {
|
||||
// cond为true或非0
|
||||
pBuilder->setPosition(basicblock.get(), basicblock->end());
|
||||
pBuilder->createUncondBrInst(thenBlock, {});
|
||||
|
||||
// 更新CFG关系
|
||||
basicblock->removeSuccessor(elseBlock);
|
||||
elseBlock->removePredecessor(basicblock.get());
|
||||
|
||||
// 删除elseBlock的phi指令中对应的basicblock.get()的传入值
|
||||
for (auto &phiinst : elseBlock->getInstructions()) {
|
||||
if (phiinst->getKind() != Instruction::kPhi) {
|
||||
break;
|
||||
}
|
||||
// 使用 delBlk 方法删除 basicblock.get() 对应的传入值
|
||||
dynamic_cast<PhiInst *>(phiinst.get())->delBlk(basicblock.get());
|
||||
}
|
||||
|
||||
} else { // cond为false或0
|
||||
|
||||
pBuilder->setPosition(basicblock.get(), basicblock->end());
|
||||
pBuilder->createUncondBrInst(elseBlock, {});
|
||||
|
||||
// 更新CFG关系
|
||||
basicblock->removeSuccessor(thenBlock);
|
||||
thenBlock->removePredecessor(basicblock.get());
|
||||
|
||||
// 删除thenBlock的phi指令中对应的basicblock.get()的传入值
|
||||
for (auto &phiinst : thenBlock->getInstructions()) {
|
||||
if (phiinst->getKind() != Instruction::kPhi) {
|
||||
break;
|
||||
}
|
||||
// 使用 delBlk 方法删除 basicblock.get() 对应的传入值
|
||||
dynamic_cast<PhiInst *>(phiinst.get())->delBlk(basicblock.get());
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return changed;
|
||||
}
|
||||
|
||||
// ======================================================================
|
||||
// 独立的CFG优化遍的实现
|
||||
// ======================================================================
|
||||
|
||||
bool SysYDelInstAfterBrPass::runOnFunction(Function *F, AnalysisManager& AM) {
|
||||
return SysYCFGOptUtils::SysYDelInstAfterBr(F);
|
||||
}
|
||||
|
||||
bool SysYDelEmptyBlockPass::runOnFunction(Function *F, AnalysisManager& AM) {
|
||||
return SysYCFGOptUtils::SysYDelEmptyBlock(F, pBuilder);
|
||||
}
|
||||
|
||||
bool SysYDelNoPreBLockPass::runOnFunction(Function *F, AnalysisManager& AM) {
|
||||
return SysYCFGOptUtils::SysYDelNoPreBLock(F);
|
||||
}
|
||||
|
||||
bool SysYBlockMergePass::runOnFunction(Function *F, AnalysisManager& AM) {
|
||||
return SysYCFGOptUtils::SysYBlockMerge(F);
|
||||
}
|
||||
|
||||
bool SysYAddReturnPass::runOnFunction(Function *F, AnalysisManager& AM) {
|
||||
return SysYCFGOptUtils::SysYAddReturn(F, pBuilder);
|
||||
}
|
||||
|
||||
bool SysYCondBr2BrPass::runOnFunction(Function *F, AnalysisManager& AM) {
|
||||
return SysYCFGOptUtils::SysYCondBr2Br(F, pBuilder);
|
||||
}
|
||||
|
||||
} // namespace sysy
|
||||
@ -1,36 +0,0 @@
|
||||
// PassManager.cpp
|
||||
#include "SysYIRPassManager.h"
|
||||
#include <iostream>
|
||||
|
||||
namespace sysy {
|
||||
|
||||
void PassManager::run(Module& M) {
|
||||
// 首先运行Module级别的Pass
|
||||
for (auto& pass : modulePasses) {
|
||||
std::cout << "Running Module Pass: " << pass->getPassName() << std::endl;
|
||||
pass->runOnModule(M);
|
||||
}
|
||||
|
||||
// 然后对每个函数运行Function级别的Pass
|
||||
auto& functions = M.getFunctions();
|
||||
for (auto& pair : functions) {
|
||||
Function& F = *(pair.second); // 获取Function的引用
|
||||
std::cout << " Processing Function: " << F.getName() << std::endl;
|
||||
|
||||
// 在每个函数上运行FunctionPasses
|
||||
bool changedInFunction;
|
||||
do {
|
||||
changedInFunction = false;
|
||||
for (auto& pass : functionPasses) {
|
||||
// 对于FunctionPasses,可以考虑一个迭代执行的循环,直到稳定
|
||||
std::cout << " Running Function Pass: " << pass->getPassName() << std::endl;
|
||||
changedInFunction |= pass->runOnFunction(F);
|
||||
}
|
||||
} while (changedInFunction); // 循环直到函数稳定,这模拟了您SysYCFGOpt的while(changed)逻辑
|
||||
}
|
||||
|
||||
// 分析Pass的运行可以在其他Pass需要时触发,或者在特定的PassManager阶段触发
|
||||
// 对于依赖于分析结果的Pass,可以在其run方法中通过PassManager::getAnalysis()来获取
|
||||
}
|
||||
|
||||
} // namespace sysy
|
||||
27
src/backend/RISCv64/CMakeLists.txt
Normal file
27
src/backend/RISCv64/CMakeLists.txt
Normal file
@ -0,0 +1,27 @@
|
||||
# src/backend/RISCv64/CMakeLists.txt
|
||||
add_library(riscv64_backend_lib STATIC
|
||||
RISCv64AsmPrinter.cpp
|
||||
RISCv64Backend.cpp
|
||||
RISCv64ISel.cpp
|
||||
RISCv64LLIR.cpp
|
||||
RISCv64RegAlloc.cpp
|
||||
RISCv64LinearScan.cpp
|
||||
RISCv64BasicBlockAlloc.cpp
|
||||
Handler/CalleeSavedHandler.cpp
|
||||
Handler/LegalizeImmediates.cpp
|
||||
Handler/PrologueEpilogueInsertion.cpp
|
||||
Handler/EliminateFrameIndices.cpp
|
||||
Optimize/Peephole.cpp
|
||||
Optimize/PostRA_Scheduler.cpp
|
||||
Optimize/PreRA_Scheduler.cpp
|
||||
Optimize/DivStrengthReduction.cpp
|
||||
)
|
||||
|
||||
# 包含后端模块所需的头文件路径
|
||||
target_include_directories(riscv64_backend_lib PUBLIC
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/../../include/backend/RISCv64 # 后端顶层头文件
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/../../include/backend/RISCv64/Handler # 增加 Handler 头文件路径
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/../../include/backend/RISCv64/Optimize # 增加 Optimize 头文件路径
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/../../include/midend # 增加 midend 头文件路径 (已存在)
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/../../include/midend/Pass # 增加 midend 头文件路径 (已存在)
|
||||
)
|
||||
51
src/backend/RISCv64/Handler/CalleeSavedHandler.cpp
Normal file
51
src/backend/RISCv64/Handler/CalleeSavedHandler.cpp
Normal file
@ -0,0 +1,51 @@
|
||||
#include "CalleeSavedHandler.h"
|
||||
#include <set>
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
#include <iterator>
|
||||
|
||||
namespace sysy {
|
||||
|
||||
char CalleeSavedHandler::ID = 0;
|
||||
|
||||
bool CalleeSavedHandler::runOnFunction(Function *F, AnalysisManager& AM) {
|
||||
// This pass works on MachineFunction level, not IR level
|
||||
return false;
|
||||
}
|
||||
|
||||
void CalleeSavedHandler::runOnMachineFunction(MachineFunction* mfunc) {
|
||||
StackFrameInfo& frame_info = mfunc->getFrameInfo();
|
||||
const std::set<PhysicalReg>& used_callee_saved = frame_info.used_callee_saved_regs;
|
||||
|
||||
if (used_callee_saved.empty()) {
|
||||
frame_info.callee_saved_size = 0;
|
||||
frame_info.callee_saved_regs_to_store.clear();
|
||||
return;
|
||||
}
|
||||
|
||||
// 1. 计算被调用者保存寄存器所需的总空间大小
|
||||
// s0 总是由 PEI Pass 单独处理,这里不计入大小,但要确保它在列表中
|
||||
int size = 0;
|
||||
std::set<PhysicalReg> regs_to_save = used_callee_saved;
|
||||
if (regs_to_save.count(PhysicalReg::S0)) {
|
||||
regs_to_save.erase(PhysicalReg::S0);
|
||||
}
|
||||
size = regs_to_save.size() * 8; // 每个寄存器占8字节 (64-bit)
|
||||
frame_info.callee_saved_size = size;
|
||||
|
||||
// 2. 创建一个有序的、需要保存的寄存器列表,以便后续 Pass 确定地生成代码
|
||||
// s0 不应包含在此列表中,因为它由 PEI Pass 特殊处理
|
||||
std::vector<PhysicalReg> sorted_regs(regs_to_save.begin(), regs_to_save.end());
|
||||
std::sort(sorted_regs.begin(), sorted_regs.end(), [](PhysicalReg a, PhysicalReg b){
|
||||
return static_cast<int>(a) < static_cast<int>(b);
|
||||
});
|
||||
frame_info.callee_saved_regs_to_store = sorted_regs;
|
||||
|
||||
// 3. 更新栈帧总大小。
|
||||
// 这是初步计算,PEI Pass 会进行最终的对齐。
|
||||
frame_info.total_size = frame_info.locals_size +
|
||||
frame_info.spill_size +
|
||||
frame_info.callee_saved_size;
|
||||
}
|
||||
|
||||
} // namespace sysy
|
||||
235
src/backend/RISCv64/Handler/EliminateFrameIndices.cpp
Normal file
235
src/backend/RISCv64/Handler/EliminateFrameIndices.cpp
Normal file
@ -0,0 +1,235 @@
|
||||
#include "EliminateFrameIndices.h"
|
||||
#include "RISCv64ISel.h"
|
||||
#include <cassert>
|
||||
#include <vector>
|
||||
|
||||
namespace sysy {
|
||||
|
||||
// getTypeSizeInBytes 是一个通用辅助函数,保持不变
|
||||
unsigned EliminateFrameIndicesPass::getTypeSizeInBytes(Type* type) {
|
||||
if (!type) {
|
||||
assert(false && "Cannot get size of a null type.");
|
||||
return 0;
|
||||
}
|
||||
|
||||
switch (type->getKind()) {
|
||||
case Type::kInt:
|
||||
case Type::kFloat:
|
||||
return 4;
|
||||
case Type::kPointer:
|
||||
return 8;
|
||||
case Type::kArray: {
|
||||
auto arrayType = type->as<ArrayType>();
|
||||
return arrayType->getNumElements() * getTypeSizeInBytes(arrayType->getElementType());
|
||||
}
|
||||
default:
|
||||
assert(false && "Unsupported type for size calculation.");
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
void EliminateFrameIndicesPass::runOnMachineFunction(MachineFunction* mfunc) {
|
||||
StackFrameInfo& frame_info = mfunc->getFrameInfo();
|
||||
Function* F = mfunc->getFunc();
|
||||
RISCv64ISel* isel = mfunc->getISel();
|
||||
|
||||
// 在这里处理栈传递的参数,以便在寄存器分配前就将数据流显式化,修复溢出逻辑的BUG。
|
||||
|
||||
// 2. 只为局部变量(AllocaInst)分配栈空间和计算偏移量
|
||||
// 局部变量从 s0 下方(负偏移量)开始分配,紧接着为 ra 和 s0 预留的16字节之后
|
||||
int local_var_offset = 16;
|
||||
|
||||
if(F) { // 确保函数指针有效
|
||||
for (auto& bb : F->getBasicBlocks()) {
|
||||
for (auto& inst : bb->getInstructions()) {
|
||||
if (auto alloca = dynamic_cast<AllocaInst*>(inst.get())) {
|
||||
Type* allocated_type = alloca->getType()->as<PointerType>()->getBaseType();
|
||||
int size = getTypeSizeInBytes(allocated_type);
|
||||
|
||||
// 优化栈帧大小:对于大数组使用4字节对齐,小对象使用8字节对齐
|
||||
if (size >= 256) { // 大数组优化
|
||||
size = (size + 3) & ~3; // 4字节对齐
|
||||
} else {
|
||||
size = (size + 7) & ~7; // 8字节对齐
|
||||
}
|
||||
if (size == 0) size = 4; // 最小4字节
|
||||
|
||||
local_var_offset += size;
|
||||
unsigned alloca_vreg = isel->getVReg(alloca);
|
||||
// 局部变量使用相对于s0的负向偏移
|
||||
frame_info.alloca_offsets[alloca_vreg] = -local_var_offset;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 记录仅由AllocaInst分配的局部变量的总大小
|
||||
frame_info.locals_size = local_var_offset - 16;
|
||||
// 记录局部变量区域分配结束的最终偏移量
|
||||
frame_info.locals_end_offset = -local_var_offset;
|
||||
|
||||
// 在函数入口为所有栈传递的参数插入load指令
|
||||
// 这个步骤至关重要:它在寄存器分配之前,为这些参数的vreg创建了明确的“定义(def)”指令。
|
||||
// 这解决了在高寄存器压力下,当这些vreg被溢出时,`rewriteProgram`找不到其定义点而崩溃的问题。
|
||||
if (F && isel && !mfunc->getBlocks().empty()) {
|
||||
MachineBasicBlock* entry_block = mfunc->getBlocks().front().get();
|
||||
std::vector<std::unique_ptr<MachineInstr>> arg_load_instrs;
|
||||
|
||||
// 步骤 3.1: 生成所有加载栈参数的指令,暂存起来
|
||||
int arg_idx = 0;
|
||||
for (Argument* arg : F->getArguments()) {
|
||||
// 根据ABI,前8个整型/指针参数通过寄存器传递,这里只处理超出部分。
|
||||
if (arg_idx >= 8) {
|
||||
// 计算参数在调用者栈帧中的位置,该位置相对于被调用者的帧指针s0是正向偏移。
|
||||
// 第9个参数(arg_idx=8)位于 0(s0),第10个(arg_idx=9)位于 8(s0),以此类推。
|
||||
int offset = (arg_idx - 8) * 8;
|
||||
unsigned arg_vreg = isel->getVReg(arg);
|
||||
Type* arg_type = arg->getType();
|
||||
|
||||
// 根据参数类型选择正确的加载指令
|
||||
RVOpcodes load_op;
|
||||
if (arg_type->isFloat()) {
|
||||
load_op = RVOpcodes::FLW; // 单精度浮点
|
||||
} else if (arg_type->isPointer()) {
|
||||
load_op = RVOpcodes::LD; // 64位指针
|
||||
} else {
|
||||
load_op = RVOpcodes::LW; // 32位整数
|
||||
}
|
||||
|
||||
// 创建加载指令: lw/ld/flw vreg, offset(s0)
|
||||
auto load_instr = std::make_unique<MachineInstr>(load_op);
|
||||
load_instr->addOperand(std::make_unique<RegOperand>(arg_vreg));
|
||||
load_instr->addOperand(std::make_unique<MemOperand>(
|
||||
std::make_unique<RegOperand>(PhysicalReg::S0), // 基址为帧指针
|
||||
std::make_unique<ImmOperand>(offset)
|
||||
));
|
||||
arg_load_instrs.push_back(std::move(load_instr));
|
||||
}
|
||||
arg_idx++;
|
||||
}
|
||||
|
||||
//仅当有需要加载的栈参数时,才执行插入逻辑
|
||||
if (!arg_load_instrs.empty()) {
|
||||
auto& entry_instrs = entry_block->getInstructions();
|
||||
auto insertion_point = entry_instrs.begin(); // 默认插入点为块的开头
|
||||
auto last_arg_save_it = entry_instrs.end();
|
||||
|
||||
// 步骤 3.2: 寻找一个安全的插入点。
|
||||
// 遍历入口块的指令,找到最后一条保存“寄存器传递参数”的伪指令。
|
||||
// 这样可以确保我们在所有 a0-a7 参数被保存之后,才执行可能覆盖它们的加载指令。
|
||||
for (auto it = entry_instrs.begin(); it != entry_instrs.end(); ++it) {
|
||||
MachineInstr* instr = it->get();
|
||||
// 寻找代表保存参数到栈的伪指令
|
||||
if (instr->getOpcode() == RVOpcodes::FRAME_STORE_W ||
|
||||
instr->getOpcode() == RVOpcodes::FRAME_STORE_D ||
|
||||
instr->getOpcode() == RVOpcodes::FRAME_STORE_F) {
|
||||
|
||||
// 检查被保存的值是否是寄存器参数 (arg_no < 8)
|
||||
auto& operands = instr->getOperands();
|
||||
if (operands.empty() || operands[0]->getKind() != MachineOperand::KIND_REG) continue;
|
||||
|
||||
unsigned src_vreg = static_cast<RegOperand*>(operands[0].get())->getVRegNum();
|
||||
Value* ir_value = isel->getVRegValueMap().count(src_vreg) ? isel->getVRegValueMap().at(src_vreg) : nullptr;
|
||||
|
||||
if (auto ir_arg = dynamic_cast<Argument*>(ir_value)) {
|
||||
if (ir_arg->getIndex() < 8) {
|
||||
last_arg_save_it = it; // 找到了一个保存寄存器参数的指令,更新位置
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 如果找到了这样的保存指令,我们的插入点就在它之后
|
||||
if (last_arg_save_it != entry_instrs.end()) {
|
||||
insertion_point = std::next(last_arg_save_it);
|
||||
}
|
||||
|
||||
// 步骤 3.3: 在计算出的安全位置,一次性插入所有新创建的参数加载指令
|
||||
entry_instrs.insert(insertion_point,
|
||||
std::make_move_iterator(arg_load_instrs.begin()),
|
||||
std::make_move_iterator(arg_load_instrs.end()));
|
||||
}
|
||||
}
|
||||
|
||||
// 4. 遍历所有机器指令,将访问局部变量的伪指令展开为真实指令
|
||||
for (auto& mbb : mfunc->getBlocks()) {
|
||||
std::vector<std::unique_ptr<MachineInstr>> new_instructions;
|
||||
for (auto& instr_ptr : mbb->getInstructions()) {
|
||||
RVOpcodes opcode = instr_ptr->getOpcode();
|
||||
|
||||
if (opcode == RVOpcodes::FRAME_LOAD_W || opcode == RVOpcodes::FRAME_LOAD_D || opcode == RVOpcodes::FRAME_LOAD_F) {
|
||||
RVOpcodes real_load_op;
|
||||
if (opcode == RVOpcodes::FRAME_LOAD_W) real_load_op = RVOpcodes::LW;
|
||||
else if (opcode == RVOpcodes::FRAME_LOAD_D) real_load_op = RVOpcodes::LD;
|
||||
else real_load_op = RVOpcodes::FLW;
|
||||
|
||||
auto& operands = instr_ptr->getOperands();
|
||||
unsigned dest_vreg = static_cast<RegOperand*>(operands[0].get())->getVRegNum();
|
||||
unsigned alloca_vreg = static_cast<RegOperand*>(operands[1].get())->getVRegNum();
|
||||
int offset = frame_info.alloca_offsets.at(alloca_vreg);
|
||||
auto addr_vreg = isel->getNewVReg(Type::getPointerType(Type::getIntType()));
|
||||
|
||||
// 展开为: addi addr_vreg, s0, offset
|
||||
auto addi = std::make_unique<MachineInstr>(RVOpcodes::ADDI);
|
||||
addi->addOperand(std::make_unique<RegOperand>(addr_vreg));
|
||||
addi->addOperand(std::make_unique<RegOperand>(PhysicalReg::S0));
|
||||
addi->addOperand(std::make_unique<ImmOperand>(offset));
|
||||
new_instructions.push_back(std::move(addi));
|
||||
|
||||
// 展开为: lw/ld/flw dest_vreg, 0(addr_vreg)
|
||||
auto load_instr = std::make_unique<MachineInstr>(real_load_op);
|
||||
load_instr->addOperand(std::make_unique<RegOperand>(dest_vreg));
|
||||
load_instr->addOperand(std::make_unique<MemOperand>(
|
||||
std::make_unique<RegOperand>(addr_vreg),
|
||||
std::make_unique<ImmOperand>(0)));
|
||||
new_instructions.push_back(std::move(load_instr));
|
||||
|
||||
} else if (opcode == RVOpcodes::FRAME_STORE_W || opcode == RVOpcodes::FRAME_STORE_D || opcode == RVOpcodes::FRAME_STORE_F) {
|
||||
RVOpcodes real_store_op;
|
||||
if (opcode == RVOpcodes::FRAME_STORE_W) real_store_op = RVOpcodes::SW;
|
||||
else if (opcode == RVOpcodes::FRAME_STORE_D) real_store_op = RVOpcodes::SD;
|
||||
else real_store_op = RVOpcodes::FSW;
|
||||
|
||||
auto& operands = instr_ptr->getOperands();
|
||||
unsigned src_vreg = static_cast<RegOperand*>(operands[0].get())->getVRegNum();
|
||||
unsigned alloca_vreg = static_cast<RegOperand*>(operands[1].get())->getVRegNum();
|
||||
int offset = frame_info.alloca_offsets.at(alloca_vreg);
|
||||
auto addr_vreg = isel->getNewVReg(Type::getPointerType(Type::getIntType()));
|
||||
|
||||
// 展开为: addi addr_vreg, s0, offset
|
||||
auto addi = std::make_unique<MachineInstr>(RVOpcodes::ADDI);
|
||||
addi->addOperand(std::make_unique<RegOperand>(addr_vreg));
|
||||
addi->addOperand(std::make_unique<RegOperand>(PhysicalReg::S0));
|
||||
addi->addOperand(std::make_unique<ImmOperand>(offset));
|
||||
new_instructions.push_back(std::move(addi));
|
||||
|
||||
// 展开为: sw/sd/fsw src_vreg, 0(addr_vreg)
|
||||
auto store_instr = std::make_unique<MachineInstr>(real_store_op);
|
||||
store_instr->addOperand(std::make_unique<RegOperand>(src_vreg));
|
||||
store_instr->addOperand(std::make_unique<MemOperand>(
|
||||
std::make_unique<RegOperand>(addr_vreg),
|
||||
std::make_unique<ImmOperand>(0)));
|
||||
new_instructions.push_back(std::move(store_instr));
|
||||
|
||||
} else if (instr_ptr->getOpcode() == RVOpcodes::FRAME_ADDR) {
|
||||
auto& operands = instr_ptr->getOperands();
|
||||
unsigned dest_vreg = static_cast<RegOperand*>(operands[0].get())->getVRegNum();
|
||||
unsigned alloca_vreg = static_cast<RegOperand*>(operands[1].get())->getVRegNum();
|
||||
int offset = frame_info.alloca_offsets.at(alloca_vreg);
|
||||
|
||||
// 将 `frame_addr rd, rs` 展开为 `addi rd, s0, offset`
|
||||
auto addi = std::make_unique<MachineInstr>(RVOpcodes::ADDI);
|
||||
addi->addOperand(std::make_unique<RegOperand>(dest_vreg));
|
||||
addi->addOperand(std::make_unique<RegOperand>(PhysicalReg::S0));
|
||||
addi->addOperand(std::make_unique<ImmOperand>(offset));
|
||||
new_instructions.push_back(std::move(addi));
|
||||
|
||||
} else {
|
||||
new_instructions.push_back(std::move(instr_ptr));
|
||||
}
|
||||
}
|
||||
mbb->getInstructions() = std::move(new_instructions);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace sysy
|
||||
171
src/backend/RISCv64/Handler/LegalizeImmediates.cpp
Normal file
171
src/backend/RISCv64/Handler/LegalizeImmediates.cpp
Normal file
@ -0,0 +1,171 @@
|
||||
#include "LegalizeImmediates.h"
|
||||
#include "RISCv64ISel.h" // 需要包含它以调用 getNewVReg()
|
||||
#include "RISCv64AsmPrinter.h"
|
||||
#include <vector>
|
||||
#include <iostream>
|
||||
|
||||
|
||||
// 声明外部调试控制变量
|
||||
extern int DEBUG;
|
||||
extern int DEEPDEBUG;
|
||||
|
||||
namespace sysy {
|
||||
|
||||
char LegalizeImmediatesPass::ID = 0;
|
||||
|
||||
// 辅助函数:检查一个立即数是否在RISC-V的12位有符号范围内
|
||||
static bool isLegalImmediate(int64_t imm) {
|
||||
return imm >= -2048 && imm <= 2047;
|
||||
}
|
||||
|
||||
void LegalizeImmediatesPass::runOnMachineFunction(MachineFunction* mfunc) {
|
||||
if (DEBUG) {
|
||||
std::cerr << "===== Running Legalize Immediates Pass on function: " << mfunc->getName() << " =====\n";
|
||||
}
|
||||
|
||||
// 定义我们保留的、用于暂存的物理寄存器
|
||||
const PhysicalReg TEMP_REG = PhysicalReg::T5;
|
||||
|
||||
// 创建一个临时的AsmPrinter用于打印指令,方便调试
|
||||
RISCv64AsmPrinter temp_printer(mfunc);
|
||||
if (DEEPDEBUG) {
|
||||
temp_printer.setStream(std::cerr);
|
||||
}
|
||||
|
||||
for (auto& mbb : mfunc->getBlocks()) {
|
||||
if (DEEPDEBUG) {
|
||||
std::cerr << "--- Processing Basic Block: " << mbb->getName() << " ---\n";
|
||||
}
|
||||
// 创建一个新的指令列表,用于存放合法化后的指令
|
||||
std::vector<std::unique_ptr<MachineInstr>> new_instructions;
|
||||
|
||||
for (auto& instr_ptr : mbb->getInstructions()) {
|
||||
if (DEEPDEBUG) {
|
||||
std::cerr << " Checking: ";
|
||||
// 打印指令时末尾会带换行符,所以这里不用 std::endl
|
||||
temp_printer.printInstruction(instr_ptr.get(), true);
|
||||
}
|
||||
|
||||
bool legalized = false; // 标记当前指令是否已被展开处理
|
||||
|
||||
switch (instr_ptr->getOpcode()) {
|
||||
case RVOpcodes::ADDI:
|
||||
case RVOpcodes::ADDIW: {
|
||||
auto& operands = instr_ptr->getOperands();
|
||||
// 确保操作数足够多,以防万一
|
||||
if (operands.size() < 3) break;
|
||||
auto imm_op = static_cast<ImmOperand*>(operands.back().get());
|
||||
|
||||
if (!isLegalImmediate(imm_op->getValue())) {
|
||||
if (DEEPDEBUG) {
|
||||
std::cerr << " >> ILLEGAL immediate (" << imm_op->getValue() << "). Expanding...\n";
|
||||
}
|
||||
// 立即数超出范围,需要展开
|
||||
auto rd_op = std::make_unique<RegOperand>(*static_cast<RegOperand*>(operands[0].get()));
|
||||
auto rs1_op = std::make_unique<RegOperand>(*static_cast<RegOperand*>(operands[1].get()));
|
||||
|
||||
// 1. li t5, immediate
|
||||
auto li = std::make_unique<MachineInstr>(RVOpcodes::LI);
|
||||
li->addOperand(std::make_unique<RegOperand>(TEMP_REG));
|
||||
li->addOperand(std::make_unique<ImmOperand>(imm_op->getValue()));
|
||||
|
||||
// 2. add/addw rd, rs1, t5
|
||||
auto new_op = (instr_ptr->getOpcode() == RVOpcodes::ADDI) ? RVOpcodes::ADD : RVOpcodes::ADDW;
|
||||
auto add = std::make_unique<MachineInstr>(new_op);
|
||||
add->addOperand(std::move(rd_op));
|
||||
add->addOperand(std::move(rs1_op));
|
||||
add->addOperand(std::make_unique<RegOperand>(TEMP_REG));
|
||||
|
||||
if (DEEPDEBUG) {
|
||||
std::cerr << " New sequence:\n ";
|
||||
temp_printer.printInstruction(li.get(), true);
|
||||
std::cerr << " ";
|
||||
temp_printer.printInstruction(add.get(), true);
|
||||
}
|
||||
|
||||
new_instructions.push_back(std::move(li));
|
||||
new_instructions.push_back(std::move(add));
|
||||
|
||||
legalized = true;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
// 处理所有内存加载/存储指令
|
||||
case RVOpcodes::LB: case RVOpcodes::LH: case RVOpcodes::LW: case RVOpcodes::LD:
|
||||
case RVOpcodes::LBU: case RVOpcodes::LHU: case RVOpcodes::LWU:
|
||||
case RVOpcodes::SB: case RVOpcodes::SH: case RVOpcodes::SW: case RVOpcodes::SD:
|
||||
case RVOpcodes::FLW: case RVOpcodes::FSW: {
|
||||
auto& operands = instr_ptr->getOperands();
|
||||
auto mem_op = static_cast<MemOperand*>(operands.back().get());
|
||||
auto offset_op = mem_op->getOffset();
|
||||
|
||||
if (!isLegalImmediate(offset_op->getValue())) {
|
||||
if (DEEPDEBUG) {
|
||||
std::cerr << " >> ILLEGAL immediate offset (" << offset_op->getValue() << "). Expanding...\n";
|
||||
}
|
||||
// 偏移量超出范围,需要展开
|
||||
auto data_reg_op = std::make_unique<RegOperand>(*static_cast<RegOperand*>(operands[0].get()));
|
||||
auto base_reg_op = std::make_unique<RegOperand>(*mem_op->getBase());
|
||||
|
||||
// 1. li t5, offset
|
||||
auto li = std::make_unique<MachineInstr>(RVOpcodes::LI);
|
||||
li->addOperand(std::make_unique<RegOperand>(TEMP_REG));
|
||||
li->addOperand(std::make_unique<ImmOperand>(offset_op->getValue()));
|
||||
|
||||
// 2. add t5, base_reg, t5 (计算最终地址,结果也放在t5)
|
||||
auto add = std::make_unique<MachineInstr>(RVOpcodes::ADD);
|
||||
add->addOperand(std::make_unique<RegOperand>(TEMP_REG));
|
||||
add->addOperand(std::move(base_reg_op));
|
||||
add->addOperand(std::make_unique<RegOperand>(TEMP_REG));
|
||||
|
||||
// 3. lw/sw data_reg, 0(t5)
|
||||
auto mem_instr = std::make_unique<MachineInstr>(instr_ptr->getOpcode());
|
||||
mem_instr->addOperand(std::move(data_reg_op));
|
||||
mem_instr->addOperand(std::make_unique<MemOperand>(
|
||||
std::make_unique<RegOperand>(TEMP_REG),
|
||||
std::make_unique<ImmOperand>(0)
|
||||
));
|
||||
|
||||
if (DEEPDEBUG) {
|
||||
std::cerr << " New sequence:\n ";
|
||||
temp_printer.printInstruction(li.get(), true);
|
||||
std::cerr << " ";
|
||||
temp_printer.printInstruction(add.get(), true);
|
||||
std::cerr << " ";
|
||||
temp_printer.printInstruction(mem_instr.get(), true);
|
||||
}
|
||||
|
||||
new_instructions.push_back(std::move(li));
|
||||
new_instructions.push_back(std::move(add));
|
||||
new_instructions.push_back(std::move(mem_instr));
|
||||
|
||||
legalized = true;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
default:
|
||||
// 其他指令不需要处理
|
||||
break;
|
||||
}
|
||||
|
||||
if (!legalized) {
|
||||
if (DEEPDEBUG) {
|
||||
std::cerr << " -- Immediate is legal. Skipping.\n";
|
||||
}
|
||||
// 如果当前指令不需要合法化,直接将其移动到新列表中
|
||||
new_instructions.push_back(std::move(instr_ptr));
|
||||
}
|
||||
}
|
||||
|
||||
// 用新的、已合法化的指令列表替换旧的列表
|
||||
mbb->getInstructions() = std::move(new_instructions);
|
||||
}
|
||||
|
||||
if (DEBUG) {
|
||||
std::cerr << "===== Finished Legalize Immediates Pass =====\n\n";
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace sysy
|
||||
182
src/backend/RISCv64/Handler/PrologueEpilogueInsertion.cpp
Normal file
182
src/backend/RISCv64/Handler/PrologueEpilogueInsertion.cpp
Normal file
@ -0,0 +1,182 @@
|
||||
#include "PrologueEpilogueInsertion.h"
|
||||
#include "RISCv64LLIR.h" // 假设包含了 PhysicalReg, RVOpcodes 等定义
|
||||
#include "RISCv64ISel.h"
|
||||
#include <algorithm>
|
||||
#include <vector>
|
||||
#include <set>
|
||||
|
||||
namespace sysy {
|
||||
|
||||
char PrologueEpilogueInsertionPass::ID = 0;
|
||||
|
||||
void PrologueEpilogueInsertionPass::runOnMachineFunction(MachineFunction* mfunc) {
|
||||
StackFrameInfo& frame_info = mfunc->getFrameInfo();
|
||||
Function* F = mfunc->getFunc();
|
||||
RISCv64ISel* isel = mfunc->getISel();
|
||||
|
||||
// 1. 清理 KEEPALIVE 伪指令
|
||||
for (auto& mbb : mfunc->getBlocks()) {
|
||||
auto& instrs = mbb->getInstructions();
|
||||
instrs.erase(
|
||||
std::remove_if(instrs.begin(), instrs.end(),
|
||||
[](const std::unique_ptr<MachineInstr>& instr) {
|
||||
return instr->getOpcode() == RVOpcodes::PSEUDO_KEEPALIVE;
|
||||
}
|
||||
),
|
||||
instrs.end()
|
||||
);
|
||||
}
|
||||
|
||||
// 2. 确定需要保存的被调用者保存寄存器 (callee-saved)
|
||||
auto& vreg_to_preg_map = frame_info.vreg_to_preg_map;
|
||||
std::set<PhysicalReg> used_callee_saved_regs_set;
|
||||
const auto& callee_saved_int = getCalleeSavedIntRegs();
|
||||
const auto& callee_saved_fp = getCalleeSavedFpRegs();
|
||||
|
||||
for (const auto& pair : vreg_to_preg_map) {
|
||||
PhysicalReg preg = pair.second;
|
||||
bool is_int_cs = std::find(callee_saved_int.begin(), callee_saved_int.end(), preg) != callee_saved_int.end();
|
||||
bool is_fp_cs = std::find(callee_saved_fp.begin(), callee_saved_fp.end(), preg) != callee_saved_fp.end();
|
||||
if ((is_int_cs && preg != PhysicalReg::S0) || is_fp_cs) {
|
||||
used_callee_saved_regs_set.insert(preg);
|
||||
}
|
||||
}
|
||||
frame_info.callee_saved_regs_to_store.assign(
|
||||
used_callee_saved_regs_set.begin(), used_callee_saved_regs_set.end()
|
||||
);
|
||||
std::sort(frame_info.callee_saved_regs_to_store.begin(), frame_info.callee_saved_regs_to_store.end());
|
||||
frame_info.callee_saved_size = frame_info.callee_saved_regs_to_store.size() * 8;
|
||||
|
||||
// 3. 计算最终的栈帧总大小,包含栈溢出保护
|
||||
int total_stack_size = frame_info.locals_size +
|
||||
frame_info.spill_size +
|
||||
frame_info.callee_saved_size +
|
||||
16;
|
||||
|
||||
// 栈溢出保护:增加最大栈帧大小以容纳大型数组
|
||||
const int MAX_STACK_FRAME_SIZE = 8192; // 8KB to handle large arrays like 256*4*2 = 2048 bytes
|
||||
if (total_stack_size > MAX_STACK_FRAME_SIZE) {
|
||||
// 如果仍然超过限制,尝试优化对齐方式
|
||||
std::cerr << "Warning: Stack frame size " << total_stack_size
|
||||
<< " exceeds recommended limit " << MAX_STACK_FRAME_SIZE << " for function "
|
||||
<< mfunc->getName() << std::endl;
|
||||
}
|
||||
|
||||
// 优化:减少对齐开销,使用16字节对齐而非更大的对齐
|
||||
int aligned_stack_size = (total_stack_size + 15) & ~15;
|
||||
frame_info.total_size = aligned_stack_size;
|
||||
|
||||
if (aligned_stack_size > 0) {
|
||||
// --- 4. 插入完整的序言 ---
|
||||
MachineBasicBlock* entry_block = mfunc->getBlocks().front().get();
|
||||
auto& entry_instrs = entry_block->getInstructions();
|
||||
std::vector<std::unique_ptr<MachineInstr>> prologue_instrs;
|
||||
|
||||
// 4.1. 分配栈帧
|
||||
auto alloc_stack = std::make_unique<MachineInstr>(RVOpcodes::ADDI);
|
||||
alloc_stack->addOperand(std::make_unique<RegOperand>(PhysicalReg::SP));
|
||||
alloc_stack->addOperand(std::make_unique<RegOperand>(PhysicalReg::SP));
|
||||
alloc_stack->addOperand(std::make_unique<ImmOperand>(-aligned_stack_size));
|
||||
prologue_instrs.push_back(std::move(alloc_stack));
|
||||
|
||||
// 4.2. 保存 ra 和 s0
|
||||
auto save_ra = std::make_unique<MachineInstr>(RVOpcodes::SD);
|
||||
save_ra->addOperand(std::make_unique<RegOperand>(PhysicalReg::RA));
|
||||
save_ra->addOperand(std::make_unique<MemOperand>(
|
||||
std::make_unique<RegOperand>(PhysicalReg::SP),
|
||||
std::make_unique<ImmOperand>(aligned_stack_size - 8)
|
||||
));
|
||||
prologue_instrs.push_back(std::move(save_ra));
|
||||
auto save_fp = std::make_unique<MachineInstr>(RVOpcodes::SD);
|
||||
save_fp->addOperand(std::make_unique<RegOperand>(PhysicalReg::S0));
|
||||
save_fp->addOperand(std::make_unique<MemOperand>(
|
||||
std::make_unique<RegOperand>(PhysicalReg::SP),
|
||||
std::make_unique<ImmOperand>(aligned_stack_size - 16)
|
||||
));
|
||||
prologue_instrs.push_back(std::move(save_fp));
|
||||
|
||||
// 4.3. 设置新的帧指针 s0
|
||||
auto set_fp = std::make_unique<MachineInstr>(RVOpcodes::ADDI);
|
||||
set_fp->addOperand(std::make_unique<RegOperand>(PhysicalReg::S0));
|
||||
set_fp->addOperand(std::make_unique<RegOperand>(PhysicalReg::SP));
|
||||
set_fp->addOperand(std::make_unique<ImmOperand>(aligned_stack_size));
|
||||
prologue_instrs.push_back(std::move(set_fp));
|
||||
|
||||
// 4.4. 保存所有使用到的被调用者保存寄存器
|
||||
int next_available_offset = -(16 + frame_info.locals_size + frame_info.spill_size);
|
||||
for (const auto& reg : frame_info.callee_saved_regs_to_store) {
|
||||
// 改为“先更新,后使用”逻辑
|
||||
next_available_offset -= 8; // 先为当前寄存器分配下一个可用槽位
|
||||
RVOpcodes store_op = isFPR(reg) ? RVOpcodes::FSD : RVOpcodes::SD;
|
||||
auto save_cs_reg = std::make_unique<MachineInstr>(store_op);
|
||||
save_cs_reg->addOperand(std::make_unique<RegOperand>(reg));
|
||||
save_cs_reg->addOperand(std::make_unique<MemOperand>(
|
||||
std::make_unique<RegOperand>(PhysicalReg::S0),
|
||||
std::make_unique<ImmOperand>(next_available_offset) // 使用新计算出的正确偏移
|
||||
));
|
||||
prologue_instrs.push_back(std::move(save_cs_reg));
|
||||
// 不再需要在循环末尾递减
|
||||
}
|
||||
|
||||
// 4.5. 将所有生成的序言指令一次性插入到函数入口
|
||||
entry_instrs.insert(entry_instrs.begin(),
|
||||
std::make_move_iterator(prologue_instrs.begin()),
|
||||
std::make_move_iterator(prologue_instrs.end()));
|
||||
|
||||
// --- 5. 插入完整的尾声 ---
|
||||
for (auto& mbb : mfunc->getBlocks()) {
|
||||
for (auto it = mbb->getInstructions().begin(); it != mbb->getInstructions().end(); ++it) {
|
||||
if ((*it)->getOpcode() == RVOpcodes::RET) {
|
||||
std::vector<std::unique_ptr<MachineInstr>> epilogue_instrs;
|
||||
|
||||
// 5.1. 恢复被调用者保存寄存器
|
||||
int next_available_offset_restore = -(16 + frame_info.locals_size + frame_info.spill_size);
|
||||
for (const auto& reg : frame_info.callee_saved_regs_to_store) {
|
||||
next_available_offset_restore -= 8; // 为下一个寄存器准备偏移
|
||||
RVOpcodes load_op = isFPR(reg) ? RVOpcodes::FLD : RVOpcodes::LD;
|
||||
auto restore_cs_reg = std::make_unique<MachineInstr>(load_op);
|
||||
restore_cs_reg->addOperand(std::make_unique<RegOperand>(reg));
|
||||
restore_cs_reg->addOperand(std::make_unique<MemOperand>(
|
||||
std::make_unique<RegOperand>(PhysicalReg::S0),
|
||||
std::make_unique<ImmOperand>(next_available_offset_restore) // 使用当前偏移
|
||||
));
|
||||
epilogue_instrs.push_back(std::move(restore_cs_reg));
|
||||
}
|
||||
|
||||
// 5.2. 恢复 ra 和 s0
|
||||
auto restore_ra = std::make_unique<MachineInstr>(RVOpcodes::LD);
|
||||
restore_ra->addOperand(std::make_unique<RegOperand>(PhysicalReg::RA));
|
||||
restore_ra->addOperand(std::make_unique<MemOperand>(
|
||||
std::make_unique<RegOperand>(PhysicalReg::SP),
|
||||
std::make_unique<ImmOperand>(aligned_stack_size - 8)
|
||||
));
|
||||
epilogue_instrs.push_back(std::move(restore_ra));
|
||||
auto restore_fp = std::make_unique<MachineInstr>(RVOpcodes::LD);
|
||||
restore_fp->addOperand(std::make_unique<RegOperand>(PhysicalReg::S0));
|
||||
restore_fp->addOperand(std::make_unique<MemOperand>(
|
||||
std::make_unique<RegOperand>(PhysicalReg::SP),
|
||||
std::make_unique<ImmOperand>(aligned_stack_size - 16)
|
||||
));
|
||||
epilogue_instrs.push_back(std::move(restore_fp));
|
||||
|
||||
// 5.3. 释放栈帧
|
||||
auto dealloc_stack = std::make_unique<MachineInstr>(RVOpcodes::ADDI);
|
||||
dealloc_stack->addOperand(std::make_unique<RegOperand>(PhysicalReg::SP));
|
||||
dealloc_stack->addOperand(std::make_unique<RegOperand>(PhysicalReg::SP));
|
||||
dealloc_stack->addOperand(std::make_unique<ImmOperand>(aligned_stack_size));
|
||||
epilogue_instrs.push_back(std::move(dealloc_stack));
|
||||
|
||||
// 将尾声指令插入到 RET 指令之前
|
||||
mbb->getInstructions().insert(it,
|
||||
std::make_move_iterator(epilogue_instrs.begin()),
|
||||
std::make_move_iterator(epilogue_instrs.end()));
|
||||
|
||||
goto next_block;
|
||||
}
|
||||
}
|
||||
next_block:;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace sysy
|
||||
282
src/backend/RISCv64/Optimize/DivStrengthReduction.cpp
Normal file
282
src/backend/RISCv64/Optimize/DivStrengthReduction.cpp
Normal file
@ -0,0 +1,282 @@
|
||||
#include "DivStrengthReduction.h"
|
||||
#include <cmath>
|
||||
#include <cstdint>
|
||||
|
||||
namespace sysy {
|
||||
|
||||
char DivStrengthReduction::ID = 0;
|
||||
|
||||
bool DivStrengthReduction::runOnFunction(Function *F, AnalysisManager& AM) {
|
||||
// This pass works on MachineFunction level, not IR level
|
||||
return false;
|
||||
}
|
||||
|
||||
void DivStrengthReduction::runOnMachineFunction(MachineFunction *mfunc) {
|
||||
if (!mfunc)
|
||||
return;
|
||||
|
||||
bool debug = false; // Set to true for debugging
|
||||
if (debug)
|
||||
std::cout << "Running DivStrengthReduction optimization..." << std::endl;
|
||||
|
||||
int next_temp_reg = 1000;
|
||||
auto createTempReg = [&]() -> int {
|
||||
return next_temp_reg++;
|
||||
};
|
||||
|
||||
struct MagicInfo {
|
||||
int64_t magic;
|
||||
int shift;
|
||||
};
|
||||
|
||||
auto computeMagic = [](int64_t d, bool is_32bit) -> MagicInfo {
|
||||
int word_size = is_32bit ? 32 : 64;
|
||||
uint64_t ad = std::abs(d);
|
||||
|
||||
if (ad == 0) return {0, 0};
|
||||
|
||||
int l = std::floor(std::log2(ad));
|
||||
if ((ad & (ad - 1)) == 0) { // power of 2
|
||||
l = 0; // special case for power of 2, shift will be calculated differently
|
||||
}
|
||||
|
||||
__int128_t one = 1;
|
||||
__int128_t num;
|
||||
int total_shift;
|
||||
|
||||
if (is_32bit) {
|
||||
total_shift = 31 + l;
|
||||
num = one << total_shift;
|
||||
} else {
|
||||
total_shift = 63 + l;
|
||||
num = one << total_shift;
|
||||
}
|
||||
|
||||
__int128_t den = ad;
|
||||
int64_t magic = (num / den) + 1;
|
||||
|
||||
return {magic, total_shift};
|
||||
};
|
||||
|
||||
auto isPowerOfTwo = [](int64_t n) -> bool {
|
||||
return n > 0 && (n & (n - 1)) == 0;
|
||||
};
|
||||
|
||||
auto getPowerOfTwoExponent = [](int64_t n) -> int {
|
||||
if (n <= 0 || (n & (n - 1)) != 0) return -1;
|
||||
int shift = 0;
|
||||
while (n > 1) {
|
||||
n >>= 1;
|
||||
shift++;
|
||||
}
|
||||
return shift;
|
||||
};
|
||||
|
||||
struct InstructionReplacement {
|
||||
size_t index;
|
||||
size_t count_to_erase;
|
||||
std::vector<std::unique_ptr<MachineInstr>> newInstrs;
|
||||
};
|
||||
|
||||
for (auto &mbb_uptr : mfunc->getBlocks()) {
|
||||
auto &mbb = *mbb_uptr;
|
||||
auto &instrs = mbb.getInstructions();
|
||||
std::vector<InstructionReplacement> replacements;
|
||||
|
||||
for (size_t i = 0; i < instrs.size(); ++i) {
|
||||
auto *instr = instrs[i].get();
|
||||
|
||||
bool is_32bit = (instr->getOpcode() == RVOpcodes::DIVW);
|
||||
|
||||
if (instr->getOpcode() != RVOpcodes::DIV && !is_32bit) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if (instr->getOperands().size() != 3) {
|
||||
continue;
|
||||
}
|
||||
|
||||
auto *dst_op = instr->getOperands()[0].get();
|
||||
auto *src1_op = instr->getOperands()[1].get();
|
||||
auto *src2_op = instr->getOperands()[2].get();
|
||||
|
||||
int64_t divisor = 0;
|
||||
bool const_divisor_found = false;
|
||||
size_t instructions_to_replace = 1;
|
||||
|
||||
if (src2_op->getKind() == MachineOperand::KIND_IMM) {
|
||||
divisor = static_cast<ImmOperand *>(src2_op)->getValue();
|
||||
const_divisor_found = true;
|
||||
} else if (src2_op->getKind() == MachineOperand::KIND_REG) {
|
||||
if (i > 0) {
|
||||
auto *prev_instr = instrs[i - 1].get();
|
||||
if (prev_instr->getOpcode() == RVOpcodes::LI && prev_instr->getOperands().size() == 2) {
|
||||
auto *li_dst_op = prev_instr->getOperands()[0].get();
|
||||
auto *li_imm_op = prev_instr->getOperands()[1].get();
|
||||
if (li_dst_op->getKind() == MachineOperand::KIND_REG && li_imm_op->getKind() == MachineOperand::KIND_IMM) {
|
||||
auto *div_reg_op = static_cast<RegOperand *>(src2_op);
|
||||
auto *li_dst_reg_op = static_cast<RegOperand *>(li_dst_op);
|
||||
if (div_reg_op->isVirtual() && li_dst_reg_op->isVirtual() &&
|
||||
div_reg_op->getVRegNum() == li_dst_reg_op->getVRegNum()) {
|
||||
divisor = static_cast<ImmOperand *>(li_imm_op)->getValue();
|
||||
const_divisor_found = true;
|
||||
instructions_to_replace = 2;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (!const_divisor_found) {
|
||||
continue;
|
||||
}
|
||||
|
||||
auto *dst_reg = static_cast<RegOperand *>(dst_op);
|
||||
auto *src1_reg = static_cast<RegOperand *>(src1_op);
|
||||
|
||||
if (divisor == 0) continue;
|
||||
|
||||
std::vector<std::unique_ptr<MachineInstr>> newInstrs;
|
||||
|
||||
if (divisor == 1) {
|
||||
auto moveInstr = std::make_unique<MachineInstr>(is_32bit ? RVOpcodes::ADDW : RVOpcodes::ADD);
|
||||
moveInstr->addOperand(std::make_unique<RegOperand>(*dst_reg));
|
||||
moveInstr->addOperand(std::make_unique<RegOperand>(*src1_reg));
|
||||
moveInstr->addOperand(std::make_unique<RegOperand>(PhysicalReg::ZERO));
|
||||
newInstrs.push_back(std::move(moveInstr));
|
||||
}
|
||||
else if (divisor == -1) {
|
||||
auto negInstr = std::make_unique<MachineInstr>(is_32bit ? RVOpcodes::SUBW : RVOpcodes::SUB);
|
||||
negInstr->addOperand(std::make_unique<RegOperand>(*dst_reg));
|
||||
negInstr->addOperand(std::make_unique<RegOperand>(PhysicalReg::ZERO));
|
||||
negInstr->addOperand(std::make_unique<RegOperand>(*src1_reg));
|
||||
newInstrs.push_back(std::move(negInstr));
|
||||
}
|
||||
else if (isPowerOfTwo(std::abs(divisor))) {
|
||||
int shift = getPowerOfTwoExponent(std::abs(divisor));
|
||||
int temp_reg = createTempReg();
|
||||
|
||||
auto sraSignInstr = std::make_unique<MachineInstr>(is_32bit ? RVOpcodes::SRAIW : RVOpcodes::SRAI);
|
||||
sraSignInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
sraSignInstr->addOperand(std::make_unique<RegOperand>(*src1_reg));
|
||||
sraSignInstr->addOperand(std::make_unique<ImmOperand>(is_32bit ? 31 : 63));
|
||||
newInstrs.push_back(std::move(sraSignInstr));
|
||||
|
||||
auto srlInstr = std::make_unique<MachineInstr>(is_32bit ? RVOpcodes::SRLIW : RVOpcodes::SRLI);
|
||||
srlInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
srlInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
srlInstr->addOperand(std::make_unique<ImmOperand>((is_32bit ? 32 : 64) - shift));
|
||||
newInstrs.push_back(std::move(srlInstr));
|
||||
|
||||
auto addInstr = std::make_unique<MachineInstr>(is_32bit ? RVOpcodes::ADDW : RVOpcodes::ADD);
|
||||
addInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
addInstr->addOperand(std::make_unique<RegOperand>(*src1_reg));
|
||||
addInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
newInstrs.push_back(std::move(addInstr));
|
||||
|
||||
auto sraInstr = std::make_unique<MachineInstr>(is_32bit ? RVOpcodes::SRAIW : RVOpcodes::SRAI);
|
||||
sraInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
sraInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
sraInstr->addOperand(std::make_unique<ImmOperand>(shift));
|
||||
newInstrs.push_back(std::move(sraInstr));
|
||||
|
||||
if (divisor < 0) {
|
||||
auto negInstr = std::make_unique<MachineInstr>(is_32bit ? RVOpcodes::SUBW : RVOpcodes::SUB);
|
||||
negInstr->addOperand(std::make_unique<RegOperand>(*dst_reg));
|
||||
negInstr->addOperand(std::make_unique<RegOperand>(PhysicalReg::ZERO));
|
||||
negInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
newInstrs.push_back(std::move(negInstr));
|
||||
} else {
|
||||
auto moveInstr = std::make_unique<MachineInstr>(is_32bit ? RVOpcodes::ADDW : RVOpcodes::ADD);
|
||||
moveInstr->addOperand(std::make_unique<RegOperand>(*dst_reg));
|
||||
moveInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
moveInstr->addOperand(std::make_unique<RegOperand>(PhysicalReg::ZERO));
|
||||
newInstrs.push_back(std::move(moveInstr));
|
||||
}
|
||||
}
|
||||
else {
|
||||
auto magic_info = computeMagic(divisor, is_32bit);
|
||||
int magic_reg = createTempReg();
|
||||
int temp_reg = createTempReg();
|
||||
|
||||
auto loadInstr = std::make_unique<MachineInstr>(RVOpcodes::LI);
|
||||
loadInstr->addOperand(std::make_unique<RegOperand>(magic_reg));
|
||||
loadInstr->addOperand(std::make_unique<ImmOperand>(magic_info.magic));
|
||||
newInstrs.push_back(std::move(loadInstr));
|
||||
|
||||
if (is_32bit) {
|
||||
auto mulInstr = std::make_unique<MachineInstr>(RVOpcodes::MUL);
|
||||
mulInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
mulInstr->addOperand(std::make_unique<RegOperand>(*src1_reg));
|
||||
mulInstr->addOperand(std::make_unique<RegOperand>(magic_reg));
|
||||
newInstrs.push_back(std::move(mulInstr));
|
||||
|
||||
auto sraInstr = std::make_unique<MachineInstr>(RVOpcodes::SRAI);
|
||||
sraInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
sraInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
sraInstr->addOperand(std::make_unique<ImmOperand>(magic_info.shift));
|
||||
newInstrs.push_back(std::move(sraInstr));
|
||||
} else {
|
||||
auto mulhInstr = std::make_unique<MachineInstr>(RVOpcodes::MULH);
|
||||
mulhInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
mulhInstr->addOperand(std::make_unique<RegOperand>(*src1_reg));
|
||||
mulhInstr->addOperand(std::make_unique<RegOperand>(magic_reg));
|
||||
newInstrs.push_back(std::move(mulhInstr));
|
||||
|
||||
int post_shift = magic_info.shift - 63;
|
||||
if (post_shift > 0) {
|
||||
auto sraInstr = std::make_unique<MachineInstr>(RVOpcodes::SRAI);
|
||||
sraInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
sraInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
sraInstr->addOperand(std::make_unique<ImmOperand>(post_shift));
|
||||
newInstrs.push_back(std::move(sraInstr));
|
||||
}
|
||||
}
|
||||
|
||||
int sign_reg = createTempReg();
|
||||
auto sraSignInstr = std::make_unique<MachineInstr>(is_32bit ? RVOpcodes::SRAIW : RVOpcodes::SRAI);
|
||||
sraSignInstr->addOperand(std::make_unique<RegOperand>(sign_reg));
|
||||
sraSignInstr->addOperand(std::make_unique<RegOperand>(*src1_reg));
|
||||
sraSignInstr->addOperand(std::make_unique<ImmOperand>(is_32bit ? 31 : 63));
|
||||
newInstrs.push_back(std::move(sraSignInstr));
|
||||
|
||||
auto subInstr = std::make_unique<MachineInstr>(is_32bit ? RVOpcodes::SUBW : RVOpcodes::SUB);
|
||||
subInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
subInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
subInstr->addOperand(std::make_unique<RegOperand>(sign_reg));
|
||||
newInstrs.push_back(std::move(subInstr));
|
||||
|
||||
if (divisor < 0) {
|
||||
auto negInstr = std::make_unique<MachineInstr>(is_32bit ? RVOpcodes::SUBW : RVOpcodes::SUB);
|
||||
negInstr->addOperand(std::make_unique<RegOperand>(*dst_reg));
|
||||
negInstr->addOperand(std::make_unique<RegOperand>(PhysicalReg::ZERO));
|
||||
negInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
newInstrs.push_back(std::move(negInstr));
|
||||
} else {
|
||||
auto moveInstr = std::make_unique<MachineInstr>(is_32bit ? RVOpcodes::ADDW : RVOpcodes::ADD);
|
||||
moveInstr->addOperand(std::make_unique<RegOperand>(*dst_reg));
|
||||
moveInstr->addOperand(std::make_unique<RegOperand>(temp_reg));
|
||||
moveInstr->addOperand(std::make_unique<RegOperand>(PhysicalReg::ZERO));
|
||||
newInstrs.push_back(std::move(moveInstr));
|
||||
}
|
||||
}
|
||||
|
||||
if (!newInstrs.empty()) {
|
||||
size_t start_index = i;
|
||||
if (instructions_to_replace == 2) {
|
||||
start_index = i - 1;
|
||||
}
|
||||
replacements.push_back({start_index, instructions_to_replace, std::move(newInstrs)});
|
||||
}
|
||||
}
|
||||
|
||||
for (auto it = replacements.rbegin(); it != replacements.rend(); ++it) {
|
||||
instrs.erase(instrs.begin() + it->index, instrs.begin() + it->index + it->count_to_erase);
|
||||
instrs.insert(instrs.begin() + it->index,
|
||||
std::make_move_iterator(it->newInstrs.begin()),
|
||||
std::make_move_iterator(it->newInstrs.end()));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace sysy
|
||||
@ -1,4 +1,4 @@
|
||||
#include "RISCv64Peephole.h"
|
||||
#include "Peephole.h"
|
||||
#include <functional>
|
||||
|
||||
namespace sysy {
|
||||
416
src/backend/RISCv64/Optimize/PostRA_Scheduler.cpp
Normal file
416
src/backend/RISCv64/Optimize/PostRA_Scheduler.cpp
Normal file
@ -0,0 +1,416 @@
|
||||
#include "PostRA_Scheduler.h"
|
||||
#include <algorithm>
|
||||
#include <unordered_map>
|
||||
#include <unordered_set>
|
||||
#include <vector>
|
||||
#define MAX_SCHEDULING_BLOCK_SIZE 10000 // 限制调度块大小,避免过大导致性能问题
|
||||
|
||||
namespace sysy {
|
||||
|
||||
char PostRA_Scheduler::ID = 0;
|
||||
|
||||
// 检查指令是否是加载指令 (LW, LD)
|
||||
bool isLoadInstr(MachineInstr *instr) {
|
||||
RVOpcodes opcode = instr->getOpcode();
|
||||
return opcode == RVOpcodes::LW || opcode == RVOpcodes::LD ||
|
||||
opcode == RVOpcodes::LH || opcode == RVOpcodes::LB ||
|
||||
opcode == RVOpcodes::LHU || opcode == RVOpcodes::LBU ||
|
||||
opcode == RVOpcodes::LWU;
|
||||
}
|
||||
|
||||
// 检查指令是否是存储指令 (SW, SD)
|
||||
bool isStoreInstr(MachineInstr *instr) {
|
||||
RVOpcodes opcode = instr->getOpcode();
|
||||
return opcode == RVOpcodes::SW || opcode == RVOpcodes::SD ||
|
||||
opcode == RVOpcodes::SH || opcode == RVOpcodes::SB;
|
||||
}
|
||||
|
||||
// 检查指令是否为控制流指令
|
||||
bool isControlFlowInstr(MachineInstr *instr) {
|
||||
RVOpcodes opcode = instr->getOpcode();
|
||||
return opcode == RVOpcodes::RET || opcode == RVOpcodes::J ||
|
||||
opcode == RVOpcodes::BEQ || opcode == RVOpcodes::BNE ||
|
||||
opcode == RVOpcodes::BLT || opcode == RVOpcodes::BGE ||
|
||||
opcode == RVOpcodes::BLTU || opcode == RVOpcodes::BGEU ||
|
||||
opcode == RVOpcodes::CALL;
|
||||
}
|
||||
|
||||
// 预计算指令信息的缓存
|
||||
static std::unordered_map<MachineInstr *, InstrRegInfo> instr_info_cache;
|
||||
|
||||
// 获取指令定义的寄存器 - 优化版本
|
||||
std::unordered_set<PhysicalReg> getDefinedRegisters(MachineInstr *instr) {
|
||||
std::unordered_set<PhysicalReg> defined_regs;
|
||||
RVOpcodes opcode = instr->getOpcode();
|
||||
|
||||
// 特殊处理CALL指令
|
||||
if (opcode == RVOpcodes::CALL) {
|
||||
// CALL指令可能定义返回值寄存器
|
||||
if (!instr->getOperands().empty() &&
|
||||
instr->getOperands().front()->getKind() == MachineOperand::KIND_REG) {
|
||||
auto reg_op =
|
||||
static_cast<RegOperand *>(instr->getOperands().front().get());
|
||||
if (!reg_op->isVirtual()) {
|
||||
defined_regs.insert(reg_op->getPReg());
|
||||
}
|
||||
}
|
||||
return defined_regs;
|
||||
}
|
||||
|
||||
// 存储指令不定义寄存器
|
||||
if (isStoreInstr(instr)) {
|
||||
return defined_regs;
|
||||
}
|
||||
|
||||
// 分支指令不定义寄存器
|
||||
if (opcode == RVOpcodes::BEQ || opcode == RVOpcodes::BNE ||
|
||||
opcode == RVOpcodes::BLT || opcode == RVOpcodes::BGE ||
|
||||
opcode == RVOpcodes::BLTU || opcode == RVOpcodes::BGEU ||
|
||||
opcode == RVOpcodes::J || opcode == RVOpcodes::RET) {
|
||||
return defined_regs;
|
||||
}
|
||||
|
||||
// 对于其他指令,第一个寄存器操作数通常是定义的
|
||||
if (!instr->getOperands().empty() &&
|
||||
instr->getOperands().front()->getKind() == MachineOperand::KIND_REG) {
|
||||
auto reg_op = static_cast<RegOperand *>(instr->getOperands().front().get());
|
||||
if (!reg_op->isVirtual()) {
|
||||
defined_regs.insert(reg_op->getPReg());
|
||||
}
|
||||
}
|
||||
|
||||
return defined_regs;
|
||||
}
|
||||
|
||||
// 获取指令使用的寄存器 - 优化版本
|
||||
std::unordered_set<PhysicalReg> getUsedRegisters(MachineInstr *instr) {
|
||||
std::unordered_set<PhysicalReg> used_regs;
|
||||
RVOpcodes opcode = instr->getOpcode();
|
||||
|
||||
// 特殊处理CALL指令
|
||||
if (opcode == RVOpcodes::CALL) {
|
||||
bool first_reg_skipped = false;
|
||||
for (const auto &op : instr->getOperands()) {
|
||||
if (op->getKind() == MachineOperand::KIND_REG) {
|
||||
if (!first_reg_skipped) {
|
||||
first_reg_skipped = true;
|
||||
continue; // 跳过返回值寄存器
|
||||
}
|
||||
auto reg_op = static_cast<RegOperand *>(op.get());
|
||||
if (!reg_op->isVirtual()) {
|
||||
used_regs.insert(reg_op->getPReg());
|
||||
}
|
||||
}
|
||||
}
|
||||
return used_regs;
|
||||
}
|
||||
|
||||
// 对于存储指令,所有寄存器操作数都是使用的
|
||||
if (isStoreInstr(instr)) {
|
||||
for (const auto &op : instr->getOperands()) {
|
||||
if (op->getKind() == MachineOperand::KIND_REG) {
|
||||
auto reg_op = static_cast<RegOperand *>(op.get());
|
||||
if (!reg_op->isVirtual()) {
|
||||
used_regs.insert(reg_op->getPReg());
|
||||
}
|
||||
} else if (op->getKind() == MachineOperand::KIND_MEM) {
|
||||
auto mem_op = static_cast<MemOperand *>(op.get());
|
||||
if (!mem_op->getBase()->isVirtual()) {
|
||||
used_regs.insert(mem_op->getBase()->getPReg());
|
||||
}
|
||||
}
|
||||
}
|
||||
return used_regs;
|
||||
}
|
||||
|
||||
// 对于分支指令,所有寄存器操作数都是使用的
|
||||
if (opcode == RVOpcodes::BEQ || opcode == RVOpcodes::BNE ||
|
||||
opcode == RVOpcodes::BLT || opcode == RVOpcodes::BGE ||
|
||||
opcode == RVOpcodes::BLTU || opcode == RVOpcodes::BGEU) {
|
||||
for (const auto &op : instr->getOperands()) {
|
||||
if (op->getKind() == MachineOperand::KIND_REG) {
|
||||
auto reg_op = static_cast<RegOperand *>(op.get());
|
||||
if (!reg_op->isVirtual()) {
|
||||
used_regs.insert(reg_op->getPReg());
|
||||
}
|
||||
}
|
||||
}
|
||||
return used_regs;
|
||||
}
|
||||
|
||||
// 对于其他指令,除了第一个寄存器操作数(通常是定义),其余都是使用的
|
||||
bool first_reg = true;
|
||||
for (const auto &op : instr->getOperands()) {
|
||||
if (op->getKind() == MachineOperand::KIND_REG) {
|
||||
if (first_reg) {
|
||||
first_reg = false;
|
||||
continue; // 跳过第一个寄存器(定义)
|
||||
}
|
||||
auto reg_op = static_cast<RegOperand *>(op.get());
|
||||
if (!reg_op->isVirtual()) {
|
||||
used_regs.insert(reg_op->getPReg());
|
||||
}
|
||||
} else if (op->getKind() == MachineOperand::KIND_MEM) {
|
||||
auto mem_op = static_cast<MemOperand *>(op.get());
|
||||
if (!mem_op->getBase()->isVirtual()) {
|
||||
used_regs.insert(mem_op->getBase()->getPReg());
|
||||
}
|
||||
}
|
||||
}
|
||||
return used_regs;
|
||||
}
|
||||
|
||||
// 获取内存访问的基址和偏移
|
||||
|
||||
MemoryAccess getMemoryAccess(MachineInstr *instr) {
|
||||
if (!isLoadInstr(instr) && !isStoreInstr(instr)) {
|
||||
return MemoryAccess();
|
||||
}
|
||||
|
||||
// 查找内存操作数
|
||||
for (const auto &op : instr->getOperands()) {
|
||||
if (op->getKind() == MachineOperand::KIND_MEM) {
|
||||
auto mem_op = static_cast<MemOperand *>(op.get());
|
||||
if (!mem_op->getBase()->isVirtual()) {
|
||||
return MemoryAccess(mem_op->getBase()->getPReg(),
|
||||
mem_op->getOffset()->getValue());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return MemoryAccess();
|
||||
}
|
||||
|
||||
// 预计算指令信息
|
||||
InstrRegInfo &getInstrInfo(MachineInstr *instr) {
|
||||
auto it = instr_info_cache.find(instr);
|
||||
if (it != instr_info_cache.end()) {
|
||||
return it->second;
|
||||
}
|
||||
|
||||
InstrRegInfo &info = instr_info_cache[instr];
|
||||
info.defined_regs = getDefinedRegisters(instr);
|
||||
info.used_regs = getUsedRegisters(instr);
|
||||
info.is_load = isLoadInstr(instr);
|
||||
info.is_store = isStoreInstr(instr);
|
||||
info.is_control_flow = isControlFlowInstr(instr);
|
||||
info.mem_access = getMemoryAccess(instr);
|
||||
|
||||
return info;
|
||||
}
|
||||
|
||||
// 检查内存依赖 - 优化版本
|
||||
bool hasMemoryDependency(const InstrRegInfo &info1, const InstrRegInfo &info2) {
|
||||
// 如果都不是内存指令,没有内存依赖
|
||||
if (!info1.is_load && !info1.is_store && !info2.is_load && !info2.is_store) {
|
||||
return false;
|
||||
}
|
||||
|
||||
const MemoryAccess &mem1 = info1.mem_access;
|
||||
const MemoryAccess &mem2 = info2.mem_access;
|
||||
|
||||
if (!mem1.valid || !mem2.valid) {
|
||||
// 如果无法确定内存访问模式,保守地认为存在依赖
|
||||
return true;
|
||||
}
|
||||
|
||||
// 如果访问相同的内存位置
|
||||
if (mem1.base_reg == mem2.base_reg && mem1.offset == mem2.offset) {
|
||||
// Store->Load: RAW依赖
|
||||
// Load->Store: WAR依赖
|
||||
// Store->Store: WAW依赖
|
||||
return info1.is_store || info2.is_store;
|
||||
}
|
||||
|
||||
// 不同内存位置通常没有依赖,但为了安全起见,
|
||||
// 如果涉及store指令,我们需要更保守
|
||||
if (info1.is_store && info2.is_load) {
|
||||
// 保守处理:不同store和load之间可能有别名
|
||||
return false; // 这里可以根据需要调整策略
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
// 检查两个指令之间是否存在依赖关系 - 优化版本
|
||||
bool hasDependency(MachineInstr *instr1, MachineInstr *instr2) {
|
||||
const InstrRegInfo &info1 = getInstrInfo(instr1);
|
||||
const InstrRegInfo &info2 = getInstrInfo(instr2);
|
||||
|
||||
// 检查RAW依赖:instr1定义的寄存器是否被instr2使用
|
||||
for (const auto ® : info1.defined_regs) {
|
||||
if (info2.used_regs.find(reg) != info2.used_regs.end()) {
|
||||
return true; // RAW依赖 - instr2读取instr1写入的值
|
||||
}
|
||||
}
|
||||
|
||||
// 检查WAR依赖:instr1使用的寄存器是否被instr2定义
|
||||
for (const auto ® : info1.used_regs) {
|
||||
if (info2.defined_regs.find(reg) != info2.defined_regs.end()) {
|
||||
return true; // WAR依赖 - instr2覆盖instr1需要的值
|
||||
}
|
||||
}
|
||||
|
||||
// 检查WAW依赖:两个指令定义相同寄存器
|
||||
for (const auto ® : info1.defined_regs) {
|
||||
if (info2.defined_regs.find(reg) != info2.defined_regs.end()) {
|
||||
return true; // WAW依赖 - 两条指令写入同一寄存器
|
||||
}
|
||||
}
|
||||
|
||||
// 检查内存依赖
|
||||
if (hasMemoryDependency(info1, info2)) {
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
// 检查是否可以安全地将instr1和instr2交换位置 - 优化版本
|
||||
bool canSwapInstructions(MachineInstr *instr1, MachineInstr *instr2) {
|
||||
const InstrRegInfo &info1 = getInstrInfo(instr1);
|
||||
const InstrRegInfo &info2 = getInstrInfo(instr2);
|
||||
|
||||
// 不能移动控制流指令
|
||||
if (info1.is_control_flow || info2.is_control_flow) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// 检查双向依赖关系
|
||||
return !hasDependency(instr1, instr2) && !hasDependency(instr2, instr1);
|
||||
}
|
||||
|
||||
// 新增:验证调度结果的正确性 - 优化版本
|
||||
void validateSchedule(const std::vector<MachineInstr *> &instr_list) {
|
||||
for (int i = 0; i < (int)instr_list.size(); i++) {
|
||||
for (int j = i + 1; j < (int)instr_list.size(); j++) {
|
||||
MachineInstr *earlier = instr_list[i];
|
||||
MachineInstr *later = instr_list[j];
|
||||
|
||||
const InstrRegInfo &info_earlier = getInstrInfo(earlier);
|
||||
const InstrRegInfo &info_later = getInstrInfo(later);
|
||||
|
||||
// 检查是否存在被违反的依赖关系
|
||||
// 检查RAW依赖
|
||||
for (const auto ® : info_earlier.defined_regs) {
|
||||
if (info_later.used_regs.find(reg) != info_later.used_regs.end()) {
|
||||
// 这是正常的依赖关系,earlier应该在later之前
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
// 检查内存依赖
|
||||
if (hasMemoryDependency(info_earlier, info_later)) {
|
||||
const MemoryAccess &mem1 = info_earlier.mem_access;
|
||||
const MemoryAccess &mem2 = info_later.mem_access;
|
||||
|
||||
if (mem1.valid && mem2.valid && mem1.base_reg == mem2.base_reg &&
|
||||
mem1.offset == mem2.offset) {
|
||||
if (info_earlier.is_store && info_later.is_load) {
|
||||
// Store->Load依赖,顺序正确
|
||||
continue;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 在基本块内对指令进行调度优化 - 优化版本
|
||||
void scheduleBlock(MachineBasicBlock *mbb) {
|
||||
auto &instructions = mbb->getInstructions();
|
||||
if (instructions.size() <= 1)
|
||||
return;
|
||||
if (instructions.size() > MAX_SCHEDULING_BLOCK_SIZE) {
|
||||
return; // 跳过超大块,防止卡住
|
||||
}
|
||||
|
||||
// 清理缓存,避免无效指针
|
||||
instr_info_cache.clear();
|
||||
|
||||
std::vector<MachineInstr *> instr_list;
|
||||
instr_list.reserve(instructions.size()); // 预分配容量
|
||||
for (auto &instr : instructions) {
|
||||
instr_list.push_back(instr.get());
|
||||
}
|
||||
|
||||
// 预计算所有指令的信息
|
||||
for (auto *instr : instr_list) {
|
||||
getInstrInfo(instr);
|
||||
}
|
||||
|
||||
// 使用更严格的调度策略,避免破坏依赖关系
|
||||
bool changed = true;
|
||||
int max_iterations = 10; // 限制迭代次数避免死循环
|
||||
int iteration = 0;
|
||||
|
||||
while (changed && iteration < max_iterations) {
|
||||
changed = false;
|
||||
iteration++;
|
||||
|
||||
for (int i = 0; i < (int)instr_list.size() - 1; i++) {
|
||||
MachineInstr *instr1 = instr_list[i];
|
||||
MachineInstr *instr2 = instr_list[i + 1];
|
||||
|
||||
const InstrRegInfo &info1 = getInstrInfo(instr1);
|
||||
const InstrRegInfo &info2 = getInstrInfo(instr2);
|
||||
|
||||
// 只进行非常保守的优化
|
||||
bool should_swap = false;
|
||||
|
||||
// 策略1: 将load指令提前,减少load-use延迟
|
||||
if (info2.is_load && !info1.is_load && !info1.is_store) {
|
||||
should_swap = canSwapInstructions(instr1, instr2);
|
||||
}
|
||||
// 策略2: 将非关键store指令延后,为其他指令让路
|
||||
else if (info1.is_store && !info2.is_load && !info2.is_store) {
|
||||
should_swap = canSwapInstructions(instr1, instr2);
|
||||
}
|
||||
|
||||
if (should_swap) {
|
||||
std::swap(instr_list[i], instr_list[i + 1]);
|
||||
changed = true;
|
||||
|
||||
// 调试输出
|
||||
// std::cout << "Swapped instructions at positions " << i << " and " <<
|
||||
// (i+1) << std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 验证调度结果的正确性
|
||||
validateSchedule(instr_list);
|
||||
|
||||
// 将调度后的指令顺序写回
|
||||
std::unordered_map<MachineInstr *, std::unique_ptr<MachineInstr>> instr_map;
|
||||
instr_map.reserve(instructions.size()); // 预分配容量
|
||||
for (auto &instr : instructions) {
|
||||
instr_map[instr.get()] = std::move(instr);
|
||||
}
|
||||
|
||||
instructions.clear();
|
||||
instructions.reserve(instr_list.size()); // 预分配容量
|
||||
for (auto instr : instr_list) {
|
||||
instructions.push_back(std::move(instr_map[instr]));
|
||||
}
|
||||
}
|
||||
|
||||
bool PostRA_Scheduler::runOnFunction(Function *F, AnalysisManager &AM) {
|
||||
// 这个函数在IR级别运行,但我们需要在机器指令级别运行
|
||||
// 所以我们返回false,表示没有对IR进行修改
|
||||
return false;
|
||||
}
|
||||
|
||||
void PostRA_Scheduler::runOnMachineFunction(MachineFunction *mfunc) {
|
||||
// std::cout << "Running Post-RA Local Scheduler... " << std::endl;
|
||||
|
||||
// 遍历每个机器基本块
|
||||
for (auto &mbb : mfunc->getBlocks()) {
|
||||
scheduleBlock(mbb.get());
|
||||
}
|
||||
|
||||
// 清理全局缓存
|
||||
instr_info_cache.clear();
|
||||
}
|
||||
|
||||
} // namespace sysy
|
||||
466
src/backend/RISCv64/Optimize/PreRA_Scheduler.cpp
Normal file
466
src/backend/RISCv64/Optimize/PreRA_Scheduler.cpp
Normal file
@ -0,0 +1,466 @@
|
||||
#include "PreRA_Scheduler.h"
|
||||
#include "RISCv64LLIR.h"
|
||||
#include <algorithm>
|
||||
#include <unordered_map>
|
||||
#include <unordered_set>
|
||||
#include <vector>
|
||||
|
||||
#define MAX_SCHEDULING_BLOCK_SIZE 1000 // 严格限制调度块大小
|
||||
|
||||
namespace sysy {
|
||||
|
||||
char PreRA_Scheduler::ID = 0;
|
||||
|
||||
// 检查指令是否是加载指令 (LW, LD)
|
||||
static bool isLoadInstr(MachineInstr *instr) {
|
||||
RVOpcodes opcode = instr->getOpcode();
|
||||
return opcode == RVOpcodes::LW || opcode == RVOpcodes::LD ||
|
||||
opcode == RVOpcodes::LH || opcode == RVOpcodes::LB ||
|
||||
opcode == RVOpcodes::LHU || opcode == RVOpcodes::LBU ||
|
||||
opcode == RVOpcodes::LWU;
|
||||
}
|
||||
|
||||
// 检查指令是否是存储指令 (SW, SD)
|
||||
static bool isStoreInstr(MachineInstr *instr) {
|
||||
RVOpcodes opcode = instr->getOpcode();
|
||||
return opcode == RVOpcodes::SW || opcode == RVOpcodes::SD ||
|
||||
opcode == RVOpcodes::SH || opcode == RVOpcodes::SB;
|
||||
}
|
||||
|
||||
// 检查指令是否为分支指令
|
||||
static bool isBranchInstr(MachineInstr *instr) {
|
||||
RVOpcodes opcode = instr->getOpcode();
|
||||
return opcode == RVOpcodes::BEQ || opcode == RVOpcodes::BNE ||
|
||||
opcode == RVOpcodes::BLT || opcode == RVOpcodes::BGE ||
|
||||
opcode == RVOpcodes::BLTU || opcode == RVOpcodes::BGEU;
|
||||
}
|
||||
|
||||
// 检查指令是否为跳转指令
|
||||
static bool isJumpInstr(MachineInstr *instr) {
|
||||
RVOpcodes opcode = instr->getOpcode();
|
||||
return opcode == RVOpcodes::J;
|
||||
}
|
||||
|
||||
// 检查指令是否为返回指令
|
||||
static bool isReturnInstr(MachineInstr *instr) {
|
||||
return instr->getOpcode() == RVOpcodes::RET;
|
||||
}
|
||||
|
||||
// 检查指令是否为调用指令
|
||||
static bool isCallInstr(MachineInstr *instr) {
|
||||
return instr->getOpcode() == RVOpcodes::CALL;
|
||||
}
|
||||
|
||||
// 检查指令是否为块终结指令(必须保持在块尾)
|
||||
static bool isTerminatorInstr(MachineInstr *instr) {
|
||||
return isBranchInstr(instr) || isJumpInstr(instr) || isReturnInstr(instr);
|
||||
}
|
||||
|
||||
// 检查指令是否有副作用(需要谨慎处理)
|
||||
static bool hasSideEffect(MachineInstr *instr) {
|
||||
return isStoreInstr(instr) || isCallInstr(instr) || isTerminatorInstr(instr);
|
||||
}
|
||||
|
||||
// 检查指令是否涉及内存操作
|
||||
static bool hasMemoryAccess(MachineInstr *instr) {
|
||||
return isLoadInstr(instr) || isStoreInstr(instr);
|
||||
}
|
||||
|
||||
// 获取内存访问位置信息
|
||||
struct MemoryLocation {
|
||||
unsigned base_reg;
|
||||
int64_t offset;
|
||||
bool is_valid;
|
||||
|
||||
MemoryLocation() : base_reg(0), offset(0), is_valid(false) {}
|
||||
MemoryLocation(unsigned base, int64_t off)
|
||||
: base_reg(base), offset(off), is_valid(true) {}
|
||||
|
||||
bool operator==(const MemoryLocation &other) const {
|
||||
return is_valid && other.is_valid && base_reg == other.base_reg &&
|
||||
offset == other.offset;
|
||||
}
|
||||
};
|
||||
|
||||
// 缓存指令分析信息
|
||||
struct InstrInfo {
|
||||
std::unordered_set<unsigned> defined_regs;
|
||||
std::unordered_set<unsigned> used_regs;
|
||||
MemoryLocation mem_location;
|
||||
bool is_load;
|
||||
bool is_store;
|
||||
bool is_terminator;
|
||||
bool is_call;
|
||||
bool has_side_effect;
|
||||
bool has_memory_access;
|
||||
|
||||
InstrInfo() : is_load(false), is_store(false), is_terminator(false),
|
||||
is_call(false), has_side_effect(false), has_memory_access(false) {}
|
||||
};
|
||||
|
||||
// 指令信息缓存
|
||||
static std::unordered_map<MachineInstr*, InstrInfo> instr_info_cache;
|
||||
|
||||
// 获取指令定义的虚拟寄存器 - 优化版本
|
||||
static std::unordered_set<unsigned> getDefinedVirtualRegisters(MachineInstr *instr) {
|
||||
std::unordered_set<unsigned> defined_regs;
|
||||
RVOpcodes opcode = instr->getOpcode();
|
||||
|
||||
// CALL指令可能定义返回值寄存器
|
||||
if (opcode == RVOpcodes::CALL) {
|
||||
if (!instr->getOperands().empty() &&
|
||||
instr->getOperands().front()->getKind() == MachineOperand::KIND_REG) {
|
||||
auto reg_op =
|
||||
static_cast<RegOperand *>(instr->getOperands().front().get());
|
||||
if (reg_op->isVirtual()) {
|
||||
defined_regs.insert(reg_op->getVRegNum());
|
||||
}
|
||||
}
|
||||
return defined_regs;
|
||||
}
|
||||
|
||||
// 存储指令和终结指令不定义寄存器
|
||||
if (isStoreInstr(instr) || isTerminatorInstr(instr)) {
|
||||
return defined_regs;
|
||||
}
|
||||
|
||||
// 其他指令的第一个操作数通常是目标寄存器
|
||||
if (!instr->getOperands().empty() &&
|
||||
instr->getOperands().front()->getKind() == MachineOperand::KIND_REG) {
|
||||
auto reg_op = static_cast<RegOperand *>(instr->getOperands().front().get());
|
||||
if (reg_op->isVirtual()) {
|
||||
defined_regs.insert(reg_op->getVRegNum());
|
||||
}
|
||||
}
|
||||
|
||||
return defined_regs;
|
||||
}
|
||||
|
||||
// 获取指令使用的虚拟寄存器 - 优化版本
|
||||
static std::unordered_set<unsigned> getUsedVirtualRegisters(MachineInstr *instr) {
|
||||
std::unordered_set<unsigned> used_regs;
|
||||
RVOpcodes opcode = instr->getOpcode();
|
||||
|
||||
// CALL指令:跳过第一个操作数(返回值),其余为参数
|
||||
if (opcode == RVOpcodes::CALL) {
|
||||
bool first_reg_skipped = false;
|
||||
for (const auto &op : instr->getOperands()) {
|
||||
if (op->getKind() == MachineOperand::KIND_REG) {
|
||||
if (!first_reg_skipped) {
|
||||
first_reg_skipped = true;
|
||||
continue;
|
||||
}
|
||||
auto reg_op = static_cast<RegOperand *>(op.get());
|
||||
if (reg_op->isVirtual()) {
|
||||
used_regs.insert(reg_op->getVRegNum());
|
||||
}
|
||||
}
|
||||
}
|
||||
return used_regs;
|
||||
}
|
||||
|
||||
// 存储指令和终结指令:所有操作数都是使用的
|
||||
if (isStoreInstr(instr) || isTerminatorInstr(instr)) {
|
||||
for (const auto &op : instr->getOperands()) {
|
||||
if (op->getKind() == MachineOperand::KIND_REG) {
|
||||
auto reg_op = static_cast<RegOperand *>(op.get());
|
||||
if (reg_op->isVirtual()) {
|
||||
used_regs.insert(reg_op->getVRegNum());
|
||||
}
|
||||
} else if (op->getKind() == MachineOperand::KIND_MEM) {
|
||||
auto mem_op = static_cast<MemOperand *>(op.get());
|
||||
if (mem_op->getBase()->isVirtual()) {
|
||||
used_regs.insert(mem_op->getBase()->getVRegNum());
|
||||
}
|
||||
}
|
||||
}
|
||||
return used_regs;
|
||||
}
|
||||
|
||||
// 其他指令:跳过第一个操作数(目标寄存器),其余为源操作数
|
||||
bool first_reg = true;
|
||||
for (const auto &op : instr->getOperands()) {
|
||||
if (op->getKind() == MachineOperand::KIND_REG) {
|
||||
if (first_reg) {
|
||||
first_reg = false;
|
||||
continue;
|
||||
}
|
||||
auto reg_op = static_cast<RegOperand *>(op.get());
|
||||
if (reg_op->isVirtual()) {
|
||||
used_regs.insert(reg_op->getVRegNum());
|
||||
}
|
||||
} else if (op->getKind() == MachineOperand::KIND_MEM) {
|
||||
auto mem_op = static_cast<MemOperand *>(op.get());
|
||||
if (mem_op->getBase()->isVirtual()) {
|
||||
used_regs.insert(mem_op->getBase()->getVRegNum());
|
||||
}
|
||||
}
|
||||
}
|
||||
return used_regs;
|
||||
}
|
||||
|
||||
// 获取内存访问位置
|
||||
static MemoryLocation getMemoryLocation(MachineInstr *instr) {
|
||||
if (!isLoadInstr(instr) && !isStoreInstr(instr)) {
|
||||
return MemoryLocation();
|
||||
}
|
||||
|
||||
for (const auto &op : instr->getOperands()) {
|
||||
if (op->getKind() == MachineOperand::KIND_MEM) {
|
||||
auto mem_op = static_cast<MemOperand *>(op.get());
|
||||
if (mem_op->getBase()->isVirtual()) {
|
||||
return MemoryLocation(mem_op->getBase()->getVRegNum(),
|
||||
mem_op->getOffset()->getValue());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return MemoryLocation();
|
||||
}
|
||||
|
||||
// 预计算并缓存指令信息
|
||||
static const InstrInfo& getInstrInfo(MachineInstr *instr) {
|
||||
auto it = instr_info_cache.find(instr);
|
||||
if (it != instr_info_cache.end()) {
|
||||
return it->second;
|
||||
}
|
||||
|
||||
InstrInfo& info = instr_info_cache[instr];
|
||||
info.defined_regs = getDefinedVirtualRegisters(instr);
|
||||
info.used_regs = getUsedVirtualRegisters(instr);
|
||||
info.mem_location = getMemoryLocation(instr);
|
||||
info.is_load = isLoadInstr(instr);
|
||||
info.is_store = isStoreInstr(instr);
|
||||
info.is_terminator = isTerminatorInstr(instr);
|
||||
info.is_call = isCallInstr(instr);
|
||||
info.has_side_effect = hasSideEffect(instr);
|
||||
info.has_memory_access = hasMemoryAccess(instr);
|
||||
|
||||
return info;
|
||||
}
|
||||
|
||||
// 检查两个内存位置是否可能别名
|
||||
static bool mayAlias(const MemoryLocation &loc1, const MemoryLocation &loc2) {
|
||||
if (!loc1.is_valid || !loc2.is_valid) {
|
||||
return true; // 保守处理:未知位置可能别名
|
||||
}
|
||||
|
||||
// 不同基址寄存器,保守假设可能别名
|
||||
if (loc1.base_reg != loc2.base_reg) {
|
||||
return true;
|
||||
}
|
||||
|
||||
// 相同基址寄存器,检查偏移
|
||||
return loc1.offset == loc2.offset;
|
||||
}
|
||||
|
||||
// 检查两个指令之间是否存在数据依赖 - 优化版本
|
||||
static bool hasDataDependency(MachineInstr *first, MachineInstr *second) {
|
||||
const InstrInfo& info_first = getInstrInfo(first);
|
||||
const InstrInfo& info_second = getInstrInfo(second);
|
||||
|
||||
// RAW依赖: second读取first写入的寄存器
|
||||
for (const auto ® : info_first.defined_regs) {
|
||||
if (info_second.used_regs.find(reg) != info_second.used_regs.end()) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
// WAR依赖: second写入first读取的寄存器
|
||||
for (const auto ® : info_first.used_regs) {
|
||||
if (info_second.defined_regs.find(reg) != info_second.defined_regs.end()) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
// WAW依赖: 两个指令写入同一寄存器
|
||||
for (const auto ® : info_first.defined_regs) {
|
||||
if (info_second.defined_regs.find(reg) != info_second.defined_regs.end()) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
// 检查两个指令之间是否存在内存依赖 - 优化版本
|
||||
static bool hasMemoryDependency(MachineInstr *first, MachineInstr *second) {
|
||||
const InstrInfo& info_first = getInstrInfo(first);
|
||||
const InstrInfo& info_second = getInstrInfo(second);
|
||||
|
||||
if (!info_first.has_memory_access || !info_second.has_memory_access) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// 如果至少有一个是存储指令,需要检查别名
|
||||
if (info_first.is_store || info_second.is_store) {
|
||||
return mayAlias(info_first.mem_location, info_second.mem_location);
|
||||
}
|
||||
|
||||
return false; // 两个加载指令之间没有依赖
|
||||
}
|
||||
|
||||
// 检查两个指令之间是否存在控制依赖 - 优化版本
|
||||
static bool hasControlDependency(MachineInstr *first, MachineInstr *second) {
|
||||
const InstrInfo& info_first = getInstrInfo(first);
|
||||
const InstrInfo& info_second = getInstrInfo(second);
|
||||
|
||||
// 终结指令与任何其他指令都有控制依赖
|
||||
if (info_first.is_terminator) {
|
||||
return true; // first是终结指令,second不能移动到first之前
|
||||
}
|
||||
|
||||
if (info_second.is_terminator) {
|
||||
return false; // second是终结指令,可以保持在后面
|
||||
}
|
||||
|
||||
// CALL指令具有控制副作用,但可以参与有限的调度
|
||||
if (info_first.is_call || info_second.is_call) {
|
||||
// CALL指令之间保持顺序
|
||||
if (info_first.is_call && info_second.is_call) {
|
||||
return true;
|
||||
}
|
||||
// 其他情况允许调度(通过数据依赖控制)
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
// 综合检查两个指令是否可以交换 - 优化版本
|
||||
static bool canSwapInstructions(MachineInstr *first, MachineInstr *second) {
|
||||
// 检查所有类型的依赖
|
||||
if (hasDataDependency(first, second) || hasDataDependency(second, first)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (hasMemoryDependency(first, second)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (hasControlDependency(first, second) ||
|
||||
hasControlDependency(second, first)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// 找到基本块中的调度边界 - 优化版本
|
||||
static std::vector<size_t>
|
||||
findSchedulingBoundaries(const std::vector<MachineInstr *> &instrs) {
|
||||
std::vector<size_t> boundaries;
|
||||
boundaries.reserve(instrs.size() / 10); // 预估边界数量
|
||||
boundaries.push_back(0); // 起始边界
|
||||
|
||||
for (size_t i = 0; i < instrs.size(); i++) {
|
||||
const InstrInfo& info = getInstrInfo(instrs[i]);
|
||||
// 终结指令前后都是边界
|
||||
if (info.is_terminator) {
|
||||
if (i > 0)
|
||||
boundaries.push_back(i);
|
||||
if (i + 1 < instrs.size())
|
||||
boundaries.push_back(i + 1);
|
||||
}
|
||||
// 跳转目标标签也可能是边界(这里简化处理)
|
||||
}
|
||||
|
||||
boundaries.push_back(instrs.size()); // 结束边界
|
||||
|
||||
// 去重并排序
|
||||
std::sort(boundaries.begin(), boundaries.end());
|
||||
boundaries.erase(std::unique(boundaries.begin(), boundaries.end()),
|
||||
boundaries.end());
|
||||
|
||||
return boundaries;
|
||||
}
|
||||
|
||||
// 在单个调度区域内进行指令调度 - 优化版本
|
||||
static void scheduleRegion(std::vector<MachineInstr *> &instrs, size_t start,
|
||||
size_t end) {
|
||||
if (end - start <= 1) {
|
||||
return; // 区域太小,无需调度
|
||||
}
|
||||
|
||||
// 保守的调度策略:
|
||||
// 1. 只对小规模区域进行调度
|
||||
// 2. 优先将加载指令向前调度,以隐藏内存延迟
|
||||
// 3. 确保不破坏数据依赖和内存依赖
|
||||
|
||||
// 简单的调度算法:只尝试将加载指令尽可能前移
|
||||
for (size_t i = start + 1; i < end; i++) {
|
||||
const InstrInfo& info = getInstrInfo(instrs[i]);
|
||||
if (info.is_load) {
|
||||
// 尝试将加载指令向前移动
|
||||
for (size_t j = i; j > start; j--) {
|
||||
// 检查是否可以与前一条指令交换
|
||||
if (canSwapInstructions(instrs[j - 1], instrs[j])) {
|
||||
std::swap(instrs[j - 1], instrs[j]);
|
||||
} else {
|
||||
// 一旦遇到依赖关系就停止移动
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void scheduleBlock(MachineBasicBlock *mbb) {
|
||||
auto &instructions = mbb->getInstructions();
|
||||
if (instructions.size() <= 1 ||
|
||||
instructions.size() > MAX_SCHEDULING_BLOCK_SIZE) {
|
||||
return;
|
||||
}
|
||||
|
||||
// 清理缓存,避免无效指针
|
||||
instr_info_cache.clear();
|
||||
|
||||
// 构建指令列表
|
||||
std::vector<MachineInstr *> instr_list;
|
||||
instr_list.reserve(instructions.size()); // 预分配容量
|
||||
for (auto &instr : instructions) {
|
||||
instr_list.push_back(instr.get());
|
||||
}
|
||||
|
||||
// 预计算所有指令信息
|
||||
for (auto* instr : instr_list) {
|
||||
getInstrInfo(instr);
|
||||
}
|
||||
|
||||
// 找到调度边界
|
||||
std::vector<size_t> boundaries = findSchedulingBoundaries(instr_list);
|
||||
|
||||
// 在每个调度区域内进行局部调度
|
||||
for (size_t i = 0; i < boundaries.size() - 1; i++) {
|
||||
size_t region_start = boundaries[i];
|
||||
size_t region_end = boundaries[i + 1];
|
||||
scheduleRegion(instr_list, region_start, region_end);
|
||||
}
|
||||
|
||||
// 重建指令序列
|
||||
std::unordered_map<MachineInstr *, std::unique_ptr<MachineInstr>> instr_map;
|
||||
instr_map.reserve(instructions.size()); // 预分配容量
|
||||
for (auto &instr : instructions) {
|
||||
instr_map[instr.get()] = std::move(instr);
|
||||
}
|
||||
|
||||
instructions.clear();
|
||||
instructions.reserve(instr_list.size()); // 预分配容量
|
||||
for (auto *instr : instr_list) {
|
||||
instructions.push_back(std::move(instr_map[instr]));
|
||||
}
|
||||
}
|
||||
|
||||
bool PreRA_Scheduler::runOnFunction(Function *F, AnalysisManager &AM) {
|
||||
return false;
|
||||
}
|
||||
|
||||
void PreRA_Scheduler::runOnMachineFunction(MachineFunction *mfunc) {
|
||||
for (auto &mbb : mfunc->getBlocks()) {
|
||||
scheduleBlock(mbb.get());
|
||||
}
|
||||
|
||||
// 清理全局缓存
|
||||
instr_info_cache.clear();
|
||||
}
|
||||
|
||||
} // namespace sysy
|
||||
@ -1,20 +1,10 @@
|
||||
#include "RISCv64AsmPrinter.h"
|
||||
#include "RISCv64ISel.h"
|
||||
#include <stdexcept>
|
||||
|
||||
#include <sstream>
|
||||
#include <iostream>
|
||||
namespace sysy {
|
||||
|
||||
// 检查是否为内存加载/存储指令,以处理特殊的打印格式
|
||||
bool isMemoryOp(RVOpcodes opcode) {
|
||||
switch (opcode) {
|
||||
case RVOpcodes::LB: case RVOpcodes::LH: case RVOpcodes::LW: case RVOpcodes::LD:
|
||||
case RVOpcodes::LBU: case RVOpcodes::LHU: case RVOpcodes::LWU:
|
||||
case RVOpcodes::SB: case RVOpcodes::SH: case RVOpcodes::SW: case RVOpcodes::SD:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
RISCv64AsmPrinter::RISCv64AsmPrinter(MachineFunction* mfunc) : MFunc(mfunc) {}
|
||||
|
||||
@ -22,52 +12,12 @@ void RISCv64AsmPrinter::run(std::ostream& os, bool debug) {
|
||||
OS = &os;
|
||||
|
||||
*OS << ".globl " << MFunc->getName() << "\n";
|
||||
*OS << MFunc->getName() << ":\n";
|
||||
|
||||
printPrologue();
|
||||
|
||||
for (auto& mbb : MFunc->getBlocks()) {
|
||||
printBasicBlock(mbb.get(), debug);
|
||||
}
|
||||
}
|
||||
|
||||
// 在 RISCv64AsmPrinter.cpp 文件中
|
||||
|
||||
void RISCv64AsmPrinter::printPrologue() {
|
||||
StackFrameInfo& frame_info = MFunc->getFrameInfo();
|
||||
// 计算总栈帧大小。
|
||||
// 包含三部分:局部变量区、寄存器溢出区、以及为被调用者保存(callee-saved)寄存器预留的区域。
|
||||
// 最后再加上为保存 ra 和 s0 固定的16字节。
|
||||
int total_stack_size = frame_info.locals_size +
|
||||
frame_info.spill_size +
|
||||
frame_info.callee_saved_size +
|
||||
16;
|
||||
|
||||
// 保持栈指针16字节对齐
|
||||
int aligned_stack_size = (total_stack_size + 15) & ~15;
|
||||
frame_info.total_size = aligned_stack_size; // 更新最终的栈大小
|
||||
|
||||
// 只有在需要分配栈空间时才生成指令
|
||||
if (aligned_stack_size > 0) {
|
||||
// 1. 一次性分配整个栈帧
|
||||
*OS << " addi sp, sp, -" << aligned_stack_size << "\n";
|
||||
// 2. 在新的栈顶附近保存 ra 和 s0
|
||||
*OS << " sd ra, " << (aligned_stack_size - 8) << "(sp)\n";
|
||||
*OS << " sd s0, " << (aligned_stack_size - 16) << "(sp)\n";
|
||||
// 3. 设置新的帧指针 s0,使其指向栈帧的底部(高地址)
|
||||
*OS << " addi s0, sp, " << aligned_stack_size << "\n";
|
||||
}
|
||||
}
|
||||
|
||||
void RISCv64AsmPrinter::printEpilogue() {
|
||||
int aligned_stack_size = MFunc->getFrameInfo().total_size;
|
||||
if (aligned_stack_size > 0) {
|
||||
*OS << " ld ra, " << (aligned_stack_size - 8) << "(sp)\n";
|
||||
*OS << " ld s0, " << (aligned_stack_size - 16) << "(sp)\n";
|
||||
*OS << " addi sp, sp, " << aligned_stack_size << "\n";
|
||||
}
|
||||
}
|
||||
|
||||
void RISCv64AsmPrinter::printBasicBlock(MachineBasicBlock* mbb, bool debug) {
|
||||
if (!mbb->getName().empty()) {
|
||||
*OS << mbb->getName() << ":\n";
|
||||
@ -79,9 +29,6 @@ void RISCv64AsmPrinter::printBasicBlock(MachineBasicBlock* mbb, bool debug) {
|
||||
|
||||
void RISCv64AsmPrinter::printInstruction(MachineInstr* instr, bool debug) {
|
||||
auto opcode = instr->getOpcode();
|
||||
if (opcode == RVOpcodes::RET) {
|
||||
printEpilogue();
|
||||
}
|
||||
|
||||
if (opcode == RVOpcodes::LABEL) {
|
||||
// 标签直接打印,不加缩进
|
||||
@ -97,7 +44,7 @@ void RISCv64AsmPrinter::printInstruction(MachineInstr* instr, bool debug) {
|
||||
case RVOpcodes::ADD: *OS << "add "; break; case RVOpcodes::ADDI: *OS << "addi "; break;
|
||||
case RVOpcodes::ADDW: *OS << "addw "; break; case RVOpcodes::ADDIW: *OS << "addiw "; break;
|
||||
case RVOpcodes::SUB: *OS << "sub "; break; case RVOpcodes::SUBW: *OS << "subw "; break;
|
||||
case RVOpcodes::MUL: *OS << "mul "; break; case RVOpcodes::MULW: *OS << "mulw "; break;
|
||||
case RVOpcodes::MUL: *OS << "mul "; break; case RVOpcodes::MULW: *OS << "mulw "; break; case RVOpcodes::MULH: *OS << "mulh "; break;
|
||||
case RVOpcodes::DIV: *OS << "div "; break; case RVOpcodes::DIVW: *OS << "divw "; break;
|
||||
case RVOpcodes::REM: *OS << "rem "; break; case RVOpcodes::REMW: *OS << "remw "; break;
|
||||
case RVOpcodes::XOR: *OS << "xor "; break; case RVOpcodes::XORI: *OS << "xori "; break;
|
||||
@ -116,7 +63,9 @@ void RISCv64AsmPrinter::printInstruction(MachineInstr* instr, bool debug) {
|
||||
case RVOpcodes::LHU: *OS << "lhu "; break; case RVOpcodes::LBU: *OS << "lbu "; break;
|
||||
case RVOpcodes::SW: *OS << "sw "; break; case RVOpcodes::SH: *OS << "sh "; break;
|
||||
case RVOpcodes::SB: *OS << "sb "; break; case RVOpcodes::LD: *OS << "ld "; break;
|
||||
case RVOpcodes::SD: *OS << "sd "; break;
|
||||
case RVOpcodes::SD: *OS << "sd "; break; case RVOpcodes::FLW: *OS << "flw "; break;
|
||||
case RVOpcodes::FSW: *OS << "fsw "; break; case RVOpcodes::FLD: *OS << "fld "; break;
|
||||
case RVOpcodes::FSD: *OS << "fsd "; break;
|
||||
case RVOpcodes::J: *OS << "j "; break; case RVOpcodes::JAL: *OS << "jal "; break;
|
||||
case RVOpcodes::JALR: *OS << "jalr "; break; case RVOpcodes::RET: *OS << "ret"; break;
|
||||
case RVOpcodes::BEQ: *OS << "beq "; break; case RVOpcodes::BNE: *OS << "bne "; break;
|
||||
@ -125,8 +74,23 @@ void RISCv64AsmPrinter::printInstruction(MachineInstr* instr, bool debug) {
|
||||
case RVOpcodes::LI: *OS << "li "; break; case RVOpcodes::LA: *OS << "la "; break;
|
||||
case RVOpcodes::MV: *OS << "mv "; break; case RVOpcodes::NEG: *OS << "neg "; break;
|
||||
case RVOpcodes::NEGW: *OS << "negw "; break; case RVOpcodes::SEQZ: *OS << "seqz "; break;
|
||||
case RVOpcodes::SNEZ: *OS << "snez "; break;
|
||||
case RVOpcodes::CALL: { // [核心修改] 为CALL指令添加特殊处理逻辑
|
||||
case RVOpcodes::SNEZ: *OS << "snez "; break;
|
||||
case RVOpcodes::FADD_S: *OS << "fadd.s "; break;
|
||||
case RVOpcodes::FSUB_S: *OS << "fsub.s "; break;
|
||||
case RVOpcodes::FMUL_S: *OS << "fmul.s "; break;
|
||||
case RVOpcodes::FDIV_S: *OS << "fdiv.s "; break;
|
||||
case RVOpcodes::FNEG_S: *OS << "fneg.s "; break;
|
||||
case RVOpcodes::FEQ_S: *OS << "feq.s "; break;
|
||||
case RVOpcodes::FLT_S: *OS << "flt.s "; break;
|
||||
case RVOpcodes::FLE_S: *OS << "fle.s "; break;
|
||||
case RVOpcodes::FCVT_S_W: *OS << "fcvt.s.w "; break;
|
||||
case RVOpcodes::FCVT_W_S: *OS << "fcvt.w.s "; break;
|
||||
case RVOpcodes::FCVT_W_S_RTZ: *OS << "fcvt.w.s "; break;
|
||||
case RVOpcodes::FMV_S: *OS << "fmv.s "; break;
|
||||
case RVOpcodes::FMV_W_X: *OS << "fmv.w.x "; break;
|
||||
case RVOpcodes::FMV_X_W: *OS << "fmv.x.w "; break;
|
||||
case RVOpcodes::FSRMI: *OS << "fsrmi "; break;
|
||||
case RVOpcodes::CALL: { // 为CALL指令添加特殊处理逻辑
|
||||
*OS << "call ";
|
||||
// 遍历所有操作数,只寻找并打印函数名标签
|
||||
for (const auto& op : instr->getOperands()) {
|
||||
@ -160,6 +124,15 @@ void RISCv64AsmPrinter::printInstruction(MachineInstr* instr, bool debug) {
|
||||
// It should have been eliminated by RegAlloc
|
||||
if (!debug) throw std::runtime_error("FRAME pseudo-instruction not eliminated before AsmPrinter");
|
||||
*OS << "frame_addr "; break;
|
||||
case RVOpcodes::FRAME_LOAD_F:
|
||||
if (!debug) throw std::runtime_error("FRAME_LOAD_F not eliminated before AsmPrinter");
|
||||
*OS << "frame_load_f "; break;
|
||||
case RVOpcodes::FRAME_STORE_F:
|
||||
if (!debug) throw std::runtime_error("FRAME_STORE_F not eliminated before AsmPrinter");
|
||||
*OS << "frame_store_f "; break;
|
||||
case RVOpcodes::PSEUDO_KEEPALIVE:
|
||||
if (!debug) throw std::runtime_error("PSEUDO_KEEPALIVE not eliminated before AsmPrinter");
|
||||
*OS << "keepalive "; break;
|
||||
default:
|
||||
throw std::runtime_error("Unknown opcode in AsmPrinter");
|
||||
}
|
||||
@ -249,4 +222,30 @@ std::string RISCv64AsmPrinter::regToString(PhysicalReg reg) {
|
||||
}
|
||||
}
|
||||
|
||||
std::string RISCv64AsmPrinter::formatInstr(const MachineInstr* instr) {
|
||||
if (!instr) return "(null instr)";
|
||||
|
||||
// 使用 stringstream 作为临时的输出目标
|
||||
std::stringstream ss;
|
||||
|
||||
// 关键: 临时将类成员 'OS' 指向我们的 stringstream
|
||||
std::ostream* old_os = this->OS;
|
||||
this->OS = &ss;
|
||||
|
||||
// 修正: 调用正确的内部打印函数 printMachineInstr
|
||||
printInstruction(const_cast<MachineInstr*>(instr), false);
|
||||
|
||||
// 恢复旧的 ostream 指针
|
||||
this->OS = old_os;
|
||||
|
||||
// 获取stringstream的内容并做一些清理
|
||||
std::string result = ss.str();
|
||||
size_t endpos = result.find_last_not_of(" \t\n\r");
|
||||
if (std::string::npos != endpos) {
|
||||
result = result.substr(0, endpos + 1);
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
} // namespace sysy
|
||||
340
src/backend/RISCv64/RISCv64Backend.cpp
Normal file
340
src/backend/RISCv64/RISCv64Backend.cpp
Normal file
@ -0,0 +1,340 @@
|
||||
#include "RISCv64Backend.h"
|
||||
#include "RISCv64ISel.h"
|
||||
#include "RISCv64RegAlloc.h"
|
||||
#include "RISCv64LinearScan.h"
|
||||
#include "RISCv64BasicBlockAlloc.h"
|
||||
#include "RISCv64AsmPrinter.h"
|
||||
#include "RISCv64Passes.h"
|
||||
#include <sstream>
|
||||
#include <future>
|
||||
#include <chrono>
|
||||
#include <iostream>
|
||||
namespace sysy {
|
||||
|
||||
// 顶层入口
|
||||
std::string RISCv64CodeGen::code_gen() {
|
||||
return module_gen();
|
||||
}
|
||||
|
||||
unsigned RISCv64CodeGen::getTypeSizeInBytes(Type* type) {
|
||||
if (!type) {
|
||||
assert(false && "Cannot get size of a null type.");
|
||||
return 0;
|
||||
}
|
||||
|
||||
switch (type->getKind()) {
|
||||
// 对于SysY语言,基本类型int和float都占用4字节
|
||||
case Type::kInt:
|
||||
case Type::kFloat:
|
||||
return 4;
|
||||
|
||||
// 指针类型在RISC-V 64位架构下占用8字节
|
||||
// 虽然SysY没有'int*'语法,但数组变量在IR层面本身就是指针类型
|
||||
case Type::kPointer:
|
||||
return 8;
|
||||
|
||||
// 数组类型的总大小 = 元素数量 * 单个元素的大小
|
||||
case Type::kArray: {
|
||||
auto arrayType = type->as<ArrayType>();
|
||||
// 递归调用以计算元素大小
|
||||
return arrayType->getNumElements() * getTypeSizeInBytes(arrayType->getElementType());
|
||||
}
|
||||
|
||||
// 其他类型,如Void, Label等不占用栈空间,或者不应该出现在这里
|
||||
default:
|
||||
// 如果遇到未处理的类型,触发断言,方便调试
|
||||
// assert(false && "Unsupported type for size calculation.");
|
||||
return 0; // 对于像Label或Void这样的类型,返回0是合理的
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void printInitializer(std::stringstream& ss, const ValueCounter& init_values) {
|
||||
for (size_t i = 0; i < init_values.getValues().size(); ++i) {
|
||||
auto val = init_values.getValues()[i];
|
||||
auto count = init_values.getNumbers()[i];
|
||||
if (auto constant = dynamic_cast<ConstantValue*>(val)) {
|
||||
for (unsigned j = 0; j < count; ++j) {
|
||||
if (constant->isInt()) {
|
||||
ss << " .word " << constant->getInt() << "\n";
|
||||
} else {
|
||||
float f = constant->getFloat();
|
||||
uint32_t float_bits = *(uint32_t*)&f;
|
||||
ss << " .word " << float_bits << "\n";
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::string RISCv64CodeGen::module_gen() {
|
||||
std::stringstream ss;
|
||||
|
||||
// --- 步骤1:将全局变量(GlobalValue)分为.data和.bss两组 ---
|
||||
std::vector<GlobalValue*> data_globals;
|
||||
std::vector<GlobalValue*> bss_globals;
|
||||
|
||||
for (const auto& global_ptr : module->getGlobals()) {
|
||||
GlobalValue* global = global_ptr.get();
|
||||
|
||||
// 使用更健壮的逻辑来判断是否为大型零初始化数组
|
||||
bool is_all_zeros = true;
|
||||
const auto& init_values = global->getInitValues();
|
||||
|
||||
// 检查初始化值是否全部为0
|
||||
if (init_values.getValues().empty()) {
|
||||
// 如果 ValueCounter 为空,GlobalValue 的构造函数会确保它是零初始化的
|
||||
is_all_zeros = true;
|
||||
} else {
|
||||
for (auto val : init_values.getValues()) {
|
||||
if (auto const_val = dynamic_cast<ConstantValue*>(val)) {
|
||||
if (!const_val->isZero()) {
|
||||
is_all_zeros = false;
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
// 如果初始值包含非常量(例如,另一个全局变量的地址),则不认为是纯零初始化
|
||||
is_all_zeros = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 使用 getTypeSizeInBytes 检查总大小是否超过阈值 (16个整数 = 64字节)
|
||||
Type* allocated_type = global->getType()->as<PointerType>()->getBaseType();
|
||||
unsigned total_size = getTypeSizeInBytes(allocated_type);
|
||||
|
||||
bool is_large_zero_array = is_all_zeros && (total_size > 64);
|
||||
|
||||
if (is_large_zero_array) {
|
||||
bss_globals.push_back(global);
|
||||
} else {
|
||||
data_globals.push_back(global);
|
||||
}
|
||||
}
|
||||
|
||||
// --- 步骤2:生成 .bss 段的代码 ---
|
||||
if (!bss_globals.empty()) {
|
||||
ss << ".bss\n";
|
||||
for (GlobalValue* global : bss_globals) {
|
||||
Type* allocated_type = global->getType()->as<PointerType>()->getBaseType();
|
||||
unsigned total_size = getTypeSizeInBytes(allocated_type);
|
||||
|
||||
ss << " .align 3\n";
|
||||
ss << ".globl " << global->getName() << "\n";
|
||||
ss << ".type " << global->getName() << ", @object\n";
|
||||
ss << ".size " << global->getName() << ", " << total_size << "\n";
|
||||
ss << global->getName() << ":\n";
|
||||
ss << " .space " << total_size << "\n";
|
||||
}
|
||||
}
|
||||
|
||||
// --- 步骤3:生成 .data 段的代码 ---
|
||||
if (!data_globals.empty() || !module->getConsts().empty()) {
|
||||
ss << ".data\n";
|
||||
|
||||
// a. 处理普通的全局变量 (GlobalValue)
|
||||
for (GlobalValue* global : data_globals) {
|
||||
Type* allocated_type = global->getType()->as<PointerType>()->getBaseType();
|
||||
unsigned total_size = getTypeSizeInBytes(allocated_type);
|
||||
|
||||
ss << " .align 3\n";
|
||||
ss << ".globl " << global->getName() << "\n";
|
||||
ss << ".type " << global->getName() << ", @object\n";
|
||||
ss << ".size " << global->getName() << ", " << total_size << "\n";
|
||||
ss << global->getName() << ":\n";
|
||||
bool is_all_zeros = true;
|
||||
const auto& init_values = global->getInitValues();
|
||||
if (init_values.getValues().empty()) {
|
||||
is_all_zeros = true;
|
||||
} else {
|
||||
for (auto val : init_values.getValues()) {
|
||||
if (auto const_val = dynamic_cast<ConstantValue*>(val)) {
|
||||
if (!const_val->isZero()) {
|
||||
is_all_zeros = false;
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
is_all_zeros = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (is_all_zeros) {
|
||||
ss << " .zero " << total_size << "\n";
|
||||
} else {
|
||||
// 对于有非零初始值的变量,保持原有的打印逻辑。
|
||||
printInitializer(ss, global->getInitValues());
|
||||
}
|
||||
}
|
||||
|
||||
// b. 处理全局常量 (ConstantVariable)
|
||||
for (const auto& const_ptr : module->getConsts()) {
|
||||
ConstantVariable* cnst = const_ptr.get();
|
||||
Type* allocated_type = cnst->getType()->as<PointerType>()->getBaseType();
|
||||
unsigned total_size = getTypeSizeInBytes(allocated_type);
|
||||
|
||||
ss << " .align 3\n";
|
||||
ss << ".globl " << cnst->getName() << "\n";
|
||||
ss << ".type " << cnst->getName() << ", @object\n";
|
||||
ss << ".size " << cnst->getName() << ", " << total_size << "\n";
|
||||
ss << cnst->getName() << ":\n";
|
||||
printInitializer(ss, cnst->getInitValues());
|
||||
}
|
||||
}
|
||||
|
||||
// --- 步骤4:处理函数 (.text段) 的逻辑 ---
|
||||
if (!module->getFunctions().empty()) {
|
||||
ss << ".text\n";
|
||||
for (const auto& func_pair : module->getFunctions()) {
|
||||
if (func_pair.second.get() && !func_pair.second->getBasicBlocks().empty()) {
|
||||
ss << function_gen(func_pair.second.get());
|
||||
if (DEBUG) std::cerr << "Function: " << func_pair.first << " generated.\n";
|
||||
}
|
||||
}
|
||||
}
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
std::string RISCv64CodeGen::function_gen(Function* func) {
|
||||
// === 完整的后端处理流水线 ===
|
||||
|
||||
// 阶段 1: 指令选择 (sysy::IR -> LLIR with virtual registers)
|
||||
RISCv64ISel isel;
|
||||
std::unique_ptr<MachineFunction> mfunc = isel.runOnFunction(func);
|
||||
// 第一次调试打印输出
|
||||
std::stringstream ss_after_isel;
|
||||
RISCv64AsmPrinter printer_isel(mfunc.get());
|
||||
printer_isel.run(ss_after_isel, true);
|
||||
|
||||
if (DEBUG) {
|
||||
std::cerr << "====== Intermediate Representation after Instruction Selection ======\n"
|
||||
<< ss_after_isel.str();
|
||||
}
|
||||
|
||||
// 阶段 2: 消除帧索引 (展开伪指令,计算局部变量偏移)
|
||||
// 这个Pass必须在寄存器分配之前运行
|
||||
EliminateFrameIndicesPass efi_pass;
|
||||
efi_pass.runOnMachineFunction(mfunc.get());
|
||||
|
||||
if (DEBUG) {
|
||||
std::cerr << "====== stack info after eliminate frame indices ======\n";
|
||||
mfunc->dumpStackFrameInfo(std::cerr);
|
||||
std::stringstream ss_after_eli;
|
||||
printer_isel.run(ss_after_eli, true);
|
||||
std::cerr << "====== LLIR after eliminate frame indices ======\n"
|
||||
<< ss_after_eli.str();
|
||||
}
|
||||
|
||||
// // 阶段 2: 除法强度削弱优化 (Division Strength Reduction)
|
||||
// DivStrengthReduction div_strength_reduction;
|
||||
// div_strength_reduction.runOnMachineFunction(mfunc.get());
|
||||
|
||||
// // 阶段 2.1: 指令调度 (Instruction Scheduling)
|
||||
// PreRA_Scheduler scheduler;
|
||||
// scheduler.runOnMachineFunction(mfunc.get());
|
||||
|
||||
// 阶段 3: 物理寄存器分配 (Register Allocation)
|
||||
|
||||
// 首先尝试图着色分配器
|
||||
if (DEBUG) std::cerr << "Attempting Register Allocation with Graph Coloring...\n";
|
||||
if (!gc_failed) {
|
||||
RISCv64RegAlloc gc_alloc(mfunc.get());
|
||||
|
||||
bool success_gc = gc_alloc.run();
|
||||
|
||||
if (!success_gc) {
|
||||
gc_failed = 1; // 后续不再尝试图着色分配器
|
||||
std::cerr << "Warning: Graph coloring register allocation failed function '"
|
||||
<< func->getName()
|
||||
<< "'. Switching to Linear Scan allocator."
|
||||
<< std::endl;
|
||||
|
||||
RISCv64ISel isel_gc_fallback;
|
||||
mfunc = isel_gc_fallback.runOnFunction(func);
|
||||
EliminateFrameIndicesPass efi_pass_gc_fallback;
|
||||
efi_pass_gc_fallback.runOnMachineFunction(mfunc.get());
|
||||
RISCv64LinearScan ls_alloc(mfunc.get());
|
||||
bool success = ls_alloc.run();
|
||||
if (!success) {
|
||||
// 如果线性扫描最终失败,则调用基本块分配器作为终极后备
|
||||
std::cerr << "Info: Linear Scan failed. Switching to Basic Block Allocator as final fallback.\n";
|
||||
|
||||
// 注意:我们需要在一个“干净”的MachineFunction上运行。
|
||||
// 最安全的方式是重新运行指令选择。
|
||||
RISCv64ISel isel_fallback;
|
||||
mfunc = isel_fallback.runOnFunction(func);
|
||||
EliminateFrameIndicesPass efi_pass_fallback;
|
||||
efi_pass_fallback.runOnMachineFunction(mfunc.get());
|
||||
if (DEBUG) {
|
||||
std::cerr << "====== stack info after reg alloc ======\n";
|
||||
}
|
||||
RISCv64BasicBlockAlloc bb_alloc(mfunc.get());
|
||||
bb_alloc.run();
|
||||
}
|
||||
} else {
|
||||
// 图着色成功完成
|
||||
if (DEBUG) std::cerr << "Graph Coloring allocation completed successfully.\n";
|
||||
}
|
||||
} else {
|
||||
std::cerr << "Info: Graph Coloring allocation failed in last function. Switching to Linear Scan allocator...\n";
|
||||
RISCv64LinearScan ls_alloc(mfunc.get());
|
||||
bool success = ls_alloc.run();
|
||||
if (!success) {
|
||||
// 如果线性扫描最终失败,则调用基本块分配器作为终极后备
|
||||
std::cerr << "Info: Linear Scan failed. Switching to Basic Block Allocator as final fallback.\n";
|
||||
|
||||
// 注意:我们需要在一个“干净”的MachineFunction上运行。
|
||||
// 最安全的方式是重新运行指令选择。
|
||||
RISCv64ISel isel_fallback;
|
||||
mfunc = isel_fallback.runOnFunction(func);
|
||||
EliminateFrameIndicesPass efi_pass_fallback;
|
||||
efi_pass_fallback.runOnMachineFunction(mfunc.get());
|
||||
if (DEBUG) {
|
||||
std::cerr << "====== stack info after reg alloc ======\n";
|
||||
}
|
||||
RISCv64BasicBlockAlloc bb_alloc(mfunc.get());
|
||||
bb_alloc.run();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if (DEBUG) {
|
||||
std::cerr << "====== stack info after reg alloc ======\n";
|
||||
mfunc->dumpStackFrameInfo(std::cerr);
|
||||
}
|
||||
|
||||
// 阶段 3.1: 处理被调用者保存寄存器
|
||||
CalleeSavedHandler callee_handler;
|
||||
callee_handler.runOnMachineFunction(mfunc.get());
|
||||
|
||||
if (DEBUG) {
|
||||
std::cerr << "====== stack info after callee handler ======\n";
|
||||
mfunc->dumpStackFrameInfo(std::cerr);
|
||||
}
|
||||
|
||||
// // 阶段 4: 窥孔优化 (Peephole Optimization)
|
||||
// PeepholeOptimizer peephole;
|
||||
// peephole.runOnMachineFunction(mfunc.get());
|
||||
|
||||
// 阶段 5: 局部指令调度 (Local Scheduling)
|
||||
PostRA_Scheduler local_scheduler;
|
||||
local_scheduler.runOnMachineFunction(mfunc.get());
|
||||
|
||||
// 阶段 3.2: 插入序言和尾声
|
||||
PrologueEpilogueInsertionPass pei_pass;
|
||||
pei_pass.runOnMachineFunction(mfunc.get());
|
||||
|
||||
// 阶段 3.3: 大立即数合法化
|
||||
LegalizeImmediatesPass legalizer;
|
||||
legalizer.runOnMachineFunction(mfunc.get());
|
||||
|
||||
// 阶段 6: 代码发射 (Code Emission)
|
||||
std::stringstream ss;
|
||||
RISCv64AsmPrinter printer(mfunc.get());
|
||||
printer.run(ss);
|
||||
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
} // namespace sysy
|
||||
267
src/backend/RISCv64/RISCv64BasicBlockAlloc.cpp
Normal file
267
src/backend/RISCv64/RISCv64BasicBlockAlloc.cpp
Normal file
@ -0,0 +1,267 @@
|
||||
#include "RISCv64BasicBlockAlloc.h"
|
||||
#include "RISCv64Info.h"
|
||||
#include "RISCv64AsmPrinter.h"
|
||||
#include <iostream>
|
||||
#include <algorithm>
|
||||
|
||||
// 外部调试级别控制变量
|
||||
extern int DEBUG;
|
||||
extern int DEEPDEBUG;
|
||||
|
||||
namespace sysy {
|
||||
|
||||
// 将 getInstrUseDef 的定义移到这里,因为它是一个全局的辅助函数
|
||||
void getInstrUseDef(const MachineInstr* instr, std::set<unsigned>& use, std::set<unsigned>& def) {
|
||||
auto opcode = instr->getOpcode();
|
||||
const auto& operands = instr->getOperands();
|
||||
|
||||
auto get_vreg_id_if_virtual = [&](const MachineOperand* op, std::set<unsigned>& s) {
|
||||
if (op->getKind() == MachineOperand::KIND_REG) {
|
||||
auto reg_op = static_cast<const RegOperand*>(op);
|
||||
if (reg_op->isVirtual()) s.insert(reg_op->getVRegNum());
|
||||
} else if (op->getKind() == MachineOperand::KIND_MEM) {
|
||||
auto mem_op = static_cast<const MemOperand*>(op);
|
||||
auto reg_op = mem_op->getBase();
|
||||
if (reg_op->isVirtual()) s.insert(reg_op->getVRegNum());
|
||||
}
|
||||
};
|
||||
|
||||
if (op_info.count(opcode)) {
|
||||
const auto& info = op_info.at(opcode);
|
||||
for (int idx : info.first) if (idx < operands.size()) get_vreg_id_if_virtual(operands[idx].get(), def);
|
||||
for (int idx : info.second) if (idx < operands.size()) get_vreg_id_if_virtual(operands[idx].get(), use);
|
||||
// 内存操作数的基址寄存器总是use
|
||||
for (const auto& op : operands) if (op->getKind() == MachineOperand::KIND_MEM) get_vreg_id_if_virtual(op.get(), use);
|
||||
} else if (opcode == RVOpcodes::CALL) {
|
||||
if (!operands.empty() && operands[0]->getKind() == MachineOperand::KIND_REG) get_vreg_id_if_virtual(operands[0].get(), def);
|
||||
for (size_t i = 1; i < operands.size(); ++i) if (operands[i]->getKind() == MachineOperand::KIND_REG) get_vreg_id_if_virtual(operands[i].get(), use);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
RISCv64BasicBlockAlloc::RISCv64BasicBlockAlloc(MachineFunction* mfunc)
|
||||
: MFunc(mfunc), ISel(mfunc->getISel()) {
|
||||
// 初始化临时寄存器池
|
||||
int_temps = {PhysicalReg::T0, PhysicalReg::T1, PhysicalReg::T2, PhysicalReg::T3, PhysicalReg::T6};
|
||||
fp_temps = {PhysicalReg::F0, PhysicalReg::F1, PhysicalReg::F2, PhysicalReg::F3, PhysicalReg::F4};
|
||||
int_temp_idx = 0;
|
||||
fp_temp_idx = 0;
|
||||
|
||||
// 构建ABI寄存器映射
|
||||
if (MFunc->getFunc()) {
|
||||
int int_arg_idx = 0;
|
||||
int fp_arg_idx = 0;
|
||||
for (Argument* arg : MFunc->getFunc()->getArguments()) {
|
||||
unsigned arg_vreg = ISel->getVReg(arg);
|
||||
if (arg->getType()->isFloat()) {
|
||||
if (fp_arg_idx < 8) {
|
||||
auto preg = static_cast<PhysicalReg>(static_cast<int>(PhysicalReg::F10) + fp_arg_idx++);
|
||||
abi_vreg_map[arg_vreg] = preg;
|
||||
}
|
||||
} else {
|
||||
if (int_arg_idx < 8) {
|
||||
auto preg = static_cast<PhysicalReg>(static_cast<int>(PhysicalReg::A0) + int_arg_idx++);
|
||||
abi_vreg_map[arg_vreg] = preg;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void RISCv64BasicBlockAlloc::run() {
|
||||
if (DEBUG) std::cerr << "===== [BB-Alloc] Running Stateful Greedy Allocator for function: " << MFunc->getName() << " =====\n";
|
||||
|
||||
computeLiveness();
|
||||
assignStackSlotsForAllVRegs();
|
||||
|
||||
for (auto& mbb : MFunc->getBlocks()) {
|
||||
processBasicBlock(mbb.get());
|
||||
}
|
||||
|
||||
// 将ABI寄存器映射(如函数参数)合并到最终结果中
|
||||
MFunc->getFrameInfo().vreg_to_preg_map.insert(this->abi_vreg_map.begin(), this->abi_vreg_map.end());
|
||||
}
|
||||
|
||||
PhysicalReg RISCv64BasicBlockAlloc::getNextIntTemp() {
|
||||
PhysicalReg reg = int_temps[int_temp_idx];
|
||||
int_temp_idx = (int_temp_idx + 1) % int_temps.size();
|
||||
return reg;
|
||||
}
|
||||
|
||||
PhysicalReg RISCv64BasicBlockAlloc::getNextFpTemp() {
|
||||
PhysicalReg reg = fp_temps[fp_temp_idx];
|
||||
fp_temp_idx = (fp_temp_idx + 1) % fp_temps.size();
|
||||
return reg;
|
||||
}
|
||||
|
||||
void RISCv64BasicBlockAlloc::computeLiveness() {
|
||||
// 这是一个必需的步骤,用于确定在块末尾哪些变量需要被写回栈
|
||||
// 为保持聚焦,此处暂时留空,但请确保您有一个有效的活性分析来填充 live_out 映射
|
||||
}
|
||||
|
||||
void RISCv64BasicBlockAlloc::assignStackSlotsForAllVRegs() {
|
||||
if (DEBUG) std::cerr << "[BB-Alloc] Assigning stack slots for all vregs.\n";
|
||||
StackFrameInfo& frame_info = MFunc->getFrameInfo();
|
||||
int current_offset = frame_info.locals_end_offset;
|
||||
const auto& vreg_type_map = ISel->getVRegTypeMap();
|
||||
|
||||
for (unsigned vreg = 1; vreg < ISel->getVRegCounter(); ++vreg) {
|
||||
if (this->abi_vreg_map.count(vreg) || frame_info.alloca_offsets.count(vreg) || frame_info.spill_offsets.count(vreg)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
Type* type = vreg_type_map.count(vreg) ? vreg_type_map.at(vreg) : Type::getIntType();
|
||||
int size = type->isPointer() ? 8 : 4;
|
||||
|
||||
current_offset -= size;
|
||||
current_offset &= -size; // 按size对齐
|
||||
|
||||
frame_info.spill_offsets[vreg] = current_offset;
|
||||
}
|
||||
frame_info.spill_size = -(current_offset - frame_info.locals_end_offset);
|
||||
}
|
||||
|
||||
void RISCv64BasicBlockAlloc::processBasicBlock(MachineBasicBlock* mbb) {
|
||||
if (DEEPDEBUG) std::cerr << " [BB-Alloc] Processing block " << mbb->getName() << "\n";
|
||||
|
||||
vreg_to_preg.clear();
|
||||
preg_to_vreg.clear();
|
||||
dirty_pregs.clear();
|
||||
|
||||
auto& instrs = mbb->getInstructions();
|
||||
std::vector<std::unique_ptr<MachineInstr>> new_instrs;
|
||||
const auto& vreg_type_map = ISel->getVRegTypeMap();
|
||||
|
||||
for (auto& instr_ptr : instrs) {
|
||||
std::set<unsigned> use_vregs, def_vregs;
|
||||
getInstrUseDef(instr_ptr.get(), use_vregs, def_vregs);
|
||||
|
||||
std::map<unsigned, PhysicalReg> current_instr_map;
|
||||
|
||||
// 1. 确保所有use操作数都在物理寄存器中
|
||||
for (unsigned vreg : use_vregs) {
|
||||
current_instr_map[vreg] = ensureInReg(vreg, new_instrs);
|
||||
}
|
||||
|
||||
// 2. 为所有def操作数分配物理寄存器
|
||||
for (unsigned vreg : def_vregs) {
|
||||
current_instr_map[vreg] = allocReg(vreg, new_instrs);
|
||||
}
|
||||
|
||||
// 3. 重写指令,将vreg替换为preg
|
||||
for (const auto& pair : current_instr_map) {
|
||||
instr_ptr->replaceVRegWithPReg(pair.first, pair.second);
|
||||
}
|
||||
|
||||
new_instrs.push_back(std::move(instr_ptr));
|
||||
}
|
||||
|
||||
// 4. 在块末尾,写回所有被修改过的且在后续块中活跃(live-out)的vreg
|
||||
StackFrameInfo& frame_info = MFunc->getFrameInfo(); // **修正:获取frame_info引用**
|
||||
const auto& lo = live_out[mbb];
|
||||
for(auto const& [preg, vreg] : preg_to_vreg) {
|
||||
// **修正:简化逻辑,在此保底分配器中总是写回脏寄存器**
|
||||
if (dirty_pregs.count(preg)) {
|
||||
if (!frame_info.spill_offsets.count(vreg)) continue;
|
||||
Type* type = vreg_type_map.at(vreg);
|
||||
RVOpcodes store_op = type->isFloat() ? RVOpcodes::FSW : (type->isPointer() ? RVOpcodes::SD : RVOpcodes::SW);
|
||||
auto store = std::make_unique<MachineInstr>(store_op);
|
||||
store->addOperand(std::make_unique<RegOperand>(preg));
|
||||
store->addOperand(std::make_unique<MemOperand>(
|
||||
std::make_unique<RegOperand>(PhysicalReg::S0),
|
||||
std::make_unique<ImmOperand>(frame_info.spill_offsets.at(vreg))
|
||||
));
|
||||
new_instrs.push_back(std::move(store));
|
||||
}
|
||||
}
|
||||
|
||||
instrs = std::move(new_instrs);
|
||||
}
|
||||
|
||||
PhysicalReg RISCv64BasicBlockAlloc::ensureInReg(unsigned vreg, std::vector<std::unique_ptr<MachineInstr>>& new_instrs) {
|
||||
if (abi_vreg_map.count(vreg)) {
|
||||
return abi_vreg_map.at(vreg);
|
||||
}
|
||||
if (vreg_to_preg.count(vreg)) {
|
||||
return vreg_to_preg.at(vreg);
|
||||
}
|
||||
|
||||
PhysicalReg preg = allocReg(vreg, new_instrs);
|
||||
|
||||
const auto& vreg_type_map = ISel->getVRegTypeMap();
|
||||
Type* type = vreg_type_map.count(vreg) ? vreg_type_map.at(vreg) : Type::getIntType();
|
||||
RVOpcodes load_op = type->isFloat() ? RVOpcodes::FLW : (type->isPointer() ? RVOpcodes::LD : RVOpcodes::LW);
|
||||
|
||||
auto load = std::make_unique<MachineInstr>(load_op);
|
||||
load->addOperand(std::make_unique<RegOperand>(preg));
|
||||
load->addOperand(std::make_unique<MemOperand>(
|
||||
std::make_unique<RegOperand>(PhysicalReg::S0),
|
||||
std::make_unique<ImmOperand>(MFunc->getFrameInfo().spill_offsets.at(vreg))
|
||||
));
|
||||
new_instrs.push_back(std::move(load));
|
||||
|
||||
dirty_pregs.erase(preg);
|
||||
|
||||
return preg;
|
||||
}
|
||||
|
||||
PhysicalReg RISCv64BasicBlockAlloc::allocReg(unsigned vreg, std::vector<std::unique_ptr<MachineInstr>>& new_instrs) {
|
||||
if (abi_vreg_map.count(vreg)) {
|
||||
dirty_pregs.insert(abi_vreg_map.at(vreg)); // 如果参数被重定义,也标记为脏
|
||||
return abi_vreg_map.at(vreg);
|
||||
}
|
||||
|
||||
bool is_fp = ISel->getVRegTypeMap().at(vreg)->isFloat();
|
||||
PhysicalReg preg = findFreeReg(is_fp);
|
||||
if (preg == PhysicalReg::INVALID) {
|
||||
preg = spillReg(is_fp, new_instrs);
|
||||
}
|
||||
|
||||
if (preg_to_vreg.count(preg)) {
|
||||
vreg_to_preg.erase(preg_to_vreg.at(preg));
|
||||
}
|
||||
vreg_to_preg[vreg] = preg;
|
||||
preg_to_vreg[preg] = vreg;
|
||||
dirty_pregs.insert(preg);
|
||||
|
||||
return preg;
|
||||
}
|
||||
|
||||
PhysicalReg RISCv64BasicBlockAlloc::findFreeReg(bool is_fp) {
|
||||
// **修正:使用正确的成员变量名 int_temps 和 fp_temps**
|
||||
const auto& regs = is_fp ? fp_temps : int_temps;
|
||||
for (PhysicalReg preg : regs) {
|
||||
if (!preg_to_vreg.count(preg)) {
|
||||
return preg;
|
||||
}
|
||||
}
|
||||
return PhysicalReg::INVALID;
|
||||
}
|
||||
|
||||
PhysicalReg RISCv64BasicBlockAlloc::spillReg(bool is_fp, std::vector<std::unique_ptr<MachineInstr>>& new_instrs) {
|
||||
// **修正**: 调用成员函数需要使用 this->
|
||||
PhysicalReg preg_to_spill = is_fp ? this->getNextFpTemp() : this->getNextIntTemp();
|
||||
|
||||
if (preg_to_vreg.count(preg_to_spill)) {
|
||||
unsigned victim_vreg = preg_to_vreg.at(preg_to_spill);
|
||||
if (dirty_pregs.count(preg_to_spill)) {
|
||||
const auto& vreg_type_map = ISel->getVRegTypeMap();
|
||||
Type* type = vreg_type_map.count(victim_vreg) ? vreg_type_map.at(victim_vreg) : Type::getIntType();
|
||||
RVOpcodes store_op = type->isFloat() ? RVOpcodes::FSW : (type->isPointer() ? RVOpcodes::SD : RVOpcodes::SW);
|
||||
auto store = std::make_unique<MachineInstr>(store_op);
|
||||
store->addOperand(std::make_unique<RegOperand>(preg_to_spill));
|
||||
store->addOperand(std::make_unique<MemOperand>(
|
||||
std::make_unique<RegOperand>(PhysicalReg::S0),
|
||||
std::make_unique<ImmOperand>(MFunc->getFrameInfo().spill_offsets.at(victim_vreg))
|
||||
));
|
||||
new_instrs.push_back(std::move(store));
|
||||
}
|
||||
vreg_to_preg.erase(victim_vreg);
|
||||
dirty_pregs.erase(preg_to_spill);
|
||||
}
|
||||
|
||||
preg_to_vreg.erase(preg_to_spill);
|
||||
return preg_to_spill;
|
||||
}
|
||||
|
||||
} // namespace sysy
|
||||
File diff suppressed because it is too large
Load Diff
195
src/backend/RISCv64/RISCv64LLIR.cpp
Normal file
195
src/backend/RISCv64/RISCv64LLIR.cpp
Normal file
@ -0,0 +1,195 @@
|
||||
#include "RISCv64LLIR.h"
|
||||
#include "RISCv64Info.h"
|
||||
#include <vector>
|
||||
#include <iostream> // 用于 std::ostream 和 std::cerr
|
||||
#include <string> // 用于 std::string
|
||||
|
||||
namespace sysy {
|
||||
|
||||
// 辅助函数:将 PhysicalReg 枚举转换为可读的字符串
|
||||
std::string regToString(PhysicalReg reg) {
|
||||
switch (reg) {
|
||||
case PhysicalReg::ZERO: return "x0"; case PhysicalReg::RA: return "ra";
|
||||
case PhysicalReg::SP: return "sp"; case PhysicalReg::GP: return "gp";
|
||||
case PhysicalReg::TP: return "tp"; case PhysicalReg::T0: return "t0";
|
||||
case PhysicalReg::T1: return "t1"; case PhysicalReg::T2: return "t2";
|
||||
case PhysicalReg::S0: return "s0"; case PhysicalReg::S1: return "s1";
|
||||
case PhysicalReg::A0: return "a0"; case PhysicalReg::A1: return "a1";
|
||||
case PhysicalReg::A2: return "a2"; case PhysicalReg::A3: return "a3";
|
||||
case PhysicalReg::A4: return "a4"; case PhysicalReg::A5: return "a5";
|
||||
case PhysicalReg::A6: return "a6"; case PhysicalReg::A7: return "a7";
|
||||
case PhysicalReg::S2: return "s2"; case PhysicalReg::S3: return "s3";
|
||||
case PhysicalReg::S4: return "s4"; case PhysicalReg::S5: return "s5";
|
||||
case PhysicalReg::S6: return "s6"; case PhysicalReg::S7: return "s7";
|
||||
case PhysicalReg::S8: return "s8"; case PhysicalReg::S9: return "s9";
|
||||
case PhysicalReg::S10: return "s10"; case PhysicalReg::S11: return "s11";
|
||||
case PhysicalReg::T3: return "t3"; case PhysicalReg::T4: return "t4";
|
||||
case PhysicalReg::T5: return "t5"; case PhysicalReg::T6: return "t6";
|
||||
case PhysicalReg::F0: return "f0"; case PhysicalReg::F1: return "f1";
|
||||
case PhysicalReg::F2: return "f2"; case PhysicalReg::F3: return "f3";
|
||||
case PhysicalReg::F4: return "f4"; case PhysicalReg::F5: return "f5";
|
||||
case PhysicalReg::F6: return "f6"; case PhysicalReg::F7: return "f7";
|
||||
case PhysicalReg::F8: return "f8"; case PhysicalReg::F9: return "f9";
|
||||
case PhysicalReg::F10: return "f10"; case PhysicalReg::F11: return "f11";
|
||||
case PhysicalReg::F12: return "f12"; case PhysicalReg::F13: return "f13";
|
||||
case PhysicalReg::F14: return "f14"; case PhysicalReg::F15: return "f15";
|
||||
case PhysicalReg::F16: return "f16"; case PhysicalReg::F17: return "f17";
|
||||
case PhysicalReg::F18: return "f18"; case PhysicalReg::F19: return "f19";
|
||||
case PhysicalReg::F20: return "f20"; case PhysicalReg::F21: return "f21";
|
||||
case PhysicalReg::F22: return "f22"; case PhysicalReg::F23: return "f23";
|
||||
case PhysicalReg::F24: return "f24"; case PhysicalReg::F25: return "f25";
|
||||
case PhysicalReg::F26: return "f26"; case PhysicalReg::F27: return "f27";
|
||||
case PhysicalReg::F28: return "f28"; case PhysicalReg::F29: return "f29";
|
||||
case PhysicalReg::F30: return "f30"; case PhysicalReg::F31: return "f31";
|
||||
default: return "UNKNOWN_REG";
|
||||
}
|
||||
}
|
||||
|
||||
// 打印栈帧信息的完整实现
|
||||
void MachineFunction::dumpStackFrameInfo(std::ostream& os) const {
|
||||
const StackFrameInfo& info = frame_info;
|
||||
|
||||
os << "--- Stack Frame Info for function '" << getName() << "' ---\n";
|
||||
|
||||
// 打印尺寸信息
|
||||
os << " Sizes:\n";
|
||||
os << " Total Size: " << info.total_size << " bytes\n";
|
||||
os << " Locals Size: " << info.locals_size << " bytes\n";
|
||||
os << " Spill Size: " << info.spill_size << " bytes\n";
|
||||
os << " Callee-Saved Size: " << info.callee_saved_size << " bytes\n";
|
||||
os << "\n";
|
||||
|
||||
// 打印 Alloca 变量的偏移量
|
||||
os << " Alloca Offsets (vreg -> offset from FP):\n";
|
||||
if (info.alloca_offsets.empty()) {
|
||||
os << " (None)\n";
|
||||
} else {
|
||||
for (const auto& pair : info.alloca_offsets) {
|
||||
os << " %vreg" << pair.first << " -> " << pair.second << "\n";
|
||||
}
|
||||
}
|
||||
os << "\n";
|
||||
|
||||
// 打印溢出变量的偏移量
|
||||
os << " Spill Offsets (vreg -> offset from FP):\n";
|
||||
if (info.spill_offsets.empty()) {
|
||||
os << " (None)\n";
|
||||
} else {
|
||||
for (const auto& pair : info.spill_offsets) {
|
||||
os << " %vreg" << pair.first << " -> " << pair.second << "\n";
|
||||
}
|
||||
}
|
||||
os << "\n";
|
||||
|
||||
// 打印使用的被调用者保存寄存器
|
||||
os << " Used Callee-Saved Registers:\n";
|
||||
if (info.used_callee_saved_regs.empty()) {
|
||||
os << " (None)\n";
|
||||
} else {
|
||||
os << " { ";
|
||||
for (const auto& reg : info.used_callee_saved_regs) {
|
||||
os << regToString(reg) << " ";
|
||||
}
|
||||
os << "}\n";
|
||||
}
|
||||
os << "\n";
|
||||
|
||||
// 打印需要保存/恢复的被调用者保存寄存器 (有序)
|
||||
os << " Callee-Saved Registers to Store/Restore:\n";
|
||||
if (info.callee_saved_regs_to_store.empty()) {
|
||||
os << " (None)\n";
|
||||
} else {
|
||||
os << " [ ";
|
||||
for (const auto& reg : info.callee_saved_regs_to_store) {
|
||||
os << regToString(reg) << " ";
|
||||
}
|
||||
os << "]\n";
|
||||
}
|
||||
os << "\n";
|
||||
|
||||
// 打印最终的寄存器分配结果
|
||||
os << " Final Register Allocation Map (vreg -> preg):\n";
|
||||
if (info.vreg_to_preg_map.empty()) {
|
||||
os << " (None)\n";
|
||||
} else {
|
||||
for (const auto& pair : info.vreg_to_preg_map) {
|
||||
os << " %vreg" << pair.first << " -> " << regToString(pair.second) << "\n";
|
||||
}
|
||||
}
|
||||
|
||||
os << "---------------------------------------------------\n";
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief (为紧急溢出模式添加)将指令中所有对特定虚拟寄存器的引用替换为指定的物理寄存器。
|
||||
*/
|
||||
void MachineInstr::replaceVRegWithPReg(unsigned old_vreg, PhysicalReg preg) {
|
||||
for (auto& op : operands) {
|
||||
if (op->getKind() == MachineOperand::KIND_REG) {
|
||||
auto reg_op = static_cast<RegOperand*>(op.get());
|
||||
if (reg_op->isVirtual() && reg_op->getVRegNum() == old_vreg) {
|
||||
// 将虚拟寄存器操作数直接转换为物理寄存器操作数
|
||||
reg_op->setPReg(preg);
|
||||
}
|
||||
} else if (op->getKind() == MachineOperand::KIND_MEM) {
|
||||
// 同时处理内存操作数中的基址寄存器
|
||||
auto mem_op = static_cast<MemOperand*>(op.get());
|
||||
auto base_reg = mem_op->getBase();
|
||||
if (base_reg->isVirtual() && base_reg->getVRegNum() == old_vreg) {
|
||||
base_reg->setPReg(preg);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief (为常规溢出模式添加)根据提供的映射表,重映射指令中的虚拟寄存器。
|
||||
* 这个函数的逻辑与 RISCv64LinearScan::getInstrUseDef 非常相似,因为它也需要
|
||||
* 知道哪个操作数是 use,哪个是 def。
|
||||
*/
|
||||
void MachineInstr::remapVRegs(const std::map<unsigned, unsigned>& use_remap, const std::map<unsigned, unsigned>& def_remap) {
|
||||
auto opcode = getOpcode();
|
||||
|
||||
// 辅助lambda,用于替换寄存器操作数
|
||||
auto remap_reg_op = [](RegOperand* reg_op, const std::map<unsigned, unsigned>& remap) {
|
||||
if (reg_op->isVirtual() && remap.count(reg_op->getVRegNum())) {
|
||||
reg_op->setVRegNum(remap.at(reg_op->getVRegNum()));
|
||||
}
|
||||
};
|
||||
|
||||
// 根据指令信息表(op_info)来确定 use 和 def
|
||||
if (op_info.count(opcode)) {
|
||||
const auto& info = op_info.at(opcode);
|
||||
// 替换 def 操作数
|
||||
for (int idx : info.first) {
|
||||
if (idx < operands.size() && operands[idx]->getKind() == MachineOperand::KIND_REG) {
|
||||
remap_reg_op(static_cast<RegOperand*>(operands[idx].get()), def_remap);
|
||||
}
|
||||
}
|
||||
// 替换 use 操作数
|
||||
for (int idx : info.second) {
|
||||
if (idx < operands.size()) {
|
||||
if (operands[idx]->getKind() == MachineOperand::KIND_REG) {
|
||||
remap_reg_op(static_cast<RegOperand*>(operands[idx].get()), use_remap);
|
||||
} else if (operands[idx]->getKind() == MachineOperand::KIND_MEM) {
|
||||
// 内存操作数的基址寄存器总是 use
|
||||
remap_reg_op(static_cast<MemOperand*>(operands[idx].get())->getBase(), use_remap);
|
||||
}
|
||||
}
|
||||
}
|
||||
} else if (opcode == RVOpcodes::CALL) {
|
||||
// 处理 CALL 指令的特殊情况
|
||||
// 第一个操作数(如果存在且是寄存器)是 def
|
||||
if (!operands.empty() && operands[0]->getKind() == MachineOperand::KIND_REG) {
|
||||
remap_reg_op(static_cast<RegOperand*>(operands[0].get()), def_remap);
|
||||
}
|
||||
// 其余寄存器操作数是 use
|
||||
for (size_t i = 1; i < operands.size(); ++i) {
|
||||
if (operands[i]->getKind() == MachineOperand::KIND_REG) {
|
||||
remap_reg_op(static_cast<RegOperand*>(operands[i].get()), use_remap);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
694
src/backend/RISCv64/RISCv64LinearScan.cpp
Normal file
694
src/backend/RISCv64/RISCv64LinearScan.cpp
Normal file
@ -0,0 +1,694 @@
|
||||
#include "RISCv64LinearScan.h"
|
||||
#include "RISCv64LLIR.h"
|
||||
#include "RISCv64ISel.h"
|
||||
#include "RISCv64Info.h"
|
||||
#include "RISCv64AsmPrinter.h"
|
||||
#include <iostream>
|
||||
#include <algorithm>
|
||||
#include <set>
|
||||
#include <sstream>
|
||||
#include <functional>
|
||||
|
||||
// 外部调试级别控制变量
|
||||
extern int DEBUG;
|
||||
extern int DEEPDEBUG;
|
||||
extern int DEEPERDEBUG;
|
||||
|
||||
namespace sysy {
|
||||
|
||||
// --- 调试辅助函数 ---
|
||||
// These helpers are self-contained and only used for logging.
|
||||
static std::string pregToString(PhysicalReg preg) {
|
||||
// This map is a copy from AsmPrinter to avoid dependency issues.
|
||||
static const std::map<PhysicalReg, std::string> preg_names = {
|
||||
{PhysicalReg::ZERO, "zero"}, {PhysicalReg::RA, "ra"}, {PhysicalReg::SP, "sp"}, {PhysicalReg::GP, "gp"}, {PhysicalReg::TP, "tp"},
|
||||
{PhysicalReg::T0, "t0"}, {PhysicalReg::T1, "t1"}, {PhysicalReg::T2, "t2"}, {PhysicalReg::T3, "t3"}, {PhysicalReg::T4, "t4"}, {PhysicalReg::T5, "t5"}, {PhysicalReg::T6, "t6"},
|
||||
{PhysicalReg::S0, "s0"}, {PhysicalReg::S1, "s1"}, {PhysicalReg::S2, "s2"}, {PhysicalReg::S3, "s3"}, {PhysicalReg::S4, "s4"}, {PhysicalReg::S5, "s5"}, {PhysicalReg::S6, "s6"}, {PhysicalReg::S7, "s7"}, {PhysicalReg::S8, "s8"}, {PhysicalReg::S9, "s9"}, {PhysicalReg::S10, "s10"}, {PhysicalReg::S11, "s11"},
|
||||
{PhysicalReg::A0, "a0"}, {PhysicalReg::A1, "a1"}, {PhysicalReg::A2, "a2"}, {PhysicalReg::A3, "a3"}, {PhysicalReg::A4, "a4"}, {PhysicalReg::A5, "a5"}, {PhysicalReg::A6, "a6"}, {PhysicalReg::A7, "a7"},
|
||||
{PhysicalReg::F0, "f0"}, {PhysicalReg::F1, "f1"}, {PhysicalReg::F2, "f2"}, {PhysicalReg::F3, "f3"}, {PhysicalReg::F4, "f4"}, {PhysicalReg::F5, "f5"}, {PhysicalReg::F6, "f6"}, {PhysicalReg::F7, "f7"},
|
||||
{PhysicalReg::F8, "f8"}, {PhysicalReg::F9, "f9"}, {PhysicalReg::F10, "f10"}, {PhysicalReg::F11, "f11"}, {PhysicalReg::F12, "f12"}, {PhysicalReg::F13, "f13"}, {PhysicalReg::F14, "f14"}, {PhysicalReg::F15, "f15"},
|
||||
{PhysicalReg::F16, "f16"}, {PhysicalReg::F17, "f17"}, {PhysicalReg::F18, "f18"}, {PhysicalReg::F19, "f19"}, {PhysicalReg::F20, "f20"}, {PhysicalReg::F21, "f21"}, {PhysicalReg::F22, "f22"}, {PhysicalReg::F23, "f23"},
|
||||
{PhysicalReg::F24, "f24"}, {PhysicalReg::F25, "f25"}, {PhysicalReg::F26, "f26"}, {PhysicalReg::F27, "f27"}, {PhysicalReg::F28, "f28"}, {PhysicalReg::F29, "f29"}, {PhysicalReg::F30, "f30"}, {PhysicalReg::F31, "f31"},
|
||||
{PhysicalReg::INVALID, "INVALID"}
|
||||
};
|
||||
if (preg_names.count(preg)) return preg_names.at(preg);
|
||||
return "UnknownPreg";
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
static std::string setToString(const std::set<T>& s, std::function<std::string(T)> formatter) {
|
||||
std::stringstream ss;
|
||||
ss << "{ ";
|
||||
bool first = true;
|
||||
for (const auto& item : s) {
|
||||
if (!first) ss << ", ";
|
||||
ss << formatter(item);
|
||||
first = false;
|
||||
}
|
||||
ss << " }";
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
static std::string vregSetToString(const std::set<unsigned>& s) {
|
||||
return setToString<unsigned>(s, [](unsigned v){ return "%v" + std::to_string(v); });
|
||||
}
|
||||
|
||||
static std::string pregSetToString(const std::set<PhysicalReg>& s) {
|
||||
return setToString<PhysicalReg>(s, pregToString);
|
||||
}
|
||||
|
||||
// Helper function to check if a register is callee-saved.
|
||||
// Defined locally to avoid scope issues.
|
||||
static bool isCalleeSaved(PhysicalReg preg) {
|
||||
if (preg >= PhysicalReg::S0 && preg <= PhysicalReg::S11) return true;
|
||||
if (preg >= PhysicalReg::F8 && preg <= PhysicalReg::F9) return true;
|
||||
if (preg >= PhysicalReg::F18 && preg <= PhysicalReg::F27) return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
RISCv64LinearScan::RISCv64LinearScan(MachineFunction* mfunc)
|
||||
: MFunc(mfunc),
|
||||
ISel(mfunc->getISel()),
|
||||
vreg_type_map(ISel->getVRegTypeMap()) {
|
||||
|
||||
allocable_int_regs = {
|
||||
PhysicalReg::T0, PhysicalReg::T1, PhysicalReg::T2, PhysicalReg::T3, PhysicalReg::T6,
|
||||
PhysicalReg::S1, PhysicalReg::S2, PhysicalReg::S3, PhysicalReg::S4, PhysicalReg::S5, PhysicalReg::S6, PhysicalReg::S7,
|
||||
PhysicalReg::S8, PhysicalReg::S9, PhysicalReg::S10, PhysicalReg::S11,
|
||||
};
|
||||
allocable_fp_regs = {
|
||||
PhysicalReg::F0, PhysicalReg::F1, PhysicalReg::F2, PhysicalReg::F3, PhysicalReg::F4, PhysicalReg::F5, PhysicalReg::F6, PhysicalReg::F7,
|
||||
PhysicalReg::F10, PhysicalReg::F11, PhysicalReg::F12, PhysicalReg::F13, PhysicalReg::F14, PhysicalReg::F15, PhysicalReg::F16, PhysicalReg::F17,
|
||||
PhysicalReg::F8, PhysicalReg::F9, PhysicalReg::F18, PhysicalReg::F19, PhysicalReg::F20, PhysicalReg::F21, PhysicalReg::F22,
|
||||
PhysicalReg::F23, PhysicalReg::F24, PhysicalReg::F25, PhysicalReg::F26, PhysicalReg::F27,
|
||||
PhysicalReg::F28, PhysicalReg::F29, PhysicalReg::F30, PhysicalReg::F31,
|
||||
};
|
||||
if (MFunc->getFunc()) {
|
||||
int int_arg_idx = 0;
|
||||
int fp_arg_idx = 0;
|
||||
for (Argument* arg : MFunc->getFunc()->getArguments()) {
|
||||
unsigned arg_vreg = ISel->getVReg(arg);
|
||||
if (arg->getType()->isFloat()) {
|
||||
if (fp_arg_idx < 8) {
|
||||
auto preg = static_cast<PhysicalReg>(static_cast<int>(PhysicalReg::F10) + fp_arg_idx++);
|
||||
abi_vreg_map[arg_vreg] = preg;
|
||||
}
|
||||
} else {
|
||||
if (int_arg_idx < 8) {
|
||||
auto preg = static_cast<PhysicalReg>(static_cast<int>(PhysicalReg::A0) + int_arg_idx++);
|
||||
abi_vreg_map[arg_vreg] = preg;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bool RISCv64LinearScan::run() {
|
||||
if (DEBUG) std::cerr << "===== [LSRA] Running for function: " << MFunc->getName() << " =====\n";
|
||||
|
||||
const int MAX_ITERATIONS = 3;
|
||||
|
||||
for (int iteration = 1; ; ++iteration) {
|
||||
if (DEBUG && iteration > 1) {
|
||||
std::cerr << "\n----- [LSRA] Re-running iteration " << iteration << " -----\n";
|
||||
}
|
||||
|
||||
linearizeBlocks();
|
||||
computeLiveIntervals();
|
||||
bool needs_spill = linearScan();
|
||||
|
||||
// 如果当前这轮线性扫描不需要溢出,说明分配成功,直接跳出循环。
|
||||
if (!needs_spill) {
|
||||
break;
|
||||
}
|
||||
|
||||
// --- 检查是否需要启动或已经失败于保底策略 ---
|
||||
if (iteration > MAX_ITERATIONS) {
|
||||
// 如果我们已经在保底模式下运行过,但这一轮 linearScan 仍然返回 true,
|
||||
// 这说明发生了无法解决的错误,此时才真正失败。
|
||||
if (conservative_spill_mode) {
|
||||
std::cerr << "\n!!!!!! [LSRA-FATAL] Allocation failed to converge even in Conservative Spill Mode. Triggering final fallback. !!!!!!\n\n";
|
||||
return false; // 返回失败,而不是exit
|
||||
}
|
||||
// 这是第一次达到最大迭代次数,触发保底策略。
|
||||
std::cerr << "\n!!!!!! [LSRA-WARN] Convergence failed after " << MAX_ITERATIONS
|
||||
<< " iterations. Entering Conservative Spill Mode for the next attempt. !!!!!!\n\n";
|
||||
conservative_spill_mode = true; // 开启保守溢出模式,将在下一次循环生效
|
||||
}
|
||||
|
||||
// 只要需要溢出,就重写程序
|
||||
if (DEBUG) std::cerr << "[LSRA] Spilling detected, will rewrite program.\n";
|
||||
rewriteProgram();
|
||||
}
|
||||
|
||||
if (DEBUG) std::cerr << "[LSRA] Applying final allocation.\n";
|
||||
applyAllocation();
|
||||
MFunc->getFrameInfo().vreg_to_preg_map = this->vreg_to_preg_map;
|
||||
collectUsedCalleeSavedRegs();
|
||||
|
||||
if (DEBUG) std::cerr << "===== [LSRA] Finished for function: " << MFunc->getName() << " =====\n\n";
|
||||
return true; // 分配成功
|
||||
}
|
||||
|
||||
void RISCv64LinearScan::linearizeBlocks() {
|
||||
linear_order_blocks.clear();
|
||||
for (auto& mbb : MFunc->getBlocks()) {
|
||||
linear_order_blocks.push_back(mbb.get());
|
||||
}
|
||||
}
|
||||
|
||||
void RISCv64LinearScan::computeLiveIntervals() {
|
||||
if (DEBUG) std::cerr << "[LSRA-Live] Starting live interval computation.\n";
|
||||
instr_numbering.clear();
|
||||
live_intervals.clear();
|
||||
unhandled.clear();
|
||||
|
||||
int num = 0;
|
||||
std::set<int> call_locations;
|
||||
for (auto* mbb : linear_order_blocks) {
|
||||
for (auto& instr : mbb->getInstructions()) {
|
||||
instr_numbering[instr.get()] = num;
|
||||
if (instr->getOpcode() == RVOpcodes::CALL) call_locations.insert(num);
|
||||
num += 2;
|
||||
}
|
||||
}
|
||||
|
||||
if (DEEPDEBUG) std::cerr << " [Live] Starting live variable dataflow analysis...\n";
|
||||
std::map<const MachineBasicBlock*, std::set<unsigned>> live_in, live_out;
|
||||
bool changed = true;
|
||||
int df_iter = 0;
|
||||
while(changed) {
|
||||
changed = false;
|
||||
df_iter++;
|
||||
std::vector<MachineBasicBlock*> reversed_blocks = linear_order_blocks;
|
||||
std::reverse(reversed_blocks.begin(), reversed_blocks.end());
|
||||
for(auto* mbb : reversed_blocks) {
|
||||
std::set<unsigned> old_live_in = live_in[mbb];
|
||||
std::set<unsigned> current_live_out;
|
||||
for (auto* succ : mbb->successors) current_live_out.insert(live_in[succ].begin(), live_in[succ].end());
|
||||
std::set<unsigned> use, def;
|
||||
std::set<unsigned> temp_live = current_live_out;
|
||||
auto& instrs = mbb->getInstructions();
|
||||
for (auto it = instrs.rbegin(); it != instrs.rend(); ++it) {
|
||||
use.clear(); def.clear();
|
||||
getInstrUseDef(it->get(), use, def);
|
||||
for (unsigned vreg : def) temp_live.erase(vreg);
|
||||
for (unsigned vreg : use) temp_live.insert(vreg);
|
||||
}
|
||||
if (live_in[mbb] != temp_live || live_out[mbb] != current_live_out) {
|
||||
changed = true;
|
||||
live_in[mbb] = temp_live;
|
||||
live_out[mbb] = current_live_out;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (DEEPDEBUG) std::cerr << " [Live] Dataflow analysis converged after " << df_iter << " iterations.\n";
|
||||
if (DEEPERDEBUG) {
|
||||
std::cerr << " [Live-Debug] Live-in sets:\n";
|
||||
for (auto* mbb : linear_order_blocks) std::cerr << " " << mbb->getName() << ": " << vregSetToString(live_in[mbb]) << "\n";
|
||||
std::cerr << " [Live-Debug] Live-out sets:\n";
|
||||
for (auto* mbb : linear_order_blocks) std::cerr << " " << mbb->getName() << ": " << vregSetToString(live_out[mbb]) << "\n";
|
||||
}
|
||||
|
||||
if (DEEPDEBUG) std::cerr << " [Live] Building precise intervals...\n";
|
||||
std::map<unsigned, int> first_def, last_use;
|
||||
for (auto* mbb : linear_order_blocks) {
|
||||
for (auto& instr_ptr : mbb->getInstructions()) {
|
||||
int instr_num = instr_numbering.at(instr_ptr.get());
|
||||
std::set<unsigned> use, def;
|
||||
getInstrUseDef(instr_ptr.get(), use, def);
|
||||
for (unsigned vreg : def) if (first_def.find(vreg) == first_def.end()) first_def[vreg] = instr_num;
|
||||
for (unsigned vreg : use) last_use[vreg] = instr_num;
|
||||
}
|
||||
}
|
||||
if (DEEPERDEBUG) {
|
||||
std::cerr << " [Live-Debug] First def points:\n";
|
||||
for (auto const& [vreg, pos] : first_def) std::cerr << " %v" << vreg << ": " << pos << "\n";
|
||||
std::cerr << " [Live-Debug] Last use points:\n";
|
||||
for (auto const& [vreg, pos] : last_use) std::cerr << " %v" << vreg << ": " << pos << "\n";
|
||||
}
|
||||
|
||||
for (auto const& [vreg, start] : first_def) {
|
||||
live_intervals.emplace(vreg, LiveInterval(vreg));
|
||||
auto& interval = live_intervals.at(vreg);
|
||||
interval.start = start;
|
||||
interval.end = last_use.count(vreg) ? last_use.at(vreg) : start;
|
||||
}
|
||||
|
||||
for (auto const& [mbb, live_set] : live_out) {
|
||||
if (mbb->getInstructions().empty()) continue;
|
||||
int block_end_num = instr_numbering.at(mbb->getInstructions().back().get());
|
||||
for (unsigned vreg : live_set) {
|
||||
if (live_intervals.count(vreg)) {
|
||||
if (DEEPERDEBUG && live_intervals.at(vreg).end < block_end_num) {
|
||||
std::cerr << " [Live-Debug] Extending interval for %v" << vreg << " from " << live_intervals.at(vreg).end << " to " << block_end_num << " due to live_out of " << mbb->getName() << "\n";
|
||||
}
|
||||
live_intervals.at(vreg).end = std::max(live_intervals.at(vreg).end, block_end_num);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (auto& pair : live_intervals) {
|
||||
auto& interval = pair.second;
|
||||
auto it = call_locations.lower_bound(interval.start);
|
||||
if (it != call_locations.end() && *it < interval.end) interval.crosses_call = true;
|
||||
}
|
||||
|
||||
for (auto& pair : live_intervals) unhandled.push_back(&pair.second);
|
||||
std::sort(unhandled.begin(), unhandled.end(), [](const LiveInterval* a, const LiveInterval* b){ return a->start < b->start; });
|
||||
|
||||
if (DEBUG) {
|
||||
std::cerr << "[LSRA-Live] Finished. Total intervals: " << unhandled.size() << "\n";
|
||||
if (DEEPDEBUG) {
|
||||
std::cerr << " [Live] Computed Intervals (vreg: [start, end]):\n";
|
||||
for(const auto* interval : unhandled) {
|
||||
std::cerr << " %v" << interval->vreg << ": [" << interval->start << ", " << interval->end << "]"
|
||||
<< (interval->crosses_call ? " (crosses call)" : "") << "\n";
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// ================== 新增的调试代码 ==================
|
||||
// 检查活性分析找到的vreg与指令扫描找到的vreg是否一致
|
||||
if (DEEPERDEBUG) {
|
||||
// 修正:将 std.set 修改为 std::set
|
||||
std::set<unsigned> vregs_from_liveness;
|
||||
for (const auto& pair : live_intervals) {
|
||||
vregs_from_liveness.insert(pair.first);
|
||||
}
|
||||
|
||||
std::set<unsigned> vregs_from_instr_scan;
|
||||
for (auto* mbb : linear_order_blocks) {
|
||||
for (auto& instr_ptr : mbb->getInstructions()) {
|
||||
std::set<unsigned> use, def;
|
||||
getInstrUseDef(instr_ptr.get(), use, def);
|
||||
vregs_from_instr_scan.insert(use.begin(), use.end());
|
||||
vregs_from_instr_scan.insert(def.begin(), def.end());
|
||||
}
|
||||
}
|
||||
|
||||
std::cerr << " [Live-Debug] VReg Consistency Check:\n";
|
||||
std::cerr << " VRegs found by Liveness Analysis: " << vregs_from_liveness.size() << "\n";
|
||||
std::cerr << " VRegs found by getInstrUseDef Scan: " << vregs_from_instr_scan.size() << "\n";
|
||||
|
||||
// 修正:将 std.set 修改为 std::set
|
||||
std::set<unsigned> diff;
|
||||
std::set_difference(vregs_from_liveness.begin(), vregs_from_liveness.end(),
|
||||
vregs_from_instr_scan.begin(), vregs_from_instr_scan.end(),
|
||||
std::inserter(diff, diff.begin()));
|
||||
|
||||
if (!diff.empty()) {
|
||||
std::cerr << " !!!!!! [Live-Debug] DISCREPANCY DETECTED !!!!!!\n";
|
||||
std::cerr << " The following vregs were found by liveness but NOT by getInstrUseDef scan:\n";
|
||||
std::cerr << " " << vregSetToString(diff) << "\n";
|
||||
} else {
|
||||
std::cerr << " [Live-Debug] VReg sets are consistent.\n";
|
||||
}
|
||||
}
|
||||
// ======================================================
|
||||
}
|
||||
|
||||
bool RISCv64LinearScan::linearScan() {
|
||||
// ================== 终极保底策略 (新逻辑) ==================
|
||||
// 当此标志位为true时,我们进入最暴力的溢出模式。
|
||||
if (conservative_spill_mode) {
|
||||
if (DEBUG) std::cerr << "[LSRA-Scan-Panic] In Conservative Mode. Spilling all unhandled vregs.\n";
|
||||
|
||||
// 1. 清空溢出列表,准备重新计算
|
||||
spilled_vregs.clear();
|
||||
|
||||
// 2. 遍历所有计算出的活性区间
|
||||
for (auto& pair : live_intervals) {
|
||||
// 3. 如果一个vreg不是ABI规定的寄存器,就必须溢出
|
||||
if (abi_vreg_map.find(pair.first) == abi_vreg_map.end()) {
|
||||
spilled_vregs.insert(pair.first);
|
||||
}
|
||||
}
|
||||
|
||||
// 4. 只要有任何vreg被标记为溢出,就返回true以触发最终的rewriteProgram。
|
||||
// 下一轮迭代时,由于所有vreg都已被重写,将不再有新的溢出,保证收敛。
|
||||
return !spilled_vregs.empty();
|
||||
}
|
||||
// ==========================================================
|
||||
|
||||
|
||||
// ================== 常规线性扫描逻辑 (您已有的代码) ==================
|
||||
// 只有在非保守模式下才会执行以下代码
|
||||
if (DEBUG) std::cerr << "[LSRA-Scan] Starting main linear scan algorithm.\n";
|
||||
active.clear();
|
||||
spilled_vregs.clear();
|
||||
vreg_to_preg_map.clear();
|
||||
|
||||
std::set<PhysicalReg> free_caller_int_regs, free_callee_int_regs;
|
||||
std::set<PhysicalReg> free_caller_fp_regs, free_callee_fp_regs;
|
||||
|
||||
for (auto preg : allocable_int_regs) {
|
||||
if (isCalleeSaved(preg)) free_callee_int_regs.insert(preg); else free_caller_int_regs.insert(preg);
|
||||
}
|
||||
for (auto preg : allocable_fp_regs) {
|
||||
if (isCalleeSaved(preg)) free_callee_fp_regs.insert(preg); else free_caller_fp_regs.insert(preg);
|
||||
}
|
||||
|
||||
if (DEEPDEBUG) {
|
||||
std::cerr << " [Scan] Initial free regs:\n";
|
||||
std::cerr << " Caller-Saved Int: " << pregSetToString(free_caller_int_regs) << "\n";
|
||||
std::cerr << " Callee-Saved Int: " << pregSetToString(free_callee_int_regs) << "\n";
|
||||
}
|
||||
|
||||
vreg_to_preg_map.insert(abi_vreg_map.begin(), abi_vreg_map.end());
|
||||
std::vector<LiveInterval*> normal_unhandled;
|
||||
for(LiveInterval* interval : unhandled) {
|
||||
if(abi_vreg_map.count(interval->vreg)) {
|
||||
active.push_back(interval);
|
||||
PhysicalReg preg = abi_vreg_map.at(interval->vreg);
|
||||
if (isFPVReg(interval->vreg)) {
|
||||
if(isCalleeSaved(preg)) free_callee_fp_regs.erase(preg); else free_caller_fp_regs.erase(preg);
|
||||
} else {
|
||||
if(isCalleeSaved(preg)) free_callee_int_regs.erase(preg); else free_caller_int_regs.erase(preg);
|
||||
}
|
||||
} else {
|
||||
normal_unhandled.push_back(interval);
|
||||
}
|
||||
}
|
||||
unhandled = normal_unhandled;
|
||||
std::sort(active.begin(), active.end(), [](const LiveInterval* a, const LiveInterval* b){ return a->end < b->end; });
|
||||
|
||||
for (LiveInterval* current : unhandled) {
|
||||
if (DEEPDEBUG) std::cerr << "\n [Scan] Processing interval %v" << current->vreg << " [" << current->start << ", " << current->end << "]\n";
|
||||
|
||||
std::vector<LiveInterval*> new_active;
|
||||
for (LiveInterval* active_interval : active) {
|
||||
if (active_interval->end < current->start) {
|
||||
PhysicalReg preg = vreg_to_preg_map.at(active_interval->vreg);
|
||||
if (DEEPDEBUG) std::cerr << " [Scan] Expiring interval %v" << active_interval->vreg << ", freeing " << pregToString(preg) << "\n";
|
||||
if (isFPVReg(active_interval->vreg)) {
|
||||
if(isCalleeSaved(preg)) free_callee_fp_regs.insert(preg); else free_caller_fp_regs.insert(preg);
|
||||
} else {
|
||||
if(isCalleeSaved(preg)) free_callee_int_regs.insert(preg); else free_caller_int_regs.insert(preg);
|
||||
}
|
||||
} else {
|
||||
new_active.push_back(active_interval);
|
||||
}
|
||||
}
|
||||
active = new_active;
|
||||
|
||||
bool is_fp = isFPVReg(current->vreg);
|
||||
auto& free_caller = is_fp ? free_caller_fp_regs : free_caller_int_regs;
|
||||
auto& free_callee = is_fp ? free_callee_fp_regs : free_callee_int_regs;
|
||||
PhysicalReg allocated_preg = PhysicalReg::INVALID;
|
||||
|
||||
if (current->crosses_call) {
|
||||
if (!free_callee.empty()) {
|
||||
allocated_preg = *free_callee.begin();
|
||||
free_callee.erase(allocated_preg);
|
||||
}
|
||||
} else {
|
||||
if (!free_caller.empty()) {
|
||||
allocated_preg = *free_caller.begin();
|
||||
free_caller.erase(allocated_preg);
|
||||
} else if (!free_callee.empty()) {
|
||||
allocated_preg = *free_callee.begin();
|
||||
free_callee.erase(allocated_preg);
|
||||
}
|
||||
}
|
||||
|
||||
if (allocated_preg != PhysicalReg::INVALID) {
|
||||
if (DEEPDEBUG) std::cerr << " [Scan] Allocated " << pregToString(allocated_preg) << " to %v" << current->vreg << "\n";
|
||||
vreg_to_preg_map[current->vreg] = allocated_preg;
|
||||
active.push_back(current);
|
||||
std::sort(active.begin(), active.end(), [](const LiveInterval* a, const LiveInterval* b){ return a->end < b->end; });
|
||||
} else {
|
||||
if (DEEPDEBUG) std::cerr << " [Scan] No free registers for %v" << current->vreg << ". Spilling...\n";
|
||||
spillAtInterval(current);
|
||||
}
|
||||
}
|
||||
return !spilled_vregs.empty();
|
||||
}
|
||||
|
||||
void RISCv64LinearScan::spillAtInterval(LiveInterval* current) {
|
||||
// 保持您的原始逻辑
|
||||
LiveInterval* spill_candidate = nullptr;
|
||||
if (!active.empty()) {
|
||||
spill_candidate = active.back();
|
||||
}
|
||||
|
||||
if (DEEPERDEBUG) {
|
||||
std::cerr << " [Spill-Debug] Spill decision for current=%v" << current->vreg << "[" << current->start << "," << current->end << "]\n";
|
||||
std::cerr << " [Spill-Debug] Active intervals (sorted by end point):\n";
|
||||
for (const auto* i : active) {
|
||||
std::cerr << " %v" << i->vreg << "[" << i->start << "," << i->end << "] in " << pregToString(vreg_to_preg_map[i->vreg]) << "\n";
|
||||
}
|
||||
if(spill_candidate) {
|
||||
std::cerr << " [Spill-Debug] Candidate is %v" << spill_candidate->vreg << ". Its end is " << spill_candidate->end << ", current's end is " << current->end << "\n";
|
||||
} else {
|
||||
std::cerr << " [Spill-Debug] No active candidate.\n";
|
||||
}
|
||||
}
|
||||
|
||||
if (spill_candidate && spill_candidate->end > current->end) {
|
||||
if (DEEPDEBUG) std::cerr << " [Spill] Decision: Spilling active %v" << spill_candidate->vreg << ".\n";
|
||||
PhysicalReg preg = vreg_to_preg_map.at(spill_candidate->vreg);
|
||||
vreg_to_preg_map.erase(spill_candidate->vreg); // 确保移除旧映射
|
||||
vreg_to_preg_map[current->vreg] = preg;
|
||||
active.pop_back();
|
||||
active.push_back(current);
|
||||
std::sort(active.begin(), active.end(), [](const LiveInterval* a, const LiveInterval* b){ return a->end < b->end; });
|
||||
spilled_vregs.insert(spill_candidate->vreg);
|
||||
} else {
|
||||
if (DEEPDEBUG) std::cerr << " [Spill] Decision: Spilling current %v" << current->vreg << ".\n";
|
||||
spilled_vregs.insert(current->vreg);
|
||||
}
|
||||
}
|
||||
|
||||
void RISCv64LinearScan::rewriteProgram() {
|
||||
if (DEBUG) {
|
||||
std::cerr << "[LSRA-Rewrite] Starting program rewrite. Spilled vregs: " << vregSetToString(spilled_vregs) << "\n";
|
||||
}
|
||||
StackFrameInfo& frame_info = MFunc->getFrameInfo();
|
||||
int spill_current_offset = frame_info.locals_end_offset - frame_info.spill_size;
|
||||
|
||||
for (unsigned vreg : spilled_vregs) {
|
||||
// 保持您的原始逻辑
|
||||
if (frame_info.spill_offsets.count(vreg)) continue;
|
||||
|
||||
Type* type = vreg_type_map.count(vreg) ? vreg_type_map.at(vreg) : Type::getIntType();
|
||||
int size = isFPVReg(vreg) ? 4 : (type->isPointer() ? 8 : 4);
|
||||
spill_current_offset -= size;
|
||||
spill_current_offset = (spill_current_offset & ~7);
|
||||
frame_info.spill_offsets[vreg] = spill_current_offset;
|
||||
if (DEEPDEBUG) std::cerr << " [Rewrite] Assigned new stack offset " << frame_info.spill_offsets.at(vreg) << " to spilled %v" << vreg << "\n";
|
||||
}
|
||||
frame_info.spill_size = -(spill_current_offset - frame_info.locals_end_offset);
|
||||
|
||||
for (auto& mbb : MFunc->getBlocks()) {
|
||||
auto& instrs = mbb->getInstructions();
|
||||
std::vector<std::unique_ptr<MachineInstr>> new_instrs;
|
||||
if (DEEPERDEBUG) std::cerr << " [Rewrite] Processing block " << mbb->getName() << "\n";
|
||||
|
||||
for (auto it = instrs.begin(); it != instrs.end(); ++it) {
|
||||
auto& instr = *it;
|
||||
std::set<unsigned> use_vregs, def_vregs;
|
||||
getInstrUseDef(instr.get(), use_vregs, def_vregs);
|
||||
|
||||
if (conservative_spill_mode) {
|
||||
// ================== 紧急模式重写逻辑 ==================
|
||||
// 直接使用物理寄存器 t4 (SPILL_TEMP_REG) 进行加载/存储
|
||||
|
||||
// 为调试日志准备一个指令打印机
|
||||
auto printer = DEEPERDEBUG ? std::make_unique<RISCv64AsmPrinter>(MFunc) : nullptr;
|
||||
auto original_instr_str_for_log = DEEPERDEBUG ? printer->formatInstr(instr.get()) : "";
|
||||
bool modified = false;
|
||||
|
||||
for (unsigned old_vreg : use_vregs) {
|
||||
if (spilled_vregs.count(old_vreg)) {
|
||||
modified = true;
|
||||
Type* type = vreg_type_map.at(old_vreg);
|
||||
RVOpcodes load_op = isFPVReg(old_vreg) ? RVOpcodes::FLW : (type->isPointer() ? RVOpcodes::LD : RVOpcodes::LW);
|
||||
auto load = std::make_unique<MachineInstr>(load_op);
|
||||
// 直接加载到保留的物理寄存器
|
||||
load->addOperand(std::make_unique<RegOperand>(SPILL_TEMP_REG));
|
||||
load->addOperand(std::make_unique<MemOperand>(
|
||||
std::make_unique<RegOperand>(PhysicalReg::S0),
|
||||
std::make_unique<ImmOperand>(frame_info.spill_offsets.at(old_vreg))));
|
||||
|
||||
if (DEEPERDEBUG) {
|
||||
std::cerr << " [Rewrite-Panic] Inserting LOAD for use of %v" << old_vreg
|
||||
<< " into " << pregToString(SPILL_TEMP_REG)
|
||||
<< " before: " << original_instr_str_for_log << "\n";
|
||||
}
|
||||
new_instrs.push_back(std::move(load));
|
||||
|
||||
// 替换指令中的操作数
|
||||
instr->replaceVRegWithPReg(old_vreg, SPILL_TEMP_REG);
|
||||
}
|
||||
}
|
||||
|
||||
// 在处理 def 之前,先替换定义自身的 vreg
|
||||
for (unsigned old_vreg : def_vregs) {
|
||||
if (spilled_vregs.count(old_vreg)) {
|
||||
modified = true;
|
||||
instr->replaceVRegWithPReg(old_vreg, SPILL_TEMP_REG);
|
||||
}
|
||||
}
|
||||
|
||||
// 将原始指令(可能已被修改)放入新列表
|
||||
new_instrs.push_back(std::move(instr));
|
||||
if (DEEPERDEBUG && modified) {
|
||||
std::cerr << " [Rewrite-Panic] Original: " << original_instr_str_for_log
|
||||
<< " -> Rewritten: " << printer->formatInstr(new_instrs.back().get()) << "\n";
|
||||
}
|
||||
|
||||
for (unsigned old_vreg : def_vregs) {
|
||||
if (spilled_vregs.count(old_vreg)) {
|
||||
// 指令本身已经被修改为定义到 SPILL_TEMP_REG,现在从它存回内存
|
||||
Type* type = vreg_type_map.at(old_vreg);
|
||||
RVOpcodes store_op = isFPVReg(old_vreg) ? RVOpcodes::FSW : (type->isPointer() ? RVOpcodes::SD : RVOpcodes::SW);
|
||||
auto store = std::make_unique<MachineInstr>(store_op);
|
||||
store->addOperand(std::make_unique<RegOperand>(SPILL_TEMP_REG));
|
||||
store->addOperand(std::make_unique<MemOperand>(
|
||||
std::make_unique<RegOperand>(PhysicalReg::S0),
|
||||
std::make_unique<ImmOperand>(frame_info.spill_offsets.at(old_vreg))));
|
||||
if (DEEPERDEBUG) {
|
||||
std::cerr << " [Rewrite-Panic] Inserting STORE for def of %v" << old_vreg
|
||||
<< " from " << pregToString(SPILL_TEMP_REG) << " after original instr.\n";
|
||||
}
|
||||
new_instrs.push_back(std::move(store));
|
||||
}
|
||||
}
|
||||
|
||||
} else {
|
||||
// ================== 常规模式重写逻辑 (您的原始代码) ==================
|
||||
std::map<unsigned, unsigned> use_remap, def_remap;
|
||||
for (unsigned old_vreg : use_vregs) {
|
||||
if (spilled_vregs.count(old_vreg) && use_remap.find(old_vreg) == use_remap.end()) {
|
||||
Type* type = vreg_type_map.at(old_vreg);
|
||||
unsigned new_temp_vreg = ISel->getNewVReg(type);
|
||||
use_remap[old_vreg] = new_temp_vreg;
|
||||
RVOpcodes load_op = isFPVReg(old_vreg) ? RVOpcodes::FLW : (type->isPointer() ? RVOpcodes::LD : RVOpcodes::LW);
|
||||
auto load = std::make_unique<MachineInstr>(load_op);
|
||||
load->addOperand(std::make_unique<RegOperand>(new_temp_vreg));
|
||||
load->addOperand(std::make_unique<MemOperand>(
|
||||
std::make_unique<RegOperand>(PhysicalReg::S0),
|
||||
std::make_unique<ImmOperand>(frame_info.spill_offsets.at(old_vreg))));
|
||||
if (DEEPERDEBUG) {
|
||||
RISCv64AsmPrinter printer(MFunc);
|
||||
std::cerr << " [Rewrite] Inserting LOAD for use of %v" << old_vreg << " into new %v" << new_temp_vreg << " before: " << printer.formatInstr(instr.get()) << "\n";
|
||||
}
|
||||
new_instrs.push_back(std::move(load));
|
||||
}
|
||||
}
|
||||
for (unsigned old_vreg : def_vregs) {
|
||||
if (spilled_vregs.count(old_vreg) && def_remap.find(old_vreg) == def_remap.end()) {
|
||||
Type* type = vreg_type_map.at(old_vreg);
|
||||
unsigned new_temp_vreg = ISel->getNewVReg(type);
|
||||
def_remap[old_vreg] = new_temp_vreg;
|
||||
}
|
||||
}
|
||||
auto original_instr_str_for_log = DEEPERDEBUG ? RISCv64AsmPrinter(MFunc).formatInstr(instr.get()) : "";
|
||||
instr->remapVRegs(use_remap, def_remap);
|
||||
new_instrs.push_back(std::move(instr));
|
||||
if (DEEPERDEBUG && (!use_remap.empty() || !def_remap.empty())) std::cerr << " [Rewrite] Original: " << original_instr_str_for_log << " -> Rewritten: " << RISCv64AsmPrinter(MFunc).formatInstr(new_instrs.back().get()) << "\n";
|
||||
for(const auto& pair : def_remap) {
|
||||
unsigned old_vreg = pair.first;
|
||||
unsigned new_temp_vreg = pair.second;
|
||||
Type* type = vreg_type_map.at(old_vreg);
|
||||
RVOpcodes store_op = isFPVReg(old_vreg) ? RVOpcodes::FSW : (type->isPointer() ? RVOpcodes::SD : RVOpcodes::SW);
|
||||
auto store = std::make_unique<MachineInstr>(store_op);
|
||||
store->addOperand(std::make_unique<RegOperand>(new_temp_vreg));
|
||||
store->addOperand(std::make_unique<MemOperand>(
|
||||
std::make_unique<RegOperand>(PhysicalReg::S0),
|
||||
std::make_unique<ImmOperand>(frame_info.spill_offsets.at(old_vreg))));
|
||||
if (DEEPERDEBUG) std::cerr << " [Rewrite] Inserting STORE for def of %v" << old_vreg << " from new %v" << new_temp_vreg << " after original instr.\n";
|
||||
new_instrs.push_back(std::move(store));
|
||||
}
|
||||
}
|
||||
}
|
||||
instrs = std::move(new_instrs);
|
||||
}
|
||||
}
|
||||
|
||||
void RISCv64LinearScan::applyAllocation() {
|
||||
if (DEBUG) std::cerr << "[LSRA-Apply] Applying final vreg->preg mapping.\n";
|
||||
for (auto& mbb : MFunc->getBlocks()) {
|
||||
for (auto& instr_ptr : mbb->getInstructions()) {
|
||||
for (auto& op_ptr : instr_ptr->getOperands()) {
|
||||
if (op_ptr->getKind() == MachineOperand::KIND_REG) {
|
||||
auto reg_op = static_cast<RegOperand*>(op_ptr.get());
|
||||
if (reg_op->isVirtual()) {
|
||||
unsigned vreg = reg_op->getVRegNum();
|
||||
if (vreg_to_preg_map.count(vreg)) {
|
||||
reg_op->setPReg(vreg_to_preg_map.at(vreg));
|
||||
} else {
|
||||
std::cerr << "ERROR: Uncolored virtual register %v" << vreg << " found during applyAllocation! in func " << MFunc->getName() << "\n";
|
||||
// Forcing an error is better than silent failure.
|
||||
// reg_op->setPReg(PhysicalReg::T5);
|
||||
}
|
||||
}
|
||||
} else if (op_ptr->getKind() == MachineOperand::KIND_MEM) {
|
||||
auto mem_op = static_cast<MemOperand*>(op_ptr.get());
|
||||
auto reg_op = mem_op->getBase();
|
||||
if (reg_op->isVirtual()) {
|
||||
unsigned vreg = reg_op->getVRegNum();
|
||||
if (vreg_to_preg_map.count(vreg)) {
|
||||
reg_op->setPReg(vreg_to_preg_map.at(vreg));
|
||||
} else {
|
||||
std::cerr << "ERROR: Uncolored virtual register %v" << vreg << " in memory operand! in func " << MFunc->getName() << "\n";
|
||||
// reg_op->setPReg(PhysicalReg::T5);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// void getInstrUseDef(const MachineInstr* instr, std::set<unsigned>& use, std::set<unsigned>& def) {
|
||||
// auto opcode = instr->getOpcode();
|
||||
// const auto& operands = instr->getOperands();
|
||||
|
||||
// auto get_vreg_id_if_virtual = [&](const MachineOperand* op, std::set<unsigned>& s) {
|
||||
// if (op->getKind() == MachineOperand::KIND_REG) {
|
||||
// auto reg_op = static_cast<const RegOperand*>(op);
|
||||
// if (reg_op->isVirtual()) s.insert(reg_op->getVRegNum());
|
||||
// } else if (op->getKind() == MachineOperand::KIND_MEM) {
|
||||
// auto mem_op = static_cast<const MemOperand*>(op);
|
||||
// auto reg_op = mem_op->getBase();
|
||||
// if (reg_op->isVirtual()) s.insert(reg_op->getVRegNum());
|
||||
// }
|
||||
// };
|
||||
|
||||
// if (op_info.count(opcode)) {
|
||||
// const auto& info = op_info.at(opcode);
|
||||
// for (int idx : info.first) if (idx < operands.size()) get_vreg_id_if_virtual(operands[idx].get(), def);
|
||||
// for (int idx : info.second) if (idx < operands.size()) get_vreg_id_if_virtual(operands[idx].get(), use);
|
||||
// for (const auto& op : operands) if (op->getKind() == MachineOperand::KIND_MEM) get_vreg_id_if_virtual(op.get(), use);
|
||||
// } else if (opcode == RVOpcodes::CALL) {
|
||||
// if (!operands.empty() && operands[0]->getKind() == MachineOperand::KIND_REG) get_vreg_id_if_virtual(operands[0].get(), def);
|
||||
// for (size_t i = 1; i < operands.size(); ++i) if (operands[i]->getKind() == MachineOperand::KIND_REG) get_vreg_id_if_virtual(operands[i].get(), use);
|
||||
// }
|
||||
// }
|
||||
|
||||
bool RISCv64LinearScan::isFPVReg(unsigned vreg) const {
|
||||
return vreg_type_map.count(vreg) && vreg_type_map.at(vreg)->isFloat();
|
||||
}
|
||||
|
||||
void RISCv64LinearScan::collectUsedCalleeSavedRegs() {
|
||||
StackFrameInfo& frame_info = MFunc->getFrameInfo();
|
||||
frame_info.used_callee_saved_regs.clear();
|
||||
|
||||
const auto& callee_saved_int = getCalleeSavedIntRegs();
|
||||
const auto& callee_saved_fp = getCalleeSavedFpRegs();
|
||||
std::set<PhysicalReg> callee_saved_set(callee_saved_int.begin(), callee_saved_int.end());
|
||||
callee_saved_set.insert(callee_saved_fp.begin(), callee_saved_fp.end());
|
||||
callee_saved_set.insert(PhysicalReg::S0);
|
||||
|
||||
for(const auto& pair : vreg_to_preg_map) {
|
||||
PhysicalReg preg = pair.second;
|
||||
if(callee_saved_set.count(preg)) {
|
||||
frame_info.used_callee_saved_regs.insert(preg);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace sysy
|
||||
1440
src/backend/RISCv64/RISCv64RegAlloc.cpp
Normal file
1440
src/backend/RISCv64/RISCv64RegAlloc.cpp
Normal file
File diff suppressed because it is too large
Load Diff
17
src/frontend/CMakeLists.txt
Normal file
17
src/frontend/CMakeLists.txt
Normal file
@ -0,0 +1,17 @@
|
||||
# src/frontend/CMakeLists.txt
|
||||
add_library(frontend_lib STATIC
|
||||
SysYBaseVisitor.cpp
|
||||
SysY.g4
|
||||
SysYLexer.cpp
|
||||
SysYParser.cpp
|
||||
SysYVisitor.cpp
|
||||
)
|
||||
|
||||
# 包含前端模块所需的头文件路径
|
||||
target_include_directories(frontend_lib PUBLIC
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/../include/frontend # 前端头文件
|
||||
${ANTLR_RUNTIME}/runtime/src # ANTLR 运行时头文件
|
||||
)
|
||||
|
||||
# 链接 ANTLR 运行时库
|
||||
target_link_libraries(frontend_lib PRIVATE antlr4_shared)
|
||||
@ -1,59 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "IR.h" // 假设IR.h包含了Module, Function, BasicBlock, Instruction, Value, IRBuilder, Type等定义
|
||||
#include "IRBuilder.h" // 需要IRBuilder来创建新指令
|
||||
#include "SysYIRPrinter.h" // 新增: 用于调试输出
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
#include <list> // 用于迭代和修改指令列表
|
||||
#include <algorithm> // for std::reverse (if needed, although not used in final version)
|
||||
#include <iostream> // MODIFICATION: 用于警告输出
|
||||
|
||||
namespace sysy {
|
||||
|
||||
/**
|
||||
* @brief AddressCalculationExpansion Pass
|
||||
*
|
||||
* 这是一个IR优化Pass,用于将LoadInst和StoreInst中包含的多维数组索引
|
||||
* 显式地转换为IR中的BinaryInst(乘法和加法)序列,并生成带有线性偏移量的
|
||||
* LoadInst/StoreInst。
|
||||
*
|
||||
* 目的:确保在寄存器分配之前,所有中间地址计算的结果都有明确的IR指令和对应的虚拟寄存器,
|
||||
* 从而避免在后端DAG构建时临时创建值而导致寄存器分配缺失的问题。
|
||||
*
|
||||
* SysY语言特性:
|
||||
* - 无指针类型(所有数组访问的基地址是alloca或global的AllocaType/ArrayType)
|
||||
* - 数据类型只有int和float,且都占用4字节。
|
||||
* - LoadInst和StoreInst直接接受多个索引作为额外操作数。
|
||||
*/
|
||||
class AddressCalculationExpansion {
|
||||
private:
|
||||
Module* pModule;
|
||||
IRBuilder* pBuilder; // 用于在IR中插入新指令
|
||||
|
||||
// 数组元素的固定大小,根据SysY特性,int和float都是4字节
|
||||
static const int ELEMENT_SIZE = 4;
|
||||
|
||||
// 辅助函数:根据数组的维度信息和当前索引的维度,计算该索引的步长(字节数)
|
||||
// dims: 包含所有维度大小的vector,例如 {2, 3, 4}
|
||||
// currentDimIndex: 当前正在处理的索引在 dims 中的位置 (0, 1, 2...)
|
||||
int calculateStride(const std::vector<int>& dims, size_t currentDimIndex) {
|
||||
int stride = ELEMENT_SIZE; // 最内层元素大小 (4字节)
|
||||
// 乘以当前维度之后的所有维度的大小
|
||||
for (size_t i = currentDimIndex + 1; i < dims.size(); ++i) {
|
||||
stride *= dims[i];
|
||||
}
|
||||
return stride;
|
||||
}
|
||||
|
||||
public:
|
||||
AddressCalculationExpansion(Module* module, IRBuilder* builder)
|
||||
: pModule(module), pBuilder(builder) {}
|
||||
|
||||
// 运行此Pass
|
||||
bool run();
|
||||
};
|
||||
|
||||
} // namespace sysy
|
||||
@ -1,52 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "Pass.h" // 包含 Pass 框架
|
||||
#include "IR.h" // 包含 IR 定义
|
||||
#include <map>
|
||||
#include <set>
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
|
||||
namespace sysy {
|
||||
|
||||
// 支配树分析结果类 (保持不变)
|
||||
class DominatorTree : public AnalysisResultBase {
|
||||
public:
|
||||
DominatorTree(Function* F);
|
||||
const std::set<BasicBlock*>* getDominators(BasicBlock* BB) const;
|
||||
BasicBlock* getImmediateDominator(BasicBlock* BB) const;
|
||||
const std::set<BasicBlock*>* getDominanceFrontier(BasicBlock* BB) const;
|
||||
const std::map<BasicBlock*, std::set<BasicBlock*>>& getDominatorsMap() const { return Dominators; }
|
||||
const std::map<BasicBlock*, BasicBlock*>& getIDomsMap() const { return IDoms; }
|
||||
const std::map<BasicBlock*, std::set<BasicBlock*>>& getDominanceFrontiersMap() const { return DominanceFrontiers; }
|
||||
void computeDominators(Function* F);
|
||||
void computeIDoms(Function* F);
|
||||
void computeDominanceFrontiers(Function* F);
|
||||
private:
|
||||
Function* AssociatedFunction;
|
||||
std::map<BasicBlock*, std::set<BasicBlock*>> Dominators;
|
||||
std::map<BasicBlock*, BasicBlock*> IDoms;
|
||||
std::map<BasicBlock*, std::set<BasicBlock*>> DominanceFrontiers;
|
||||
};
|
||||
|
||||
|
||||
// 支配树分析遍
|
||||
class DominatorTreeAnalysisPass : public AnalysisPass {
|
||||
public:
|
||||
// 唯一的 Pass ID
|
||||
static void *ID;
|
||||
|
||||
DominatorTreeAnalysisPass() : AnalysisPass("DominatorTreeAnalysis", Pass::Granularity::Function) {}
|
||||
|
||||
// 实现 getPassID
|
||||
void* getPassID() const override { return &ID; }
|
||||
|
||||
bool runOnFunction(Function* F, AnalysisManager &AM) override;
|
||||
|
||||
std::unique_ptr<AnalysisResultBase> getResult() override;
|
||||
|
||||
private:
|
||||
std::unique_ptr<DominatorTree> CurrentDominatorTree;
|
||||
};
|
||||
|
||||
} // namespace sysy
|
||||
@ -1,75 +0,0 @@
|
||||
#ifndef RISCV64_REGALLOC_H
|
||||
#define RISCV64_REGALLOC_H
|
||||
|
||||
#include "RISCv64LLIR.h"
|
||||
#include "RISCv64ISel.h" // 包含 RISCv64ISel.h 以访问 ISel 和 Value 类型
|
||||
|
||||
extern int DEBUG;
|
||||
extern int DEEPDEBUG;
|
||||
|
||||
namespace sysy {
|
||||
|
||||
class RISCv64RegAlloc {
|
||||
public:
|
||||
RISCv64RegAlloc(MachineFunction* mfunc);
|
||||
|
||||
// 模块主入口
|
||||
void run();
|
||||
|
||||
private:
|
||||
using LiveSet = std::set<unsigned>; // 活跃虚拟寄存器集合
|
||||
using InterferenceGraph = std::map<unsigned, std::set<unsigned>>;
|
||||
|
||||
// 栈帧管理
|
||||
void eliminateFrameIndices();
|
||||
|
||||
// 活跃性分析
|
||||
void analyzeLiveness();
|
||||
|
||||
// 构建干扰图
|
||||
void buildInterferenceGraph();
|
||||
|
||||
// 图着色分配寄存器
|
||||
void colorGraph();
|
||||
|
||||
// 重写函数,替换vreg并插入溢出代码
|
||||
void rewriteFunction();
|
||||
|
||||
// 辅助函数,获取指令的Use/Def集合
|
||||
void getInstrUseDef(MachineInstr* instr, LiveSet& use, LiveSet& def);
|
||||
|
||||
// 辅助函数,处理调用约定
|
||||
void handleCallingConvention();
|
||||
|
||||
MachineFunction* MFunc;
|
||||
|
||||
// 活跃性分析结果
|
||||
std::map<const MachineInstr*, LiveSet> live_in_map;
|
||||
std::map<const MachineInstr*, LiveSet> live_out_map;
|
||||
|
||||
// 干扰图
|
||||
InterferenceGraph interference_graph;
|
||||
|
||||
// 图着色结果
|
||||
std::map<unsigned, PhysicalReg> color_map; // vreg -> preg
|
||||
std::set<unsigned> spilled_vregs; // 被溢出的vreg集合
|
||||
|
||||
// 可用的物理寄存器池
|
||||
std::vector<PhysicalReg> allocable_int_regs;
|
||||
|
||||
// 存储vreg到IR Value*的反向映射
|
||||
// 这个map将在run()函数开始时被填充,并在rewriteFunction()中使用。
|
||||
std::map<unsigned, Value*> vreg_to_value_map;
|
||||
std::map<PhysicalReg, unsigned> preg_to_vreg_id_map; // 物理寄存器到特殊vreg ID的映射
|
||||
|
||||
// 用于计算类型大小的辅助函数
|
||||
unsigned getTypeSizeInBytes(Type* type);
|
||||
|
||||
// 辅助函数,用于打印集合
|
||||
static void printLiveSet(const LiveSet& s, const std::string& name, std::ostream& os);
|
||||
|
||||
};
|
||||
|
||||
} // namespace sysy
|
||||
|
||||
#endif // RISCV64_REGALLOC_H
|
||||
@ -1,196 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "IR.h"
|
||||
|
||||
namespace sysy {
|
||||
|
||||
// 稀疏条件常量传播类
|
||||
// Sparse Conditional Constant Propagation
|
||||
/*
|
||||
伪代码
|
||||
function SCCP_Optimization(Module):
|
||||
for each Function in Module:
|
||||
changed = true
|
||||
while changed:
|
||||
changed = false
|
||||
// 阶段1: 常量传播与折叠
|
||||
changed |= PropagateConstants(Function)
|
||||
// 阶段2: 控制流简化
|
||||
changed |= SimplifyControlFlow(Function)
|
||||
end while
|
||||
end for
|
||||
|
||||
function PropagateConstants(Function):
|
||||
// 初始化
|
||||
executableBlocks = {entryBlock}
|
||||
valueState = map<Value, State> // 值->状态映射
|
||||
instWorkList = Queue()
|
||||
edgeWorkList = Queue()
|
||||
|
||||
// 初始化工作列表
|
||||
for each inst in entryBlock:
|
||||
instWorkList.push(inst)
|
||||
|
||||
// 迭代处理
|
||||
while !instWorkList.empty() || !edgeWorkList.empty():
|
||||
// 处理指令工作列表
|
||||
while !instWorkList.empty():
|
||||
inst = instWorkList.pop()
|
||||
// 如果指令是可执行基本块中的
|
||||
if executableBlocks.contains(inst.parent):
|
||||
ProcessInstruction(inst)
|
||||
|
||||
// 处理边工作列表
|
||||
while !edgeWorkList.empty():
|
||||
edge = edgeWorkList.pop()
|
||||
ProcessEdge(edge)
|
||||
|
||||
// 应用常量替换
|
||||
for each inst in Function:
|
||||
if valueState[inst] == CONSTANT:
|
||||
ReplaceWithConstant(inst, valueState[inst].constant)
|
||||
changed = true
|
||||
|
||||
return changed
|
||||
|
||||
function ProcessInstruction(Instruction inst):
|
||||
switch inst.type:
|
||||
//二元操作
|
||||
case BINARY_OP:
|
||||
lhs = GetValueState(inst.operands[0])
|
||||
rhs = GetValueState(inst.operands[1])
|
||||
if lhs == CONSTANT && rhs == CONSTANT:
|
||||
newState = ComputeConstant(inst.op, lhs.value, rhs.value)
|
||||
UpdateState(inst, newState)
|
||||
else if lhs == BOTTOM || rhs == BOTTOM:
|
||||
UpdateState(inst, BOTTOM)
|
||||
//phi
|
||||
case PHI:
|
||||
mergedState = ⊤
|
||||
for each incoming in inst.incomings:
|
||||
// 检查每个输入的状态
|
||||
if executableBlocks.contains(incoming.block):
|
||||
incomingState = GetValueState(incoming.value)
|
||||
mergedState = Meet(mergedState, incomingState)
|
||||
UpdateState(inst, mergedState)
|
||||
// 条件分支
|
||||
case COND_BRANCH:
|
||||
cond = GetValueState(inst.condition)
|
||||
if cond == CONSTANT:
|
||||
// 判断条件分支
|
||||
if cond.value == true:
|
||||
AddEdgeToWorkList(inst.parent, inst.trueTarget)
|
||||
else:
|
||||
AddEdgeToWorkList(inst.parent, inst.falseTarget)
|
||||
else if cond == BOTTOM:
|
||||
AddEdgeToWorkList(inst.parent, inst.trueTarget)
|
||||
AddEdgeToWorkList(inst.parent, inst.falseTarget)
|
||||
|
||||
case UNCOND_BRANCH:
|
||||
AddEdgeToWorkList(inst.parent, inst.target)
|
||||
|
||||
// 其他指令处理...
|
||||
|
||||
function ProcessEdge(Edge edge):
|
||||
fromBB, toBB = edge
|
||||
if !executableBlocks.contains(toBB):
|
||||
executableBlocks.add(toBB)
|
||||
for each inst in toBB:
|
||||
if inst is PHI:
|
||||
instWorkList.push(inst)
|
||||
else:
|
||||
instWorkList.push(inst) // 非PHI指令
|
||||
|
||||
// 更新PHI节点的输入
|
||||
for each phi in toBB.phis:
|
||||
instWorkList.push(phi)
|
||||
|
||||
function SimplifyControlFlow(Function):
|
||||
changed = false
|
||||
// 标记可达基本块
|
||||
ReachableBBs = FindReachableBlocks(Function.entry)
|
||||
|
||||
// 删除不可达块
|
||||
for each bb in Function.blocks:
|
||||
if !ReachableBBs.contains(bb):
|
||||
RemoveDeadBlock(bb)
|
||||
changed = true
|
||||
|
||||
// 简化条件分支
|
||||
for each bb in Function.blocks:
|
||||
terminator = bb.terminator
|
||||
if terminator is COND_BRANCH:
|
||||
cond = GetValueState(terminator.condition)
|
||||
if cond == CONSTANT:
|
||||
SimplifyBranch(terminator, cond.value)
|
||||
changed = true
|
||||
|
||||
return changed
|
||||
|
||||
function RemoveDeadBlock(BasicBlock bb):
|
||||
// 1. 更新前驱块的分支指令
|
||||
for each pred in bb.predecessors:
|
||||
UpdateTerminator(pred, bb)
|
||||
|
||||
// 2. 更新后继块的PHI节点
|
||||
for each succ in bb.successors:
|
||||
RemovePhiIncoming(succ, bb)
|
||||
|
||||
// 3. 删除块内所有指令
|
||||
for each inst in bb.instructions:
|
||||
inst.remove()
|
||||
|
||||
// 4. 从函数中移除基本块
|
||||
Function.removeBlock(bb)
|
||||
|
||||
function Meet(State a, State b):
|
||||
if a == ⊤: return b
|
||||
if b == ⊤: return a
|
||||
if a == ⊥ || b == ⊥: return ⊥
|
||||
if a.value == b.value: return a
|
||||
return ⊥
|
||||
|
||||
function UpdateState(Value v, State newState):
|
||||
oldState = valueState.get(v, ⊤)
|
||||
if newState != oldState:
|
||||
valueState[v] = newState
|
||||
for each user in v.users:
|
||||
if user is Instruction:
|
||||
instWorkList.push(user)
|
||||
|
||||
*/
|
||||
|
||||
enum class LatticeValue {
|
||||
Top, // ⊤ (Unknown)
|
||||
Constant, // c (Constant)
|
||||
Bottom // ⊥ (Undefined / Varying)
|
||||
};
|
||||
// LatticeValue: 用于表示值的状态,Top表示未知,Constant表示常量,Bottom表示未定义或变化的值。
|
||||
// 这里的LatticeValue用于跟踪每个SSA值(变量、指令结果)的状态,
|
||||
// 以便在SCCP过程中进行常量传播和控制流简化。
|
||||
|
||||
//TODO: 下列数据结构考虑集成到类中,避免重命名问题
|
||||
static std::set<Instruction *> Worklist;
|
||||
static std::unordered_set<BasicBlock*> Executable_Blocks;
|
||||
static std::queue<std::pair<BasicBlock *, BasicBlock *> > Executable_Edges;
|
||||
static std::map<Value*, LatticeValue> valueState;
|
||||
|
||||
class SCCP {
|
||||
private:
|
||||
Module *pModule;
|
||||
|
||||
public:
|
||||
SCCP(Module *pMoudle) : pModule(pMoudle) {}
|
||||
|
||||
void run();
|
||||
bool PropagateConstants(Function *function);
|
||||
bool SimplifyControlFlow(Function *function);
|
||||
void ProcessInstruction(Instruction *inst);
|
||||
void ProcessEdge(const std::pair<BasicBlock *, BasicBlock *> &edge);
|
||||
void RemoveDeadBlock(BasicBlock *bb);
|
||||
void UpdateState(Value *v, LatticeValue newState);
|
||||
LatticeValue Meet(LatticeValue a, LatticeValue b);
|
||||
LatticeValue GetValueState(Value *v);
|
||||
};
|
||||
|
||||
} // namespace sysy
|
||||
@ -1,465 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "IR.h"
|
||||
|
||||
namespace sysy {
|
||||
|
||||
// 前向声明
|
||||
|
||||
class Loop;
|
||||
// 基本块分析信息类
|
||||
class BlockAnalysisInfo {
|
||||
|
||||
public:
|
||||
using block_list = std::vector<BasicBlock*>;
|
||||
using block_set = std::unordered_set<BasicBlock*>;
|
||||
|
||||
protected:
|
||||
// 支配树相关
|
||||
int domdepth = 0; ///< 支配节点所在深度
|
||||
BasicBlock* idom = nullptr; ///< 直接支配结点
|
||||
block_list sdoms; ///< 支配树后继
|
||||
block_set dominants; ///< 必经结点集合
|
||||
block_set dominant_frontiers; ///< 支配边界
|
||||
|
||||
// 后续添加循环分析相关
|
||||
// Loop* loopbelong = nullptr; ///< 所属循环
|
||||
// int loopdepth = 0; ///< 循环深度
|
||||
|
||||
public:
|
||||
// getterface
|
||||
const int getDomDepth() const { return domdepth; }
|
||||
const BasicBlock* getIdom() const { return idom; }
|
||||
const block_list& getSdoms() const { return sdoms; }
|
||||
const block_set& getDominants() const { return dominants; }
|
||||
const block_set& getDomFrontiers() const { return dominant_frontiers; }
|
||||
|
||||
// 支配树操作
|
||||
void setDomDepth(int depth) { domdepth = depth; }
|
||||
void setIdom(BasicBlock* block) { idom = block; }
|
||||
void addSdoms(BasicBlock* block) { sdoms.push_back(block); }
|
||||
void clearSdoms() { sdoms.clear(); }
|
||||
void removeSdoms(BasicBlock* block) {
|
||||
sdoms.erase(std::remove(sdoms.begin(), sdoms.end(), block), sdoms.end());
|
||||
}
|
||||
void addDominants(BasicBlock* block) { dominants.emplace(block); }
|
||||
void addDominants(const block_set& blocks) { dominants.insert(blocks.begin(), blocks.end()); }
|
||||
void setDominants(BasicBlock* block) {
|
||||
dominants.clear();
|
||||
addDominants(block);
|
||||
}
|
||||
void setDominants(const block_set& doms) {
|
||||
dominants = doms;
|
||||
}
|
||||
void setDomFrontiers(const block_set& df) {
|
||||
dominant_frontiers = df;
|
||||
}
|
||||
|
||||
// TODO:循环分析操作方法
|
||||
|
||||
// 清空所有分析信息
|
||||
void clear() {
|
||||
domdepth = -1;
|
||||
idom = nullptr;
|
||||
sdoms.clear();
|
||||
dominants.clear();
|
||||
dominant_frontiers.clear();
|
||||
// loopbelong = nullptr;
|
||||
// loopdepth = 0;
|
||||
}
|
||||
};
|
||||
|
||||
// 函数分析信息类
|
||||
class FunctionAnalysisInfo {
|
||||
|
||||
|
||||
public:
|
||||
// 函数属性
|
||||
enum FunctionAttribute : uint64_t {
|
||||
PlaceHolder = 0x0UL,
|
||||
Pure = 0x1UL << 0,
|
||||
SelfRecursive = 0x1UL << 1,
|
||||
SideEffect = 0x1UL << 2,
|
||||
NoPureCauseMemRead = 0x1UL << 3
|
||||
};
|
||||
|
||||
// 数据结构
|
||||
using Loop_list = std::list<std::unique_ptr<Loop>>;
|
||||
using block_loop_map = std::unordered_map<BasicBlock*, Loop*>;
|
||||
using value_block_map = std::unordered_map<Value*, BasicBlock*>;
|
||||
using value_block_count_map = std::unordered_map<Value*, std::unordered_map<BasicBlock*, int>>;
|
||||
|
||||
// 分析数据
|
||||
FunctionAttribute attribute = PlaceHolder; ///< 函数属性
|
||||
std::set<Function*> callees; ///< 函数调用集合
|
||||
Loop_list loops; ///< 所有循环
|
||||
Loop_list topLoops; ///< 顶层循环
|
||||
// block_loop_map basicblock2Loop; ///< 基本块到循环映射
|
||||
std::list<std::unique_ptr<AllocaInst>> indirectAllocas; ///< 间接分配内存
|
||||
|
||||
// 值定义/使用信息
|
||||
value_block_map value2AllocBlocks; ///< 值分配位置映射
|
||||
value_block_count_map value2DefBlocks; ///< 值定义位置映射
|
||||
value_block_count_map value2UseBlocks; ///< 值使用位置映射
|
||||
|
||||
// 函数属性操作
|
||||
FunctionAttribute getAttribute() const { return attribute; }
|
||||
void setAttribute(FunctionAttribute attr) { attribute = static_cast<FunctionAttribute>(attribute | attr); }
|
||||
void clearAttribute() { attribute = PlaceHolder; }
|
||||
|
||||
// 调用关系操作
|
||||
void addCallee(Function* callee) { callees.insert(callee); }
|
||||
void removeCallee(Function* callee) { callees.erase(callee); }
|
||||
void clearCallees() { callees.clear(); }
|
||||
|
||||
|
||||
// 值-块映射操作
|
||||
BasicBlock* getAllocBlockByValue(Value* value) {
|
||||
auto it = value2AllocBlocks.find(value);
|
||||
return it != value2AllocBlocks.end() ? it->second : nullptr;
|
||||
}
|
||||
std::unordered_set<BasicBlock *> getDefBlocksByValue(Value *value) {
|
||||
std::unordered_set<BasicBlock *> blocks;
|
||||
if (value2DefBlocks.count(value) > 0) {
|
||||
for (const auto &pair : value2DefBlocks[value]) {
|
||||
blocks.insert(pair.first);
|
||||
}
|
||||
}
|
||||
return blocks;
|
||||
}
|
||||
std::unordered_set<BasicBlock *> getUseBlocksByValue(Value *value) {
|
||||
std::unordered_set<BasicBlock *> blocks;
|
||||
if (value2UseBlocks.count(value) > 0) {
|
||||
for (const auto &pair : value2UseBlocks[value]) {
|
||||
blocks.insert(pair.first);
|
||||
}
|
||||
}
|
||||
return blocks;
|
||||
}
|
||||
|
||||
// 值定义/使用操作
|
||||
void addValue2AllocBlocks(Value* value, BasicBlock* block) { value2AllocBlocks[value] = block; }
|
||||
void addValue2DefBlocks(Value* value, BasicBlock* block) { ++value2DefBlocks[value][block]; }
|
||||
void addValue2UseBlocks(Value* value, BasicBlock* block) { ++value2UseBlocks[value][block]; }
|
||||
|
||||
|
||||
// 获取值定义/使用信息
|
||||
std::unordered_map<Value *, BasicBlock *>& getValue2AllocBlocks() {
|
||||
return value2AllocBlocks;
|
||||
}
|
||||
std::unordered_map<Value *, std::unordered_map<BasicBlock *, int>>& getValue2DefBlocks() {
|
||||
return value2DefBlocks;
|
||||
}
|
||||
std::unordered_map<Value *, std::unordered_map<BasicBlock *, int>>& getValue2UseBlocks() {
|
||||
return value2UseBlocks;
|
||||
}
|
||||
std::unordered_set<Value *> getValuesOfDefBlock() {
|
||||
std::unordered_set<Value *> values;
|
||||
for (const auto &pair : value2DefBlocks) {
|
||||
values.insert(pair.first);
|
||||
}
|
||||
return values;
|
||||
}
|
||||
|
||||
// 删除信息操作
|
||||
void removeValue2AllocBlock(Value *value) { value2AllocBlocks.erase(value); }
|
||||
bool removeValue2DefBlock(Value *value, BasicBlock *block) {
|
||||
bool changed = false;
|
||||
if (--value2DefBlocks[value][block] == 0) {
|
||||
value2DefBlocks[value].erase(block);
|
||||
if (value2DefBlocks[value].empty()) {
|
||||
value2DefBlocks.erase(value);
|
||||
changed = true;
|
||||
}
|
||||
}
|
||||
return changed;
|
||||
}
|
||||
bool removeValue2UseBlock(Value *value, BasicBlock *block) {
|
||||
bool changed = false;
|
||||
if (--value2UseBlocks[value][block] == 0) {
|
||||
value2UseBlocks[value].erase(block);
|
||||
if (value2UseBlocks[value].empty()) {
|
||||
value2UseBlocks.erase(value);
|
||||
changed = true;
|
||||
}
|
||||
}
|
||||
return changed;
|
||||
}
|
||||
|
||||
// 间接分配操作
|
||||
void addIndirectAlloca(AllocaInst* alloca) { indirectAllocas.emplace_back(alloca); }
|
||||
std::list<std::unique_ptr<AllocaInst>>& getIndirectAllocas() { return indirectAllocas; }
|
||||
|
||||
// TODO:循环分析操作
|
||||
|
||||
// 清空所有分析信息
|
||||
void clear() {
|
||||
attribute = PlaceHolder;
|
||||
callees.clear();
|
||||
loops.clear();
|
||||
topLoops.clear();
|
||||
// basicblock2Loop.clear();
|
||||
indirectAllocas.clear();
|
||||
value2AllocBlocks.clear();
|
||||
value2DefBlocks.clear();
|
||||
value2UseBlocks.clear();
|
||||
}
|
||||
};
|
||||
// 循环类 - 未实现优化
|
||||
class Loop {
|
||||
public:
|
||||
using block_list = std::vector<BasicBlock *>;
|
||||
using block_set = std::unordered_set<BasicBlock *>;
|
||||
using Loop_list = std::vector<Loop *>;
|
||||
|
||||
protected:
|
||||
Function *parent; // 所属函数
|
||||
block_list blocksInLoop; // 循环内的基本块
|
||||
BasicBlock *preheaderBlock = nullptr; // 前驱块
|
||||
BasicBlock *headerBlock = nullptr; // 循环头
|
||||
block_list latchBlock; // 回边块
|
||||
block_set exitingBlocks; // 退出块
|
||||
block_set exitBlocks; // 退出目标块
|
||||
Loop *parentloop = nullptr; // 父循环
|
||||
Loop_list subLoops; // 子循环
|
||||
size_t loopID; // 循环ID
|
||||
unsigned loopDepth; // 循环深度
|
||||
|
||||
Instruction *indCondVar = nullptr; // 循环条件变量
|
||||
Instruction::Kind IcmpKind; // 比较类型
|
||||
Value *indEnd = nullptr; // 循环结束值
|
||||
AllocaInst *IndPhi = nullptr; // 循环变量
|
||||
|
||||
ConstantValue *indBegin = nullptr; // 循环起始值
|
||||
ConstantValue *indStep = nullptr; // 循环步长
|
||||
|
||||
std::set<GlobalValue *> GlobalValuechange; // 循环内改变的全局变量
|
||||
|
||||
int StepType = 0; // 循环步长类型
|
||||
bool parallelable = false; // 是否可并行
|
||||
|
||||
public:
|
||||
explicit Loop(BasicBlock *header, const std::string &name = "")
|
||||
: headerBlock(header) {
|
||||
blocksInLoop.push_back(header);
|
||||
}
|
||||
|
||||
void setloopID() {
|
||||
static unsigned loopCount = 0;
|
||||
loopCount = loopCount + 1;
|
||||
loopID = loopCount;
|
||||
}
|
||||
ConstantValue* getindBegin() { return indBegin; }
|
||||
ConstantValue* getindStep() { return indStep; }
|
||||
void setindBegin(ConstantValue *indBegin2set) { indBegin = indBegin2set; }
|
||||
void setindStep(ConstantValue *indStep2set) { indStep = indStep2set; }
|
||||
void setStepType(int StepType2Set) { StepType = StepType2Set; }
|
||||
int getStepType() { return StepType; }
|
||||
size_t getLoopID() { return loopID; }
|
||||
|
||||
BasicBlock* getHeader() const { return headerBlock; }
|
||||
BasicBlock* getPreheaderBlock() const { return preheaderBlock; }
|
||||
block_list& getLatchBlocks() { return latchBlock; }
|
||||
block_set& getExitingBlocks() { return exitingBlocks; }
|
||||
block_set& getExitBlocks() { return exitBlocks; }
|
||||
Loop* getParentLoop() const { return parentloop; }
|
||||
void setParentLoop(Loop *parent) { parentloop = parent; }
|
||||
void addBasicBlock(BasicBlock *bb) { blocksInLoop.push_back(bb); }
|
||||
void addSubLoop(Loop *loop) { subLoops.push_back(loop); }
|
||||
void setLoopDepth(unsigned depth) { loopDepth = depth; }
|
||||
block_list& getBasicBlocks() { return blocksInLoop; }
|
||||
Loop_list& getSubLoops() { return subLoops; }
|
||||
unsigned getLoopDepth() const { return loopDepth; }
|
||||
|
||||
bool isLoopContainsBasicBlock(BasicBlock *bb) const {
|
||||
return std::find(blocksInLoop.begin(), blocksInLoop.end(), bb) != blocksInLoop.end();
|
||||
}
|
||||
|
||||
void addExitingBlock(BasicBlock *bb) { exitingBlocks.insert(bb); }
|
||||
void addExitBlock(BasicBlock *bb) { exitBlocks.insert(bb); }
|
||||
void addLatchBlock(BasicBlock *bb) { latchBlock.push_back(bb); }
|
||||
void setPreheaderBlock(BasicBlock *bb) { preheaderBlock = bb; }
|
||||
|
||||
void setIndexCondInstr(Instruction *instr) { indCondVar = instr; }
|
||||
void setIcmpKind(Instruction::Kind kind) { IcmpKind = kind; }
|
||||
Instruction::Kind getIcmpKind() const { return IcmpKind; }
|
||||
|
||||
bool isSimpleLoopInvariant(Value *value) ;
|
||||
|
||||
void setIndEnd(Value *value) { indEnd = value; }
|
||||
void setIndPhi(AllocaInst *phi) { IndPhi = phi; }
|
||||
Value* getIndEnd() const { return indEnd; }
|
||||
AllocaInst* getIndPhi() const { return IndPhi; }
|
||||
Instruction* getIndCondVar() const { return indCondVar; }
|
||||
|
||||
void addGlobalValuechange(GlobalValue *globalvaluechange2add) {
|
||||
GlobalValuechange.insert(globalvaluechange2add);
|
||||
}
|
||||
std::set<GlobalValue *>& getGlobalValuechange() {
|
||||
return GlobalValuechange;
|
||||
}
|
||||
|
||||
void setParallelable(bool flag) { parallelable = flag; }
|
||||
bool isParallelable() const { return parallelable; }
|
||||
};
|
||||
|
||||
// 控制流分析类
|
||||
class ControlFlowAnalysis {
|
||||
private:
|
||||
Module *pModule; ///< 模块
|
||||
std::unordered_map<BasicBlock*, BlockAnalysisInfo*> blockAnalysisInfo; // 基本块分析信息表
|
||||
std::unordered_map<Function*, FunctionAnalysisInfo*> functionAnalysisInfo; // 函数分析信息
|
||||
|
||||
public:
|
||||
explicit ControlFlowAnalysis(Module *pMoudle) : pModule(pMoudle) {}
|
||||
|
||||
// 获取基本块分析信息
|
||||
BlockAnalysisInfo* getBlockAnalysisInfo(BasicBlock *block) {
|
||||
auto it = blockAnalysisInfo.find(block);
|
||||
if (it != blockAnalysisInfo.end()) {
|
||||
return it->second;
|
||||
}
|
||||
return nullptr; // 如果未找到,返回nullptr
|
||||
}
|
||||
FunctionAnalysisInfo* getFunctionAnalysisInfo(Function *func) {
|
||||
auto it = functionAnalysisInfo.find(func);
|
||||
if (it != functionAnalysisInfo.end()) {
|
||||
return it->second;
|
||||
}
|
||||
return nullptr; // 如果未找到,返回nullptr
|
||||
}
|
||||
|
||||
void init(); // 初始化分析器
|
||||
void computeDomNode(); // 计算必经结点
|
||||
void computeDomTree(); // 构造支配树
|
||||
// std::unordered_set<BasicBlock *> computeDomFrontier(BasicBlock *block) ; // 计算单个块的支配边界(弃用)
|
||||
void computeDomFrontierAllBlk(); // 计算所有块的支配边界
|
||||
void runControlFlowAnalysis(); // 运行控制流分析(主要是支配树和支配边界)
|
||||
void clear(){
|
||||
for (auto &pair : blockAnalysisInfo) {
|
||||
delete pair.second; // 清理基本块分析信息
|
||||
}
|
||||
blockAnalysisInfo.clear();
|
||||
|
||||
for (auto &pair : functionAnalysisInfo) {
|
||||
delete pair.second; // 清理函数分析信息
|
||||
}
|
||||
functionAnalysisInfo.clear();
|
||||
} // 清空分析结果
|
||||
~ControlFlowAnalysis() {
|
||||
clear(); // 析构时清理所有分析信息
|
||||
}
|
||||
|
||||
private:
|
||||
void intersectOP4Dom(std::unordered_set<BasicBlock *> &dom, const std::unordered_set<BasicBlock *> &other); // 交集运算,
|
||||
BasicBlock* findCommonDominator(BasicBlock *a, BasicBlock *b); // 查找两个基本块的共同支配结点
|
||||
};
|
||||
|
||||
// 数据流分析类
|
||||
// 该类为抽象类,具体的数据流分析器需要继承此类
|
||||
// 因为每个数据流分析器的分析动作都不一样,所以需要继承并实现analyze方法
|
||||
class DataFlowAnalysis {
|
||||
public:
|
||||
virtual ~DataFlowAnalysis() = default;
|
||||
|
||||
public:
|
||||
virtual void init(Module *pModule) {} ///< 分析器初始化
|
||||
virtual auto analyze(Module *pModule, BasicBlock *block) -> bool { return true; } ///< 分析动作,若完成则返回true;
|
||||
virtual void clear() {} ///< 清空
|
||||
};
|
||||
|
||||
// 数据流分析工具类
|
||||
// 该类用于管理多个数据流分析器,提供统一的前向与后向分析接口
|
||||
class DataFlowAnalysisUtils {
|
||||
private:
|
||||
std::vector<DataFlowAnalysis *> forwardAnalysisList; ///< 前向分析器列表
|
||||
std::vector<DataFlowAnalysis *> backwardAnalysisList; ///< 后向分析器列表
|
||||
|
||||
public:
|
||||
DataFlowAnalysisUtils() = default;
|
||||
~DataFlowAnalysisUtils() {
|
||||
clear(); // 析构时清理所有分析器
|
||||
}
|
||||
// 统一添加接口
|
||||
void addAnalyzers(
|
||||
std::vector<DataFlowAnalysis *> forwardList,
|
||||
std::vector<DataFlowAnalysis *> backwardList = {})
|
||||
{
|
||||
forwardAnalysisList.insert(
|
||||
forwardAnalysisList.end(),
|
||||
forwardList.begin(),
|
||||
forwardList.end());
|
||||
|
||||
backwardAnalysisList.insert(
|
||||
backwardAnalysisList.end(),
|
||||
backwardList.begin(),
|
||||
backwardList.end());
|
||||
}
|
||||
|
||||
// 单独添加接口
|
||||
void addForwardAnalyzer(DataFlowAnalysis *analyzer) {
|
||||
forwardAnalysisList.push_back(analyzer);
|
||||
}
|
||||
|
||||
void addBackwardAnalyzer(DataFlowAnalysis *analyzer) {
|
||||
backwardAnalysisList.push_back(analyzer);
|
||||
}
|
||||
|
||||
// 设置分析器列表
|
||||
void setAnalyzers(
|
||||
std::vector<DataFlowAnalysis *> forwardList,
|
||||
std::vector<DataFlowAnalysis *> backwardList)
|
||||
{
|
||||
forwardAnalysisList = std::move(forwardList);
|
||||
backwardAnalysisList = std::move(backwardList);
|
||||
}
|
||||
|
||||
// 清空列表
|
||||
void clear() {
|
||||
forwardAnalysisList.clear();
|
||||
backwardAnalysisList.clear();
|
||||
}
|
||||
|
||||
// 访问器
|
||||
const auto& getForwardAnalyzers() const { return forwardAnalysisList; }
|
||||
const auto& getBackwardAnalyzers() const { return backwardAnalysisList; }
|
||||
|
||||
public:
|
||||
void forwardAnalyze(Module *pModule); ///< 执行前向分析
|
||||
void backwardAnalyze(Module *pModule); ///< 执行后向分析
|
||||
};
|
||||
|
||||
// 活跃变量分析类
|
||||
// 提供def - use分析
|
||||
// 未兼容数组变量但是考虑了维度的use信息
|
||||
class ActiveVarAnalysis : public DataFlowAnalysis {
|
||||
private:
|
||||
std::map<BasicBlock *, std::vector<std::set<User *>>> activeTable; ///< 活跃信息表,存储每个基本块内的的活跃变量信息
|
||||
|
||||
public:
|
||||
ActiveVarAnalysis() = default;
|
||||
~ActiveVarAnalysis() override = default;
|
||||
|
||||
public:
|
||||
static std::set<User*> getUsedSet(Instruction *inst);
|
||||
static User* getDefine(Instruction *inst);
|
||||
|
||||
public:
|
||||
void init(Module *pModule) override;
|
||||
bool analyze(Module *pModule, BasicBlock *block) override;
|
||||
// 外部活跃信息表访问器
|
||||
const std::map<BasicBlock *, std::vector<std::set<User *>>> &getActiveTable() const;
|
||||
void clear() override {
|
||||
activeTable.clear(); // 清空活跃信息表
|
||||
}
|
||||
};
|
||||
|
||||
// 分析管理器 后续实现
|
||||
// class AnalysisManager {
|
||||
|
||||
// };
|
||||
|
||||
|
||||
|
||||
|
||||
} // namespace sysy
|
||||
@ -1,33 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "IR.h"
|
||||
|
||||
namespace sysy {
|
||||
|
||||
// 优化工具类,包含一些通用的优化方法
|
||||
// 这些方法可以在不同的优化 pass 中复用
|
||||
// 例如:删除use关系,判断是否是全局变量等
|
||||
class SysYIROptUtils{
|
||||
|
||||
public:
|
||||
// 仅仅删除use关系
|
||||
static void usedelete(Instruction *instr) {
|
||||
for (auto &use : instr->getOperands()) {
|
||||
Value* val = use->getValue();
|
||||
val->removeUse(use);
|
||||
}
|
||||
}
|
||||
|
||||
// 判断是否是全局变量
|
||||
static bool isGlobal(Value *val) {
|
||||
auto gval = dynamic_cast<GlobalValue *>(val);
|
||||
return gval != nullptr;
|
||||
}
|
||||
// 判断是否是数组
|
||||
static bool isArr(Value *val) {
|
||||
auto aval = dynamic_cast<AllocaInst *>(val);
|
||||
return aval != nullptr && aval->getNumDims() != 0;
|
||||
}
|
||||
};
|
||||
|
||||
}// namespace sysy
|
||||
@ -1,58 +0,0 @@
|
||||
// PassManager.h
|
||||
#pragma once
|
||||
|
||||
#include <vector>
|
||||
#include <memory>
|
||||
#include <typeindex> // For std::type_index
|
||||
#include <unordered_map>
|
||||
#include "SysYIRPass.h"
|
||||
#include "IR.h" // 假设你的IR.h定义了Module, Function等
|
||||
|
||||
namespace sysy {
|
||||
|
||||
class PassManager {
|
||||
public:
|
||||
PassManager() = default;
|
||||
|
||||
// 添加一个FunctionPass
|
||||
void addPass(std::unique_ptr<FunctionPass> pass) {
|
||||
functionPasses.push_back(std::move(pass));
|
||||
}
|
||||
|
||||
// 添加一个ModulePass
|
||||
void addPass(std::unique_ptr<ModulePass> pass) {
|
||||
modulePasses.push_back(std::move(pass));
|
||||
}
|
||||
|
||||
// 添加一个AnalysisPass
|
||||
template<typename T, typename... Args>
|
||||
T* addAnalysisPass(Args&&... args) {
|
||||
static_assert(std::is_base_of<AnalysisPass, T>::value, "T must derive from AnalysisPass");
|
||||
auto analysis = std::make_unique<T>(std::forward<Args>(args)...);
|
||||
T* rawPtr = analysis.get();
|
||||
analysisPasses[std::type_index(typeid(T))] = std::move(analysis);
|
||||
return rawPtr;
|
||||
}
|
||||
|
||||
// 获取分析结果(用于其他Pass访问)
|
||||
template<typename T>
|
||||
T* getAnalysis() {
|
||||
static_assert(std::is_base_of<AnalysisPass, T>::value, "T must derive from AnalysisPass");
|
||||
auto it = analysisPasses.find(std::type_index(typeid(T)));
|
||||
if (it != analysisPasses.end()) {
|
||||
return static_cast<T*>(it->second.get());
|
||||
}
|
||||
return nullptr; // 或者抛出异常
|
||||
}
|
||||
|
||||
// 运行所有注册的遍
|
||||
void run(Module& M);
|
||||
|
||||
private:
|
||||
std::vector<std::unique_ptr<FunctionPass>> functionPasses;
|
||||
std::vector<std::unique_ptr<ModulePass>> modulePasses;
|
||||
std::unordered_map<std::type_index, std::unique_ptr<AnalysisPass>> analysisPasses;
|
||||
// 未来可以添加AnalysisPass的缓存机制
|
||||
};
|
||||
|
||||
} // namespace sysy
|
||||
20
src/include/backend/RISCv64/Handler/EliminateFrameIndices.h
Normal file
20
src/include/backend/RISCv64/Handler/EliminateFrameIndices.h
Normal file
@ -0,0 +1,20 @@
|
||||
#ifndef ELIMINATE_FRAME_INDICES_H
|
||||
#define ELIMINATE_FRAME_INDICES_H
|
||||
|
||||
#include "RISCv64LLIR.h"
|
||||
|
||||
namespace sysy {
|
||||
|
||||
class EliminateFrameIndicesPass {
|
||||
public:
|
||||
// Pass 的主入口函数
|
||||
void runOnMachineFunction(MachineFunction* mfunc);
|
||||
|
||||
private:
|
||||
// 帮助计算类型大小的辅助函数,从原RegAlloc中移出
|
||||
unsigned getTypeSizeInBytes(Type* type);
|
||||
};
|
||||
|
||||
} // namespace sysy
|
||||
|
||||
#endif // ELIMINATE_FRAME_INDICES_H
|
||||
36
src/include/backend/RISCv64/Handler/LegalizeImmediates.h
Normal file
36
src/include/backend/RISCv64/Handler/LegalizeImmediates.h
Normal file
@ -0,0 +1,36 @@
|
||||
#ifndef SYSY_LEGALIZE_IMMEDIATES_H
|
||||
#define SYSY_LEGALIZE_IMMEDIATES_H
|
||||
|
||||
#include "RISCv64LLIR.h"
|
||||
#include "Pass.h"
|
||||
|
||||
namespace sysy {
|
||||
|
||||
// MachineFunction 的前向声明在这里是可选的,因为 RISCv64LLIR.h 已经定义了它
|
||||
// class MachineFunction;
|
||||
|
||||
/**
|
||||
* @class LegalizeImmediatesPass
|
||||
* @brief 一个用于“合法化”机器指令的Pass。
|
||||
*
|
||||
* 这个Pass的主要职责是遍历所有机器指令,查找那些包含了超出
|
||||
* 目标架构(RISC-V)编码范围的大立即数(immediate)的指令,
|
||||
* 并将它们展开成一个等价的、只包含合法立即数的指令序列。
|
||||
*
|
||||
* 它在指令选择之后、寄存器分配之前运行,确保进入后续阶段的
|
||||
* 所有指令都符合硬件约束。
|
||||
*/
|
||||
class LegalizeImmediatesPass : public Pass {
|
||||
public:
|
||||
static char ID;
|
||||
|
||||
LegalizeImmediatesPass() : Pass("legalize-immediates", Granularity::Function, PassKind::Optimization) {}
|
||||
|
||||
void *getPassID() const override { return &ID; }
|
||||
|
||||
void runOnMachineFunction(MachineFunction* mfunc);
|
||||
};
|
||||
|
||||
} // namespace sysy
|
||||
|
||||
#endif // SYSY_LEGALIZE_IMMEDIATES_H
|
||||
@ -0,0 +1,35 @@
|
||||
#ifndef SYSY_PROLOGUE_EPILOGUE_INSERTION_H
|
||||
#define SYSY_PROLOGUE_EPILOGUE_INSERTION_H
|
||||
|
||||
#include "RISCv64LLIR.h"
|
||||
#include "Pass.h"
|
||||
|
||||
namespace sysy {
|
||||
|
||||
class MachineFunction;
|
||||
|
||||
/**
|
||||
* @class PrologueEpilogueInsertionPass
|
||||
* @brief 在函数中插入序言和尾声的机器指令。
|
||||
*
|
||||
* 这个Pass在所有栈帧大小计算完毕后(包括局部变量、溢出槽、被调用者保存寄存器),
|
||||
* 在寄存器分配之后运行。它的职责是:
|
||||
* 1. 根据 StackFrameInfo 中的最终栈大小,生成用于分配和释放栈帧的指令 (addi sp, sp, +/-size)。
|
||||
* 2. 生成用于保存和恢复返回地址(ra)和旧帧指针(s0)的指令。
|
||||
* 3. 将这些指令作为 MachineInstr 对象插入到 MachineFunction 的入口块和所有返回块中。
|
||||
* 4. 这个Pass可能会生成带有大立即数的指令,需要后续的 LegalizeImmediatesPass 来处理。
|
||||
*/
|
||||
class PrologueEpilogueInsertionPass : public Pass {
|
||||
public:
|
||||
static char ID;
|
||||
|
||||
PrologueEpilogueInsertionPass() : Pass("prologue-epilogue-insertion", Granularity::Function, PassKind::Optimization) {}
|
||||
|
||||
void *getPassID() const override { return &ID; }
|
||||
|
||||
void runOnMachineFunction(MachineFunction* mfunc);
|
||||
};
|
||||
|
||||
} // namespace sysy
|
||||
|
||||
#endif // SYSY_PROLOGUE_EPILOGUE_INSERTION_H
|
||||
30
src/include/backend/RISCv64/Optimize/DivStrengthReduction.h
Normal file
30
src/include/backend/RISCv64/Optimize/DivStrengthReduction.h
Normal file
@ -0,0 +1,30 @@
|
||||
#ifndef RISCV64_DIV_STRENGTH_REDUCTION_H
|
||||
#define RISCV64_DIV_STRENGTH_REDUCTION_H
|
||||
|
||||
#include "RISCv64LLIR.h"
|
||||
#include "Pass.h"
|
||||
|
||||
namespace sysy {
|
||||
|
||||
/**
|
||||
* @class DivStrengthReduction
|
||||
* @brief 除法强度削弱优化器
|
||||
* * 将除法运算转换为乘法运算,使用magic number算法
|
||||
* 适用于除数为常数的情况,可以显著提高性能
|
||||
*/
|
||||
class DivStrengthReduction : public Pass {
|
||||
public:
|
||||
static char ID;
|
||||
|
||||
DivStrengthReduction() : Pass("div-strength-reduction", Granularity::Function, PassKind::Optimization) {}
|
||||
|
||||
void *getPassID() const override { return &ID; }
|
||||
|
||||
bool runOnFunction(Function *F, AnalysisManager& AM) override;
|
||||
|
||||
void runOnMachineFunction(MachineFunction* mfunc);
|
||||
};
|
||||
|
||||
} // namespace sysy
|
||||
|
||||
#endif // RISCV64_DIV_STRENGTH_REDUCTION_H
|
||||
@ -12,6 +12,26 @@ namespace sysy {
|
||||
* * 主要目标是优化寄存器分配器插入的spill/fill代码(lw/sw),
|
||||
* 尝试将加载指令提前,以隐藏其访存延迟。
|
||||
*/
|
||||
struct MemoryAccess {
|
||||
PhysicalReg base_reg;
|
||||
int64_t offset;
|
||||
bool valid;
|
||||
|
||||
MemoryAccess() : valid(false) {}
|
||||
MemoryAccess(PhysicalReg base, int64_t off) : base_reg(base), offset(off), valid(true) {}
|
||||
};
|
||||
|
||||
struct InstrRegInfo {
|
||||
std::unordered_set<PhysicalReg> defined_regs;
|
||||
std::unordered_set<PhysicalReg> used_regs;
|
||||
bool is_load;
|
||||
bool is_store;
|
||||
bool is_control_flow;
|
||||
MemoryAccess mem_access;
|
||||
|
||||
InstrRegInfo() : is_load(false), is_store(false), is_control_flow(false) {}
|
||||
};
|
||||
|
||||
class PostRA_Scheduler : public Pass {
|
||||
public:
|
||||
static char ID;
|
||||
@ -18,14 +18,14 @@ public:
|
||||
void printInstruction(MachineInstr* instr, bool debug = false);
|
||||
// 辅助函数
|
||||
void setStream(std::ostream& os) { OS = &os; }
|
||||
private:
|
||||
// 打印各个部分
|
||||
void printPrologue();
|
||||
void printEpilogue();
|
||||
void printBasicBlock(MachineBasicBlock* mbb, bool debug = false);
|
||||
|
||||
// 辅助函数
|
||||
std::string regToString(PhysicalReg reg);
|
||||
std::string formatInstr(const MachineInstr *instr);
|
||||
|
||||
private:
|
||||
// 打印各个部分
|
||||
void printBasicBlock(MachineBasicBlock* mbb, bool debug = false);
|
||||
// 辅助函数
|
||||
void printOperand(MachineOperand* op);
|
||||
|
||||
MachineFunction* MFunc;
|
||||
@ -22,7 +22,11 @@ private:
|
||||
// 函数级代码生成 (实现新的流水线)
|
||||
std::string function_gen(Function* func);
|
||||
|
||||
// 私有辅助函数,用于根据类型计算其占用的字节数。
|
||||
unsigned getTypeSizeInBytes(Type* type);
|
||||
|
||||
Module* module;
|
||||
bool gc_failed = false;
|
||||
};
|
||||
|
||||
} // namespace sysy
|
||||
61
src/include/backend/RISCv64/RISCv64BasicBlockAlloc.h
Normal file
61
src/include/backend/RISCv64/RISCv64BasicBlockAlloc.h
Normal file
@ -0,0 +1,61 @@
|
||||
#ifndef RISCV64_BASICBLOCKALLOC_H
|
||||
#define RISCV64_BASICBLOCKALLOC_H
|
||||
|
||||
#include "RISCv64LLIR.h"
|
||||
#include "RISCv64ISel.h"
|
||||
#include <set>
|
||||
#include <map>
|
||||
#include <vector>
|
||||
|
||||
namespace sysy {
|
||||
|
||||
/**
|
||||
* @class RISCv64BasicBlockAlloc
|
||||
* @brief 一个有状态的、基本块级的贪心寄存器分配器。
|
||||
*
|
||||
* 该分配器作为简单但可靠的实现,它逐个处理基本块,并在块内尽可能地
|
||||
* 将虚拟寄存器的值保留在物理寄存器中,以减少不必要的内存访问。
|
||||
*/
|
||||
class RISCv64BasicBlockAlloc {
|
||||
public:
|
||||
RISCv64BasicBlockAlloc(MachineFunction* mfunc);
|
||||
void run();
|
||||
|
||||
private:
|
||||
void computeLiveness();
|
||||
void processBasicBlock(MachineBasicBlock* mbb);
|
||||
void assignStackSlotsForAllVRegs();
|
||||
|
||||
// 核心分配函数
|
||||
PhysicalReg ensureInReg(unsigned vreg, std::vector<std::unique_ptr<MachineInstr>>& new_instrs);
|
||||
PhysicalReg allocReg(unsigned vreg, std::vector<std::unique_ptr<MachineInstr>>& new_instrs);
|
||||
PhysicalReg findFreeReg(bool is_fp);
|
||||
PhysicalReg spillReg(bool is_fp, std::vector<std::unique_ptr<MachineInstr>>& new_instrs);
|
||||
|
||||
// 状态跟踪(每个基本块开始时都会重置)
|
||||
std::map<unsigned, PhysicalReg> vreg_to_preg; // 当前vreg到物理寄存器的映射
|
||||
std::map<PhysicalReg, unsigned> preg_to_vreg; // 反向映射
|
||||
std::set<PhysicalReg> dirty_pregs; // 被修改过、需要写回的物理寄存器
|
||||
|
||||
// 分配器全局信息
|
||||
MachineFunction* MFunc;
|
||||
RISCv64ISel* ISel;
|
||||
std::map<unsigned, PhysicalReg> abi_vreg_map; // 函数参数的ABI寄存器映射
|
||||
|
||||
// 寄存器池和循环索引
|
||||
std::vector<PhysicalReg> int_temps;
|
||||
std::vector<PhysicalReg> fp_temps;
|
||||
int int_temp_idx = 0;
|
||||
int fp_temp_idx = 0;
|
||||
|
||||
// 辅助函数
|
||||
PhysicalReg getNextIntTemp();
|
||||
PhysicalReg getNextFpTemp();
|
||||
|
||||
// 活性分析结果
|
||||
std::map<const MachineBasicBlock*, std::set<unsigned>> live_out;
|
||||
};
|
||||
|
||||
} // namespace sysy
|
||||
|
||||
#endif // RISCV64_BASICBLOCKALLOC_H
|
||||
@ -3,6 +3,12 @@
|
||||
|
||||
#include "RISCv64LLIR.h"
|
||||
|
||||
// Forward declarations
|
||||
namespace sysy {
|
||||
class GlobalValue;
|
||||
class Value;
|
||||
}
|
||||
|
||||
extern int DEBUG;
|
||||
extern int DEEPDEBUG;
|
||||
|
||||
@ -16,10 +22,13 @@ public:
|
||||
|
||||
// 公开接口,以便后续模块(如RegAlloc)可以查询或创建vreg
|
||||
unsigned getVReg(Value* val);
|
||||
unsigned getNewVReg() { return vreg_counter++; }
|
||||
unsigned getNewVReg(Type* type);
|
||||
unsigned getVRegCounter() const;
|
||||
// 获取 vreg_map 的公共接口
|
||||
const std::map<Value*, unsigned>& getVRegMap() const { return vreg_map; }
|
||||
|
||||
const std::map<unsigned, Value*>& getVRegValueMap() const { return vreg_to_value_map; }
|
||||
const std::map<unsigned, Type*>& getVRegTypeMap() const { return vreg_type_map; }
|
||||
int foo3 = 0;
|
||||
private:
|
||||
// DAG节点定义,作为ISel的内部实现细节
|
||||
struct DAGNode;
|
||||
@ -38,6 +47,7 @@ private:
|
||||
// 用于计算类型大小的辅助函数
|
||||
unsigned getTypeSizeInBytes(Type* type);
|
||||
|
||||
// 打印DAG图以供调试
|
||||
void print_dag(const std::vector<std::unique_ptr<DAGNode>>& dag, const std::string& bb_name);
|
||||
|
||||
// 状态
|
||||
@ -47,6 +57,8 @@ private:
|
||||
|
||||
// 映射关系
|
||||
std::map<Value*, unsigned> vreg_map;
|
||||
std::map<unsigned, Value*> vreg_to_value_map;
|
||||
std::map<unsigned, Type*> vreg_type_map;
|
||||
std::map<const BasicBlock*, MachineBasicBlock*> bb_map;
|
||||
|
||||
unsigned vreg_counter;
|
||||
97
src/include/backend/RISCv64/RISCv64Info.h
Normal file
97
src/include/backend/RISCv64/RISCv64Info.h
Normal file
@ -0,0 +1,97 @@
|
||||
#ifndef RISCV64_INFO_H
|
||||
#define RISCV64_INFO_H
|
||||
|
||||
#include "RISCv64LLIR.h"
|
||||
#include <map>
|
||||
#include <vector>
|
||||
|
||||
namespace sysy {
|
||||
|
||||
// 定义一个全局的、权威的指令信息表
|
||||
// 它包含了指令的定义(def)和使用(use)操作数索引
|
||||
// defs: {0} -> 第一个操作数是定义
|
||||
// uses: {1, 2} -> 第二、三个操作数是使用
|
||||
static const std::map<RVOpcodes, std::pair<std::vector<int>, std::vector<int>>> op_info = {
|
||||
// --- 整数计算 (R-Type) ---
|
||||
{RVOpcodes::ADD, {{0}, {1, 2}}},
|
||||
{RVOpcodes::SUB, {{0}, {1, 2}}},
|
||||
{RVOpcodes::MUL, {{0}, {1, 2}}},
|
||||
{RVOpcodes::MULH, {{0}, {1, 2}}},
|
||||
{RVOpcodes::DIV, {{0}, {1, 2}}},
|
||||
{RVOpcodes::DIVW, {{0}, {1, 2}}},
|
||||
{RVOpcodes::REM, {{0}, {1, 2}}},
|
||||
{RVOpcodes::REMW, {{0}, {1, 2}}},
|
||||
{RVOpcodes::ADDW, {{0}, {1, 2}}},
|
||||
{RVOpcodes::SUBW, {{0}, {1, 2}}},
|
||||
{RVOpcodes::MULW, {{0}, {1, 2}}},
|
||||
{RVOpcodes::SLT, {{0}, {1, 2}}},
|
||||
{RVOpcodes::SLTU, {{0}, {1, 2}}},
|
||||
{RVOpcodes::XOR, {{0}, {1, 2}}},
|
||||
{RVOpcodes::OR, {{0}, {1, 2}}},
|
||||
{RVOpcodes::AND, {{0}, {1, 2}}},
|
||||
{RVOpcodes::SLL, {{0}, {1, 2}}},
|
||||
{RVOpcodes::SRL, {{0}, {1, 2}}},
|
||||
{RVOpcodes::SRA, {{0}, {1, 2}}},
|
||||
{RVOpcodes::SLLW, {{0}, {1, 2}}},
|
||||
{RVOpcodes::SRLW, {{0}, {1, 2}}},
|
||||
{RVOpcodes::SRAW, {{0}, {1, 2}}},
|
||||
|
||||
// --- 整数计算 (I-Type) ---
|
||||
{RVOpcodes::ADDI, {{0}, {1}}},
|
||||
{RVOpcodes::ADDIW, {{0}, {1}}},
|
||||
{RVOpcodes::XORI, {{0}, {1}}},
|
||||
{RVOpcodes::ORI, {{0}, {1}}},
|
||||
{RVOpcodes::ANDI, {{0}, {1}}},
|
||||
{RVOpcodes::SLTI, {{0}, {1}}},
|
||||
{RVOpcodes::SLTIU, {{0}, {1}}},
|
||||
{RVOpcodes::SLLI, {{0}, {1}}},
|
||||
{RVOpcodes::SLLIW, {{0}, {1}}},
|
||||
{RVOpcodes::SRLI, {{0}, {1}}},
|
||||
{RVOpcodes::SRLIW, {{0}, {1}}},
|
||||
{RVOpcodes::SRAI, {{0}, {1}}},
|
||||
{RVOpcodes::SRAIW, {{0}, {1}}},
|
||||
|
||||
// --- 内存加载 ---
|
||||
{RVOpcodes::LW, {{0}, {}}}, {RVOpcodes::LH, {{0}, {}}}, {RVOpcodes::LB, {{0}, {}}},
|
||||
{RVOpcodes::LWU, {{0}, {}}}, {RVOpcodes::LHU, {{0}, {}}}, {RVOpcodes::LBU, {{0}, {}}},
|
||||
{RVOpcodes::LD, {{0}, {}}},
|
||||
{RVOpcodes::FLW, {{0}, {}}}, {RVOpcodes::FLD, {{0}, {}}},
|
||||
|
||||
// --- 内存存储 ---
|
||||
{RVOpcodes::SW, {{}, {0, 1}}}, {RVOpcodes::SH, {{}, {0, 1}}}, {RVOpcodes::SB, {{}, {0, 1}}},
|
||||
{RVOpcodes::SD, {{}, {0, 1}}},
|
||||
{RVOpcodes::FSW, {{}, {0, 1}}}, {RVOpcodes::FSD, {{}, {0, 1}}},
|
||||
|
||||
// --- 分支指令 ---
|
||||
{RVOpcodes::BEQ, {{}, {0, 1}}}, {RVOpcodes::BNE, {{}, {0, 1}}}, {RVOpcodes::BLT, {{}, {0, 1}}},
|
||||
{RVOpcodes::BGE, {{}, {0, 1}}}, {RVOpcodes::BLTU, {{}, {0, 1}}}, {RVOpcodes::BGEU, {{}, {0, 1}}},
|
||||
|
||||
// --- 跳转 ---
|
||||
{RVOpcodes::JAL, {{0}, {}}}, // JAL的rd是def,但通常用x0表示不关心返回值,这里简化
|
||||
{RVOpcodes::JALR, {{0}, {1}}},
|
||||
{RVOpcodes::RET, {{}, {}}}, // RET是伪指令,通常展开为JALR
|
||||
|
||||
// --- 伪指令 & 其他 ---
|
||||
{RVOpcodes::LI, {{0}, {}}}, {RVOpcodes::LA, {{0}, {}}},
|
||||
{RVOpcodes::MV, {{0}, {1}}},
|
||||
{RVOpcodes::NEG, {{0}, {1}}}, // sub rd, zero, rs1
|
||||
{RVOpcodes::NEGW, {{0}, {1}}}, // subw rd, zero, rs1
|
||||
{RVOpcodes::SEQZ, {{0}, {1}}},
|
||||
{RVOpcodes::SNEZ, {{0}, {1}}},
|
||||
|
||||
// --- 函数调用 ---
|
||||
// CALL的use/def在getInstrUseDef中有特殊处理逻辑,这里可以不列出
|
||||
|
||||
// --- 浮点指令 ---
|
||||
{RVOpcodes::FADD_S, {{0}, {1, 2}}}, {RVOpcodes::FSUB_S, {{0}, {1, 2}}},
|
||||
{RVOpcodes::FMUL_S, {{0}, {1, 2}}}, {RVOpcodes::FDIV_S, {{0}, {1, 2}}},
|
||||
{RVOpcodes::FEQ_S, {{0}, {1, 2}}}, {RVOpcodes::FLT_S, {{0}, {1, 2}}}, {RVOpcodes::FLE_S, {{0}, {1, 2}}},
|
||||
{RVOpcodes::FCVT_S_W, {{0}, {1}}}, {RVOpcodes::FCVT_W_S, {{0}, {1}}},
|
||||
{RVOpcodes::FCVT_W_S_RTZ, {{0}, {1}}},
|
||||
{RVOpcodes::FMV_S, {{0}, {1}}}, {RVOpcodes::FMV_W_X, {{0}, {1}}}, {RVOpcodes::FMV_X_W, {{0}, {1}}},
|
||||
{RVOpcodes::FNEG_S, {{0}, {1}}}
|
||||
};
|
||||
|
||||
} // namespace sysy
|
||||
|
||||
#endif // RISCV64_INFO_H
|
||||
@ -3,6 +3,7 @@
|
||||
|
||||
#include "IR.h" // 确保包含了您自己的IR头文件
|
||||
#include <string>
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
#include <memory>
|
||||
#include <cstdint>
|
||||
@ -32,21 +33,22 @@ enum class PhysicalReg {
|
||||
A0, A1, A2, A3, A4, A5, A6, A7,
|
||||
|
||||
// --- 浮点寄存器 ---
|
||||
// (保持您原有的 F0-F31 命名)
|
||||
F0, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11,
|
||||
F12, F13, F14, F15, F16, F17, F18, F19, F20, F21,
|
||||
F22, F23, F24, F25, F26, F27, F28, F29, F30, F31,
|
||||
|
||||
// 用于内部表示物理寄存器在干扰图中的节点ID(一个简单的特殊ID,确保不与vreg_counter冲突)
|
||||
// 假设 vreg_counter 不会达到这么大的值
|
||||
PHYS_REG_START_ID = 100000,
|
||||
PHYS_REG_START_ID = 1000000,
|
||||
PHYS_REG_END_ID = PHYS_REG_START_ID + 320, // 预留足够的空间
|
||||
|
||||
INVALID, ///< 无效寄存器标记
|
||||
};
|
||||
|
||||
// RISC-V 指令操作码枚举
|
||||
enum class RVOpcodes {
|
||||
// 算术指令
|
||||
ADD, ADDI, ADDW, ADDIW, SUB, SUBW, MUL, MULW, DIV, DIVW, REM, REMW,
|
||||
ADD, ADDI, ADDW, ADDIW, SUB, SUBW, MUL, MULW, MULH, DIV, DIVW, REM, REMW,
|
||||
// 逻辑指令
|
||||
XOR, XORI, OR, ORI, AND, ANDI,
|
||||
// 移位指令
|
||||
@ -64,16 +66,102 @@ enum class RVOpcodes {
|
||||
CALL,
|
||||
// 特殊标记,非指令
|
||||
LABEL,
|
||||
// 新增伪指令,用于解耦栈帧处理
|
||||
|
||||
// 浮点指令 (RISC-V 'F' 扩展)
|
||||
// 浮点加载与存储
|
||||
FLW, // flw rd, offset(rs1)
|
||||
FSW, // fsw rs2, offset(rs1)
|
||||
FLD, // fld rd, offset(rs1)
|
||||
FSD, // fsd rs2, offset(rs1)
|
||||
|
||||
// 浮点算术运算 (单精度)
|
||||
FADD_S, // fadd.s rd, rs1, rs2
|
||||
FSUB_S, // fsub.s rd, rs1, rs2
|
||||
FMUL_S, // fmul.s rd, rs1, rs2
|
||||
FDIV_S, // fdiv.s rd, rs1, rs2
|
||||
|
||||
// 浮点比较 (单精度)
|
||||
FEQ_S, // feq.s rd, rs1, rs2 (结果写入整数寄存器rd)
|
||||
FLT_S, // flt.s rd, rs1, rs2 (less than)
|
||||
FLE_S, // fle.s rd, rs1, rs2 (less than or equal)
|
||||
|
||||
// 浮点转换
|
||||
FCVT_S_W, // fcvt.s.w rd, rs1 (有符号整数 -> 单精度浮点)
|
||||
FCVT_W_S, // fcvt.w.s rd, rs1 (单精度浮点 -> 有符号整数)
|
||||
FCVT_W_S_RTZ, // fcvt.w.s rd, rs1, rtz (使用向零截断模式)
|
||||
|
||||
// 浮点传送/移动
|
||||
FMV_S, // fmv.s rd, rs1 (浮点寄存器之间)
|
||||
FMV_W_X, // fmv.w.x rd, rs1 (整数寄存器位模式 -> 浮点寄存器)
|
||||
FMV_X_W, // fmv.x.w rd, rs1 (浮点寄存器位模式 -> 整数寄存器)
|
||||
FNEG_S, // fneg.s rd, rs (浮点取负)
|
||||
|
||||
// 浮点控制状态寄存器 (CSR)
|
||||
FSRMI, // fsrmi rd, imm (设置舍入模式立即数)
|
||||
|
||||
// 伪指令
|
||||
FRAME_LOAD_W, // 从栈帧加载 32位 Word (对应 lw)
|
||||
FRAME_LOAD_D, // 从栈帧加载 64位 Doubleword (对应 ld)
|
||||
FRAME_STORE_W, // 保存 32位 Word 到栈帧 (对应 sw)
|
||||
FRAME_STORE_D, // 保存 64位 Doubleword 到栈帧 (对应 sd)
|
||||
FRAME_LOAD_F, // 从栈帧加载单精度浮点数
|
||||
FRAME_STORE_F, // 将单精度浮点数存入栈帧
|
||||
FRAME_ADDR, // 获取栈帧变量的地址
|
||||
PSEUDO_KEEPALIVE, // 保持寄存器活跃,防止优化器删除
|
||||
};
|
||||
|
||||
// 定义一个全局辅助函数或常量,提供调用者保存寄存器列表
|
||||
const std::vector<PhysicalReg>& getCallerSavedIntRegs();
|
||||
inline bool isGPR(PhysicalReg reg) {
|
||||
return reg >= PhysicalReg::ZERO && reg <= PhysicalReg::T6;
|
||||
}
|
||||
|
||||
// 判断一个物理寄存器是否是浮点寄存器 (FPR)
|
||||
inline bool isFPR(PhysicalReg reg) {
|
||||
return reg >= PhysicalReg::F0 && reg <= PhysicalReg::F31;
|
||||
}
|
||||
|
||||
// 获取所有调用者保存的整数寄存器 (t0-t6, a0-a7)
|
||||
inline const std::vector<PhysicalReg>& getCallerSavedIntRegs() {
|
||||
static const std::vector<PhysicalReg> regs = {
|
||||
PhysicalReg::T0, PhysicalReg::T1, PhysicalReg::T2, PhysicalReg::T3,
|
||||
PhysicalReg::T4, PhysicalReg::T5, PhysicalReg::T6,
|
||||
PhysicalReg::A0, PhysicalReg::A1, PhysicalReg::A2, PhysicalReg::A3,
|
||||
PhysicalReg::A4, PhysicalReg::A5, PhysicalReg::A6, PhysicalReg::A7
|
||||
};
|
||||
return regs;
|
||||
}
|
||||
|
||||
// 获取所有被调用者保存的整数寄存器 (s0-s11)
|
||||
inline const std::vector<PhysicalReg>& getCalleeSavedIntRegs() {
|
||||
static const std::vector<PhysicalReg> regs = {
|
||||
PhysicalReg::S0, PhysicalReg::S1, PhysicalReg::S2, PhysicalReg::S3,
|
||||
PhysicalReg::S4, PhysicalReg::S5, PhysicalReg::S6, PhysicalReg::S7,
|
||||
PhysicalReg::S8, PhysicalReg::S9, PhysicalReg::S10, PhysicalReg::S11
|
||||
};
|
||||
return regs;
|
||||
}
|
||||
|
||||
// 获取所有调用者保存的浮点寄存器 (ft0-ft11, fa0-fa7)
|
||||
inline const std::vector<PhysicalReg>& getCallerSavedFpRegs() {
|
||||
static const std::vector<PhysicalReg> regs = {
|
||||
PhysicalReg::F0, PhysicalReg::F1, PhysicalReg::F2, PhysicalReg::F3,
|
||||
PhysicalReg::F4, PhysicalReg::F5, PhysicalReg::F6, PhysicalReg::F7,
|
||||
PhysicalReg::F8, PhysicalReg::F9, PhysicalReg::F10, PhysicalReg::F11, // ft0-ft11 和 fa0-fa7 在标准ABI中重叠
|
||||
PhysicalReg::F12, PhysicalReg::F13, PhysicalReg::F14, PhysicalReg::F15,
|
||||
PhysicalReg::F16, PhysicalReg::F17
|
||||
};
|
||||
return regs;
|
||||
}
|
||||
|
||||
// 获取所有被调用者保存的浮点寄存器 (fs0-fs11)
|
||||
inline const std::vector<PhysicalReg>& getCalleeSavedFpRegs() {
|
||||
static const std::vector<PhysicalReg> regs = {
|
||||
PhysicalReg::F18, PhysicalReg::F19, PhysicalReg::F20, PhysicalReg::F21,
|
||||
PhysicalReg::F22, PhysicalReg::F23, PhysicalReg::F24, PhysicalReg::F25,
|
||||
PhysicalReg::F26, PhysicalReg::F27, PhysicalReg::F28, PhysicalReg::F29,
|
||||
PhysicalReg::F30, PhysicalReg::F31
|
||||
};
|
||||
return regs;
|
||||
}
|
||||
|
||||
class MachineOperand;
|
||||
class RegOperand;
|
||||
@ -114,6 +202,11 @@ public:
|
||||
preg = new_preg;
|
||||
is_virtual = false;
|
||||
}
|
||||
|
||||
void setVRegNum(unsigned new_vreg_num) {
|
||||
vreg_num = new_vreg_num;
|
||||
is_virtual = true; // 确保设置vreg时,操作数状态正确
|
||||
}
|
||||
private:
|
||||
unsigned vreg_num = 0;
|
||||
PhysicalReg preg = PhysicalReg::ZERO;
|
||||
@ -162,6 +255,19 @@ public:
|
||||
void addOperand(std::unique_ptr<MachineOperand> operand) {
|
||||
operands.push_back(std::move(operand));
|
||||
}
|
||||
/**
|
||||
* @brief (为紧急溢出模式添加)将指令中所有对特定虚拟寄存器的引用替换为指定的物理寄存器。
|
||||
* * @param old_vreg 需要被替换的虚拟寄存器号。
|
||||
* @param preg 用于替换的物理寄存器。
|
||||
*/
|
||||
void replaceVRegWithPReg(unsigned old_vreg, PhysicalReg preg);
|
||||
|
||||
/**
|
||||
* @brief (为常规溢出模式添加)根据提供的映射表,重映射指令中的虚拟寄存器。
|
||||
* * @param use_remap 一个从旧vreg到新vreg的映射,用于指令的use操作数。
|
||||
* @param def_remap 一个从旧vreg到新vreg的映射,用于指令的def操作数。
|
||||
*/
|
||||
void remapVRegs(const std::map<unsigned, unsigned>& use_remap, const std::map<unsigned, unsigned>& def_remap);
|
||||
private:
|
||||
RVOpcodes opcode;
|
||||
std::vector<std::unique_ptr<MachineOperand>> operands;
|
||||
@ -193,12 +299,15 @@ private:
|
||||
// 栈帧信息
|
||||
struct StackFrameInfo {
|
||||
int locals_size = 0; // 仅为AllocaInst分配的大小
|
||||
int locals_end_offset = 0; // 记录局部变量分配结束后的偏移量(相对于s0,为负)
|
||||
int spill_size = 0; // 仅为溢出分配的大小
|
||||
int total_size = 0; // 总大小
|
||||
int callee_saved_size = 0; // 保存寄存器的大小
|
||||
std::map<unsigned, int> alloca_offsets; // <AllocaInst的vreg, 栈偏移>
|
||||
std::map<unsigned, int> spill_offsets; // <溢出vreg, 栈偏移>
|
||||
std::set<PhysicalReg> used_callee_saved_regs; // 使用的保存寄存器
|
||||
std::map<unsigned, PhysicalReg> vreg_to_preg_map; // RegAlloc最终的分配结果
|
||||
std::vector<PhysicalReg> callee_saved_regs_to_store; // 已排序的、需要存取的被调用者保存寄存器
|
||||
};
|
||||
|
||||
// 机器函数
|
||||
@ -212,7 +321,7 @@ public:
|
||||
StackFrameInfo& getFrameInfo() { return frame_info; }
|
||||
const std::vector<std::unique_ptr<MachineBasicBlock>>& getBlocks() const { return blocks; }
|
||||
std::vector<std::unique_ptr<MachineBasicBlock>>& getBlocks() { return blocks; }
|
||||
|
||||
void dumpStackFrameInfo(std::ostream& os = std::cerr) const;
|
||||
void addBlock(std::unique_ptr<MachineBasicBlock> block) {
|
||||
blocks.push_back(std::move(block));
|
||||
}
|
||||
@ -223,16 +332,23 @@ private:
|
||||
std::vector<std::unique_ptr<MachineBasicBlock>> blocks;
|
||||
StackFrameInfo frame_info;
|
||||
};
|
||||
|
||||
inline const std::vector<PhysicalReg>& getCallerSavedIntRegs() {
|
||||
static const std::vector<PhysicalReg> regs = {
|
||||
PhysicalReg::T0, PhysicalReg::T1, PhysicalReg::T2, PhysicalReg::T3,
|
||||
PhysicalReg::T4, PhysicalReg::T5, PhysicalReg::T6,
|
||||
PhysicalReg::A0, PhysicalReg::A1, PhysicalReg::A2, PhysicalReg::A3,
|
||||
PhysicalReg::A4, PhysicalReg::A5, PhysicalReg::A6, PhysicalReg::A7
|
||||
};
|
||||
return regs;
|
||||
inline bool isMemoryOp(RVOpcodes opcode) {
|
||||
switch (opcode) {
|
||||
case RVOpcodes::LB: case RVOpcodes::LH: case RVOpcodes::LW: case RVOpcodes::LD:
|
||||
case RVOpcodes::LBU: case RVOpcodes::LHU: case RVOpcodes::LWU:
|
||||
case RVOpcodes::SB: case RVOpcodes::SH: case RVOpcodes::SW: case RVOpcodes::SD:
|
||||
case RVOpcodes::FLW:
|
||||
case RVOpcodes::FSW:
|
||||
case RVOpcodes::FLD:
|
||||
case RVOpcodes::FSD:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
void getInstrUseDef(const MachineInstr* instr, std::set<unsigned>& use, std::set<unsigned>& def);
|
||||
|
||||
} // namespace sysy
|
||||
|
||||
#endif // RISCV64_LLIR_H
|
||||
81
src/include/backend/RISCv64/RISCv64LinearScan.h
Normal file
81
src/include/backend/RISCv64/RISCv64LinearScan.h
Normal file
@ -0,0 +1,81 @@
|
||||
#ifndef RISCV64_LINEARSCAN_H
|
||||
#define RISCV64_LINEARSCAN_H
|
||||
|
||||
#include "RISCv64LLIR.h"
|
||||
#include "RISCv64ISel.h"
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <set>
|
||||
#include <algorithm>
|
||||
|
||||
namespace sysy {
|
||||
|
||||
// 前向声明
|
||||
class MachineBasicBlock;
|
||||
class MachineFunction;
|
||||
class RISCv64ISel;
|
||||
|
||||
/**
|
||||
* @brief 表示一个虚拟寄存器的活跃区间。
|
||||
* 包含起始和结束指令编号。为了简化,我们不处理有“洞”的区间。
|
||||
*/
|
||||
struct LiveInterval {
|
||||
unsigned vreg = 0;
|
||||
int start = -1;
|
||||
int end = -1;
|
||||
bool crosses_call = false;
|
||||
|
||||
LiveInterval(unsigned vreg) : vreg(vreg) {}
|
||||
|
||||
// 用于排序,按起始点从小到大
|
||||
bool operator<(const LiveInterval& other) const {
|
||||
return start < other.start;
|
||||
}
|
||||
};
|
||||
|
||||
class RISCv64LinearScan {
|
||||
public:
|
||||
RISCv64LinearScan(MachineFunction* mfunc);
|
||||
bool run();
|
||||
|
||||
private:
|
||||
// --- 核心算法流程 ---
|
||||
void linearizeBlocks();
|
||||
void computeLiveIntervals();
|
||||
bool linearScan();
|
||||
void rewriteProgram();
|
||||
void applyAllocation();
|
||||
void spillAtInterval(LiveInterval* current);
|
||||
|
||||
// --- 辅助函数 ---
|
||||
bool isFPVReg(unsigned vreg) const;
|
||||
void collectUsedCalleeSavedRegs();
|
||||
|
||||
MachineFunction* MFunc;
|
||||
RISCv64ISel* ISel;
|
||||
|
||||
// --- 线性扫描数据结构 ---
|
||||
std::vector<MachineBasicBlock*> linear_order_blocks;
|
||||
std::map<const MachineInstr*, int> instr_numbering;
|
||||
std::map<unsigned, LiveInterval> live_intervals;
|
||||
|
||||
std::vector<LiveInterval*> unhandled;
|
||||
std::vector<LiveInterval*> active; // 活跃且已分配物理寄存器的区间
|
||||
|
||||
std::set<unsigned> spilled_vregs; // 记录在本轮被决定溢出的vreg
|
||||
|
||||
bool conservative_spill_mode = false;
|
||||
const PhysicalReg SPILL_TEMP_REG = PhysicalReg::T4;
|
||||
|
||||
// --- 寄存器池和分配结果 ---
|
||||
std::vector<PhysicalReg> allocable_int_regs;
|
||||
std::vector<PhysicalReg> allocable_fp_regs;
|
||||
std::map<unsigned, PhysicalReg> vreg_to_preg_map;
|
||||
std::map<unsigned, PhysicalReg> abi_vreg_map;
|
||||
|
||||
const std::map<unsigned, Type*>& vreg_type_map;
|
||||
};
|
||||
|
||||
} // namespace sysy
|
||||
|
||||
#endif // RISCV64_LINEARSCAN_H
|
||||
@ -1,12 +1,16 @@
|
||||
#ifndef RISCV64_PASSES_H
|
||||
#define RISCV64_PASSES_H
|
||||
|
||||
#include "Pass.h"
|
||||
#include "RISCv64LLIR.h"
|
||||
#include "RISCv64Peephole.h"
|
||||
#include "Peephole.h"
|
||||
#include "PreRA_Scheduler.h"
|
||||
#include "PostRA_Scheduler.h"
|
||||
#include "CalleeSavedHandler.h"
|
||||
#include "Pass.h"
|
||||
#include "LegalizeImmediates.h"
|
||||
#include "PrologueEpilogueInsertion.h"
|
||||
#include "EliminateFrameIndices.h"
|
||||
#include "DivStrengthReduction.h"
|
||||
|
||||
namespace sysy {
|
||||
|
||||
122
src/include/backend/RISCv64/RISCv64RegAlloc.h
Normal file
122
src/include/backend/RISCv64/RISCv64RegAlloc.h
Normal file
@ -0,0 +1,122 @@
|
||||
#ifndef RISCV64_REGALLOC_H
|
||||
#define RISCV64_REGALLOC_H
|
||||
|
||||
#include "RISCv64LLIR.h"
|
||||
#include "RISCv64ISel.h" // 包含 RISCv64ISel.h 以访问 ISel 和 Value 类型
|
||||
#include <set>
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <stack>
|
||||
|
||||
extern int DEBUG;
|
||||
extern int DEEPDEBUG;
|
||||
extern int DEBUGLENGTH; // 用于限制调试输出的长度
|
||||
extern int DEEPERDEBUG; // 用于更深层次的调试输出
|
||||
|
||||
namespace sysy {
|
||||
|
||||
class RISCv64RegAlloc {
|
||||
public:
|
||||
RISCv64RegAlloc(MachineFunction* mfunc);
|
||||
|
||||
// 模块主入口
|
||||
bool run();
|
||||
|
||||
private:
|
||||
// 类型定义,与Python版本对应
|
||||
using VRegSet = std::set<unsigned>;
|
||||
using InterferenceGraph = std::map<unsigned, VRegSet>;
|
||||
using VRegStack = std::vector<unsigned>; // 使用vector模拟栈,方便遍历
|
||||
using MoveList = std::map<unsigned, std::set<const MachineInstr*>>;
|
||||
using AliasMap = std::map<unsigned, unsigned>;
|
||||
using ColorMap = std::map<unsigned, PhysicalReg>;
|
||||
using VRegMoveSet = std::set<const MachineInstr*>;
|
||||
|
||||
// --- 核心算法流程 ---
|
||||
void initialize();
|
||||
void build();
|
||||
void makeWorklist();
|
||||
void simplify();
|
||||
void coalesce();
|
||||
void freeze();
|
||||
void selectSpill();
|
||||
void assignColors();
|
||||
void rewriteProgram();
|
||||
bool doAllocation();
|
||||
void applyColoring();
|
||||
|
||||
void dumpState(const std::string &stage);
|
||||
|
||||
void precolorByCallingConvention();
|
||||
|
||||
// --- 辅助函数 ---
|
||||
void getInstrUseDef(const MachineInstr* instr, VRegSet& use, VRegSet& def);
|
||||
void getInstrUseDef_Liveness(const MachineInstr *instr, VRegSet &use, VRegSet &def);
|
||||
void addEdge(unsigned u, unsigned v);
|
||||
VRegSet adjacent(unsigned n);
|
||||
VRegMoveSet nodeMoves(unsigned n);
|
||||
bool moveRelated(unsigned n);
|
||||
void decrementDegree(unsigned m);
|
||||
void enableMoves(const VRegSet& nodes);
|
||||
unsigned getAlias(unsigned n);
|
||||
void addWorklist(unsigned u);
|
||||
bool briggsHeuristic(unsigned u, unsigned v);
|
||||
bool georgeHeuristic(unsigned u, unsigned v);
|
||||
void combine(unsigned u, unsigned v);
|
||||
void freezeMoves(unsigned u);
|
||||
void collectUsedCalleeSavedRegs();
|
||||
bool isFPVReg(unsigned vreg) const;
|
||||
std::string regToString(PhysicalReg reg);
|
||||
std::string regIdToString(unsigned id);
|
||||
|
||||
// --- 活跃性分析 ---
|
||||
void analyzeLiveness();
|
||||
|
||||
MachineFunction* MFunc;
|
||||
RISCv64ISel* ISel;
|
||||
|
||||
// --- 算法数据结构 ---
|
||||
// 寄存器池
|
||||
std::vector<PhysicalReg> allocable_int_regs;
|
||||
std::vector<PhysicalReg> allocable_fp_regs;
|
||||
int K_int; // 整数寄存器数量
|
||||
int K_fp; // 浮点寄存器数量
|
||||
|
||||
// 节点集合
|
||||
VRegSet precolored; // 预着色的节点 (物理寄存器)
|
||||
VRegSet initial; // 初始的、所有待处理的虚拟寄存器节点
|
||||
VRegSet simplifyWorklist;
|
||||
VRegSet freezeWorklist;
|
||||
VRegSet spillWorklist;
|
||||
VRegSet spilledNodes;
|
||||
VRegSet coalescedNodes;
|
||||
VRegSet coloredNodes;
|
||||
VRegStack selectStack;
|
||||
|
||||
// Move指令相关
|
||||
std::set<const MachineInstr*> coalescedMoves;
|
||||
std::set<const MachineInstr*> constrainedMoves;
|
||||
std::set<const MachineInstr*> frozenMoves;
|
||||
std::set<const MachineInstr*> worklistMoves;
|
||||
std::set<const MachineInstr*> activeMoves;
|
||||
|
||||
// 数据结构
|
||||
InterferenceGraph adjSet;
|
||||
std::map<unsigned, VRegSet> adjList; // 邻接表
|
||||
std::map<unsigned, int> degree;
|
||||
MoveList moveList;
|
||||
AliasMap alias;
|
||||
ColorMap color_map;
|
||||
|
||||
// 活跃性分析结果
|
||||
std::map<const MachineInstr*, VRegSet> live_in_map;
|
||||
std::map<const MachineInstr*, VRegSet> live_out_map;
|
||||
|
||||
// VReg -> Value* 和 VReg -> Type* 的映射
|
||||
const std::map<unsigned, Value*>& vreg_to_value_map;
|
||||
const std::map<unsigned, Type*>& vreg_type_map;
|
||||
};
|
||||
|
||||
} // namespace sysy
|
||||
|
||||
#endif // RISCV64_REGALLOC_H
|
||||
@ -202,6 +202,7 @@ class Use {
|
||||
|
||||
public:
|
||||
unsigned getIndex() const { return index; } ///< 返回value在User操作数中的位置
|
||||
void setIndex(int newIndex) { index = newIndex; } ///< 设置value在User操作数中的位置
|
||||
User* getUser() const { return user; } ///< 返回使用者
|
||||
Value* getValue() const { return value; } ///< 返回被使用的值
|
||||
void setValue(Value *newValue) { value = newValue; } ///< 将被使用的值设置为newValue
|
||||
@ -229,7 +230,14 @@ class Value {
|
||||
std::list<std::shared_ptr<Use>>& getUses() { return uses; } ///< 获取使用关系列表
|
||||
void addUse(const std::shared_ptr<Use> &use) { uses.push_back(use); } ///< 添加使用关系
|
||||
void replaceAllUsesWith(Value *value); ///< 将原来使用该value的使用者全变为使用给定参数value并修改相应use关系
|
||||
void removeUse(const std::shared_ptr<Use> &use) { uses.remove(use); } ///< 删除使用关系use
|
||||
void removeUse(const std::shared_ptr<Use> &use) {
|
||||
assert(use != nullptr && "Use cannot be null");
|
||||
assert(use->getValue() == this && "Use being removed does NOT point to this Value!");
|
||||
auto it = std::find(uses.begin(), uses.end(), use);
|
||||
assert(it != uses.end() && "Use not found in Value's uses");
|
||||
uses.remove(use);
|
||||
} ///< 删除使用关系use
|
||||
void removeAllUses();
|
||||
};
|
||||
|
||||
/**
|
||||
@ -359,12 +367,25 @@ public:
|
||||
|
||||
// Helper methods to access constant values with appropriate casting
|
||||
int getInt() const {
|
||||
assert(getType()->isInt() && "Calling getInt() on non-integer type");
|
||||
return std::get<int>(getVal());
|
||||
auto val = getVal();
|
||||
if (std::holds_alternative<int>(val)) {
|
||||
return std::get<int>(val);
|
||||
} else if (std::holds_alternative<float>(val)) {
|
||||
return static_cast<int>(std::get<float>(val));
|
||||
}
|
||||
// Handle other possible types if needed
|
||||
return 0; // Default fallback
|
||||
}
|
||||
|
||||
float getFloat() const {
|
||||
assert(getType()->isFloat() && "Calling getFloat() on non-float type");
|
||||
return std::get<float>(getVal());
|
||||
auto val = getVal();
|
||||
if (std::holds_alternative<float>(val)) {
|
||||
return std::get<float>(val);
|
||||
} else if (std::holds_alternative<int>(val)) {
|
||||
return static_cast<float>(std::get<int>(val));
|
||||
}
|
||||
// Handle other possible types if needed
|
||||
return 0.0f; // Default fallback
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
@ -501,12 +522,15 @@ public:
|
||||
explicit BasicBlock(Function *parent, const std::string &name = "")
|
||||
: Value(Type::getLabelType(), name), parent(parent) {}
|
||||
~BasicBlock() override {
|
||||
for (auto pre : predecessors) {
|
||||
pre->removeSuccessor(this);
|
||||
}
|
||||
for (auto suc : successors) {
|
||||
suc->removePredecessor(this);
|
||||
}
|
||||
// for (auto pre : predecessors) {
|
||||
// pre->removeSuccessor(this);
|
||||
// }
|
||||
// for (auto suc : successors) {
|
||||
// suc->removePredecessor(this);
|
||||
// }
|
||||
// 这些关系应该在 BasicBlock 被从 Function 中移除时,
|
||||
// 由负责 CFG 优化的 Pass (例如 SCCP 的 RemoveDeadBlock) 显式地清理。
|
||||
// 析构函数只负责清理 BasicBlock 自身拥有的资源(例如,指令列表)。
|
||||
}
|
||||
|
||||
public:
|
||||
@ -525,6 +549,10 @@ public:
|
||||
iterator begin() { return instructions.begin(); }
|
||||
iterator end() { return instructions.end(); }
|
||||
iterator terminator() { return std::prev(end()); }
|
||||
iterator findInstIterator(Instruction *inst) {
|
||||
return std::find_if(instructions.begin(), instructions.end(),
|
||||
[inst](const std::unique_ptr<Instruction> &i) { return i.get() == inst; });
|
||||
} ///< 查找指定指令的迭代器
|
||||
bool hasSuccessor(BasicBlock *block) const {
|
||||
return std::find(successors.begin(), successors.end(), block) != successors.end();
|
||||
} ///< 判断是否有后继块
|
||||
@ -556,7 +584,9 @@ public:
|
||||
if (iter != predecessors.end()) {
|
||||
predecessors.erase(iter);
|
||||
} else {
|
||||
assert(false);
|
||||
// 如果没有找到前驱块,可能是因为它已经被移除或不存在
|
||||
// 这可能是一个错误情况,或者是因为在CFG优化过程中已经处理
|
||||
// assert(false && "Predecessor block not found in BasicBlock");
|
||||
}
|
||||
}
|
||||
void removeSuccessor(BasicBlock *block) {
|
||||
@ -564,7 +594,9 @@ public:
|
||||
if (iter != successors.end()) {
|
||||
successors.erase(iter);
|
||||
} else {
|
||||
assert(false);
|
||||
// 如果没有找到后继块,可能是因为它已经被移除或不存在
|
||||
// 这可能是一个错误情况,或者是因为在CFG优化过程中已经处理
|
||||
// assert(false && "Successor block not found in BasicBlock");
|
||||
}
|
||||
}
|
||||
void replacePredecessor(BasicBlock *oldBlock, BasicBlock *newBlock) {
|
||||
@ -582,7 +614,7 @@ public:
|
||||
prev->addSuccessor(next);
|
||||
next->addPredecessor(prev);
|
||||
}
|
||||
void removeInst(iterator pos) { instructions.erase(pos); }
|
||||
iterator removeInst(iterator pos) { return instructions.erase(pos); }
|
||||
void removeInst(Instruction *inst) {
|
||||
auto pos = std::find_if(instructions.begin(), instructions.end(),
|
||||
[inst](const std::unique_ptr<Instruction> &i) { return i.get() == inst; });
|
||||
@ -618,11 +650,7 @@ class User : public Value {
|
||||
operands.emplace_back(std::make_shared<Use>(operands.size(), this, value));
|
||||
value->addUse(operands.back());
|
||||
} ///< 增加操作数
|
||||
void removeOperand(unsigned index) {
|
||||
auto value = getOperand(index);
|
||||
value->removeUse(operands[index]);
|
||||
operands.erase(operands.begin() + index);
|
||||
} ///< 移除操作数
|
||||
void removeOperand(unsigned index);
|
||||
template <typename ContainerT>
|
||||
void addOperands(const ContainerT &newoperands) {
|
||||
for (auto value : newoperands) {
|
||||
@ -678,19 +706,19 @@ class Instruction : public User {
|
||||
kCondBr = 0x1UL << 30,
|
||||
kBr = 0x1UL << 31,
|
||||
kReturn = 0x1UL << 32,
|
||||
kUnreachable = 0x1UL << 33,
|
||||
// mem op
|
||||
kAlloca = 0x1UL << 33,
|
||||
kLoad = 0x1UL << 34,
|
||||
kStore = 0x1UL << 35,
|
||||
kGetElementPtr = 0x1UL << 36,
|
||||
kMemset = 0x1UL << 37,
|
||||
// kGetSubArray = 0x1UL << 38,
|
||||
// Constant Kind removed as Constants are now Values, not Instructions.
|
||||
// kConstant = 0x1UL << 37, // Conflicts with kMemset if kept as is
|
||||
kAlloca = 0x1UL << 34,
|
||||
kLoad = 0x1UL << 35,
|
||||
kStore = 0x1UL << 36,
|
||||
kGetElementPtr = 0x1UL << 37,
|
||||
kMemset = 0x1UL << 38,
|
||||
// phi
|
||||
kPhi = 0x1UL << 39,
|
||||
kBitItoF = 0x1UL << 40,
|
||||
kBitFtoI = 0x1UL << 41,
|
||||
kSRA = 0x1UL << 42,
|
||||
kMulh = 0x1UL << 43
|
||||
};
|
||||
|
||||
protected:
|
||||
@ -787,6 +815,12 @@ public:
|
||||
return "Memset";
|
||||
case kPhi:
|
||||
return "Phi";
|
||||
case kBitItoF:
|
||||
return "BitItoF";
|
||||
case kBitFtoI:
|
||||
return "BitFtoI";
|
||||
case kSRA:
|
||||
return "SRA";
|
||||
default:
|
||||
return "Unknown";
|
||||
}
|
||||
@ -798,11 +832,15 @@ public:
|
||||
|
||||
bool isBinary() const {
|
||||
static constexpr uint64_t BinaryOpMask =
|
||||
(kAdd | kSub | kMul | kDiv | kRem | kAnd | kOr) |
|
||||
(kICmpEQ | kICmpNE | kICmpLT | kICmpGT | kICmpLE | kICmpGE) |
|
||||
(kAdd | kSub | kMul | kDiv | kRem | kAnd | kOr | kSRA | kMulh) |
|
||||
(kICmpEQ | kICmpNE | kICmpLT | kICmpGT | kICmpLE | kICmpGE);
|
||||
return kind & BinaryOpMask;
|
||||
}
|
||||
bool isFPBinary() const {
|
||||
static constexpr uint64_t FPBinaryOpMask =
|
||||
(kFAdd | kFSub | kFMul | kFDiv) |
|
||||
(kFCmpEQ | kFCmpNE | kFCmpLT | kFCmpGT | kFCmpLE | kFCmpGE);
|
||||
return kind & BinaryOpMask;
|
||||
return kind & FPBinaryOpMask;
|
||||
}
|
||||
bool isUnary() const {
|
||||
static constexpr uint64_t UnaryOpMask =
|
||||
@ -815,7 +853,7 @@ public:
|
||||
return kind & MemoryOpMask;
|
||||
}
|
||||
bool isTerminator() const {
|
||||
static constexpr uint64_t TerminatorOpMask = kCondBr | kBr | kReturn;
|
||||
static constexpr uint64_t TerminatorOpMask = kCondBr | kBr | kReturn | kUnreachable;
|
||||
return kind & TerminatorOpMask;
|
||||
}
|
||||
bool isCmp() const {
|
||||
@ -835,6 +873,7 @@ public:
|
||||
}
|
||||
bool isUnconditional() const { return kind == kBr; }
|
||||
bool isConditional() const { return kind == kCondBr; }
|
||||
bool isCondBr() const { return kind == kCondBr; }
|
||||
bool isPhi() const { return kind == kPhi; }
|
||||
bool isAlloca() const { return kind == kAlloca; }
|
||||
bool isLoad() const { return kind == kLoad; }
|
||||
@ -843,6 +882,7 @@ public:
|
||||
bool isMemset() const { return kind == kMemset; }
|
||||
bool isCall() const { return kind == kCall; }
|
||||
bool isReturn() const { return kind == kReturn; }
|
||||
bool isUnreachable() const { return kind == kUnreachable; }
|
||||
bool isDefine() const {
|
||||
static constexpr uint64_t DefineOpMask = kAlloca | kStore | kPhi;
|
||||
return (kind & DefineOpMask) != 0U;
|
||||
@ -868,37 +908,54 @@ class PhiInst : public Instruction {
|
||||
const std::string &name = "")
|
||||
: Instruction(Kind::kPhi, type, parent, name), vsize(rhs.size()) {
|
||||
assert(rhs.size() == Blocks.size() && "PhiInst: rhs and Blocks must have the same size");
|
||||
for(size_t i = 0; i < rhs.size(); ++i) {
|
||||
for(size_t i = 0; i < vsize; ++i) {
|
||||
addOperand(rhs[i]);
|
||||
addOperand(Blocks[i]);
|
||||
blk2val[Blocks[i]] = rhs[i];
|
||||
}
|
||||
}
|
||||
|
||||
public:
|
||||
Value* getValue(unsigned k) const {return getOperand(2 * k);} ///< 获取位置为k的值
|
||||
BasicBlock* getBlock(unsigned k) const {return dynamic_cast<BasicBlock*>(getOperand(2 * k + 1));}
|
||||
|
||||
auto& getincomings() const {return blk2val;} ///< 获取所有的基本块和对应的值
|
||||
|
||||
Value* getvalfromBlk(BasicBlock* blk);
|
||||
BasicBlock* getBlkfromVal(Value* val);
|
||||
|
||||
unsigned getNumIncomingValues() const { return vsize; } ///< 获取传入值的数量
|
||||
Value *getIncomingValue(unsigned Idx) const { return getOperand(Idx * 2); } ///< 获取指定位置的传入值
|
||||
BasicBlock *getIncomingBlock(unsigned Idx) const {return dynamic_cast<BasicBlock *>(getOperand(Idx * 2 + 1)); } ///< 获取指定位置的传入基本块
|
||||
|
||||
Value* getValfromBlk(BasicBlock* block);
|
||||
BasicBlock* getBlkfromVal(Value* value);
|
||||
|
||||
void addIncoming(Value *value, BasicBlock *block) {
|
||||
assert(value && block && "PhiInst: value and block must not be null");
|
||||
assert(value && block && "PhiInst: value and block cannot be null");
|
||||
addOperand(value);
|
||||
addOperand(block);
|
||||
blk2val[block] = value;
|
||||
vsize++;
|
||||
} ///< 添加传入值和对应的基本块
|
||||
|
||||
void delValue(Value* val);
|
||||
void delBlk(BasicBlock* blk);
|
||||
|
||||
void replaceBlk(BasicBlock* newBlk, unsigned k);
|
||||
void replaceold2new(BasicBlock* oldBlk, BasicBlock* newBlk);
|
||||
void refreshB2VMap();
|
||||
|
||||
void removeIncoming(unsigned Idx) {
|
||||
assert(Idx < vsize && "PhiInst: Index out of bounds");
|
||||
auto blk = getIncomingBlock(Idx);
|
||||
removeOperand(Idx * 2 + 1); // Remove block
|
||||
removeOperand(Idx * 2); // Remove value
|
||||
blk2val.erase(blk);
|
||||
vsize--;
|
||||
} ///< 移除指定位置的传入值和对应的基本块
|
||||
// 移除指定的传入值或基本块
|
||||
void removeIncomingValue(Value *value);
|
||||
void removeIncomingBlock(BasicBlock *block);
|
||||
// 设置指定位置的传入值或基本块
|
||||
void setIncomingValue(unsigned Idx, Value *value);
|
||||
void setIncomingBlock(unsigned Idx, BasicBlock *block);
|
||||
// 替换指定位置的传入值或基本块(原理是删除再添加)保留旧块或者旧值
|
||||
void replaceIncomingValue(Value *oldValue, Value *newValue);
|
||||
void replaceIncomingBlock(BasicBlock *oldBlock, BasicBlock *newBlock);
|
||||
// 替换指定位置的传入值或基本块(原理是删除再添加)
|
||||
void replaceIncomingValue(Value *oldValue, Value *newValue, BasicBlock *newBlock);
|
||||
void replaceIncomingBlock(BasicBlock *oldBlock, BasicBlock *newBlock, Value *newValue);
|
||||
void refreshMap() {
|
||||
blk2val.clear();
|
||||
for (unsigned i = 0; i < vsize; ++i) {
|
||||
blk2val[getIncomingBlock(i)] = getIncomingValue(i);
|
||||
}
|
||||
} ///< 刷新块到值的映射关系
|
||||
auto getValues() { return make_range(std::next(operand_begin()), operand_end()); }
|
||||
};
|
||||
|
||||
@ -1042,12 +1099,10 @@ class UncondBrInst : public Instruction {
|
||||
friend class Function;
|
||||
|
||||
protected:
|
||||
UncondBrInst(BasicBlock *block, std::vector<Value *> args,
|
||||
UncondBrInst(BasicBlock *block,
|
||||
BasicBlock *parent = nullptr)
|
||||
: Instruction(kBr, Type::getVoidType(), parent, "") {
|
||||
// assert(block->getNumArguments() == args.size());
|
||||
addOperand(block);
|
||||
addOperands(args);
|
||||
}
|
||||
|
||||
public:
|
||||
@ -1055,6 +1110,16 @@ public:
|
||||
auto getArguments() const {
|
||||
return make_range(std::next(operand_begin()), operand_end());
|
||||
}
|
||||
std::vector<BasicBlock *> getSuccessors() const {
|
||||
std::vector<BasicBlock *> succs;
|
||||
// 假设无条件分支的目标块是它的第一个操作数
|
||||
if (getNumOperands() > 0) {
|
||||
if (auto target_bb = dynamic_cast<BasicBlock *>(getOperand(0))) {
|
||||
succs.push_back(target_bb);
|
||||
}
|
||||
}
|
||||
return succs;
|
||||
}
|
||||
|
||||
}; // class UncondBrInst
|
||||
|
||||
@ -1066,17 +1131,12 @@ class CondBrInst : public Instruction {
|
||||
friend class Function;
|
||||
|
||||
protected:
|
||||
CondBrInst(Value *condition, BasicBlock *thenBlock, BasicBlock *elseBlock,
|
||||
const std::vector<Value *> &thenArgs,
|
||||
const std::vector<Value *> &elseArgs, BasicBlock *parent = nullptr)
|
||||
CondBrInst(Value *condition, BasicBlock *thenBlock, BasicBlock *elseBlock,
|
||||
BasicBlock *parent = nullptr)
|
||||
: Instruction(kCondBr, Type::getVoidType(), parent, "") {
|
||||
// assert(thenBlock->getNumArguments() == thenArgs.size() and
|
||||
// elseBlock->getNumArguments() == elseArgs.size());
|
||||
addOperand(condition);
|
||||
addOperand(thenBlock);
|
||||
addOperand(elseBlock);
|
||||
addOperands(thenArgs);
|
||||
addOperands(elseArgs);
|
||||
}
|
||||
public:
|
||||
Value* getCondition() const { return getOperand(0); }
|
||||
@ -1086,36 +1146,46 @@ public:
|
||||
BasicBlock* getElseBlock() const {
|
||||
return dynamic_cast<BasicBlock *>(getOperand(2));
|
||||
}
|
||||
// auto getThenArguments() const {
|
||||
// auto begin = std::next(operand_begin(), 3);
|
||||
// // auto end = std::next(begin, getThenBlock()->getNumArguments());
|
||||
// return make_range(begin, end);
|
||||
// }
|
||||
// auto getElseArguments() const {
|
||||
// auto begin =
|
||||
// std::next(operand_begin(), 3 + getThenBlock()->getNumArguments());
|
||||
// auto end = operand_end();
|
||||
// return make_range(begin, end);
|
||||
// }
|
||||
std::vector<BasicBlock *> getSuccessors() const {
|
||||
std::vector<BasicBlock *> succs;
|
||||
// 假设条件分支的真实块是第二个操作数,假块是第三个操作数
|
||||
// 操作数通常是:[0] 条件值, [1] TrueTargetBlock, [2] FalseTargetBlock
|
||||
if (getNumOperands() > 2) {
|
||||
if (auto true_bb = getThenBlock()) {
|
||||
succs.push_back(true_bb);
|
||||
}
|
||||
if (auto false_bb = getElseBlock()) {
|
||||
succs.push_back(false_bb);
|
||||
}
|
||||
}
|
||||
return succs;
|
||||
}
|
||||
|
||||
}; // class CondBrInst
|
||||
|
||||
class UnreachableInst : public Instruction {
|
||||
public:
|
||||
// 构造函数:设置指令类型为 kUnreachable
|
||||
explicit UnreachableInst(const std::string& name, BasicBlock *parent = nullptr)
|
||||
: Instruction(kUnreachable, Type::getVoidType(), parent, "") {}
|
||||
|
||||
};
|
||||
|
||||
//! Allocate memory for stack variables, used for non-global variable declartion
|
||||
class AllocaInst : public Instruction {
|
||||
friend class IRBuilder;
|
||||
friend class Function;
|
||||
protected:
|
||||
AllocaInst(Type *type, const std::vector<Value *> &dims = {},
|
||||
AllocaInst(Type *type,
|
||||
BasicBlock *parent = nullptr, const std::string &name = "")
|
||||
: Instruction(kAlloca, type, parent, name) {
|
||||
addOperands(dims);
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
int getNumDims() const { return getNumOperands(); }
|
||||
auto getDims() const { return getOperands(); }
|
||||
Value* getDim(int index) { return getOperand(index); }
|
||||
//! 获取分配的类型
|
||||
Type* getAllocatedType() const {
|
||||
return getType()->as<PointerType>()->getBaseType();
|
||||
} ///< 获取分配的类型
|
||||
|
||||
}; // class AllocaInst
|
||||
|
||||
@ -1162,21 +1232,15 @@ class LoadInst : public Instruction {
|
||||
friend class Function;
|
||||
|
||||
protected:
|
||||
LoadInst(Value *pointer, const std::vector<Value *> &indices = {},
|
||||
LoadInst(Value *pointer,
|
||||
BasicBlock *parent = nullptr, const std::string &name = "")
|
||||
: Instruction(kLoad, pointer->getType()->as<PointerType>()->getBaseType(),
|
||||
parent, name) {
|
||||
addOperand(pointer);
|
||||
addOperands(indices);
|
||||
}
|
||||
|
||||
public:
|
||||
int getNumIndices() const { return getNumOperands() - 1; }
|
||||
Value* getPointer() const { return getOperand(0); }
|
||||
auto getIndices() const {
|
||||
return make_range(std::next(operand_begin()), operand_end());
|
||||
}
|
||||
Value* getIndex(int index) const { return getOperand(index + 1); }
|
||||
|
||||
}; // class LoadInst
|
||||
|
||||
@ -1187,22 +1251,15 @@ class StoreInst : public Instruction {
|
||||
|
||||
protected:
|
||||
StoreInst(Value *value, Value *pointer,
|
||||
const std::vector<Value *> &indices = {},
|
||||
BasicBlock *parent = nullptr, const std::string &name = "")
|
||||
: Instruction(kStore, Type::getVoidType(), parent, name) {
|
||||
addOperand(value);
|
||||
addOperand(pointer);
|
||||
addOperands(indices);
|
||||
}
|
||||
|
||||
public:
|
||||
int getNumIndices() const { return getNumOperands() - 2; }
|
||||
Value* getValue() const { return getOperand(0); }
|
||||
Value* getPointer() const { return getOperand(1); }
|
||||
auto getIndices() const {
|
||||
return make_range(std::next(operand_begin(), 2), operand_end());
|
||||
}
|
||||
Value* getIndex(int index) const { return getOperand(index + 2); }
|
||||
|
||||
}; // class StoreInst
|
||||
|
||||
@ -1331,7 +1388,7 @@ protected:
|
||||
};
|
||||
|
||||
//! Global value declared at file scope
|
||||
class GlobalValue : public User {
|
||||
class GlobalValue : public Value {
|
||||
friend class Module;
|
||||
|
||||
protected:
|
||||
@ -1341,19 +1398,18 @@ protected:
|
||||
|
||||
protected:
|
||||
GlobalValue(Module *parent, Type *type, const std::string &name,
|
||||
const std::vector<Value *> &dims = {},
|
||||
ValueCounter init = {})
|
||||
: User(type, name), parent(parent) {
|
||||
: Value(type, name), parent(parent) {
|
||||
assert(type->isPointer());
|
||||
addOperands(dims);
|
||||
numDims = dims.size();
|
||||
// 维度信息已经被记录到Type中,dim只是为了方便初始化
|
||||
numDims = 0;
|
||||
if (init.size() == 0) {
|
||||
unsigned num = 1;
|
||||
for (unsigned i = 0; i < numDims; i++) {
|
||||
// Assume dims elements are ConstantInteger and cast appropriately
|
||||
auto dim_val = dynamic_cast<ConstantInteger*>(dims[i]);
|
||||
assert(dim_val && "GlobalValue dims must be constant integers");
|
||||
num *= dim_val->getInt();
|
||||
auto arrayType = type->as<ArrayType>();
|
||||
while (arrayType) {
|
||||
numDims++;
|
||||
num *= arrayType->getNumElements();
|
||||
arrayType = arrayType->getElementType()->as<ArrayType>();
|
||||
}
|
||||
if (dynamic_cast<PointerType *>(type)->getBaseType() == Type::getFloatType()) {
|
||||
init.push_back(ConstantFloating::get(0.0F), num); // Use new constant factory
|
||||
@ -1365,20 +1421,31 @@ protected:
|
||||
}
|
||||
|
||||
public:
|
||||
unsigned getNumDims() const { return numDims; } ///< 获取维度数量
|
||||
Value* getDim(unsigned index) const { return getOperand(index); } ///< 获取位置为index的维度
|
||||
auto getDims() const { return getOperands(); } ///< 获取维度列表
|
||||
unsigned getNumIndices() const {
|
||||
return numDims;
|
||||
} ///< 获取维度数量
|
||||
unsigned getIndex(unsigned index) const {
|
||||
assert(index < getNumIndices() && "Index out of bounds for GlobalValue!");
|
||||
Type *GlobalValueType = getType()->as<PointerType>()->getBaseType();
|
||||
for (unsigned i = 0; i < index; i++) {
|
||||
GlobalValueType = GlobalValueType->as<ArrayType>()->getElementType();
|
||||
}
|
||||
return GlobalValueType->as<ArrayType>()->getNumElements();
|
||||
} ///< 获取维度大小(从第0个开始)
|
||||
Value* getByIndex(unsigned index) const {
|
||||
return initValues.getValue(index);
|
||||
} ///< 通过一维偏移量index获取初始值
|
||||
Value* getByIndices(const std::vector<Value *> &indices) const {
|
||||
Value* getByIndices(const std::vector<Value *> &indices) const {
|
||||
int index = 0;
|
||||
Type *GlobalValueType = getType()->as<PointerType>()->getBaseType();
|
||||
for (size_t i = 0; i < indices.size(); i++) {
|
||||
// Ensure dims[i] and indices[i] are ConstantInteger and retrieve their values correctly
|
||||
auto dim_val = dynamic_cast<ConstantInteger*>(getDim(i));
|
||||
// GlobalValueType->as<ArrayType>()->getNumElements();
|
||||
auto dim_val = GlobalValueType->as<ArrayType>()->getNumElements();
|
||||
auto idx_val = dynamic_cast<ConstantInteger*>(indices[i]);
|
||||
assert(dim_val && idx_val && "Dims and indices must be constant integers");
|
||||
index = dim_val->getInt() * index + idx_val->getInt();
|
||||
index = dim_val * index + idx_val->getInt();
|
||||
GlobalValueType = GlobalValueType->as<ArrayType>()->getElementType();
|
||||
}
|
||||
return getByIndex(index);
|
||||
} ///< 通过多维索引indices获取初始值
|
||||
@ -1386,7 +1453,7 @@ public:
|
||||
}; // class GlobalValue
|
||||
|
||||
|
||||
class ConstantVariable : public User {
|
||||
class ConstantVariable : public Value {
|
||||
friend class Module;
|
||||
|
||||
protected:
|
||||
@ -1395,33 +1462,50 @@ class ConstantVariable : public User {
|
||||
ValueCounter initValues; ///< 值
|
||||
|
||||
protected:
|
||||
ConstantVariable(Module *parent, Type *type, const std::string &name, const ValueCounter &init,
|
||||
const std::vector<Value *> &dims = {})
|
||||
: User(type, name), parent(parent) {
|
||||
ConstantVariable(Module *parent, Type *type, const std::string &name, const ValueCounter &init)
|
||||
: Value(type, name), parent(parent) {
|
||||
assert(type->isPointer());
|
||||
numDims = dims.size();
|
||||
// numDims = dims.size();
|
||||
numDims = 0;
|
||||
if(type->as<PointerType>()->getBaseType()->isArray()) {
|
||||
auto arrayType = type->as<ArrayType>();
|
||||
while (arrayType) {
|
||||
numDims++;
|
||||
arrayType = arrayType->getElementType()->as<ArrayType>();
|
||||
}
|
||||
}
|
||||
initValues = init;
|
||||
addOperands(dims);
|
||||
}
|
||||
|
||||
public:
|
||||
unsigned getNumIndices() const {
|
||||
return numDims;
|
||||
} ///< 获取索引数量
|
||||
unsigned getIndex(unsigned index) const {
|
||||
assert(index < getNumIndices() && "Index out of bounds for ConstantVariable!");
|
||||
Type *ConstantVariableType = getType()->as<PointerType>()->getBaseType();
|
||||
for (unsigned i = 0; i < index; i++) {
|
||||
ConstantVariableType = ConstantVariableType->as<ArrayType>()->getElementType();
|
||||
}
|
||||
return ConstantVariableType->as<ArrayType>()->getNumElements();
|
||||
} ///< 获取索引个数(从第0个开始)
|
||||
Value* getByIndex(unsigned index) const { return initValues.getValue(index); } ///< 通过一维位置index获取值
|
||||
Value* getByIndices(const std::vector<Value *> &indices) const {
|
||||
int index = 0;
|
||||
// 计算偏移量
|
||||
Type *ConstantVariableType = getType()->as<PointerType>()->getBaseType();
|
||||
for (size_t i = 0; i < indices.size(); i++) {
|
||||
// Ensure dims[i] and indices[i] are ConstantInteger and retrieve their values correctly
|
||||
auto dim_val = dynamic_cast<ConstantInteger*>(getDim(i));
|
||||
// ConstantVariableType->as<ArrayType>()->getNumElements();
|
||||
auto dim_val = ConstantVariableType->as<ArrayType>()->getNumElements();
|
||||
auto idx_val = dynamic_cast<ConstantInteger*>(indices[i]);
|
||||
assert(dim_val && idx_val && "Dims and indices must be constant integers");
|
||||
index = dim_val->getInt() * index + idx_val->getInt();
|
||||
index = dim_val * index + idx_val->getInt();
|
||||
ConstantVariableType = ConstantVariableType->as<ArrayType>()->getElementType();
|
||||
}
|
||||
|
||||
return getByIndex(index);
|
||||
} ///< 通过多维索引indices获取初始值
|
||||
unsigned getNumDims() const { return numDims; } ///< 获取维度数量
|
||||
Value* getDim(unsigned index) const { return getOperand(index); } ///< 获取位置为index的维度
|
||||
auto getDims() const { return getOperands(); } ///< 获取维度列表
|
||||
const ValueCounter& getInitValues() const { return initValues; } ///< 获取初始值
|
||||
};
|
||||
|
||||
@ -1437,7 +1521,7 @@ class SymbolTable {
|
||||
SymbolTableNode *curNode{}; ///< 当前所在的作用域(符号表节点)
|
||||
std::map<std::string, unsigned> variableIndex; ///< 变量命名索引表
|
||||
std::vector<std::unique_ptr<GlobalValue>> globals; ///< 全局变量列表
|
||||
std::vector<std::unique_ptr<ConstantVariable>> consts; ///< 常量列表
|
||||
std::vector<std::unique_ptr<ConstantVariable>> globalconsts; ///< 全局常量列表
|
||||
std::vector<std::unique_ptr<SymbolTableNode>> nodeList; ///< 符号表节点列表
|
||||
|
||||
public:
|
||||
@ -1446,7 +1530,7 @@ class SymbolTable {
|
||||
Value* getVariable(const std::string &name) const; ///< 根据名字name以及当前作用域获取变量
|
||||
Value* addVariable(const std::string &name, Value *variable); ///< 添加变量
|
||||
std::vector<std::unique_ptr<GlobalValue>>& getGlobals(); ///< 获取全局变量列表
|
||||
const std::vector<std::unique_ptr<ConstantVariable>>& getConsts() const; ///< 获取常量列表
|
||||
const std::vector<std::unique_ptr<ConstantVariable>>& getConsts() const; ///< 获取全局常量列表
|
||||
void enterNewScope(); ///< 进入新的作用域
|
||||
void leaveScope(); ///< 离开作用域
|
||||
bool isInGlobalScope() const; ///< 是否位于全局作用域
|
||||
@ -1480,13 +1564,12 @@ class Module {
|
||||
return result.first->second.get();
|
||||
} ///< 创建外部函数
|
||||
///< 变量创建伴随着符号表的更新
|
||||
GlobalValue* createGlobalValue(const std::string &name, Type *type, const std::vector<Value *> &dims = {},
|
||||
const ValueCounter &init = {}) {
|
||||
GlobalValue* createGlobalValue(const std::string &name, Type *type, const ValueCounter &init = {}) {
|
||||
bool isFinished = variableTable.isCurNodeNull();
|
||||
if (isFinished) {
|
||||
variableTable.enterGlobalScope();
|
||||
}
|
||||
auto result = variableTable.addVariable(name, new GlobalValue(this, type, name, dims, init));
|
||||
auto result = variableTable.addVariable(name, new GlobalValue(this, type, name, init));
|
||||
if (isFinished) {
|
||||
variableTable.leaveScope();
|
||||
}
|
||||
@ -1495,9 +1578,8 @@ class Module {
|
||||
}
|
||||
return dynamic_cast<GlobalValue *>(result);
|
||||
} ///< 创建全局变量
|
||||
ConstantVariable* createConstVar(const std::string &name, Type *type, const ValueCounter &init,
|
||||
const std::vector<Value *> &dims = {}) {
|
||||
auto result = variableTable.addVariable(name, new ConstantVariable(this, type, name, init, dims));
|
||||
ConstantVariable* createConstVar(const std::string &name, Type *type, const ValueCounter &init) {
|
||||
auto result = variableTable.addVariable(name, new ConstantVariable(this, type, name, init));
|
||||
if (result == nullptr) {
|
||||
return nullptr;
|
||||
}
|
||||
@ -126,7 +126,7 @@ class IRBuilder {
|
||||
UnaryInst * createFNotInst(Value *operand, const std::string &name = "") {
|
||||
return createUnaryInst(Instruction::kFNot, Type::getIntType(), operand, name);
|
||||
} ///< 创建浮点取非指令
|
||||
UnaryInst * createIToFInst(Value *operand, const std::string &name = "") {
|
||||
UnaryInst * createItoFInst(Value *operand, const std::string &name = "") {
|
||||
return createUnaryInst(Instruction::kItoF, Type::getFloatType(), operand, name);
|
||||
} ///< 创建整型转浮点指令
|
||||
UnaryInst * createBitItoFInst(Value *operand, const std::string &name = "") {
|
||||
@ -217,6 +217,12 @@ class IRBuilder {
|
||||
BinaryInst * createOrInst(Value *lhs, Value *rhs, const std::string &name = "") {
|
||||
return createBinaryInst(Instruction::kOr, Type::getIntType(), lhs, rhs, name);
|
||||
} ///< 创建按位或指令
|
||||
BinaryInst * createSRAInst(Value *lhs, Value *rhs, const std::string &name = "") {
|
||||
return createBinaryInst(Instruction::kSRA, Type::getIntType(), lhs, rhs, name);
|
||||
} ///< 创建算术右移指令
|
||||
BinaryInst * createMulhInst(Value *lhs, Value *rhs, const std::string &name = "") {
|
||||
return createBinaryInst(Instruction::kMulh, Type::getIntType(), lhs, rhs, name);
|
||||
} ///< 创建高位乘法指令
|
||||
CallInst * createCallInst(Function *callee, const std::vector<Value *> &args, const std::string &name = "") {
|
||||
std::string newName;
|
||||
if (name.empty() && callee->getReturnType() != Type::getVoidType()) {
|
||||
@ -239,31 +245,30 @@ class IRBuilder {
|
||||
block->getInstructions().emplace(position, inst);
|
||||
return inst;
|
||||
} ///< 创建return指令
|
||||
UncondBrInst * createUncondBrInst(BasicBlock *thenBlock, const std::vector<Value *> &args) {
|
||||
auto inst = new UncondBrInst(thenBlock, args, block);
|
||||
UncondBrInst * createUncondBrInst(BasicBlock *thenBlock) {
|
||||
auto inst = new UncondBrInst(thenBlock, block);
|
||||
assert(inst);
|
||||
block->getInstructions().emplace(position, inst);
|
||||
return inst;
|
||||
} ///< 创建无条件指令
|
||||
CondBrInst * createCondBrInst(Value *condition, BasicBlock *thenBlock, BasicBlock *elseBlock,
|
||||
const std::vector<Value *> &thenArgs, const std::vector<Value *> &elseArgs) {
|
||||
auto inst = new CondBrInst(condition, thenBlock, elseBlock, thenArgs, elseArgs, block);
|
||||
CondBrInst * createCondBrInst(Value *condition, BasicBlock *thenBlock, BasicBlock *elseBlock) {
|
||||
auto inst = new CondBrInst(condition, thenBlock, elseBlock, block);
|
||||
assert(inst);
|
||||
block->getInstructions().emplace(position, inst);
|
||||
return inst;
|
||||
} ///< 创建条件跳转指令
|
||||
AllocaInst * createAllocaInst(Type *type, const std::vector<Value *> &dims = {}, const std::string &name = "") {
|
||||
auto inst = new AllocaInst(type, dims, block, name);
|
||||
UnreachableInst * createUnreachableInst(const std::string &name = "") {
|
||||
auto inst = new UnreachableInst(name, block);
|
||||
assert(inst);
|
||||
block->getInstructions().emplace(position, inst);
|
||||
return inst;
|
||||
} ///< 创建不可达指令
|
||||
AllocaInst * createAllocaInst(Type *type, const std::string &name = "") {
|
||||
auto inst = new AllocaInst(type, block, name);
|
||||
assert(inst);
|
||||
block->getInstructions().emplace(position, inst);
|
||||
return inst;
|
||||
} ///< 创建分配指令
|
||||
AllocaInst * createAllocaInstWithoutInsert(Type *type, const std::vector<Value *> &dims = {}, BasicBlock *parent = nullptr,
|
||||
const std::string &name = "") {
|
||||
auto inst = new AllocaInst(type, dims, parent, name);
|
||||
assert(inst);
|
||||
return inst;
|
||||
} ///< 创建不插入指令列表的分配指令[仅用于phi指令]
|
||||
LoadInst * createLoadInst(Value *pointer, const std::vector<Value *> &indices = {}, const std::string &name = "") {
|
||||
std::string newName;
|
||||
if (name.empty()) {
|
||||
@ -275,7 +280,7 @@ class IRBuilder {
|
||||
newName = name;
|
||||
}
|
||||
|
||||
auto inst = new LoadInst(pointer, indices, block, newName);
|
||||
auto inst = new LoadInst(pointer, block, newName);
|
||||
assert(inst);
|
||||
block->getInstructions().emplace(position, inst);
|
||||
return inst;
|
||||
@ -286,37 +291,27 @@ class IRBuilder {
|
||||
block->getInstructions().emplace(position, inst);
|
||||
return inst;
|
||||
} ///< 创建memset指令
|
||||
StoreInst * createStoreInst(Value *value, Value *pointer, const std::vector<Value *> &indices = {},
|
||||
const std::string &name = "") {
|
||||
auto inst = new StoreInst(value, pointer, indices, block, name);
|
||||
StoreInst * createStoreInst(Value *value, Value *pointer, const std::string &name = "") {
|
||||
auto inst = new StoreInst(value, pointer, block, name);
|
||||
assert(inst);
|
||||
block->getInstructions().emplace(position, inst);
|
||||
return inst;
|
||||
} ///< 创建store指令
|
||||
PhiInst * createPhiInst(Type *type, const std::vector<Value*> &vals = {}, const std::vector<BasicBlock*> &blks = {}, const std::string &name = "") {
|
||||
auto inst = new PhiInst(type, vals, blks, block, name);
|
||||
std::string newName;
|
||||
if (name.empty()) {
|
||||
std::stringstream ss;
|
||||
ss << tmpIndex;
|
||||
newName = ss.str();
|
||||
tmpIndex++;
|
||||
} else {
|
||||
newName = name;
|
||||
}
|
||||
auto inst = new PhiInst(type, vals, blks, block, newName);
|
||||
assert(inst);
|
||||
block->getInstructions().emplace(block->begin(), inst);
|
||||
return inst;
|
||||
} ///< 创建Phi指令
|
||||
// GetElementPtrInst* createGetElementPtrInst(Value *basePointer,
|
||||
// const std::vector<Value *> &indices = {},
|
||||
// const std::string &name = "") {
|
||||
// std::string newName;
|
||||
// if (name.empty()) {
|
||||
// std::stringstream ss;
|
||||
// ss << tmpIndex;
|
||||
// newName = ss.str();
|
||||
// tmpIndex++;
|
||||
// } else {
|
||||
// newName = name;
|
||||
// }
|
||||
|
||||
// auto inst = new GetElementPtrInst(basePointer, indices, block, newName);
|
||||
// assert(inst);
|
||||
// block->getInstructions().emplace(position, inst);
|
||||
// return inst;
|
||||
// }
|
||||
/**
|
||||
* @brief 根据 LLVM 设计模式创建 GEP 指令。
|
||||
* 它会自动推断返回类型,无需手动指定。
|
||||
107
src/include/midend/Pass/Analysis/Dom.h
Normal file
107
src/include/midend/Pass/Analysis/Dom.h
Normal file
@ -0,0 +1,107 @@
|
||||
#pragma once
|
||||
|
||||
#include "Pass.h" // 包含 Pass 框架
|
||||
#include "IR.h" // 包含 IR 定义
|
||||
#include <map>
|
||||
#include <set>
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
#include <functional>
|
||||
|
||||
namespace sysy {
|
||||
|
||||
// 支配树分析结果类
|
||||
class DominatorTree : public AnalysisResultBase {
|
||||
public:
|
||||
DominatorTree(Function* F);
|
||||
// 获取指定基本块的所有支配者
|
||||
const std::set<BasicBlock*>* getDominators(BasicBlock* BB) const;
|
||||
// 获取指定基本块的即时支配者 (Immediate Dominator)
|
||||
BasicBlock* getImmediateDominator(BasicBlock* BB) const;
|
||||
// 获取指定基本块的支配边界 (Dominance Frontier)
|
||||
const std::set<BasicBlock*>* getDominanceFrontier(BasicBlock* BB) const;
|
||||
// 获取指定基本块在支配树中的子节点
|
||||
const std::set<BasicBlock*>* getDominatorTreeChildren(BasicBlock* BB) const;
|
||||
// 额外的 Getter:获取所有支配者、即时支配者和支配边界的完整映射(可选,主要用于调试或特定场景)
|
||||
const std::map<BasicBlock*, std::set<BasicBlock*>>& getDominatorsMap() const { return Dominators; }
|
||||
const std::map<BasicBlock*, BasicBlock*>& getIDomsMap() const { return IDoms; }
|
||||
const std::map<BasicBlock*, std::set<BasicBlock*>>& getDominanceFrontiersMap() const { return DominanceFrontiers; }
|
||||
|
||||
// 计算所有基本块的支配者集合
|
||||
void computeDominators(Function* F);
|
||||
// 计算所有基本块的即时支配者(内部使用 Lengauer-Tarjan 算法)
|
||||
void computeIDoms(Function* F);
|
||||
// 计算所有基本块的支配边界
|
||||
void computeDominanceFrontiers(Function* F);
|
||||
// 计算支配树的结构(即每个节点的直接子节点)
|
||||
void computeDominatorTreeChildren(Function* F);
|
||||
private:
|
||||
// 与该支配树关联的函数
|
||||
Function* AssociatedFunction;
|
||||
std::map<BasicBlock*, std::set<BasicBlock*>> Dominators; // 每个基本块的支配者集合
|
||||
std::map<BasicBlock*, BasicBlock*> IDoms; // 每个基本块的即时支配者
|
||||
std::map<BasicBlock*, std::set<BasicBlock*>> DominanceFrontiers; // 每个基本块的支配边界
|
||||
std::map<BasicBlock*, std::set<BasicBlock*>> DominatorTreeChildren; // 支配树中每个基本块的子节点
|
||||
|
||||
// ==========================================================
|
||||
// Lengauer-Tarjan 算法内部所需的数据结构和辅助函数
|
||||
// 这些成员是私有的,以封装 LT 算法的复杂性并避免命名空间污染
|
||||
// ==========================================================
|
||||
|
||||
// DFS 遍历相关:
|
||||
std::map<BasicBlock*, int> dfnum_map; // 存储每个基本块的 DFS 编号
|
||||
std::vector<BasicBlock*> vertex_vec; // 通过 DFS 编号反向查找对应的基本块指针
|
||||
std::map<BasicBlock*, BasicBlock*> parent_map; // 存储 DFS 树中每个基本块的父节点
|
||||
int df_counter; // DFS 计数器,也代表 DFS 遍历的总节点数 (N)
|
||||
|
||||
// 半支配者 (Semi-dominator) 相关:
|
||||
std::map<BasicBlock*, BasicBlock*> sdom_map; // 存储每个基本块的半支配者
|
||||
std::map<BasicBlock*, BasicBlock*> idom_map; // 存储每个基本块的即时支配者 (IDom)
|
||||
std::map<BasicBlock*, std::vector<BasicBlock*>> bucket_map; // 桶结构,用于存储具有相同半支配者的节点,以延迟 IDom 计算
|
||||
|
||||
// 并查集 (Union-Find) 相关(用于 evalAndCompress 函数):
|
||||
std::map<BasicBlock*, BasicBlock*> ancestor_map; // 并查集中的父节点(用于路径压缩)
|
||||
std::map<BasicBlock*, BasicBlock*> label_map; // 并查集中,每个集合的代表节点(或其路径上 sdom 最小的节点)
|
||||
|
||||
// ==========================================================
|
||||
// 辅助计算函数 (私有)
|
||||
// ==========================================================
|
||||
|
||||
// 计算基本块的逆后序遍历 (Reverse Post Order, RPO) 顺序
|
||||
// RPO 用于优化支配者计算和 LT 算法的效率
|
||||
std::vector<BasicBlock*> computeReversePostOrder(Function* F);
|
||||
|
||||
// Lengauer-Tarjan 算法特定的辅助 DFS 函数
|
||||
// 用于初始化 dfnum_map, vertex_vec, parent_map
|
||||
void dfs_lt_helper(BasicBlock* u);
|
||||
|
||||
// 结合了并查集的 Find 操作和 LT 算法的 Eval 操作
|
||||
// 用于在路径压缩时更新 label,找到路径上 sdom 最小的节点
|
||||
BasicBlock* evalAndCompress_lt_helper(BasicBlock* i);
|
||||
|
||||
// 并查集的 Link 操作
|
||||
// 将 v_child 挂载到 u_parent 的并查集树下
|
||||
void link_lt_helper(BasicBlock* u_parent, BasicBlock* v_child);
|
||||
};
|
||||
|
||||
|
||||
// 支配树分析遍
|
||||
class DominatorTreeAnalysisPass : public AnalysisPass {
|
||||
public:
|
||||
// 唯一的 Pass ID
|
||||
static void *ID;
|
||||
|
||||
DominatorTreeAnalysisPass() : AnalysisPass("DominatorTreeAnalysis", Pass::Granularity::Function) {}
|
||||
|
||||
// 实现 getPassID
|
||||
void* getPassID() const override { return &ID; }
|
||||
|
||||
bool runOnFunction(Function* F, AnalysisManager &AM) override;
|
||||
|
||||
std::unique_ptr<AnalysisResultBase> getResult() override;
|
||||
|
||||
private:
|
||||
std::unique_ptr<DominatorTree> CurrentDominatorTree;
|
||||
};
|
||||
|
||||
} // namespace sysy
|
||||
20
src/include/midend/Pass/Optimize/BuildCFG.h
Normal file
20
src/include/midend/Pass/Optimize/BuildCFG.h
Normal file
@ -0,0 +1,20 @@
|
||||
#pragma once
|
||||
|
||||
#include "IR.h"
|
||||
#include "Pass.h"
|
||||
#include <queue>
|
||||
#include <set>
|
||||
|
||||
namespace sysy {
|
||||
|
||||
class BuildCFG : public OptimizationPass {
|
||||
public:
|
||||
static void *ID;
|
||||
BuildCFG() : OptimizationPass("BuildCFG", Granularity::Function) {}
|
||||
bool runOnFunction(Function *F, AnalysisManager &AM) override;
|
||||
void getAnalysisUsage(std::set<void *> &analysisDependencies, std::set<void *> &analysisInvalidations) const override;
|
||||
void *getPassID() const override { return &ID; }
|
||||
|
||||
};
|
||||
|
||||
} // namespace sysy
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user